
ar
X

iv
:1

30
5.

01
44

v2
  [

q-
fi

n.
PM

] 
 1

0 
M

ay
 2

01
3

RELATIVE ROBUST PORTFOLIO OPTIMIZATION

RAPHAEL HAUSER∗, VIJAY KRISHNAMURTHY† AND REHA H. TÜTÜNCÜ‡

Abstract. Considering mean-variance portfolio problems with uncertain model parameters, we
contrast the classical absolute robust optimization approach with the relative robust approach based
on a maximum regret function. Although the latter problems are NP-hard in general, we show that
tractable inner and outer approximations exist in several cases that are of central interest in asset
management.
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1. Introduction. We consider decision-making tools for problems that are de-
fined by uncertain or unknown parameters. Uncertainty and the risk of undesirable
outcomes are inevitable features of most productive activities. From engineers to
economists, from health care providers to investment managers, many professionals
must take decisions under considerable uncertainty on a daily basis. Our objective
is to improve the quality of decisions made in these environments by understanding,
modeling, quantifying and managing uncertainty. To achieve this goal we propose a
robust optimization modeling methodology based on extending the idea of relative
robust optimization of Kouvelis and Yu [13] in the context of discrete optimization.

Many decision problems with uncertainty can be formulated as optimization prob-
lems. In recent years, robust optimization (RO) has emerged as a powerful tool for
managing uncertainty in such optimization problems [4, 5]. An excellent overview can
be gained from the recent survey paper [2]. Robust optimization is a generic term
that is used to describe a class of modeling strategies as well as solution methods
for optimization problems that are defined by uncertain inputs. Decisions made with
incomplete information may result in undesirable outcomes when the realized values
of the uncertain inputs are unfavorable. Robust optimization models and algorithms
aim to mitigate the effects of uncertainty and obtain a solution that is guaranteed to
perform reasonably well for all, or at least most, possible realizations of the uncertain
input parameters.

There is growing evidence, both empirical and theoretical, that robust-optimized
solutions have better characteristics than their non-robust counterparts. For example,
a theoretical study by Schöttle and Werner demonstrates that the map between the
model parameters of an optimization problem and its set of optimal solutions can
become much smoother if one uses robust optimization with ellipsoidal uncertainty
sets [19], [20]. In a portfolio optimization setting with uncertain expected return es-
timates, Ceria and Stubbs report simulated results where the ex-post performance of
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robust-optimal portfolios outperform those of standard mean-variance optimal port-
folios with high frequency [6].

While the stated goals of robust optimization are intuitive, it is not always clear
what metrics one should use to achieve these goals. Most robust optimization ap-
proaches discussed in the existing literature use the “worst-case objective value” as
the comparison metric among alternative sets of decisions. Despite the advantages we
mentioned in the previous paragraph, the focus on the worst-case objective value in
robust optimization is a source of frequent criticism. Modelers, often with good rea-
son, worry that the extreme scenarios in the uncertainty set have an undue influence
on the final decisions in such robust formulations. The “worst-case objective value” is
an absolute metric. While there are many situations where it is the appropriate metric
for evaluating robustness, it is inadequate for measuring robustness in a relative sense.

A typical example arises in the investment management context where managers
are frequently evaluated and compensated based on their performance relative to the
competition. For robust decision-making in an uncertain decision environment, rather
than protecting themselves against worst-case scenarios, investment managers may
thus prefer to choose decisions that avoid falling severely behind their competitors
under a range of scenarios. This view of robustness was formalized by Kouvelis and
Yu [13]. For each choice of the decision variables and each scenario one compares the
attained objective value with the optimal objective value attainable under the model
parameter values described by the scenario. The difference between these two values,
or alternatively their ratio, can be seen as measures of regret based on hindsight
after the true values of the uncertain parameters are revealed. With the objective
of limiting such regret measures Kouvelis and Yu arrive at the robust deviation and
relative robust decision problem formulations. We will provide these formulations in
Section 2 as they form the focus of our study. We will refer to the robust deviation
and relative robust decision problems collectively as relative robust problems.

While Kouvelis and Yu explore robust deviation and relative robust decisions in
several classes of discrete optimization problems, similar studies for continuous opti-
mization problems are mostly missing in the literature. A rare exception is Taguchi’s
master’s thesis [25] and the subsequent paper [26]. As these authors also observed, rel-
ative robust formulations are typically more difficult than the corresponding absolute
robust formulations. Since they involve the optimal value function whose argument
is the vector of uncertain parameters inside a min-max optimization problem, rel-
ative robust problems are three-level optimization problems. This is in contrast to
the two-level absolute robust formulations. Since the optimal value function is rarely
available in closed form, tractability is an important concern for these models. Our
study shows that for many uncertainty structures on quadratic programming and
other optimization problems, the resulting relative robust formulation can be reduced
to one or a series of single-level deterministic optimization problems that can be solved
using conic optimization methods.

The simplest uncertainty sets are finite sets, corresponding to the intuitive notion
of a collection of scenarios. Both the absolute and relative robust formulations with
finite uncertainty sets are relatively easy as they can be solved as a finite sequence
of deterministic problems. Using simple convexity arguments, we show that robust
problems with polytopic uncertainty structures (uncertainty sets defined as convex
hull of a finite number of points) can be reduced to the finite case and are therefore
of the same complexity. Relative robust optimization problems with polytopic uncer-
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tainty sets were also considered by Taguchi et. al. [26], but our discussion is based on
the second author’s MSc thesis [14] which predated the work of the aforementioned
authors and formed the basis of the original draft of this paper. Gregory et. al. [10]
also investigated the polyhedral case.

In the second part of the paper we move beyond polytopic uncertainty sets and
consider relative robust models with ellipsoidal uncertainty. In the application on
which we concentrate, mean-variance portfolio optimization, we assume ellipsoidal
uncertainty only in the vector of expected returns and assume that the covariance
matrix is fixed. This assumption is justified, as practitioners typically use matrix
shrinkage and factor models to ensure that the covariance is estimated robustly. El-
lipsoidal uncertainty sets for the vector of expected returns appear quite naturally
as confidence regions in their statistical estimation. Taguchi et. al. [26] propose to
approximate ellipsoidal uncertainty sets by a polytope obtained as the convex hull of
a random sample of points from the ellipsoid. The resulting relative robust problems
are relaxations of the original relative robust problem with ellipsoidal uncertainty, and
since these relaxations are based on polyhedral uncertainty, they can be solved via
the approach discussed earlier. Adom [1] investigated similar relaxations but based
on polyhedra generated by pseudo-randomly chosen points, which leads to faster con-
vergence.

Our approach to relative robustness under ellipsoidal uncertainty is very different.
By developing inner approximations to the relative robust problem in the form of a
symmetric cone programming problem, we obtain solutions that are guaranteed to be
feasible. In several cases of interest our inner approximations are provably tight, as
we show using a theory developed by Sturm and Zhang [24]. Thus, while our models
approximate the feasible set of the relative robust problem from the inside, Taguchi
et. al.’s approach [26] approximates it from the outside, which yield solutions that
are not guaranteed to be feasible but give a bound on the optimal objective value.
The two approaches can be combined to obtain approximation guarantees for both –
a distance to optimality in the case of our model, and a distance to feasibility in the
case of the model of Taguchi et. al..

Since we have in mind the mean-variance portfolio optimization framework of
Markowitz [15] as a particular application of the methods investigated in this paper,
most of the notation we use will be inspired by this framework which is explained
in some detail in Section 3. Much of the other notation is of standard use in the
optimization literature, such as � and ≻ to denote positive semidefiniteness and
definiteness of a matrix, for example, cone(·), conv(·) and aff(·) for conic, convex and
affine hulls of a subset of a vector space respectively, • for the trace inner-product of
two matrices of equal size, ·∗ for duals of functionals and cones, e and I for the vector
of all ones and the identity matrix of appropriate size, and ·T for the transpose of a
matrix.

2. Absolute Robust versus Relative Robust Optimization. We consider
a generic optimization problem whose input parameters are denoted by the vector p.

max
x∈Rn

f(x, p) (2.1)

s.t. x ∈ Xp,

where f(x, p) and Xp represent the objective function and the feasible set of the
problem. For a given p, let z∗(p) and Ω∗(p) denote, respectively, the optimal value

3



and the set of optimal solutions of the above given problem, provided that they exist.
We will also use the notation x∗(p) to denote a generic element of Ω∗(p).

2.1. The Absolute Robust Optimization Framework. When p is known
(2.1) is a standard optimization problem. Robust optimization (RO) is concerned
with the case where p is not known with certainty. In recent years, RO has emerged
as an alternative to traditional approaches to optimization under uncertainty such as
sensitivity analysis and stochastic programming. As mentioned in the introduction,
its primary objective is to find solutions that will have a good performance under a
variety of scenarios for the uncertain input parameters. RO models are especially well-
suited in situations where there are constraints with uncertain parameters that must
be satisfied regardless of the values of these parameters or when the optimal solutions
are particularly sensitive to perturbations. Additionally, RO is an attractive modeling
option when the decision-maker cannot afford low-probability high-magnitude risks.

One of the essential elements of a RO model is the uncertainty set. The uncer-
tainty set, say U , represents the set of possible scenarios/realizations for the param-
eters p. When p is uncertain and must be estimated, uncertainty sets can represent
or be formed by difference of opinions, alternative estimates, confidence regions of
statistical estimators, or based on Bayesian or Kalman filtering methods for tracking
the evolution of an assumed probability distribution for p. While the current litera-
ture does not provide clear guidelines on their construction, their shape often reflects
the sources of uncertainty while their size depends on the desired level of robustness.
Common types of uncertainty sets include: (i) U = {p1, p2, . . . , pk} (a finite set of
scenarios), (ii) U = conv(p1, p2, . . . , pk) (a polytopic set), (iii) U = {p : l ≤ p ≤ u}
(intervals), and (iv) U = {p : p = p0 +Mu, ‖u‖ ≤ 1} (an ellipsoidal set).

RO formulations optimize some variation of a worst-case performance metric,
where the “worst-case” is computed over the uncertainty set. In most cases [6, 8, 9, 11],
the objective is to optimize the worst-case realization of the objective function. For
the optimization problem (2.1), this leads to the following formulation:

max
x∈

⋂
p∈U

Xp

(

min
p∈U

f(x, p)

)

. (2.2)

Kouvelis and Yu [13] classify (2.2) as the absolute robust decision problem. This
name reflects the fact that the worst-case objective value is an absolute metric. One
potential consequence of this emphasis on the worst-case is that the decisions are
disproportionately affected by extreme scenarios in the uncertainty set. As this is not
always desirable, Bertsimas and Sim [3] study this cost of robustness as a function of
the level of conservatism. An alternative we consider in this paper is to seek robustness
in a relative sense.

2.2. The Relative Robust Optimization Framework. For this purpose, we
consider a regret function that measures the difference between the performance of
the solution with and without the benefit of hindsight. If we choose x as decision
vector when p is the vector of realized parameter values, then the regret associated
with having chosen x rather than x∗(p) as decision vector is defined as follows,

r(x, p) := z∗(p)− f(x, p) = f(x∗(p), p)− f(x, p). (2.3)

Note that since x∗(p) is an optimal decision vector for the parameter values p, the
regret r(x, p) is always nonnegative.
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The regret function is not useful at the decision-making stage since we cannot
measure the regret before we observe the realized value of the parameters. Further-
more, in many a context p cannot be observed even after its realization. For example,
financial data typically yield a single sample of a random return vector R while the
parameters p = (E[R],Cov(R)) that serve as input parameters to the optimal invest-
ment problem are neither directly observable nor inferable from this single sample.
For this reason we consider the maximum regret function instead, which provides an
upper bound on the true regret,

R(x) := max
p∈U

r(x, p) = max
p∈U

(z∗(p)− f(x, p)) . (2.4)

If the function z∗(p) is positive everywhere, one can also consider a scaled version of
the regret function,

r̃(x, p) =
z∗(p)− f(x, p)

z∗(p)
, (2.5)

R̃(x) = max
p∈U

r̃(x, p) = max
p∈U

z∗(p)− f(x, p)

z∗(p)
. (2.6)

In Kouvelis and Yu [13], vectors x that minimize the maximum regret functions
R(x) and R̃(x) are called robust deviation decisions and relative robust decisions re-
spectively. We collectively refer to problems seeking such decisions as relative robust
problems and focus on the function R(x) for most of the rest of our discussion.

Let us consider the simpler case where the uncertain parameters are only in the
objective function and the feasible set Xp ≡ X is independent of p. In most models,
the dependence of the objective function on the uncertain parameters is linear. When
this is the case, it is easy to see that the optimal value function z∗(p) is a convex
function. In fact, it is sufficient that f be convex in p to guarantee the convexity of
z∗(p):

Lemma 2.1. Let U be a convex set. For all p ∈ U , define

z∗(p) = sup
x∈X

f(x, p)

where f is convex in p. Then z∗ is a convex function on U .

Lemma 2.1 is part of the folklore on convex analysis. For the sake of completeness
we include a proof in Appendix A. As we will see in the next section, this simple
convexity result is responsible for reducing relative robust optimization models with
polytopic uncertainty sets to problems with finite uncertainty sets.

3. Application to Mean-Variance Portfolio Optimization. Portfolio the-
ory deals with the problem of deciding what proportion of investable wealth to al-
locate to each of several risky investment opportunities so as to achieve a chosen
goal, which is usually to maximize the expected return while limiting risk. Under the
mean-variance optimization (MVO) approach of Markowitz [15], all n investments are
assumed to be held during the same fixed investment period over which they generate
random returns Ri. Assembled in a random vector R, the expectation µ = E[R] and
the positive definite covariance matrix Q = Cov(R) of the asset returns serve as in-
put parameters to one of the quadratic programming problems (3.1)–(3.3) described
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below. Their solutions yield optimal portfolio weights. Though these problems are
convex and computationally tractable and can therefore be solved to global optimal-
ity, MVO models can produce portfolios that are highly sensitive to the values of the
model parameters (µ,Q) and show unsatisfactory diversification. Since (µ,Q) have
to be estimated statistically, output sensitivity to these parameters is an important
practical issue. Robust optimization models have therefore emerged as favourable
alternatives to plain MVO models [9, 28, 6].

3.1. Classical Mean-Variance Portfolio Models. Although the mathemat-
ical methods investigated in this paper are applicable more widely, the MVO frame-
work constitutes their main motivation and application. We shall therefore briefly
describe some of the models that arise in this context. Let xi be the proportion of
wealth invested in the i-th investment opportunity (or asset), and let these weights
be collected in a vector x of size n. The portfolio corresponding to the weights x then
has the overall return RTx with expectation µTx and variance xTQx. Apart from
the budget constraint eTx = 1 (where e := [ 1 ... 1 ]T), fund managers usually restrict
the set X of feasible portfolios (investment decisions they are willing to consider)
by introducing further constraints that impose limits on short-selling, diversification,
rebalancing costs and other criteria. Typically, all constraints are linear, leading to a
polyhedral feasible set X = {x ∈ R

n : Fx = f, Gx ≤ g}. Here we make the minimal
assumption that X be a convex tractable set, that is, a set for which it can be decided
in polynomial time whether or not a given point is a member.

3.1.1. Convex MVO Models. Taking the variance of the portfolio return as
a risk measure, MVO formulations are obtained by either choosing to minimize the
variance subject to a lower bound target return ρ, to maximize the return subject
to an upper bound target risk σ2 or to maximize the risk-adjusted expected return
µTx− λxTQx defined by a specific choice of a risk-aversion parameter λ > 0,

min
x∈Rn

fQ(x) := xTQx (3.1)

s.t. µTx ≥ ρ,

x ∈ X ,

max
x∈Rn

fµ(x) := µTx (3.2)

s.t. xTQx ≤ σ2,

x ∈ X ,

max
x∈Rn

fµ,Q(x) := µTx− λxTQx (3.3)

s.t. x ∈ X .

It is well-known and can easily be established using KKT conditions that the three
formulations presented above are equivalent in the sense that they produce identical
solutions for appropriately chosen values of ρ, σ2 and λ. For example, there exists
a function σ2(µ,Q, r) such that the solutions of (3.1) and (3.2) coincide when σ2 =
σ2(µ,Q, ρ). We note however that this functional dependence also depends on the
model parameters. A portfolio x is said to be efficient if it optimizes (3.1)–(3.3) for
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some choice of ρ, σ2 and λ respectively. Because of the above-mentioned equivalence, it
does not matter which problem we use for this definition. The set {((xTQx)1/2, µTx) :
x efficient} is the efficient frontier.

3.1.2. Sharpe Ratio Maximization. Another variant of MVO is the Sharpe
Ratio maximization problem. Let r be the return of a risk-free investment held over
the same period as the above considered assets, e.g., a short-term government bond
or the money market. If this risk-free asset is included among the considered assets
– we call it asset 0 and refer to it as cash – and if the feasible set X0 of portfolios
containing a cash position is of affine form,

X0 = aff
({[

0
x

]

: x ∈ X
}

∪
{[

1
0

]})

, (3.4)

where aff(·) denotes the affine hull of a set and X is the set of feasible portfolios
containing only positions in the risky assets, then cash can freely be borrowed to
invest in the risky assets. In this case the efficient frontier is a straight line going
through the point (0, r) and with a gradient given by

max
x∈Rn

µTx− r
√

xTQx
(3.5)

s.t. x ∈ X .

The Sharpe ratio [22] of a portfolio x is defined as the ratio of the excess expected
return of the portfolio over the risk-free asset and the standard deviation of the
portfolio return. Correspondingly, Model (3.5) is called the Maximum Sharpe Ratio
problem (MSR). In the case where this problem has a unique optimal solution, this
solution is called the market portfolio. It can be easily seen that any efficient portfolio
is then an affine combination of cash and the market portfolio. This observation forms
the basis of Sharpe’s capital asset pricing theory [21].

While (3.5) is a nonlinear and nonconvex problem, it can be solved by the tractable
convex programming problem

max
y∈Rn

g(y) = (µ− re)Ty (3.6)

s.t. y ∈ R+X ,

yTQy ≤ 1.

See Appendix B for detailed explanations, and also [9] and [28] for similar techniques.

3.2. Absolute Robust Portfolio Models. Motivated by the sensitivity of the
solutions of Problems (3.1), (3.2), (3.3) and (3.5) as functions of the model parameters
(µ,Q), we next consider robust counterparts of these models. Depending on how the
uncertainty set U for the model parameters (µ,Q) is chosen and which of the models
one chooses to robustify, one arrives at different robust formulations. We note that
the ensuing models are no longer all equivalent in the sense in which the nonrobust
versions (3.1)–(3.3) were. The main reason for this difference is that the feasible sets
of Problems (3.1) and (3.2) depend on the model parameters (µ,Q) while those of
Problems (3.3) and (3.5) do not, with the consequence that in the context of the
former two problems joint uncertainty structures in µ and Q cannot be exploited,
while in the context of the latter two they can, at least conceptually.
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To be more specific, let us write Uµ := {µ : ∃ (µ,Q) ∈ U } for the projection of
U onto the µ-component, and UQ := {Q : ∃ (µ,Q) ∈ U } for its projection onto the
Q-component, and note that when µ and Q have joint uncertainty structure, then
U is usually strictly contained in the Cartesian product Uµ × UQ. Yet the absolute
robust counterpart of (3.1) has the following equivalent formulations,

min
{x∈X :µTx≥ρ ∀ (µ,Q)∈U }

(

max
(µ,Q)∈U

xTQx

)

⇔ min
{x∈X : minµ∈Uµ µTx≥ρ}

(

max
Q∈UQ

xTQx

)

, (3.7)

⇔ min
{x∈X :µTx≥ρ∀ (µ,Q)∈Uµ×UQ}

(

max
(µ,Q)∈Uµ×UQ

xTQx

)

.

Thus, the joint uncertainty structure of µ and Q cannot be exploited in the context of
the robust problem (3.7), and neither can it be in the context of the absolute robust
counterpart of (3.2),

max
{x∈X : maxQ∈UQ

xTQx≤σ2}

(

min
µ∈Uµ

µTx

)

. (3.8)

In contrast, joint uncertainty in µ and Q can be exploited, at least conceptually, in
the framework of the absolute robust counterpart of (3.3),

max
x∈X

(

min
(µ,Q)∈U

µTx− λxTQx

)

, (3.9)

as well as in the absolute robust counterpart of (3.5),

max
x∈X

(

min
(µ,Q)∈U

µTx− r
√

xTQx

)

. (3.10)

Special cases of the above-described models appear in the literature as follows:
Goldfarb and Iyengar [9] discussed the problems (3.7), (3.8) in the case where U is
an uncertainty set of Cartesian type U = Uµ × UQ corresponding to a confidence
region for the statistical estimators arising in the context of the load-factor model for
(µ,Q). Halldórsson and Tütüncü [11] discussed the problem (3.9) in the case where
U = Uµ × UQ, and where Uµ is a box of confidence intervals for the individual
components of µ and UQ is a box of confidence intervals intersected with the cone of
positive semidefinite symmetric matrices.

Note that the absolute robust problems (3.1)–(3.3) are all two-level optimization
problems and thus a priori harder to solve than the classical nonrobust models (3.1)–
(3.3). However, when U is tractable, then the robust problems are tractable too. See
the above cited papers and the other literature on robust optimization for details.

3.3. Relative Robust Portfolio Models. To contrast the relative robust frame-
work with the absolute robust setting, we next formulate relative robust counterparts
of problems (3.1)–(3.3).

Let us first consider problem (3.1), which has two meaningful relative robust
analogues: In the first version,

z∗(µ,Q) := min
{y∈X :µTy≥ρ}

yTQy,
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is defined as the maximum objective value achievable by an omniscient adversary (one
who knows the parameters (µ,Q) with certitude), leading to the maximum regret

R(x) := max
(µ,Q)∈U

(xTQx − min
{y∈X :µTy≥ρ}

yTQy)

and the relative robust problem

min
{x∈X : minµ∈Uµ µTx≥ρ}

(

max
(µ,Q)∈U

(xTQx − min
{y∈X :µTy≥ρ}

yTQy)
)

. (3.11)

In the second version regrets are computed merely relative to the solution of a fortu-
itous adversary who is bound to choosing a portfolio that is feasible for all parameter
values in U but happens to choose the one that is optimal among these for the true
parameter values. Thus, one would have to define

z∗(µ,Q) := min
{y∈X : minν∈Uµ νTy≥ρ}

yTQy,

R(x) := max
Q∈UQ

(xTQx − min
{y∈X : minν∈Uµ νTy≥ρ}

yTQy),

which leads to the relative robust problem

min
{x∈X : minµ∈Uµ µTx≥ρ}

(

max
Q∈UQ

(xTQx − min
{y∈X : minν∈Uµ νTy≥ρ}

yTQy)
)

. (3.12)

Note that, similarly to what we observed in the context of Problem (3.7), the de-
pendence of the feasible set of Problem (3.1) on the model parameter µ introduces
limitations on the exploitation of joint uncertainty in µ and Q. The emergence of two
conceptually different relative robust analogues is also due to this dependence.

In complete similarity, Problem (3.2) has the following two relative robust ana-
logues with similar limitations on the exploitation of structured uncertainty sets,

min
{x∈X : maxC∈UQ

xTCx≤σ2}

(

max
(µ,Q)∈U

( max
{y∈X : yTQy≥σ2}

µT(y − x))
)

, (3.13)

min
{x∈X : maxC∈UQ

xTCx≤σ2}

(

max
µ∈Uµ

( max
{y∈X : maxQ∈UQ

yTQy≥σ2}
µT(y − x))

)

. (3.14)

Let us now turn our attention to the relative robust counterparts of (3.3) and
(3.5). In these cases, the feasible set is independent of the model parameters, and
for any given uncertainty structure there exists only one relative robust counterpart
model.

3.3.1. The Relative Robust Counterpart of Problem (3.3). We define

z∗(µ,Q) := max
y∈X

(µTy − λyTQy),

R(x) := max
(µ,Q)∈U

(max
y∈X

(µTy − λyTQy) − (µTx− xTQx)).

Problem (3.3) then has the following relative robust counterpart,

min
x∈X

(

max
(µ,Q)∈U

(max
y∈X

(µTy − λyTQy) − (µTx− xTQx))
)

. (3.15)
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Introducing an artificial variable γ that expresses an upper bound on the regret, we
can equivalently reformulate this problem as follows,

min
(x,γ)∈Rn+1

γ (3.16)

s.t. x ∈ X ,

γ ≥ z∗(µ,Q)− µTx+ xTQx, ∀ (µ,Q) ∈ U .

Alternatively, using the definition of z∗(µ,Q), we obtain another equivalent formula-
tion,

min
(x,y,γ)∈R2n+1

γ (3.17)

s.t. x ∈ X ,

γ ≥ µTy − yTQy − µTx+ xTQx, ∀ (µ,Q) ∈ U , y ∈ X .

We will use the formulation (3.16) in Section 4, while the formulation (3.17) will be
preferable in Section 5.

3.3.2. The Relative Robust Counterpart of Problem (3.5). We now de-
scribe the relative robust maximum Sharpe-ratio problem and reformulate it using
the convexification approach described in Appendix B.

We will use the notation introduced in Section 3.1.2 and Appendix B, and we
assume that the feasible set X0 of portfolios containing a cash position takes the
affine form (3.4).

For any given (µ,Q) ∈ U the maximum Sharpe Ratio achievable in X is given
by

z∗(µ,Q) := max
x∈X

(µ− re)Tx
√

xTQx
(3.18)

and can be computed by solving a convex problem of the form (3.6).

Furthermore, introducing an artificial variable γ, the relative robust counterpart
of Problem (3.5) can be formulated as follows,

min
γ∈R,x∈X

γ

s.t.
(µ− re)Tx
√

xTQx
≥ z∗(µ,Q)− γ, ∀ (µ,Q) ∈ U .

We see that, in effect, this model correponds to comparing the Sharpe ratio achieved
by the optimal decisions x∗ with the Sharpe Ratio achieved by an omniscient ad-
versary. Although the absolute robust counterpart problem is tractable when the
uncertainty set is of cartesian form U = Uµ × UQ, the relative robust counterpart
problem is not. We therefore restrict ourselves to the case where only µ is uncertain,
and Q is known with certainty, that is, U = Uµ×{Q}. This is a realistic assumption,
as in practical applications it is typically more interesting to model uncertainty in µ

only and guard against uncertainty in Q via matrix shrinkage techniques.

Assuming an uncertainty structure of the form U = Uµ × {Q} and using the
convexification approach described in Appendix B, the above relative robust model is

10



equivalent to

min
γ∈R,y∈Rn

γ (3.19)

s.t. (µ− re)Ty ≥ z∗(µ)− γ, ∀µ ∈ Uµ,

y ∈ R+X ,

yTQy ≤ 1.

Note that since Q is certain, z∗ can be considered to be a function of µ only. We also
remark that if we had considered the relative robust counterpart of Problem (3.6), we
would have arrived at the same model under the chosen uncertainty structure.

3.3.3. Complexity of Relative Robust Optimization. All relative robust
problems introduced above are three-level optimization problems. In contrast to the
two-level absolute robust models (3.7)–(3.9), relative robust problems are generally
intractable, even for tractable uncertainty sets U . This is further illustrated in Section
5 in the case where Uµ is an ellipsoid and UQ a singleton. The best we can hope
to achieve in this case is to identify tractable approximations. Most of Section 5
is therefore spent on deriving good polynomial-time solvable inner approximations
to this problem. Outer approximations – that is, relaxations – that rely on the
tractability results for polytopic uncertainty sets derived in Section 4 were discussed
by Taguchi et. al. [26] and Adom [1].

4. Finite and Polytopic Uncertainty Sets. In this section we will show that
if the uncertainty set U is chosen as a polytope – that is, the convex hull of k points
– or a set of k points, then the relative robust optimization problems (3.11), (3.12),
(3.13), (3.14), (3.15) and (3.19) are polynomial-time solvable as a function of k and the
problem dimension. The complexity is also polynomial in the logarithm of a condition
number [7], as any conic programming problem, but we will not discuss details here.

4.1. Solving Problem (3.15). We start by considering Problem (3.15) in the
form (3.16) and by assuming that the uncertainty set

U = {(µ[i], Q[i]) : (i = 1, . . . , k)}

consists of finitely many scenarios. For any given µ and positive definite Q, z∗(µ,Q) is
easily computed by solving a convex quadratic optimization problem. Therefore, each
instance of the last inequality in the formulation (3.16) is a convex quadratic constraint
that can be efficiently handled using, for example, conic optimization methods. Model
(3.16) can thus be rewritten by enumerating the possibilities,

min
x,γ

γ (4.1)

x ∈ X ,

µ[i] Tx− λxTQ[i]x ≥ z∗(µ[i], Q[j])− γ, (i = 1, . . . k)

This shows that the relative robust problem (3.15) can be solved by first obtaining
the optimal values z∗(µ[i], Q[i]) and then solving problem (4.1) as a second-order
cone programming problem (SOCP) with k convex quadratic constraints. While this
process may be tedious and time consuming, the resulting formulation is a single level

11



deterministic optimization problem that can be solved efficiently for realistic problem
sizes both in terms of the dimension and the number of parameter scenarios.

Next, we consider polytopic uncertainty sets, namely those defined as the convex
hull of a finite number of extreme scenarios,

U = conv
(

{(µ[i], Q[i]) : i = 1, . . . , k}
)

. (4.2)

Using Lemma 2.1 we can now observe that the relative robust model (3.15) that
corresponds to this uncertainty set is also solved by (4.1). This follows immediately
from the following corollary:

Corollary 4.1. For U given in (4.2) and x ∈ R
n, the following are equivalent,

i) µTx− λxTQx ≥ z∗(µ,Q)− γ for all (µ,Q) ∈ U ,
ii) µ[i] Tx− λxTQ[i]x ≥ z∗(µ[i], Q[i])− γ for (i = 1, . . . , k).

Proof. We only need to show that ii) implies i), as the reverse implication is

trivial. For each (µ,Q) ∈ U there exist weights α[i] ≥ 0 such that
∑k

i=1 α
[i] = 1 and

(µ,Q) =
∑k

i=1 α
[i](µ[i], Q[i]). Multiplying each inequality in ii) by α[i] and taking the

sum, one obtains the required inequality

µTx− λxTQx ≥

k
∑

i=1

α[i]z∗(µ[i], Q[i])− γ ≥ z∗(µ,Q)− γ,

where the second inequality follows from the linearity of the function (µ,Q) 7→ µTx−
λxTQx and application of Lemma 2.1.

Thus, when the uncertainty set is given as a convex hull the relative robust prob-
lem (3.15) is tractable. Similar results hold for Models (3.11), (3.12), (3.13) and
(3.14). The reader will find it easy to work out the details.

4.2. Solving Problem (3.19). Recall that in the case of Model (3.19), we
assumed the uncertainty set to be of the form U = Uµ × {Q}, that is, we assumed
the covariance matrix Q to be known with certainty. In the case where Uµ is once
again given by a finite number of extreme scenarios

Uµ =
{

µ[i] : i = 1, . . . , k
}

,

the k values z(µ[i]) need to be computed by solving convex quadratic programming
problems of the form (3.6), and then (3.19) turns into the convex quadratic program-
ming problem

min
γ∈R,y∈Rn

γ (4.3)

s.t. (µ[i] − re)Ty ≥ z∗(µ[i])− γ, (i = 1, . . . , k)

y ∈ R+X ,

yTQy ≤ 1.

In the case where Uµ is a convex hull of extreme scenarios

Uµ = conv
({

µ[i] : i = 1, . . . , k
})

,

one can once again exploit the fact that the function µ 7→ z∗(µ) is convex, so that
Lemma 2.1 implies that (4.3) solves Problem (3.19).

12



5. Ellipsoidal Uncertainty Sets. In the remaining sections we assume the
covariance matrix Q to be known with certainty. The vector of expected returns µ is
assumed to be uncertain and lie in an ellipsoidal uncertainty set

Uµ = {µ+Mu : ‖u‖ ≤ 1} ,

where M is a n × k matrix with k ≤ n. Although the ellipsoid U need not be full-
dimensional, in applications it is often natural to choose k = n. Throughout this
section we treat u or µ = µ(u) = µ+Mu as the vector of uncertain model parameters
interchangeably. Further, we assume that the set of feasible decision vectors is of the
form

X = {x ∈ R
n : Fx = f, Gx ≤ g} ,

where F ∈ R
mf×n has full row rank, f ∈ R

mf , G ∈ R
mg×n and g ∈ R

mg . We write
Fi and Gi for the i-th rows of F and G respectively, and

fµ(x) := µTx− λxTQx,

z∗(µ) := max
y∈X

fµ(y),

R(x) := max
µ∈Uµ

z∗(µ)− fµ(x).

The relative robust problem we wish to solve is then given by

(RRP) min
x∈X

R(x).

5.1. Copositivity Cones. We begin by introducing the technical tools that
make an analysis of (RRP) possible. Most of the notation is adopted from the eluci-
dating paper of Sturm and Zhang [24].

If D is subset of Rn, let

H (D) := clo
{

z = [ xτ ] ∈ R
n+1 : τ > 0, τ−1x ∈ D

}

be its homogenization, where clo(·) denotes the topological closure. Let q : x 7→
xTAx + 2bTx + c be an arbitrary quadratic polynomial on R

n, where A ∈ S n is a
symmetric n× n matrix, b ∈ R

n and c ∈ R, and let

M (q) :=

[

A b

bT c

]

.

Then

q(x) = [ x1 ]
T

M (q) [ x1 ] = [ x1 ] [
x
1 ]

T
• M (q),

where we write X • Y = trace(XTY ) for the trace inner product of two matrices of
equal size (this inner product is the polarization of the Frobenius norm). In what
follows we will refer to M (q) as the matrix representation of q(·). This defines a
1-1 correspondence between the set of quadratic functions on R

n and the set S n+1

of symmetric matrices of size (n + 1). In the sequel we will write X � 0 if X is a
symmetric positive semidefinite matrix and

S
(n+1)
+ := {X ∈ S

n+1 : X � 0}.
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Let

FC +(D) :=
{

A ∈ S
n+1 : [ x1 ]

T
A [ x1 ] ≥ 0 ∀x ∈ D

}

=
{

A ∈ S
n+1 : zTA z ≥ 0 ∀ z ∈ H (D)

}

be the set of quadratic functions that are nonnegative on D. In the case where
D = {x : q(x) ≥ 0} for some quadratic polynomial q, FC +(D) is called the set of
quadratic functions copositive with q. Here we use an abuse of language and speak
of FC +(D) as the copositivity cone associated with D when D is a more general set.

Lemma 5.1 (Corollary 1, [24]). FC +(D) = conv{zzT : z ∈ H (D)}∗.

Proof. Lemma 5.1 is the same as Corollary 1 in Sturm & Zhang [24]. Here we
give an alternative proof for completeness. We have

FC +(D) = {X ∈ S
n+1 : zTXz ≥ 0, ∀ z ∈ H (D)}

=
⋂

z∈H (D)

{X ∈ S
n+1 : 〈X ; zzT〉 ≥ 0}

=
(

conv{zzT : z ∈ H (D)}
)∗

.

Unfortunately, for general D, the cone conv{zzT : z ∈ H (D)}∗ does not have a
tractable characterization. For example, when D = R

n
+ then

H (D) = clo
({

[ xτ ] : τ > 0, τ−1x ∈ R
n
+

})

= R
n+1
+ ,

and

FC +(D) = conv{zzT : z ∈ R
n+1
+ }∗

is the co-positive cone. Testing whether a given matrix belongs to this cone is co-
NP-hard [16]. We will see in the sequel that (RRP) is equivalent to solving a conic
optimization problem with a conic constraint of type FC +(D) for a convex set D

defined by multiple linear and one quadratic inequality. If the cone FC +(D) is
intractable, then the conic formulation of (RRP) is intractable too. To render the
relative robust approach computationally viable in this situation, we will identify a
tractable convex cone

K ⊆ FC +(D)

which can be used in an inner approximation of (RRP). Most of the technical details
regarding the construction of K are deferred to Section 6

5.2. A Conic Formulation of (RRP). Introducing an artificial variable γ,
(RRP) is easily seen to be equivalent to

(RRP.i) min
x,γ

γ

s.t. x ∈ X

γ ≥ z∗(µ)− fµ(x) ∀µ ∈ Uµ.
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Since z∗(µ) := maxy∈X fµ(y), this problem can be further rewritten as

(RRP.ii) min
x,γ

γ

s.t. x ∈ X

γ ≥ fµ(y)− fµ(x) ∀µ ∈ Uµ, y ∈ X . (5.1)

This is a semi-infinite optimization problem, that is, a finite-dimensional problem
with infinitely many constraints. To render this problem amenable to numerical com-
putations, we have to replace these infinitely many constraints by a finitely many.

Parameterizing µ by u, the set of values of (µ(u), y) that appear in the right-hand
side of (5.1) corresponds to

D :=
{

[ uy ] : u
Tu ≤ 1, Fy = f, Gy ≤ g

}

. (5.2)

It follows from Lemma 4 of Sturm-Zhang [24] that the homogenization of this set is
characterized by

H (D) =
{[

u
y
τ

]

∈ R
k+n+1 : τ ≥ 0,

[

u
y
τ

]T [− I 0 0
0 0 0
0 0 1

] [

u
y
τ

]

≥ 0,

[ 0
−Fi

fi

]T [ u
y
τ

]

= 0, (i = 1, . . . ,mf ),

[

0
−Gi
gi

]T [ u
y
τ

]

≥ 0, (i = 1, . . . ,mg)

}

.

Further, for fixed (x, γ), the expression

qx,γ(u, y) := γ − fµ(y) + fµ(x)

= [ uy ]
T
[

0 − 1
2
MT

− 1
2
M λQ

]

[ uy ] +
[

MTx
−µ

]T

[ uy ] + (γ − λxTQx+ µTx)

is a quadratic function of (u, y) whose matrix representation in the homogenized space
is given by

Mx,γ := M (qx,γ) =

[

0 − 1
2
MT 1

2
MTx

− 1
2
M λQ − 1

2
µ

1
2
xTM − 1

2
µT (γ−λxTQx+µTx)

]

.

Using Lemma 5.1, Condition (5.1) is seen to be the same as

Mx,γ ∈ conv
{

zzT : z ∈ H (D)
}∗

. (5.3)

Therefore, (RRP.ii) can be written in conic form,

(RRP.iii) min
x,γ

γ

s.t. x ∈ X ,

Mx,γ ∈ conv
{

zzT : z ∈ H (D)
}∗

.

5.3. A Tractable Inner Approximation. Let H be the trailing n× (n−mf )
block of the orthogonal factor in the QR-decomposition [ ⋆ H ]R of FT, so that the
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columns of H form a basis of ker(F ). Further, let xp ∈ R
n be a particular solution of

the system Fy = f , and let us write r := n−mf , so that

{x ∈ R
n : Fx = f} = {xp +Hw : w ∈ R

r}.

Let pT0 = [ 0 1 ], where 0 is a zero row vector of size k + r, and let pTi (i = 1, . . . ,mg)
be the row vectors of the matrix [ 0 −GH g−Gxp ], where 0 is now a zero matrix of
size mg × k. And finally, let Q = UTU be the Cholesky factorization of Q. With
this notation, Corollary 6.11 of Section 6 shows that the following problem is an
inner approximation of (RRP), where the minimisation is over the decision variables
w ∈ R

r, γ, s, η, ξij ∈ R, (i 6= j = 0, . . . ,mg), and τi ∈ R, ui ∈ R
k, (i = 0, . . . ,mg):

(ARRP) min
w,γ,s,η,ξ,τ,u

γ

s.t. g −Gxp −GHw ∈ R
mg

+ ,

η, ξij ∈ R+, (i 6= j = 0, . . . ,mg),

[ τiui
] ∈ Lk+1, (i = 0, . . . ,mg),





0
0

Uxp



+





1√
2

1√
2

1√
2

− 1√
2

UH









1
2
s

w



 ∈ Ln+2,





0 − 1
2M

TH 1
2M

THw

− 1
2H

TM λHTQH HT(λQxp −
1
2µ)

1
2w

THTM (λQxp −
1
2µ)

TH γ − λs+ (µ− 2λQxp)
THw





− η
[− I

0r
1

]

−

mg
∑

i6=j=0

ξij
(

pip
T
j + pjp

T
i

)

+

mg
∑

i=0

(

pi

[ ui

0
τi

]T

+
[ ui

0
τi

]

pTi

)

∈ S
k+r+1
+ .

By construction, every solution (w, γ, s, η, ξ, τ, u) to (ARRP) provides a feasible solu-
tion (xp +Hw, γ) to (RRP.iii). Since the feasible set of (ARRP) is thus smaller than
the feasible set of (RRP.iii), a (ARRP)-optimal solution (w∗, γ∗, s∗, η∗, ξ∗, τ∗, u∗) does
not necessarily correspond to a (RRP)-optimal is optimal for (ARRP), this does not
necessarily imply that (xp+Hw∗, γ∗) is optimal for (RRP.iii). However, since (ARRP)
is equivalent to (RRP.iii) in the case mg ∈ {0, 1} (see Corollary 6.11), it is reasonable
to expect that (xp +Hw∗, γ∗) is a feasible solution to (RRP.iii) which is quite close
to optimal even in the case mg ≥ 2.

Note that each of the constraints of (ARRP) is formulated as a conic inequality
of an expression that is linear in the decision variables. Thus, the great advantage
of working with the model (ARRP) rather than (RRP) is the fact that, while (RRP)
may be NP-hard, (ARRP) is readily solvable via standard polynomial-time conic
programming implementations such as SDTP3 [27] or Sedumi [23].

6. Tightness of Inner Approximations. In this section we discuss some of
the technical details and tightness results surrounding the inner approximation of the
cones FC +(D) used in Section 5.
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6.1. The Case of General D. We begin with the discussion of inner approxi-
mations of FC +(D) where D ⊆ R

n is an arbitrary set.

Lemma 6.1. FC +(D)∗ ⊆ {X ∈ S
n+1
+ : Xw ∈ H (D) ∀w ∈ H (D)∗}.

Proof. By Lemma 5.1, any X ∈ FC +(D)∗ can be written as a limit X =

limj→∞ Xj, where Xj =
∑kj

i=1 ξijzijz
T
ij for some zij ∈ H (D) and ξij ≥ 0 (i =

1, . . . , kj). Clearly this implies that X � 0, and since for any w ∈ H (D)∗ we have

Xjw =

kj
∑

i=1

ξij(z
T
ijw)zij ∈ H (D)

and H (D) is closed, Xw ∈ H (D).

Taking duals in the inclusion of Lemma 6.1, we obtain the following inner ap-
proximation of FC +(D),

FD+(D) ⊇ S
n+1 +K∗, (6.1)

where

K = {X ∈ S
n+1 : Xw ∈ H (D) ∀w ∈ H (D)∗}. (6.2)

To make this result useful, we need to characterize K∗.

Lemma 6.2. Let C ⊆ R
n be a closed convex cone and w ∈ R

n. Then

{X ∈ S
n : Xw ∈ C}

∗
=
{

vwT + wvT : v ∈ C∗} .

Proof. Consider the linear map ϕw(X) = Xw from S n to R
n. Endowing these

spaces with their canonical inner products 〈X,Y 〉 := X • Y and 〈x, y〉 := xTy, the
adjoint map ϕ∗

w : Rn+1 → S n+1 is defined by the relation

〈X,ϕ∗
w(v)〉 = 〈ϕw(X), v〉, (X ∈ S

n+1, v ∈ R
n+1).

The right-hand side in this equation equals (Xw)Tv = 1
2 〈X, (wvT + vwT)〉, showing

that

ϕ∗
w(v) =

1

2
(wvT + vwT). (6.3)

Now we have Xw ∈ C if and only if 〈ϕw(X), v〉 ≥ 0 for all v ∈ C∗ (using biduality
and the assumption that C is a closed convex cone). Taking adjoints, this is further
equivalent to 〈X,ϕ∗

w(v)〉 ≥ 0 for all v ∈ C∗, and finally to

X ∈ (ϕ∗
w(C

∗))∗. (6.4)

Since C∗ is a closed convex cone and ϕ∗
w is a linear map between finite-dimensional

vector spaces, ϕ∗
w(C

∗) is a closed convex cone, so that taking duals in (6.4) yields

{X ∈ S
n : Xw ∈ C}∗ = ϕ∗

w(C
∗).

Using (6.3), this is seen to be equivalent to the claim of the lemma.

Lemma 6.3. Let K be the cone defined in (6.2). Then

K∗ = clo
(

cone{wvT + vwT : v, w ∈ H (D)∗}
)

.
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Proof. For each w ∈ H (D)∗, let Kw := {X ∈ S n : Xw ∈ H (D)}. Since H (D)
is a closed convex cone, Lemma 6.2 shows that K∗

w = {vwT + wvT : v ∈ H (D)∗}.
Therefore, we have

K∗ =
(

⋂

w∈H (D)∗

Kw

)∗

= clo
(

cone
(

⋃

w∈H (D)∗

K∗
w

)

)

= clo
(

cone{wvT + vwT : v, w ∈ H (D)∗}
)

,

as claimed.

Example 6.4. Let D = {x ∈ R
n : bTx ≥ c}. Then H (D) = {z ∈ R

(n+1) :
aTz ≥ 0}, where a = [ b

−c ] and H (D)∗ = cone{a}. Furthermore, we have

K = {X ∈ S
n+1 : Xa ∈ H (D)}

= {X ∈ S
n+1 : aTXa ≥ 0}

= {X ∈ S
n+1 : X • aaT ≥ 0},

so that K∗ = cone{aaT}. This is confirmed by Lemma 6.3, which says that K∗ =
cone{wvT + vwT : v, w ∈ cone{a}} = cone{aaT}.

Example 6.5. Let D = {x ∈ R
n : ‖x‖ ≤ 1}. Then

H (D) =
{

z ∈ R
n+1 : zT

[− I 0
0 1

]

z ≥ 0, [ 01 ]
T
z ≥ 0

}

= [ 0 I
1 0 ]Ln+1,

where Ln+1 is the n+1-dimensional Lorenz cone or second-order cone and the operator
[

0 1
I 0

]

permutes the first component of a vector into last place. Since Ln+1 is self-dual,
we have

K = {X ∈ S
n+1 : Xw ∈ [ 0 I

1 0 ]Ln+1 ∀w ∈ [ 0 I
1 0 ]Ln+1}. (6.5)

Lemma 6.3 thus shows that K∗ = cone{wvT + vw : v, w ∈ [ 0 I
1 0 ]Ln+1}.

Combining the inclusion (6.1) with Lemma 6.3, we arrive at the following result.

Theorem 6.6. For any set D ⊆ R
n it is true that

FC +(D) ⊇ S
n+1 + clo

(

cone{wvT + vwT : v, w ∈ H (D)∗}
)

.

6.2. Approximation Tightness in the General Case. The inner approx-
imation of Theorem 6.6 is valid for arbitrary D ⊂ R

n, and when H (D) can be
explicity characterized it becomes a useful computational tool in conjunction with
Carathéodory’s theorem. It is therefore natural to ask if the inclusion given by the
theorem is in fact an equality. Unfortunately, this is not true in general, as we shall
now see.

Example 6.7. Consider Example 6.5 again, and note that in this case any
z ∈ H (D) = Ln+1 satisfies

[− I 0
0 1

]

• zzT = zT
[− I 0

0 1

]

z ≥ 0,
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and the same holds true for convex combinations of matrices zzT with z ∈ [ 0 I
1 0 ]Ln+1.

Thus, using this extra information, we could have used the tighter approximation

FC +(D)∗ ⊆ S
n+1
+ ∩K ∩ C,

where K is defined as in (6.5) and

C :=
{

X ∈ S
n+1 :

[− I 0
0 1

]

•X ≥ 0
}

.

This yields the inner approximation

FC +(D) ⊇ S
n+1
+ +K∗ + C∗

= S
n+1
+ + cone{wvT + vwT : v, w ∈ [ 0 I

1 0 ]Ln+1}+ cone
{[− I 0

0 1

]}

(6.6)

which is strictly larger than the inner approximation

FC +(D) ⊇ S
n+1
+ + cone{wvT + vwT : v, w ∈ [ 0 I

1 0 ]Ln+1} (6.7)

provided by Theorem 6.6, as the right-hand side of (6.7) does not contain the matrix
[− I 0

0 1 ]. Further, applying the s-Lemma (see Lemma 6.8 below) in the context of this
Example, one finds

FD+(D) = S
n+1
+ + cone

{[− I 0
0 1

]}

, (6.8)

an identity which was first discovered by Rendl-Wolkowicz [18]. In other words, the
approximation (6.6) is not only an improvement over that of Theorem 6.6, but it is
in fact tight, that is, the inclusion becomes an equality. Note that this also shows that

{wvT + vwT : v, w ∈ [ 0 I
1 0 ]Ln+1} ⊂ S

n+1
+ + cone

{[− I 0
0 1

]}

. (6.9)

The following classical result from the theory of robust control theory was used
in the analysis of the above example:

Lemma 6.8 (s-Lemma, Yakubovich [29]). If D = {x ∈ R
n : q(x) ≥ 0}, where

q(·) is a quadratic function that takes a strictly positive value somewhere, then

FD+(D) = S
n+1
+ + cone{M (q)}.

For proofs see e.g. [29], [17] and [12].

6.3. Improved Approximation for Use in Section 5. Next we will general-
ize the improved inner approximation (6.6) to copositivity cones associated with the
convex set D we found in (5.2), (5.1),

D :=
{

[ uy ] ∈ R
k+n : uTu ≤ 1, Fy = f, Gy ≤ g

}

.

Recall that F ∈ R
mf×n has full row rank, and G ∈ R

mg×n. Let H be the trailing
n×(n−mf) block of the Q-factor of the QR-decomposition [ ⋆ H ]R of FT, so that the
columns of H form a basis of ker(F ). Further, let xp ∈ R

n be a particular solution of
the system Fy = f , and let us write r := n−mf , so that

{y ∈ R
n : Fy = f} = {xp +Hw : w ∈ R

r}. (6.10)
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Consider the linear map

Λ : S
k+n+1 → S

k+r+1,




A11 A12 b1
AT

12 A22 b2
bT1 bT2 c



 7→





A11 A12H b1 +A12xp

HTAT
12 HTA22H HT(b2 +A22xp)

bT1 + xT
p A

T
12 (b2 +A22xp)

TH xT
p A22xp + 2bT2 xp + c



 .

For any quadratic function h on R
k+n with matrix representation A ∈ S k+n+1 let hΛ

be the corresponding quadratic function on R
k+r with matrix representation Λ(A ).

If y = xp +Hw, then by construction of Λ we have

h(u, y) ≥ 0 ⇔ hΛ(u,w) ≥ 0. (6.11)

Let q(u, y) = 1− uTu, so that

D = {[ uy ] : q(u, y) ≥ 0, [ 0 F ] [ uy ] = f, [ 0 G ] [ uy ] ≤ g} ,

and note that

M (q) =
[− I

0n
1

]

, M (qΛ) =
[− I

0r
1

]

,

where I is an identity matrix of size k and 0n, 0r are zero matrices of size n and r

respectively. Let

DΛ :=
{

[ uw ] ∈ R
k+r : qΛ(u,w) ≥ 0, [ 0 GH ] [ uw ] ≤ g −Gxp

}

.

We now obtain the following result, which shows that we can work directly in the
reduced space R

k+r instead of Rk+n:

Proposition 6.9.

i) D = {[ u (xp+Hw)T ]T : [ u w ]T ∈ DΛ},
ii) FC +(D) = Λ−1(FC +(DΛ)).

Proof. i) follows from (6.10) and (6.11), while ii) follows from part i) and (6.11).

Next, let pT0 = [ 0 1 ], where 0 is a zero row vector of size k + r, and let pTi
(i = 1, . . . ,mg) be the row vectors of the matrix [ 0 −GH g−Gxp ], where 0 is now a zero
matrix of size mg × k. Then it follows from Lemma 4 in Sturm-Zhang [24] that

H (DΛ) =
{

z ∈ R
k+r+1 : zT

[− I
0r

1

]

z ≥ 0, pTi z ≥ 0, (i = 0, . . . ,mg)
}

. (6.12)

Theorem 6.10. An inner approximation of the cone FC +(DΛ) is given by

FC+(DΛ) ⊇ S
k+r+1
+ + cone

{[− I
0r

1

]}

+ cone
{

pip
T
j + pjp

T
i : i 6= j ∈ {0, . . . ,mg}

}

+

mg
∑

i=0

{

pi

[

u
0
τ

]T

+
[

u
0
τ

]

pTi : [ τu ] ∈ Lk+1

}

. (6.13)

Furthermore, if mg ∈ {0, 1} then the inclusion in (6.13) is an equality.
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Proof. Lemma 5.1 and (6.12) establish

FC+(DΛ)
∗ = conv

{

zzT : z ∈ R
k+r+1, zT

[− I
0r

1

]

z ≥ 0, pTi z ≥ 0, (i = 0, . . . ,mg)
}

⊆ S
k+r+1
+ ∩Kq ∩K l

0 ∩ · · · ∩K l
mg

∩KH , (6.14)

where

Kq :=
{

X ∈ S
k+r+1 : X •

[− I
0r

1

]

≥ 0
}

,

K l
i :=

{

X ∈ S
k+r+1 : Xpi ∈ H (DΛ)

}

, (i = 0, . . . ,mg),

KH :=
{

X ∈ S
k+r+1 : Xv ∈ H (DΛ) ∀ v ∈ H (DΛ)

∗} .

Using the self-duality of Lk+1 and (6.12), we get

H (DΛ)
∗ = cone {pi : i = 0, . . . ,mg}+

{[

u
0
τ

]

: [ τu ] ∈ Lk+1

}

,

so that Lemma 6.3 implies

K∗
H = cone

{

pip
T
j + pjp

T
i : i, j ∈ {0, . . . ,mg}

}

+

{

[

u
0
τ

] [

v
0
σ

]T

+
[

v
0
σ

] [

u
0
τ

]T

: [ τu ] , [
σ
v ] ∈ Lk+1

}

+

mg
∑

i=0

{

pi

[

u
0
τ

]T

+
[

u
0
τ

]

pTi : [ τu ] ∈ Lk+1

}

. (6.15)

Next, using Lemma 6.2 to take duals in (6.14), we find

FC+(DΛ) ⊇ S
k+r+1
+ + cone

{[− I
0r

1

]}

+

mg
∑

i=0

{

piz
T + zpTi : z ∈ H (DΛ)

∗}+K∗
H . (6.16)

Substituting (6.15) into (6.16), exploiting the fact that
{

[

u
0
τ

] [

v
0
σ

]T

+
[

v
0
σ

] [

u
0
τ

]T

: [ τu ] , [
σ
v ] ∈ Lk+1

}

⊂ S
k+r+1
+ + cone

{[− I
0r

1

]}

,

which follows from (6.9), and using

cone
{

pip
T
i + pip

T
i : i = 1, . . . ,mg

}

⊂ S
k+r+1
+ ,

the inclusion claimed in the theorem is seen to hold true. Furthermore, it follows from
(6.8) that the inclusion is an equality when mg = 0. The fact that this is also true
for mg = 1 follows from Sturm-Zhang [24], Theorem 3.

Corollary 6.11. Let Q = UTU be the Cholesky factorization of Q. Then the
following are sufficient conditions for (5.3) to hold: ∃, η, ξij ≥ 0, (i 6= j = 0, . . . ,mg),
s ∈ R and [ τiui

] ∈ Lk+1, (i = 0, . . . ,mg) such that





1√
2

1√
2

1√
2

− 1√
2

U









1
2
s

x



 ∈ Ln+2 (6.17)
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and





0 − 1
2M

TH 1
2M

T(x− xp)
− 1

2H
TM λHTQH HT(Qxp −

1
2µ)

1
2 (x− xp)

TM (Qxp − µ)TH γ − λs+ µT(x− xp) + λxT
p Qxp





− η
[− I

0r
1

]

−

mg
∑

i6=j=0

ξij
(

pip
T
j + pjp

T
i

)

+

mg
∑

i=0

(

pi

[ ui

0
τi

]T

+
[ ui

0
τi

]

pTi

)

� 0. (6.18)

Furthermore, for mg ∈ {0, 1} the above conditions are both necessary and sufficient
for (5.3) to hold.

Proof. With Mx,γ defined as in Section 5, condition (5.3) is of course the same
as Mx,γ ∈ FC +(D), see Lemma 5.1. Proposition 6.9 shows that this is further
equivalent to Λ(Mx,γ) ∈ FC +(DΛ). By Theorem 6.10, for this latter condition to
hold it is sufficient to demand that

Λ(Mx,γ) ∈ S
k+r+1
+ + cone

{[− I
0r

1

]}

+ cone
{

pip
T
j + pjp

T
i : i 6= j ∈ {0, . . . ,mg}

}

+

mg
∑

i=0

{

pi

[

u
0
τ

]T

+
[

u
0
τ

]

pTi : [ uτ ] ∈ Lk+1

}

. (6.19)

Further, since λ ≥ 0, (6.19) is equivalent to the existence of a s ≥ xTQx such that

Λ(Mx,γ) + λ
[ 0

0
xTQx−s

]

∈ S
k+r+1
+ + cone

{[− I
0r

1

]}

+ cone
{

pip
T
j + pjp

T
i : i 6= j ∈ {0, . . . ,mg}

}

+

mg
∑

i=0

{

pi

[

u
0
τ

]T

+
[

u
0
τ

]

pTi : [ uτ ] ∈ Lk+1

}

which is the same as (6.18) for some η, ξij ≥ 0, (i 6= j = 0, . . . ,mg), and [ τiui
] ∈ L1+k,

(i = 0, . . . ,mg). Finally, the condition s ≥ xTQx is easily seen to be equivalent
to (6.17). The last claim holds because by Theorem 6.10, (6.19) is equivalent to
Λ(Mx,γ) ∈ FC +(DΛ) when mg ∈ {0, 1}.
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7. Appendix A: Proof of Lemma 2.1. Proof. Let p1, p2 ∈ U and α ∈ [0, 1].
Let us first assume that z∗(αp1 + (1 − α)p2) < +∞. For ε > 0 there exists x ∈ X

such that

z∗(αp1 + (1− α)p2)− ε ≤ f(x, αp1 + (1− α)p2)

≤ αf(x, p1) + (1 − α)f(x, p2)

≤ αz∗(p1) + (1− α)z∗(p2).

Since this is true for all ε, we find

z∗(αp1 + (1− α)p2) ≤ αz∗(p1) + (1− α)z∗(p2). (7.1)

Now assume z∗(αp1 + (1 − α)p2) = +∞. Then there exists a sequence (xn)N ⊂ X
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such that

f(xn, αp1 + (1− α)p2)
n→∞
→ +∞. (7.2)

By the same argument as above, we have

f(xn, αp1 + (1− α)p2) ≤ αz∗(p1) + (1− α)z∗(p2),

whence (7.2) establishes that at least one of z∗(pi) (i = 1, 2) equals +∞, so that (7.1)
holds once again.

8. Appendix B: Convexification of Problem (3.5). We use the notation
introduced in Section 3.1.2. Using the fact that any x ∈ X was assumed to satisfy
the budget constraint eTx, Problem (3.5) has an equivalent formulation

max
x∈Rn

f(x) =
(µ− re)Tx
√

xTQx
(8.1)

s.t. x ∈ X .

The objective function f(x) of this formulation is homogeneous of degree 0 in x.
Consider also the normalized problem,

max
y∈Rn

g(y) = (µ− re)Ty (8.2)

s.t. y ∈ R+X ,

yTQy = 1,

where R+X = {τx : τ ≥ 0, x ∈ X } is a tractable cone. For example, if X is a
polyhedron, as it is in most applications, R+X is a polyhedral cone.

Since eTx = 1 for all x ∈ X and Q ≻ 0, we have xTQx > 0 for all x ∈ X .
Therefore, any feasible solution x of (8.1) provides y = (xTQx)−1/2x as a feasible
solution of (8.2), and furthermore, g(y) = f(x). Conversely, since any feasible y of
(8.2) satisfies y 6= 0, the vector x = (eTy)−1y ∈ X is feasible for (8.1) and satisfies
f(x) = g(y). This shows that (8.1) and (8.2) are equivalent: Instead of solving (8.1),
we may solve (8.2) and then construct an optimal solution x∗ = (eTy∗)−1y∗ of the
first problem from an optimal solution y∗ of the second.

Formulation (8.2) is furthermore equivalent to its relaxation

max
y∈Rn

g(y) = (µ− re)Ty (8.3)

s.t. y ∈ R+X ,

yTQy ≤ 1,

since a feasible solution of (8.3) cannot be optimal unless yTQy = 1, assuming that
there exist feasible y for which g(y) > 0 (if this is not the case, it is not rational to
invest at all). Thus, the optimal solution y∗ of (8.2) may be found by solving the
tractable convex problem (8.3).
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