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Abstract

This paper develops a general stochastic model of a frictionless
security market with continuous trading. The vector price process is
given by a semimartingale of a certain class, and the general stochastic
integral is used to represent capital gains. Within the framework of
this model, we discuss the modern theory of contingent claim valuation,
including the celebrated option pricing formula of Black and Scholes.

It is shown that the security market is complete if and only if its
vector price process has a certain martingale representation property.

A multidimensional generalization of the Black-Scholes model is examined
in some detail, and some other examples are discussed briefly.
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1. Introduction

This paper is intended partly as a tutorial, partly as a survey,
and partly as a forum for new results. Its subject is the theory of security
markets with continuous trading, a highly specialized but nonetheless
important topic in financial economics. We develop a general stochastic
model of a fricticnless market with continuous trading, hereafter called

simply a continuous market, and then discuss the modern theory of contingent

claim valuation (option pricing) in the context of that model. The mathe-
matical structure developed here is also potentially useful for study of con-
sumption—-investment problems, but that subject will not be dealt with
directly.

In mentioning the modern theory of contingent claim valuation, we
refer primarily to the option pricing formula of Black and Scholes [ 2]. It
was a desire to better understand their formula that originally motivated
our study, so we introduce this paper with a brief account of the Black-
Scholes theory and some questions that it naturally suggests. For purposes

¢f introduction, certain terms will be used in a temporary narrow sense,



and some of the mathematical definitions will be stated informally or even
deleted altogether. Also, to give a more or less concrete motivation for
the general theory, excessive emphasis is placed on a single economic issue,

involving what we call completeness of the market.

la. The Option Pricing Formula

Let W = {wt; 0<t E_T} be a standard (zero drift and unit variance)
Brownian motion on some probability space (R,% P). Let r, W and o©
be real constants with ¢ > 0. It will be natural to think in terms of the

case p > r > 0, but this restriction is not necessary. Now define

(1.1) SS - 38 exp(rt) , 0<t<T,
1 1 1 2
= + - -
(1.2) St SO exp(owt (u 5 O ) o, 0<t<T,
where the initial values 58 and Sé are positive constants. (This nota-

tional system is used throughout. The time parameter of a process is given
by a subscript, and the components of the vector security price process S
are indexed by a superscript k = 0,1,..., K. The distinction between super-
scripts and exponents will always be clear from context.) Interpret St

as the price at time t of a riskless bond, with r ©being the associated

. ) 1 , , .
riskless interest rate. Interpret St as the price at time t, in dollars

per share, of a stock which pays no dividends. In more general terms,

we might call SO and Sl the price processes for a riskless security

and a risky security respectively. For our purposes, a unit of security

k
k can be viewed simply as a piece of paper which is exchangeable for St
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dollars at any time t (k = 0,1). The market value of the bond grows
exponentially at rate r, while that of the stock fluctuates randomly.
Applying Ito's Formula to (1.1) and (1.2), it is seen that our

. 0 1 . . . .
price processes S and S satisfy the stochastic differential equations

0 0
(1.3) ds. = rs_ dt,
1 1 1
Q =
(1.4) CL,t OSt dwt + uSt dt

One can paraphrase (1.2) and (1.4) by saying that Sl is a geometric

Brownian motion with rate of return dSi/Si =g dwt + p dt., This

terminology is a bit sloppy since W 1is nondifferentiable, and in the body

of the paper we'll simply call th + ut the return process for the stock.

Consider an investor, hereafter called you, participating in a
securities market where this stock and this bond are traded. Assume that you
are allowed to trade continﬁously, that there are no transaction costs (like
brokerage fees) in this market, and that you can sell short without restric-
tion (see below). We summarize these assumptions by saying that this is

a frictionless market with continuous trading. Now consider a ticket which

entitles its bearer to buy one share of stock at the terminal date T, if

he wishes, for a specified price of ¢ dollars. This is a European call

option on the stock, with exercise price ¢ and expiration date T.

_ 1 ; . . . . . .
1f ST { ¢ {stock price is below exercise price at expiration date), then

the bearer of the ticket will not exercise his option to buy, meaning that

the ticket is worthless in the end. DBut if S% > ¢, the bearer can buy



one share of stock for ¢ dollars, then turn around and sell it for S%
dollars, making a profit of S% ~ ¢. Thus we see that the call option is
completely equivalent to a ticket which entitles the bearer to a payment of

+
% - c) dollars at time T.

X = (S

Now how much would you be willing to pay for such a ticket at time
zero? Put another way, what is your valuation of the option? On the
surface of things, it seems perfectly reasonable that different people might
give different answers, depending on their attitudes toward risk bearing,
since purchase of the option is unquestionably a risky investment. But
Black and Scholes [ 2] asserted that there is a unique rational value for
the option, independent of one's risk attitude. Specifically, defining

x0(g(x,t)) — ce It

(1.5) f(x,t) o(h(x,t)) ,

where g(x,t) = [In(x/c) + (r + %—oz)t]/o/g ,

h(x,t) = g(x,t) - o/t ,

and %(-) 1is the standard normal distribution function, this unique rational
value is f(Sé,T). Observe that the valuation formula (1.5) involves the
current stock price x, the expiration date t, the exercise price ¢, the

2
return variance o and the riskless interest rate r, but not the mean
rate of return u for the stock.

Before we discuss the reasoning behind this formula, some historical
remarks are in order. The first mathematical description of the stochastic
process now called Brownian motion was given by Bachelier [ 1] in a thesis
submitted to the Academy of Paris in 1900. Proposing this process as a model
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of security price fluctuations, his goal was to develop theoretical values
for various types of options and compare these against the observed market
prices of the options. Thus the problem of option valuation motivated the
very first research on what we now call diffusion processes. (Bachelier's
work was apparently unknown to Einstein and Wiener when they later developed
the mathematical theory of Brownian motion.) From a modern perspective,
Bachelier's mathematics and economics were both flawed, so there is no point
in describing the valuation theory at which he finally arrived. But he

did solve a number of problems correctly, and the paper makes interesting
reading.

More than 50 years later, the search for a mathematical theory of
option valuation was taken up by Samuelson [34] and others. They replaced
Bachelier's ordinary (or arithmetic) Brownian motion with the geometric
Brownian motion (1.2), the simplest argument in favor of this change being
that stock prices cannot go negative because of limited liability. Using
geometric Brownian motion as their model of stock price movement, various
authors obtained various valuation theories under various sorts of assumptions.
But these theories, developed between 1950 and 1970, all contained ad hoc
elements, and they left even their creators feeling vaguely dissatisfied.
Then Black and Scholes made the dazzling observation that, in the idealized
market described above, investors can actually duplicate the cash flow (or
payoff stream) from a call option by adroitly managing a portfolio that con-
tains only stock and bond. Since possession of this portfolio is completely
equivalent to possession of the call option, the market value of its con-
stituent securities at time zero is the unique rational value for the option.

This argument will be fleshed out and connected with the valuation formula

(1.5) shortly.



The mathematical argument given by Black and Scholes in support of
their formula is not entirely satisfactory, but there are several alternate
explanations and derivations now available in the literature of financial
economics. (In fact, explaining the valuation formula has become a minor
industry.) The best of these from our perspective, and the one uniquely
consistent with the general theory developed here, is the argument by
Merton [30] that we now present. For more on the history of option theory,

see the surveys by Samuelson [35] and Smith [37].

1b. Portfolio Theory and Option Valuation

It is easy to verify that the function £(x,t) defined by (1.5)

satisfies the partial differential equation

2
2 2
(1.6) %L f(x,t) = l-O X 9 f(x,t) + rx jL'f(X,t) - rf(x,t)
ot 2 2 X
IX
with initial condition
+
(1.7) £(x,0) = (x~c) .

In fact, Black and Scholes originally obtained their valuation formula by

solving (1.6)-(1.7). Now define stochastic processes
1
(1.8) Ve = f(st, T-t) , o<t T,
L .8 Lo
(1.9) LY. f(St’ T-t) , 0<t<T,
0 1.1 0 .
(1.10) ¢t = (Vt - ¢tSt)/St s 0<t<T

6



0 1
Interpret the vector process ¢t = (¢t,¢t) as a trading strategy, with

¢i specifying the number of units of security k to be held at time t.

Simply put, ¢t is the portfolio of securities held at time t. From (1.10)
we see that the market value of the portfolio held at time t is

(1.11) ¢S

rt O
"t O

+ 6

o
wn
-

=V, 0<t<T.

Thus, using (1.8) and (1.7), the initial value of the portfolio is

VO = f(Sé,T) and the terminal value

1 1 +
Vo o= £(S5,0 = (5p - ©)

is precisely equal to the terminal value of the call option. Finally,

applying Ito's Formula to (1.8) we obtain

@
o

, T~t) ds1 +
t

NiH

1 \ 1.2 |, 9 1 Ry
f(St, T—t;(dst) + AT f(st, T-t)dt

[N

Using (1.3), (1.4), (1.6) and (1.8)-(1.10), we ultimately reduce (1.12) to

.0 .0 1.1
(1.13) dVt = ¢t dSt + ¢t dSt

In its precise integral form, (1.13) is

t t 1

_ 0 . 0 1
(1.14) V-V, = é ¢, ds. + é ¢, ds_ 0<t<T.



The right-hand side represents the total earnings, or capital gains, that
vou realize on your holdings up to time t (see $3). Thus (1.14) says that
all changes in the value of your portfolio are due to capital gains, as

opposed to withdrawal of cash or infusion of new funds. In the language

of Harrison and Kreps [13], this is a self-financing strategy.

The justification of the valuation formula (1.5) is now complete.
We have located a trading strategy which requires initial investment
T o= f(Sé,T) and thereafter produces exactly the same pattern of cash flows
as the call option. In brief, the option is attainable in this market, at
a time zero price of 1w, by dealing only in stock and bond. In the economics
literature it is customary to go further, arguing that arbitrage profits
could be made if options were sold in a parallel market at any price other
than 7, and that existence of arbitrage opportunities is inconsistent with
equilibrium in the total economic system. See, for example, the original
paper of Black and Scholes [ 2] or the recent article by Cox, Ross and
Rubinstein [ 6]. To reduce verbiage, and to get a self-contained mathematical
theory, we shall simply stop with the statement of attainability. Through-
out this paper, we focus on an isolated market in which certain securities
are traded, assuming that no arbitrage opportunities exist internal to this
market (see §2). We seek to characterize the class of contingent claims that
investors can attain, and the prices at which they can attain them, by deal-
ing only in the designated securities. In discussing the valuation formula
(1.5), for example, we have focused on a market where only the stock and
bond are traded, and we've discovered that investors can manufacture call
options for themselves in this market, at the price specified in the formula.
No comparison is made with the price at which options do sell, or might sell,
or should sell outside our market, although it is obviously possible to do so.

8



Beginning with the statement of the critical balance condition
(1.13), our treatment has diverged somewhat from Merton's [30] proof of
the valuation formula. In particular, his defense of (1.13) as .a zero-net-new-
investment condition relies on his own theory of portfolio management with
diffusion price processes [26,271.

As a final point, let us return to the assumption of unrestricted
short sales. From the standpoint of our formal theory, this means simply
that either portfolio component ¢§ can be negative. In the case of the
bond, short selling amounts to borrcwing (rather than lending) meney at
the riskless interest rate r. For the particular trading strategy ¢
aefined by (1.9) and (1.10), it can be verified that V and ¢1 are positive,
but ¢O can go negative. Thus, in order to duplicate the cash flow from
the call option, you will always hold a positive amount of stock, but it
may be necessary to finance some of your stock purchases with riskless
borrowing (selling bonds short). In particular, the valuation formula
(1.5) for call options does not actually require the assumption that stock
can be sold short without restriction, but short sale of stock may be
necessary in order to attain other types of options. See Sharpe [36]

for an explanation of short sales.

lc. Completeness of the Market

In the preceding section we have defended the valuation formula
(1.5) without ever suggesting how it was obtained in the first place. The
derivation of the formula, or rather our approach to its derivation, will
be explained later in §5, where we also show that the attainability result
of the previous section can be greatly generalized. Recughly, the story is

as follows. Let



Sy =,yf(St; 0<t<T,

meaning that J% consists of all events whose occurrence or nonoccurrence

can be determined from the stock price history through time T. Define a

contingent claim as a nonnegative random variable X which is measurable

with respect to ,j% (hereafter written X € 3%). This 1is our formal
representation for a ticket which entitles the bearer to a payment, at time T,
whose size depends (in an arbitrary way) on the price history up through T.
One can of course expand this definition to consider claims payable at other
times, but doing so complicates notation, and the added generality is
essentially trivial. The European call option discussed above is represented

+
by X = (S, - ¢) . Generalizing the ideas in §1b, a contingent claim X

T

is said to be attainable at price 7 1in our security market if there exists

a self-financing trading strategy ¢, with associated market value process V,
such that VO = 5 and VT = X almost surely. To make this precise, one

of course needs a general definition of a self-financing strategy (and the
associated value process), but we trust that the spirit of the definition

is clear. A remarkable property of the diffusion model described in §la

is that every contingent claim is attainable, and one can even write down a

general (but rather abstract) valuation formula for the price 7 associated

with a given claim X. The valuation formula is

(1.15) r = exp(-1T) E (X) ,

where E (+) 1is the expectation operator associated with another (very

10



* *
particular) probability measure P on (Q,%#). This measure P is

equivalent to P, meaning that P*(A) = 0 1f and only if P(A) = 0 (the
two measures have the same null sets). The Black-Scholes formula (1.5)
is a special case of (1.15).

Loosely adopting a standard term in economic theory, we say that
a security market model is complete if every contingent claim is attainable.
(See §3 for precise definitions.) The completeness of the Black-Scholes
model, in a somewhat different sense, and the general valuation formula
(1.15) were proved by Harrison and Kreps [13], although the origin of (1.15)

lies in an observation by Cox and Ross [5 ].

1d. An Open Question

It can be argued that the important and interesting feature of
the model in §la is its completeness, not the fact that it yields the
explicit valuation formula (1.5) for call options. We shall adopt precisely
this point of view throughout most of this paper, investigating the structural
features of different models, rather than emphasizing explicit computation.
(In the end, however, it is the explicit calculations that give the subject
its vitality.) From this viewpoint, the following question is both natural

and fundamental.

(1.16) Suppose the vector price process in §la is replaced by some other

positive vector process S = {S_; 0 < t < T} with all other

t;
assumptions and definitions unchanged. What processes S vyield

a complete market?

11



A significant amount of our attention is directed to this question. A
satisfactory general answer will not be obtained, but matters will at least
be brought to a point where the question is given a precise mathematical
form, and then reduced to an equivalent problem in martingale theory, for
which a significant literature exists.

The general question (1.16) probably has a very sharp answer,
although much debate is possible over the appropriate criterion of sharpness,
and we hope our paper will stimulate interest in this and related mathematical
problems. For the moment, we simply wish to make two observations. First,
despite the impression one often gets in reading the academic finance
literature, it is neither necessary nor sufficient for completeness of the
market that the price process S have continuous sample paths. In
particular, the attainability of call options in the model of §la requires
much more than continuity of the stock price process, although one can
certainly relax the precise distributional assumptions imposed there.

See &6¢c for an example, and compare this against the introductory passage

in the survey by Smith [37]. Second, the Markov property is completely
irrelevant to the question posed in (1.16). In fact, a much stronger
statement can be made. Consider a market model whose securities price process
S 1is defined on some probability space (2,%P). Now consider a second

model identical in all regards except that P 1s replaced by an equivalent
probability measure Q. Then a contingent claim is attainable at price 7 in
the tirst model if and only if it is attainable at this same price in the

second model. Consequently, the first mocel is complete if and only if the

second one is. These statements may not be obvious, since precise definitions
have not been given, but we hope they are at least plausible at this point.

Putting the assertion another way, only the null sets of the distribution

12



of S are relevant to the question (1.16). In asking whether every con-
tingent claim derived from S 1is attainable in the market, we are only
interested in which sets of sample paths do and do not have positive prob-
ability. Thus the parts of probability theory most relevant to the general
question (1.16) are those results, usually abstract in appearance and French

in origin, that are invariant under substitution of an equivalent measure.

le. The Probabilistic Setting

Before the completeness question (1.16) can even be stated precisely,
one must have a general model of a market with continuous trading. In
this section we describe the minimal model structure necessary for a study
of completeness, suppressing some features of the theory actually developed

later. Our first task is to resolve the following modeling issues.

(1.17) What class of vector processes S might conceivably be used to

represent security price fluctuations?

(1.18) How should one define a trading strategy in general, and then what

is the proper definition of a self-financing strategy?

. . . . . 0
To keep things simple, consider only price processes § with St = exp(rt),
meaning that the riskless interest rate is both deterministic and constant.

Let Bt = exp(-rt) and call £ the intrinsic discount process for S. It

will be argued that, if we are to obtain an internally consistent theory,

we need only consider S such that

13



(1.19) the discounted vector price process B8S 1is a martingale under

.

w
some precbability measure P equivalent to P.

ot

It is this P , called the reference measure, that enters in the general

valuation formula (1.15) discussed earlier. One implication of (1.19) is
that S must be what is called a semimartingale, and we are fortunate

to have available a well developed theory dealing with change of measure

for semimartingales. This theory, which has evolved from Girsanov's Theorem
112] for Ito processes, is precisely what is needed to verify or refute

the condition (1.19) for any given model.

Turning tc the modeling issue (1.18), we define a trading strategy ¢
as a predictable vector process, we define the capital gains under strategy ¢
as the stochastic integral of ¢ with respect to the vector price process
S, and then we define a self-financing strategy exactly as in (1.14).

Because the price process is a semimartingale, the necessary general theory
of stochastic integration is readily available. In the end, we find that

our model is complete if and only if every process that is a martingale

*

under P can be written as a stochastic integral with respect to the process
8BS din (1.19). 1In the language of martingale theory, the model is complete

if and only if £S5 has the martingale representation property under our

L
w

reference measure P
All of this is intended to suggest that the modern theory of martingales
and stochastic integrals provides exactly the mathematical framework needed
for a theory of continuous trading. As our development unfolds, there will
be still more examples of general results in the mathematical theory that
look as if they were created for this application. We have begun to feel
that all the standard problems studied in martingale theory, and all the major

14



results, must have interpretations and applications in our setting. Be
that as it may, the process of searching for such connections has barely

even begun.

1f. OQutline of the Paper

This paper is aimed at readers with a good command of probability
and stochastic processes, but no particular knowledge of economics. On
the former dimension, we assume familiarity with the Strasbourg theory of
martingales and stochastic integration, as developed in the definitive
treatise by Meyer [32]. This assumption is perhaps unrealistic, but we
cannot provide a systeﬁatic tutorial on stochastic integrals and an adequate
treatment of our nominal subject matter in a reasonable amount of space.
(Also, the former task is best left to others. We are working dangerously
close to the boundaries of our knowledge as things stand.) Most of this
paper will be accessible to those who know about stochastic integrals with
respect to Brownian motion, and the rest should come into focus after a
little study of the relevant foundational material. (On first reading,
specialize general results to the case where S 1is an Ito process.)
To facilitate such study, we consistently refer to Meyer [3Z] by page number
for basic definitions and standard results, and his notation and terminology
are used wherever possible. For a nice overview of the Strasbourg approach
to stochastic integration, plus some new results and illuminating commentary,
see the recent survey by Dellacherie [ 9] in this journal. A comprehensive
treatment of stochastic calculus is given by Jacod [18], and it appears
that the second volume of Williams [38] will be another good sourcebook
on martingales and stochastic integrals in the Strasbourg style. A some-
what different approach to stochastic integrals is developed by
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Merivier and Pellaumail [31], and their theory is also discussed briefly
bv Dellacherie [ 5]1. Some, but not all, of the results used here can be
found in the English edition of Liptser and Shiryayev [24].

The heart of his paper is §3, which contains the general theory of
continuous markets alluded to earlier. This 1s preceded by & partial
development of the analogous theory for finite markets in 2. (A finite

HAY

pr

¢t is one where trading takes place at discrete points in time and

the underlying probability space is finite.) Both the formulation and

the central results of §2 are taken from the paper by Harrison and Kreps
112}, which is in all respects the intellectual progenitor of this work.

Py trecating the finite case first, we are able to ecase the exposition in
several respects. Filrst, the necessary economic notions are introduced in

a simple setting. Having interpreted or defended a definition in the finite
case, we typically state its formal analog and proceed without further
comment  in developmeat of the general theory.  Second, we are able to give
an adequate treatment in the finite case of certain foundational issues

that will be essentially glossed over in development of the general theory.
In particular, a key assumption of 83 is defended principally on the basis

of its formal similarity to a condition derived from more primitive consider-
ations iu §2. Finally, the technical complexity that one encounters with

a continucus time parameter obscures the basic structure of the mathematical
thieory. By treating the finite case first, we hope to establish the natural
role of martingale technology and thus motivate the rather intricate develop-

ments of §3.

Section 4 serves as a complement to §3, discussing the general
reclationsiiip between sccurity price processes and their associated

return processes.  Section 5 analyzes in some detail a multi-

16



dimensional version of the Black-Scholes model. Section 6 contains further
examples relating to completeness of markets, and §7 contains some mis-

cellaneous concluding remarks.

We conclude this section with some general comments on terminology
and notation. The term positive is used hereafter in the weak sense, as
opposed to strictly positive, and similarly for increasing versus strictly
increasing. When we write X =Y for random variables X and Y, this
is understood to be an almost sure relationship, and similarly for X > Y.
In the case of processes, X > Y means Xt Z-Yt for all t. As examples
of these conventions, we will have frequent occasion to write X = 0 or
X > 0, where X may be either a random variable or a process. The symbol

= 1s used to mean equals by definition.

17



2. The Finite Theory

This sectiog introduces a number of basic concepts by examining the
case where time is discrete and the sample space is finite. This presenta-
tion is intended not as a comprehensive, systematic study of the finite case,
but rather as a device for motivating and facilitating understanding of
the continuous trading model that follows in §3. Most of what transpires

here can be traced back to the paper by Harrison and Kreps [13].

2a. TFormulation of the Market Model

The probability space (Q,#,P) 1is specified and fixed. The sample
space hés a finite number of elements, each of which is interpreted as
a possible state of the world. We assume P(w) > 0 for all w € 2, and
this is the only role of the probability measure. We envision a community
of investors who agree on which states of the world are possible, but who
do not necessarily agree further on their probability assessments. All of
our definitions and results remain the same if P 1is replaced by any
equivalent probability measure.

Also specified are a time horizon T, which is a terminal date for
all economic activity under consideration, and a filtration
Ir= {xb,;ii,...,.i}}. By this we mean each ;9; is an algebra of subsets

of Q@ with & < ... C.Z

0 T Without any real loss of generality, we assume

Fy = {¢,0} and aﬁ& = is the set of all subsets.

Securities are traded at times t = 0,1,..., T, and the filtration
F describes how information is revealed to the investors. Each éﬁ%
corresponds to a unique partition 91 of @, and at time t the investors

know which cell of this partition contains the true state of the world, but

they do not know more than this.



Taken as primitive in our model is a K+l dimensional stochastic
] . 0 1 K
process S = 1St; t = 0,1,...,T} with component processes S , S ,..., S .
k . .
It is required that each component S be strictly positive and adapted
k . .
to T . The latter means that the function w - St(w) is measurable with

respect to JTt (written SE Ec%t) for each k and t. Interpret St
as the price at time t of security k, so S adapted means that investors
know at time t the past and current prices of the K+l securities.

The zeroth security plays a somewhat special role, because we also
assume, and this can be done without loss of generality, that Sg = 1.
We call this security the bond, even though we make no assumptions that
really distinguish it from the other securities. In the continuous theory,

the bond will have some special features that set it apart from the other

securities. We define a process B by setting Bt = (l/SS) and call it

the discount process. The reader should think in terms of the special
0 t . . .
case where St = (1 + r) with r  (the riskless intercest rate) constant

and positive.

Define a trading strategy to be a predictable vector process

. 1
¢ = {g s t =1,...,T} with components ¢O, 7, .., ¢K. Predictable means
¢t EJ;C—I for t =1,...,T. Interpret ¢i as the quantity of security k

(in physical units like shares) held by the investor between times t-1
and t. The vector ¢t will be called the investor's portfolio at time t,
and its components may assume negative as well as positive values. In
particular, we are permitting unrestricted short sales. By requiring that
¢ be predictable we are allowing the investor to select his time t
portfolio after the prices St—l are observed. However, the portfolio

¢t must be established before, and held until after, announcement of the

prices St



We pause to introduce some notation. If X and Y are two vector-

valued, discrete time stochastic process of the same dimension, then let

XtYs denote the inner-product XiYi + XiYZ +-<-, and let XY denote the

real-valued process whose value at time t is Xth. In addition, let

AXt denote the vector Xt - Xt—l’ and let AX denote the process whose

value at time t is AXt.

Clearly ¢tst—l represents the market value of the portfolio ¢t
just after it has been established at time t-1, whereas ¢tst is its market
value just after time t prices are observed, but before any changes are

made in the portfolio. Hence ¢t ASt is the change in market value due to

the changes in security prices that occur between times t-1 and t. If

an investor uses trading strategy ¢, therefore, we see that

o. AS. , t=1,... , T,
1 1

I~

(2.1) G (9) =

i=1

is the cumulative earnings or capital gains that the investor realizes on
his holdings up through time t. We set GO(¢) = 0 and call G{(¢) the

gains process associated with ¢. Note that G(¢) is an adapted, real-valued

stochastic process.

It is important to notice that a general trading strategy ¢ may
require the addition of new funds after time zero or allow the withdrawal
of funds for consumption. In contrast, we say a trading strategy ¢

is self-financing if

2 = = -~
(2.2) 8.5, = 01150 £t =1,..., T~1 .
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This means that no funds are added to or withdrawn from the value of the
portfolio at any of the times t = 1,..., T-1. Using (2.1) it is straight-

forward to check that (2.2) is equivalent to

(2.3) ¢tst = ¢lSO

+Gt(¢) s t=1,..., T
Thus a trading strategy is self-financing if and only if all changes in the
value of the portfolio are due to the net gains realized on investments.

We want to add one more restriction. A trading strategy ¢ 1is
called admissible if it is self-financing and V(¢) 1is a positive process

(hereafter written V(4$) > 0), where

We call V(¢) the value process for ¢, since Vt(¢) represents the market

value of the portfolio held just before time t transactions. By requiring
that V(¢) be positive we are saying not only that the investor must start
with positive wealth, but also that his investments must be such that he is
never put into a position of debt. This constraint is fairly common in the
finance literature. Since security prices are positive, it has the effect
of prohibiting certain kinds of short sales. Let ¢ denote the set of all

admissible trading strategies.
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A contingent claim is simply a nonnegative random variable X.

It can be thought of as a contract or agreement that pays X(w) dollars

at time T 1if state w pertains. Letting X denote the set of all such
contingent claims, it is easy to see that X 1is a convex cone. A contingent
claim X 1is said to be attainable if there exists some ¢ € ¢ such that
VT(¢) = X. In this case we say that ¢ generates X and that

7= VO(¢) is the (time-zero) price associated with this contingent claim.

Is this price unique, or can a contingent claim be generated by two different
trading strategies with the initial value V being different in each case?

0

This is our next subject.

2b. Viability of the Model

An arbitrage opportunity is some ¢ € ¢ such that _VO(¢) = 0 and

vet E(VT(¢)) > 0. Such a strategy, if one exists, represents a riskless
plan fer making profit without any investment. It does not require either
initial funds or new funds in succeeding periods, but since VT(¢) 2 0 it
yields, through some combination of buying and selling, a positive gain in
some circumstances without a countervailing threat of loss in other
circumstances. A security market containing arbitrage opportunities
cannot be one in which an economic equilibrium exists.

The purpose of this subsection is to derive two conditions that are
equivalent to the assertion that there are no arbitrage opportunities. We

begin by defining a price system for contingent claims to be a map

m:X > [0,») satisfying
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(2.5a) (X)) =0 if and only if X = 0,

(2.5b) w(aX + bX') = ar(X) + bw(X'")

for all a, b > 0 and all X, X' €X.

Such a price system 1w 1is said to be consistent with the market model if
n(VT(¢)) = VO(¢) for all ¢ € ¢. Let I denote the set of all price
systems consistent with the model.

Let ¥ be the set of all probability measures Q that are
equivalent to P and are such that the discounted price process 8S 1is a
(vector) martingale under Q. The relationship between P and 1T is

established in the following (where E is the expectation operator under

Q

g€ m).
(2.96) Proposition. There is a one-to-one correspondence between price

systems n ¢ 1 and probability measures Q € P via

(1) m(X) = EQ(BTX) and

0 .
P - AE)".

(1) Q&) = m(S;1,), & €7

Proof. Let Q € P and define 7w by (i). Clearly = 1is a price system.

To show it is consistent with the market model, let ¢ € ¢ be arbitrary

and notice by (2.2) that

T~1
Q 4) = + -
“rvT(*) 8T¢TST izl (¢i ¢i+l)8isi
T
= (ﬁ“_o
izz 3855 — B3 1550) * 1895y
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Hence

mVL(9)) = Eg(BV,(0))

T
Bq( L 0,88, =By 1S, D) +E
i=2 -

Q#1815

Now BS 1s a martingale under Q and ¢ is predictable, so the first term
on the right-hand side equals zero. For the second term we compute

EQ(¢lBlSl) = ¢1EQ(BlSl) = ¢lBOSO = VO(¢) , thereby verifying that = is

consistent and thus an element of 1.

For the converse, let 7 € II and define Q by (ii).* For each
w €0 we have Q(w) = n(Sglw) > 0 since Sgluj # 0 and T satisfies (2.5a).
Now consider the strategy ¢ € ¢ with ¢O =1 and ¢k =0 for k=1,..., K
(hold one bond throughout). Since w 1is consistent with the model, we have
V(8) = m(Vy(9)), or 1 = n(Sg), or 1 = ﬂ(Sng), or Q@) = 1. Thus Q is a
probabilitynwasureequivalent{to P, and it follows directly from (2.5)

that w(X) = E_ (8, X) for any X €X. Next, let k > 1 be arbitrary, let

QT

1 < T be a stopping time, and consider the strategy ¢ ¢ ¢ defined by

k

0 k,. 0O
e l{tS_T} ’ qbt - (ST/ST) 1

{te>1r

and ¢l = 0 for all other i. This is the strategy which holds one share

of stock k up until (through) the stopping time <1, then sells that share

of stock and invests all the proceeds in bonds (check that ¢ 1is predictable).
k,.0,.0

k 0 k
7 = T = = .
Then \O(¢) SO and VT(¢) (ST/ST)ST STBTST, and the consistency of m

gives us
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k 0, Jk 0, Jk k
SO ﬂ(STBTST) EQ(BTSTBTST) Q(BT T)
Since k and T are arbitrary, this means that 8S 1is a vector martingale

under Q, and hence that Q 1is an element of T .

We now return to the notion of arbitrage opportunities.and present

the central result of this subsection.

(2.7) Theorem. The market model contains no arbitrage opportunities if

and only if P (or equivalently II) 1is nonempty.

Definition. Hereafter we say that the model is viable if the three equivalent

conditions of (2.7) hold.

Corollary. If the model is viable, then there is a single price =
associated with any attainable contingent claim X, and it satisfies

= 3..X f ac €r .
it EQ(DTX) or each Q
Remark. This resolves the uniqueness issue raised at the end of §2a.
It has also been shown that knowledge of any one Q ¢ P allows us to

compute (at least in principle) the prices of all attainable claims.

Proof. Suppose P is nonempty. By (2.6) this is equivalent to I non-
empty. Fix 7 €1 and let ¢ € ¢ be such that VO(¢) = 0. Then

n(VT(¢)) = V0(¢) = 0 because 7 1s consistent with the model, and hence
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VT(¢) = 0 by (2.5). Thus no arbitrage opportunities exist. To prove the
converse, we need the following preliminary proposition, because we have

demanded that admissible strategies have positive value processes.

Lemma. If there exists a self-financing strategy ¢ (not necessarily
admissible) with VO(¢) =0, VT(¢) > 0, and E(VT(¢)) > 0, then there exists

an arbitrage opportunity.

Proof. If V(¢) > 0, then ¢ 1s admissible and hence is an arbitrage

opportunity itself, so we are done. If not, there must exist a t < T,

A €% and a <0 such that ¢ .S =a on A and ¢S >0 on A for
t tt uu —

all u > t. Define a new trading strategy ¢ by setting wu =0 for

u < t, wu(w) =0 4f u>t and w £ A, and, if u > t and w € A

) 00w - ass?@)  for k=0
v W) =

¢k(w) for k=1,2,..., K.

At

Clearly ¥ 1s predictable. For w € A we have

K

0 0,0 . ¥ .k .k
VegrSe = by —a/8D8 0+ L ¢ 5,
k=1
= tht -a=20

by (2.2) and the definition of a, so it follows that ¢ 1is self-financing.

For u>t and w € A we have
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K
vs =2 -arsDHs?+ T S o s - assY s,
u u u t" u k¥l u u uu t° —

so V() >0 and ¢ € ¢&. But Sg > 0 dimplies VT(w) >0 on A, so v

is an arbitrage opportunity. This completes the proof of the lemma.

Back to proving (2.7). Let X+ = {X € X:E(X) > 1}. Let XO be
the set of all random variables X on & such that X = VT(¢) for some
self-financing strategy ¢ (not necessarily admissible) with VO(¢) = 0.
Suppose no arbitrage opportunities exist. Then it follows directly from
the lemma above that XO and X+ are disjoint (remember that X
contains only positive random variables). Now X+ is a closed and
convex subset of RQ , while XO is a linear subspace. Thus by the
Separating Hyperplane Theorem there exists a linear functional L on RQ
such that L(X) =0 for all X € XO and L(X) > 0 for all X € X+:
From the latter property (and the linearity) we have L(lm) > 0 for all
w € & . Normalizing, we take w(X) = L(X)/L(Sg). It is immediate that

satisfies (2.5), so it is a price system. To see that it is consistent

with the model (m € i), pick ¢ € ¢ and define

O s —_
b - VO(¢) if k=0
k
wt =
¢,1t‘ if k=1,..., K.

Then ¢ is a self-financing strategy (not necessarily admissible) with

Vo) = 0 and V() = Vo(6) - v0(¢)sg. Since V(y) € x?, m(x) = 0 for

T



all X ¢ XO, 7 is linear, and ﬂ(Sg) = 1 by normalization, this gives

0 = T(VL(¥)) = T(VL(8) ~ Vy(8) S

i

. o) (%) = n
T(UG(8)) = V() m(S) = T(Vp(8)) ~ v (8)

So ﬂ(VT(¢)) = VO(¢) for all ¢ € ¢, meaning that =« € . So no arbitrage
opportunities implies T nonempty, hence P nonempty by (2.6), and the

theorem is proved.

A close look at this proof, and particularly the intermediate lemma,
reveals the following. Suppose we had defined admissibility of self-
financing strategies by the weaker restriction VT(¢) > 0, meaning that the
investor's wealth may go negative at times t < T wunder plan ¢, but
he must be able to cover all debts in the end. Defining arbitrage opportun-
ities in terms of admissible strategies just as before, Theorem (2.7)
would still hold and in the end we would find that V(¢) > 0 for all
admissible ¢ 1in a viable model. Thus the weaker definition of admissi-
bility is equivalent to the stronger one if we eventually restrict attention
to viable models (as we shall).

0f the three equivalent conditions defining viability, the least
abstract and the most meaningful economically is the absence of arbitrage
opportunities. Put another way, this condition is the one that justifies
our use of the term viable. It is the existence of a martingale measure

Q € P that is usually easiest to verify in examples, however.
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2c. Attainable Claims

We have seen in 52b that for each attainable claim X the associated
market price 7 satisfies 1w = EQ(BTX) for all Q € P . But how does one

test a given claim X for attainability? First some preliminaries.

(2.8) Proposition. If ¢ € &, then the discounted value process RBV(¢)

is a martingale under each measure Q € P .

Proof. Since ¢ 1is self-financing, it is easy to check that A(BV(¢))t
= E¢§ A(BSk)t with the sum over k = 1,..., K (see the proof of (2.6)).
Then (2.8) follows from the predictability of ¢ and the fact that

BS is (by definition) a martingale under each Q € P .

(2.9) Proposition. If X € X dis attainable, then
V' = o =
Bt t((b) EQ(BTXI,/«t), t O,l, > T,
for any ¢ € ¢ that generates X and each Q € PP .

Proof. Just observe that VT(¢) = X for any ¢ that generates X, and

then use (2.8).



An immediate implication of (2.9) 1is the following. If a contingent

claim X 1is attainable, then the value process V = V(¢) for any ¢ ¢

that generates X must be

1
) I £=0,1,..., T,
(._ lO) Vt Bt EQ(BTRI/&:), 0’ >

where Q € P is arbitrary. Furthermore, if V is computed from X by

(2.10), and if ¢ € ¢ generates X, then

k k
¢t A(BS >t’ t"l,..., T’

(2.11) A(Bv)t =
1

I o~ 5%

k

as one can easily verify. Note that the bond component
50 - in (2.11). Fi
& does not enter in (2.11). Finally, one can prove the converse statement

as well. The contingent claim X 1is attainable if and only if there exist

predictable processes ¢l, cee ¢K such that (2.11) holds, as we'll show
in the more general setting of §3. The verification (or refutation) of
(2.11) can in principle be done, requiring a separate calculation for each
cell of the partition 9%_1 and each t = 1,..., T. Because this story

is quite specific to the finite setting, we'll not continue it, but there
is one important qualitative point to understand about the procedure.

Its content lies in the fact that V is computed, using (2.10) and any

Q € P, before we know whether or not X is attainable. The question of

attainability then comes down to the indicated representation problem.

2d. Complete Markets

The security market model is said to be complete if every contingent

claim is attainable. 1In §3 it will be shown that completeness is equivalent,
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in the general model, to a certain martingale representation property. Here
we wish to state a much sharper characterization of completeness that is
entirely specific to the finite case. To eliminate trivial complications,
we first impose a non-degeneracy assumption. Recall that 9% is the
partition of £ wunderlying 9%. The price process S 1s said to contain

0{A) = 1 for some nontrivial vector a, some

it

a redundancy if P(OLSt+l

t < T, and some A E.i}. If such a redundancy exists, then there is an
event A possible at time t which makes possession of some one security
over the coming period completely equivalent to possession of a linear
combination of the other securities over that same period. If no such

circumstances exist, then we say that the securities are nonredundant.

For each cell A of é71 (t = 0,1,..., T-1), let Kt(A) be the
number of cells of é?t+l that are contained in A. This might be called

the splitting index of A. Assuming that the securities are nonredundant,

and (as always) that the model is viable, we must have Kt(A) > K+1 (the
total number of securities) feor 2ll t and A. (This fact may not be

obvious, but neither is it hard to prove.)

(2.12) Proposition. If the securities are nonredundant, then the model
is complete if and only if Kt(A) = K+1 for all A ¢ 91 and

t=20,1,..., T-1.

A precise proof of this, in its more general form without the nonredundancy
assumption, is given by Kreps [20] and we shall not reproduce the argument
here. The interested reader should be able to piece together a proof,

starting with the single period case T = 1. If © has n elements, then
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n

the space X of contingent claims is just the positive orthant of R,

. . . k
and with T = 1 each security k consists of a constant S0 and a vector
k

Sl ¢ R" whose components specify S?(w) for different w € Q. For complete-

ness it is necessary that each X € X be representable as a linear combination

of Sg, Si, el Si. In the nonredundant case {(where Sg, Si, e S?

are lingarly independent) this comes down precisely to the requirement

that n = K+1. This argument can then be extended by induction to prove (2.12)
for general T.

Thus we see that completeness is a matter of dimension. Speaking
very loosely, (2.12) says that in each circumstance A that may prevail at
time t, investors must have available enough linearly independent—securities
to span the space of contingencies that may prevail atrtime t+l. For a
model with many trading dates t and many states w, completeness depends
critically on the way uncertainty resolves itself over time, this being
reflected by the splitting indices Kt(A). Again, we refer to Kreps [20]
for further discussion.

With continuous trading, no characterization of completeness even
remotely similar to (2.12) is known, but a second characterization of complete-
ness for the finite case does have a known general analog. It was observed
by Harrison and Kreps [13] that a finite model is complete if and only if
P is a singleton, and a similar result is known to hold in a more general

setting, as we'll discuss in §3d.

Ze. A Random Walk Model

.. t
For a concrete example, consider a finite model with SS =(1l+71),
1 K
SO = .. = S0 = 1 and



t
< k
Sk = I (1 + a xk) for £t =1,..., T and k =1,..., K,
t S
s=1
1 K , .
where {xt}, ey {xt} are independent sequences of IID binary random
variables taking values + 1 with equal probability, and r, al,..., aK are

constants satisfying 0 < r < ak < 1. The stock price processes are then
independent geometric random walks, while security zero is a riskless bond
paving interest rate r each period. The reader should have no trouble
determining a martingale measure Q € P for this model (there are many
such Q if K > 1, but only one if K = 1). Taking ¥ to be the
filtration induced by the pr%Fe process S itself, we see that Kt(A) = ZK

for all A and t. It is easy to verify that these securities are non-

redundant, so (2.12) says that this random walk model is complete if and

and only if K = 1. See Cox, Ross and Rubinstein [ 6 ] for an extensive
discussion of the K =1  model and its various generalizations. This
same paper provides a good introduction to and overview of the modern
theory of option pricing, all in the simple setting of a finire model

with one stock and one bond.
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3. Continuous Trading

This section presents a general model of a frictionless securities
market where investors are allowed to trade continuously up to some fixed
planning horizon T. The theory closely parallels that developed in §2, so
we shallbe brief and to the point, pausing only to discuss issues that have
no counterparts in the finite case.

We begin now with a probability space (Q.%#, P) and a
filtration (increasing family of sub-c-algebras) TF = {Ji; 0 <t E_T} satis-

fying the usual conditions (les conditions habituelles):

(3.1) .#. contains all the null sets of P, and

0
(3.2) F is right-continuous, meaning that
g o= N 4 for 0 <t < T.
t s —
s>t

In fact, without significant loss of generality, it will be assumed that ;7b
contains only & and the null sets of P, and that 3% =J. It will ultimately

be seen that P plays no role in our theory except to specify the null sets.

Hereafter we shall speak of the filtered probability space (Q,F ,P).

Let S = {St;O < t < T} be a vector process whose components
0 1 K . k . o~ .
S, S,..., 8 are adapted (meaning St c</t for 0 <t < T), right con-
tinuous with left limits (hereafter abbreviated RCLL) and strictly positive.
Most of what will be done requires only nonnegative prices, but by assuming
strict positivity cne avoids various irritating complications.

0 - C o . . . .
We assume that 5 has finite variation and is continuous, interpreting

this to mean that security zero (called the bond) is locally riskless. As a

convenient normalization, let 88 = 1 throughout. If SO were absolutely

continuous, then we could write



t
sY = exp(/ v ds) , 0<t<T,
t 0 S - =

for some process Y, and then Yt would be interpreted as the riskless interest
rate at time t. We have found that absolute continuity does not significantly
simplify any aspect of the theory, however, so we do not assume it. Instead,

defining
. 0
(3.3) a, = log(St) s 0<t<T,

0
we simply call o the return process for S, or the locally riskless return

process. Also, let

/ _ O _ ./
(3.4) B, = 1/s_ = exp(-a)), 0<t<T,

calling £ the intrinsic discount process for S. We now interrupt our

development of the market model to review some aspects of martingale theory.

3a. Martingales and Stochastic Integrals

A supermartingale is an adapted RCLL process X = {X ;0 < t < T}

such that X  is integrable and E(X_|#) < X for 0<s <t <T. The
process X 1is said to be a martingale if both X and -X are supermartingales.
All our martingales are uniformly integrable, because they are stopped at

time T < e, This should be kept in mind when comparing our later definitions

with those in the general literature. We shall later use the fact that

{(3.5) a positive process X 1is a martingale if and only if it is a super-

martingale and E(XT) = XO s

cf. Lemma (7.10) of Jacod [18]. An adapted RCLL process M is said to be a

local martingale [32, p. 291] if there exists an increasing sequence of
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stopping times {Tn} such that

(3.6) P{Tn =T} »~1 as n > oo
and
(3.7) the stopped process {M(t A Tn); 0 <t <T} is a martingale for

each n,

in which case the sequence {Tn} is said to reduce M. As (3.7) illustrates,
we shallwrite the time parameter of a process as a functional argument (rather
than a subscript) if this is necessary to avoid clumsy typography.

Clearly, every martingale is a local martingale, and it follon

easily from Fatou's Lemma that

(3.8) every positive local martingale is also a supermartingale.

Combining this with (3.5), we see that

(3.9) a positive local martingale M 1is a martingale if and only if E(MT) =M

A process A = {At;O < t < T} 1is said to be in the class VF (for

variation finie), or simply a VF process, if it is adapted, RCLL, and has

sample paths of finite variation {32, p. 249]}. A process X 1is called a

semimartingale {32, p. 298] if it admits a decomposition X = M + A, where

M 1is a local martingale and A 1is a VF process. This canonical decomposition

is not generally unique.

We say that H = {H ;0 < t < T} is a simple predictable process if

t
there exist times 0 = tO < tl < < tn = T and bounded random variables
go Ecyo, gl E;yt s eee Qn—l Etﬁt such that
1 n-1
(3.10) Ht = E;i if ty <t < til (i = 0,1,..., n-1).

0



Thus simple predictable processes are bounded, adapted, left-continuous, and

piecewise constant. The predictable c-algebra on @ X [0,T}] is defined to be

the one generated by the simple predictable processes (a variety of equivalent
definitions can be found in the literature). A process H = {Ht;O <t < T}

is said to be predictable if it is measurable with respect to the predictable
cs-algebra. Every predictable process is adapted.

Meyer [732, p. 299] says that a process H 1is locally bounded if

(3.11) there exist constants {Cn} and stopping times {Tn} satisfying

(3.6) such that IHti_i Cn for 0< ¢t i»Tn and n = 1,2,...
In his discussion of the Lebesgue Stochastic Integral, Dellacherie [9 ]
defines local boundedness by the weaker requirement

(3.12) sup IHtI { o
0<tLlT

but the discrepancy is resolved (for our purposes) by the following result,

which Dellacherie [9 ] cites in a footnote and attributes to Lenglart.
(3.13) Conditions (3.11) and (3.12) are equivalent for predictable processes.
Also, it is well-known that

(3.14) an adapted process that is left-continuous with right limits (LCRL)

is both predictable and locally bounded.

Now consider a semimartingale X together with a simple predictable
process H satisfying (3.10). The stochastic integral 2Z = f H dX 1is then
defined path-by-path in the Lebesgue-Stieltjes sense, meaning (remember that

H 1is left-continuous while X is right-continuous) Z, = 0 and

0



it t. it t, i — i+l

If H 1is now a general locally bounded and predictable process, the stochastic
integral Z = f H dX can be defined by continuously extending what we have

for simple predictable processes, cf. Dellacherie [9 ] or Meyer 32, Ch. 4].
Incidentally, when we write Z = f H dX we mean Z, = 0 and

0

z =f{ B d4x = [ H dx_, 0<t<T.
0, t] s s

Observe that predictability and local boundedness are both preserved under
substitution of an equivalent measure, and the semimartingale property is
also invariant to such substitutions [32, p. 376]. Finally, the stochastic
integral f H dX described above enjoys this same invariance. The fact
that all these definitions depend only on the null sets of the underlying
probability measure is important in our setting.

The definition of stochastic integrals in terms of predictable
integrands is precisely what is needed for economic modeling, and it yields

the following key result [32, p. 2997}.

(3.15) 1If H dis locally bounded and predictable and M 1is a local

martingale, then f H dM 1is a local martingale as well.

If we further assume that M 1is a martingale, it may not be true that

f H dM is a martingale (there are familiar counter-examples in the Ito
theory where M 1is Brownian motion). It cannot be emphasized too strongly
that (3.15) only holds when one restricts attention tc predictable

integrands H.
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If Z 1is the stochastic integral f H dX as above, then Z is

itself a semimartingale (hence RCLL) with

(3.16) bz = H_AX_, 0<t<T,

where we use the standard notation AZt = Zt - Zt— for the jump of Z at t.
We shall write AZ and Z_ to denote the processes {AZt;O <t S_T} and
{Zt_;O <t < T} respectively. Incidentally, the definition of the general
stochastic integral f H dX agrees with the Ito integral in the case where

X 1is Brownian motion (although we are restricting ourselves to a slightly
smaller class of integrands than is customary in developing the Ito theory),
and it amounts to a path-by-path Lebesgue-Stieltjes integral when X is

a VF process.

Let X and Y be semimartingales. Since X and Y_  are LCRL

and adapted, (3.14) shows that it is meaningful to define a new process

[X,Y] by
t t
r:v Y‘ - 1 7 _ 7 vy _ AR td T
(3.17) X, Jt (tit f X d o f Ys— GAS, 0 <t (T
0 0
An equivalent definition is the following [9 ] Let t. = it/2" for
n=1,2,... and i = 0,1,..., 2", Then
r \ - v s T , .. 0N _ oy LT _ n
Lx,L]L Xo¥g + l;m i (x(ti+l) x(ti))(i(ti+l) Y(ti))

where the convergence is in probability. This latter definition explains

why [X,Y] 41is called the joint variation of X and Y, with [X,X] called

the quadratic variation of X. This is yet another definition which is

invariant to substitution of an equivalent probability measure.
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Here are a few more properties of the joint variation that will
be used later. First, [X,Y] 1is always a VF process [32, p. 267], and
moreover
(3.18) [X,Y] = Z AXS AY if either X or Y 1is VF.
s<t s
In particular, if X (say) is continuous and VF, then (3.18) gives [X,Y] =0
for any semimartingale Y. Finally, from (3.17) and the finite variation of

IX,Y] 4it is immediate that
(3.19) the product of two semimartingales is itself a semimartingale.

A process X 1is said to be integrable (under P) if E(IXFI) < oo,
0 <t <T. It is said to be locally integrable if there exist stopping
times {Tn} satisfying (3.6) such that {X(t A Tn); 0 <t <T} is integrable

for each n.

3b. A Preliminary Market Model

Picking up where we left off before §3a, it will be convenient to

define a discounted price process Z = (Zl,..., ZK) by setting
k
2. =885, 0<t<T and k=1,..., K

Note that Z has only X components. Let TP be the set of probability
measures Q on (Q,%) that are equivalent to P and such that 2Z is

a (vector) martingale under Q. This is of course the same as requiring that
8S be a martingale under Q, since BSO = 1 1is a martingale under any

measure equivalent to P. Elements of P are called martingale measures.

We shall henceforth impose the following
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(3.20) Assumption. P is nonempty.

The primitive acceptance of (3.20) constitutes a major difference in
our treatment of the finite and continuous cases. All of 82b, culminating in
Theorem (2.7), was devoted to proving that in a finite setting (3.20) is
equivalent to the nonexistence of arbitrage opportunities, which is an
economically palatable assumption. For the continuous case, one can in fact
prove a general version of Theorem (2.7), but the proper definition of an
arbitrage opportunity and the ensuing mathematical development are extremely
complex. A proper treatment of viability for continuous models requires a
paper in itself, so we jyst rely here on the formal analogy with the finte
theory, referring interested readers to Harrison and Kreps [13] for more
on viability in a general setting.

We have that SO is a VF process (and thus a semimartingale),
that Zk is a martingale under any Q € P, and that Sk = Zk/B = SOZk.

Then from (3.19) it follows that Sk is a semimartingale under Q and thus
also under P (recall that the semimartingale property is invariant under
substitution of an equivalent measure). Hence S 1is a vector semimartingale.

In order to verify (3.20), and later to compute the prices of
attainable contingent claims (see §3c), it is necessary to actually determine
at least one martingale measure Q € P. This will be done later for some
concrete examples, but it should also be noted that there exists a well

developed general theory on change of measure for semimartingales. The

general form of Girsanov's Theorem [32, pp. 376-379] shows that to find

a Q € P one must find a strictly positive martingale M that bears a
certain relationship (involving joint variation) to the discounted price
process Z. A nice account of this general theory is given in the second
volume of Dellacherie and Meyer [10], for which an English translation should

soon be available.
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A trading strategy is (temporarily) defined as a K+1 dimensional

process ¢ = {¢t;0 < t < T} whose components ¢O, ¢l,..., ¢K are

locally bounded and predictable (see §3a). With each such strategy ¢ we

associate a value process V(¢) and a gains process G(¢) by

£k
(3.21) V) =9 s = T ¢S, 0<eLT,
k=0
t K t K Kk
(3.22) c.() =] ¢ ds = ] [ e ds’, 0LclT
o " k=0 0 "

As in the finite theory, we interpret Vt(¢) as the market value of the
portfolio ¢t’ and Gt(¢) as the net capital gains realized under strategy
¢ through time t. But why should trading strategies be predictable, and
why does the stochastic integral give the right definition of capital gains?
Continuing our practice of ducking foundational issues, weshall say rather
little on this important subject. It is obvious that simple predictable
strategies (see §3a) should be allowed, and that G(+) gives the right
notion of capital gains for such strategies. In fact, the definition of G(¢)
for simple predictable ¢ essentially reduces to that used earlier in the
finite theory. The ultimate defense of our set-up must then rely on the
fact that each predictable strategy ¢ can be approximated (ina certain
sense) by a sequence of simple predictable strategies {¢n} such that

G(d) = f $ dS is the limit (in a certain sense) of G(¢n) = f ¢n dS. The
restriction to predictable strategies serves to limit in an essential way
what investors can do at jumps times of the price process. If S 1is con-
tinuous, one need not worry about predictability at all: using the same
forward-looking (or nonanticipating) definition of the stochastic integral,
one could allow all trading strategies that are optional (adapted and just a
bit more).
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We say that a trading strategy ¢ 1is self-financing if

(3.23) V() = V() + 6 (4, 0<t LT

Since the stochastic integral G(¢) 1is adapted and RCLL, we see that V(¢)
is adapted and RCLL for any self-financing ¢. Now let ¢ be the class of
all self-financing strategies ¢ such that V($) > 0. This is the precise
continuous counterpart to what we had as the set of admissible trading
strategies in the finite theory. Unfortunately, ¢ will not do as the set
of admissible strategies in the continuous theory. Shortly we shall discuss
the problems with &, and the necessary modifications will be made later.

But first a preliminary result is needed. For any trading strategy ¢,

let us agree to write

k k

G(4) = [ oaz= | [ adt,

k

I~

1

. 0 . . : .
with the bond component ¢ playing no role. We also introduce the notation

% K
Vi) = 8v@e) = 60+ ) ek,

k=1

calling G“(¢) and V“(¢) the discounted gains process and discounted value

process respectively for strategy ¢.

(3.24) Propesition. Let ¢ be any trading strategy. Then ¢ 1is self-
financing if and only if VK(¢) = V3(¢) + GK(¢), and of course

V($) > 0 if and only if VK(¢) > 0.
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(3.25) Remark. Thus all our essential definitions can be equivalently
recast in terms of discounted quantities. Henceforth we shall deal
exclusively in terms of the more convenient discounted formulation.

See (3.27) below.

(3.26) Corollary. If ¢ € ¢, then V“(¢) is a positive local martingale,

and also a supermartingale, under each Q <€ P .
Proof. For (3.24), suppose first that ¢ 1is self-financing, meaning that
V(¢$) = VO(¢) + G(6:. Then AV($) = AG($) = $4S and hence
V_(9) = V(9) - AV(d) = ¢S - ¢AS = ¢S _

Since B 1s a continuous VF process, (3.18) gives [8, V(¢)] = 0, and

then from the definition (3.17) of the joint variation (and the continuity of B8)

av’ ()

d(8V(e)) = 8_ dV(s) + V_(¢) dB

BAV(9) + V_(¢) d8 = B dG(¢) +¢s_ dB

B¢ dS + ¢S_ dB = (8 dS + S_ dB)

But similarly, dZ = d(8S) = 8 dS + S_ d8, so we have dv (#) = ¢ dz, which
means precisely that V*(¢) = VZ(¢) + f¢>dZ = V;(¢) + G*(¢), the desired
conclusion. The proof of the converse is virtually identical, so we delete
it. The Corollary (3.26) is immediate from (3.15), the fact that V*(¢)_Z 0,

and (3.8).

(3.27) Remark. Recall that GK(¢) does not depend on the bond component ¢O
Thus (3.24) shows that a self-financing strategy ¢ 1is completely

determined by its initial value V8(¢) and its stock components.
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More particularly, any set of locally bounded and predictable
processes ¢l, ey ¢K can be uniquely extended to a self-

ES
financing strategy ¢ with specified initial value V (¢) = v

by setting

K K
o0 = v ) eNazt - ] ek, 0<e<T,

since this is the unique choice of ¢O that will give us Vﬁ(¢)

= v + GK(¢). Obviously ¢ € ¢ 1if and only if v + GK(¢) > 0.

Now what happens if we declare all strategies ¢ € ¢ to be
admissible? If one defines an arbitrage opportunity as a strategy ¢ € ¢
for which VO($) = 0 but VT(¢) > 0 with positive probability, then it
follows from (3.26) that none of these exist. Because V*(¢) is known to
be a positive supermartingale under any Q € P, it must remain at zero if
it starts there. So there are no strategies in ¢ that turn nothing into
something, but there may be (and generally are) strategies that turn some-

thing into nothing. In §6a we'll give an example (for the Black-Scholes

nodel of §la) of a suicide strategy ¢ € ¢ such that VO(¢) = 1 but

VT(¢) = 0. If all strategies ¢ € ¢ were allowed, the prices of attainable
contingent claims in the Black-Scholes mocdel would therefore never be unique.
Having determined that a claim X 1is attainable at price = using some ¢,
we can always add to & the suicide strategy and thus attain X at price
m+l. (Attainable claims and their associated prices have not been formally
defined in this section, but we trust that the spirit of these remarks is
clear from all that has gone before.) So the first problem with ¢ is that
it contains too many strategies, since we want each attainable claim to have

a unique associated price. We are going to remedy this by fixing a reference

measure P ¢ P and restricting attention to strategies ¢ for which
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Ia
k

V*(¢) is a martingale, not just a local martingale, under P . This
will of course eliminate the suicide strategy alluded to above.

Although & is slightly too large in the sense just discussed,
it is slightly too small in a different sense. Roughly stated, the space

of locally bounded predictable strategies lacks a sort of closure property

that we need to get a clean result on completeness. 1If one wants all con-
tingent claims (or even all bounded claims) to be attainable in the Black-

Scholes model, for example, one must allow some strategies that are not

o
~

locally bounded. We now introduce a set & of admissible strategies that

is just right for our purposes.

3c. The Final Formulation

Let us select and fix a reference measure P € P, denoting by

E\(') the associated expectation operator. Until further notice, when we
speak of martingales and local martingales, the underlying probability measure

is understood to be P . We define S(Z) as the set of all predictable pro-

1 K

cesses H = (H,..., #7) such that the increasing process
b k.2 kK Lk, \1/2
(3.28) (J @) diz7, 271077, 0<esT,
0

is locally integrable (see §3a) under P for each k =1,..., K. It can
be verified that %%(Z) contains all locally bounded and predictable H,

and moreover j H dZ dis still a local martingale for these integrands [32,

p. 341].
We now expand our definition of a trading strategy to include all
K 1
predictable ¢ = (¢O,¢l,..., ¢ ) such that (¢ ,..., ¢K) € L(Z). With

VK(¢) = R4S and GK(¢) = f $dZ as before, a trading strategy ¢ 1is said
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to be admissible if V (§) > 0, V (¢) = %;(¢) + G (¢), and
(3.29) VK(¢) is a martingale (under Ph)

Let Q* be the class of all admissible trading strategies. The last condition
(3.29) loocks awful, but verifying (or refuting) it is not a problem that ever
arises if one is interested only in contingent claim valuation. See (3.33)
below. Obviously (3.29) is equivalent to requiring that G*(¢) = f¢ dZ be a

martingale, and by (3.9) it is also equivalent to the simple condition

(3.30) E [VT(¢)] = VO(¢)

A contingent claim is formally defined as a positive random variable

X (remember eﬁ'=;§& by convention). Such a claim is said to be attainable

if there exists ¢ € & such that V;(¢) = BTX, in which case ¢ 1is said to

generate X and 1w = V5(¢) is called the price associated with X.

(3.31) Proposition. The unique price = associated with an attainable

%
claim X 1is 1w = E (BTX).

This is of course immediate from (3.30). Hereafter weshall say that a claim
X 1is integrable if E*(BTX) C e, and similarly bounded means that BTX is
bounded. From the definition, it is immediate that only integrable claims
can be attainable. We now give a more or less concrete test for attain-
ability.

oL

(3.32) Proposition. Let X be an integrable contingent claim and let v

be the RCLL modification of

Tn - EN X
Vt (BT

), 0<e<<T.
t _— —
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Then X 1is attainable if and only if v can be represented in

the form V = VB + f H dZ for some H € %(Z), in which case

KN

VK(¢) =V for any ¢ ¢ o that generates X.

*
Remark. Note that the candidate value process V is computed before we

know whether or not X 1s attainable.

Proof. Suppose X 1is attainable, generated by some ¢ ¢ @x_ Let H = ¢
for k=1,..., K so that [ HdZ =0 (§). Since B,X = V,(¢) and v (9)

is a martingale by (3.29), we have that

V_ =E (sTxlft) =B (Vo (&) 7)) = vV (6)

t

ES X % ES t *
But V (&) = VO(¢) + Gt(¢) = VO(¢) + f H dZ because ¢ € & , so we have the
0
desired representation.

For the converse, let X be an integrable claim, define V* as indicated,
and suppose that V* = Vg + f H dZ for H €%(Z). Set él = Hl,..., ¢K = HK,
and then define ¢O as in (3.27), with v = V;, thus yielding a trading
strategy ¢ with

vo(s) = vg + G ($) = VS +{Hdz =V

Obviously V is a positive martingale by its very definition, so ¢ 1is an

o

e

admissible strategy with V;(¢) = B X Thus X 1is attainable,

generated by &.

(3.33) Remark. Note that the trading strategy ¢ constructed in the second
half of the proof, starting with the integrand H that appears in the

representation, automatically satisfies the sticky condition (3.29)

because of the way we defined V' in the first place.
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3d. Complete Markets (Representation of Martingales)

We say that the market model of §3c is complete if every integrable
claim is attainable. Before proceeding with the analysis of complete
markets, let us establish that nothing is added to this definition by con-
sidering claims payable before the terminal date T. Suppose we define
a (wide sense) contingent claim as a pair (t,X) with 0 <t < T and
X E‘Fk’ making the obvious interpretations. We say that (t,X) 1is attainable
if there exists ¢ ¢ Q* such that Vt(¢) = BtX. Defining integrability of
(t,X) by the requirement E*(BtX) { =, we then say that the model is (wide
sense) complete if every integrable (wide sense) claim is attainable. Suppose
the model is complete according to our original definition, fix (t,X) and
consider the pair (T,X') where X' = thsg. Obviously E*(BTX') =
E*(BtX) { », so X' 1is an integrable claim (payable at T). Letting ¢ € @K
be a strategy that attains X' (remember we assumed completeness in the
narrow sense), we know that V*(¢) is a martingale under P* ‘with V;(¢) =
£.X".  Thus

L

V;‘: o _ 1.7': V:‘: S _ ES 8 VLY = ‘7'< (.-,7 _
(@) = E( T(¢)I/t) E (8, I/t/ E (thl,t) B.X

so ¢ also attains (t,X) and we conclude that (wide sense) completeness
is equivalent to completeness in the original narrow sense.

All notation and conventions established in the last section remain
in force. In particular, the term martingale implicitly refers to the
reference measure P*. Let ./ be the set of all martingales, and let

UOKZ) consist of all M €.# repesentable in the form

(3.34) M= Myt [ B dz for some H €%(Z)

I1f A =#{Z) then we say that Z has the martingale representation property

for (Q,E‘,P"). This definition of course involves the filtration T 1in a




fundamental way. Roughly speaking, it says that Z provides a basis
for the space ./, or that Z spans .//, with stochastic integrals playing

the role of linear combinations.

(3.35) Theorem. The model is complete if and only if & = 4{Z).

(3.36) Corollary. If TP 1is a singleton, then the model is complete.

Theroem (3.35) follows immediately from (3.32), using the fact that

any martingale can be expressed as the difference of two positive martingales.
Corollary (3.36) comes from the general theory of representation of
martingales. Specifically it follows from the results on pp. 337-345

of Jacod [18], using the fact that if P% is the sole element 1P, then
P* is an extreme point of the set of all probability measures under which
Z 1is a martingale. Using the general theory in Chapter XI of Jacod [18],
(3.36) can actually be strengthened to say that the model is complete if
and only if P:‘c is an extreme point of a certain set. To state this
result precisely requires some additional, rather technical definitions,
so we shall not pursue the matter further. Jacod's general theorems

on representation of martingales have an obvious aesthetic appeal, and
they provide a potential means of establishing the completeness of any
given market model, but there is nothing comparable to the very explicit
characterization of complete finite markets that was given in 82d. That

result makes one feel that the ultimate characterization of complete

continuous markets should involve the fine structure of filtration TIF.

Moving on to more concrete issues, suppose that IF = ES

, the
minimal filtration (satisfying the usual conditions) with respect to which §

is adapted. This is interpreted to mean that investors only have access to

(or at least are obliged to base their trading decisions solely on) past and
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present price information. Let us further assume that SO (the bond price
process) is deterministic, this giving ES = EZ because Z = B8S. 1In
the general set-up, completeness is a joint property of (Q,E‘,P*) and Z,
but now 2 actually determines the filtration, so there is no need to
mention the underlying space at all. Thus we are led to say that a
martingale Z 1is complete if every other martingale M over EZ can be
represented as M = MO + f H dZ with H predictable.

We shall now discuss some martingales that are known to be complete
in at least roughly the sense of the last paragraph. Certainly the oldest
known result of this type concerns the completeness of one-dimensional
Brownian motion (which implies that every contingent claim is attainable in
the Black-Scholes model). Clarke [ 4] attributes this to Ito [14], and different
proofs have been given by Kunita and Watanabe [23], Dellacherie [8 ], and
doubtless many others. Multidimensional Brownian motion is also complete, as
we'll discuss in 55, although its natural analog in discrete time is not
(see %2e). Jacod [17] says that more general types of diffusion processes

are known to be complete, as one can easily deduce from the result for Brownian

motion itself, but we do not know a good reference on that subject. The

Poisson martingale CNt - cAt, where € is a real constant and N 1is a
Poisson process of intensity A, is also known to be complete. This result
is usually ascribed to Kunita and Watanabe [23], and it has been generalized
to arbitrary point processes {15]. Finally, it is well known, although we
cannot produce a reference, that the Wiener and Poisson martingales are the
only complete one-dimensional martingales having stationary, independent

increments.



4. Return Processes and the Semimartingale Exponential

It is customary in financial economics to specify not price processes
themselves but rather the corresponding return processes (see §la). In this

section we describe briefly the general mathematical nature of that correspondence.

4a. Exponentiation

Let X = {Xt; 0 < t < T} be a semimartingale and consider the
equation
t
(4.1) Ut=UO+é U, dX_ 0<e<lT,

where UO € J% is also given. We would like to find a semimartingale {
satisfying this equation. It turns out [32, p. 304] that (4.1) always has

a (semimartingale) solution, it is unique, and it is given by

/ T = © ,
(4.2) bt Uoét(:\), 0<t<T,
where

4.3) éE(X) = exp(Xt - XO -

N[

:
[5,X] ) T (1+8X ) exp(-aX +=(aX )2).
t <t s s 2 s
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&(X)

This process

is called the exponential of X

in the semimartingale

sense. Note that éb(X) = 1.

is [32, p. 306]

A key property of the

semimartingale exponential

(4.4) EX) &) =X + Y + [X,Y]) for any two semimartingales X and Y.
Since [X,Y] = 0 4if either X or Y 4dis continuous and VF (see §3a), this
means

(4.5) EX) &) = &X +Y) if X is any semimartingale and Y

Let 22 be the set of semimartingales

is continuous and VF.

X such that 1+ 24X > 0

+ .
and let 9  be those semimartingales X satisfying the stronger condition

that 1 + AX > 0. Then from (4.3)
(4.6) E(X) > 0 if

EX) >0 if
4b. Return Processes

<

Our price process S and

related to each other via equation

instead of X. Rearranging (4.1),

t
Rk
t

(4.7)
0

In the case of the continuous VF bond,

k k
[ s ) ds),

it follows that

and only if X €4, and

and only if X 63?+.

. . k
its corresponding return process R are

U and R

k
(4.1), with § instead of

k

we see R expressed in terms of S by

0<t<T;

this simplifies to

0 _ 0, _
(4.8) Rt = log(St) =a 0<t<T.
We set R = (RO, Rl, s RK) and call Rk the return process for
security k.
53
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The following argument shows that (4.7) really does define Rk
unambiguously in terms of Sk (remember that we assume IP non-empty
throughout). The discounted price process Zk (see §3b) is a strictly
positive martingale under each Q €1, so ZE is strictly prositive and
left continuous, implying that (l/Sﬁ) is locally bounded. So the
stochastic integral in (4.7) is well defined, the integrand being locally
bounded and the integrator being a semimartingale.

Since (4.7) is equivalent to the statement that dSk = SE de,

we see from §4a that Sk and Rk are also related by the semimartingale

exponential. That is,
(4.9) s = s B9 k=0,1,..., K.
. R k k .t
By (4.6) and the strict positivity of S  we see that R €%  for

k=20,..., K.

k
Consider now the discounted price process Z - We have

B = exp(-a) = &(-a), so (4.5) gives
k k k
(4.10) 25 = 85" = #-a) s§ R = 20 ERF - w)

.. . 1 K
Defining the discounted return process Y = (Y, , Y) by
(4.11) TR M 0<¢t<T k=1,..., K,

t t t - -

equation (4.10) says

k
(4.12) 25 = 28 (%)
k k k k 3 h
Thus Y plays the same role for Z as R does for S . We emphasize that
the tidy relationship (4.11) depends crucially on our assumption that o 1is
k
continuous and VF so that {R ,-a] = O.
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5. A Multidimensional Difiusion Model

We consider now a generzlization of the Rlack-Scholes model
(see § 1a) that has a bond and K correlated stocks. The bond price process
is S, = exp(rt), 0< t<T, with r a real constant as before, and

e e . . ol s N 3
each individual stock price process S ,c0., O is to be a geometric
Brownian motion. To specify the model precisely, it will be convenient
to construct first the discounted return process Y (sces§ Mb), then the
i . . k

discounted stock price process Z (see §3b ), and finally the processes S
themselves. We continue to denote components of vectors by superscripts,
except in a few isolated instances where doing so is hopelessly impractical.

Iet A = (x..) be a non-singular K X K matrix, and define a

1'1

I

covariance matrix (symmetric and positive definite) A = (aij) by setting

A= AAT, meaning that

- 1 Ky . , 1 K
Iet p = {n yeoey M ) ‘be = vector of real constants. Hext; let W ,.e., W

. . . . < .
be independent standard Brownlan motions with Wé = eee¢ = RO = 0, defined

on some probability space (, &%,P). Then set

(5.2) Y,o= AW+ opt , 0<t<T, meaning
K
- z . k
(5.3) = 3 Mgy R 0SEST, k=1, K.
J=1

Thus Y 1is a vector Brownian moticn with covariance matrix A and drift

I
vector p. DNow let Zé,u.., Zé be strictly positive constants and set
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for kX =121,..., K. to's Formula gives us

c )
(5.5) AN AN e 0<t<T,
t 0 s s - -
0
k K .
so Z =72 _&(Y) as in§L4b. Furithermore,
)
- 1.3 i3 i3 i3
.6 7z = 777 Y = 777 a, . .
(5.6) alz=,2%], aly™,v’], 159°

The first equality in (5“6) follows from (5.5) and the basic joint vari-
ation property of stochastic integrals [32, p. 271], and the second is

& well-known property of Brownian motion. Now define

(5.7) si - sizi - er°zi for 0<t<T, k=1lyeee, X,
i 1
co that 25 = S as in §3b. TFrom 5.5)=(5.7) we see that Sl,..., SK

are correlated geometric Brownian motions as promised, the return process

k k
for S° Dbeing Ri = Yt + rt (a Brownian motion with variance 81 and
drift uk + r). For the information structure, we take T = IFW = ZFY
= IFZ = IFS (see §5d), so that investors are required to base their

trading decisions on past and present price information only.

For the explicit calculations of 8 5¢c, the following observation

1 K)

will be helpful. Let h = (h,..., h be the function defined by

k.( k

, k 1
(5.8) h(x,y,t) = x exp(y - 5 akkt) s k=1,00., K,

for X,V € RS 2nd ¢ > 0. Then (5.4) says that Z, = h(ZO,Yt,t).
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Furthermore, it is easily verified that

(5.9) Zp =02, Yo - ¥, T-t) for 0<t<T.

t? T

Sa. The Reference Measure

Because A (and hence A) is non-singular by assumption, there

exists a unique K-vector 7 satisfying

(5.10) Ay =p .

—~
1
°
’_J
=
~—

E,t=Wt+7t, 0<t<T,

so that (5.2) can be restated as

(5.12) Yoo= AE 0<t<T.
How define the martingale (under P)
M =exp{—27h1k %Z o<t<T,
t k=1 k=1 -
X_

and let the reference nmeasure F be given by
(5.13) AP = M dP .

Because M is a strictly positive martingale with MO =1, we see

that P is a probability measure equivalent to P. The following

proposition, sometimes called the likelihood ratio formula for Brownian

motion, is a special case of the original Girsanov Theorem [12].
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K
(5.1&) Proposition. The processes gl,..., g are independent standard

*
Brownian motions under P .

)

—

From this and {5.12) we have that Y 1is a Brownian motion with zero

*

drift and covariance matrix A under P , and then from (5.4) that Z
. . * - £

is a (vector) martingale under P as required. From (5.55) and the
representation theorem cited in the next subsection, it follows that P
is in fact the unique element of P, but we'll make no direct use of

.X_
this fact. We fix P as our reference measure and then define admissible

trading strategies in terms of it as in 8 3c.

5b. Completeness

We now replace P by P*, so the terms integrable, martingale,
and local martingale implicitly refer to P*. From the definition (5.11)
of & it is clear that I = IFW = ]Fg, meaning that the filtration in
our market model is that generated by the standard Brownian motion E.
Let 4 (the space of all martingales) and #(Z) be defined as in§ 3d.
We want to show that #(2) =_4, and hence by (3.35) that the model under
discussion 1s complete.

First suppose I e .4 1is sgquare integrable, meaning that

*
£ (|1,17) <=. It is well-known [32, pp. 911-913] that M can be repre-

N>

sented in the form

N
N
',_
i
H
_«l
—
D
0
JoF
e
0
\a
O
IN
-+
IA
-3
\a

where 6 = (67,..., GK) is a predictable process satisfying
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LT
(5.16) E*(f Ietlgdt) <o,
0

Furthermore, every martingale M on the Brownian filtration IF is
continuous, hence locally square integrable, and it then follows easily
that each M e 4 can be represented in the form (5.15) with 6 satis-

fying (5.16) loeally, which means simply that

¥rom (5.11) and the non-singularity of A , Tthis is obviously equivalent

o

to the Tollowing. Each M e & can be represented in the form

t
(5.18) M, =M, + [ nmar_, 0<s<T,
T 0 S S -

K . . P
yeee, N ) is predictable and satisfies

T
% 5
(5.19) : P(f [ nffat <) =1,
0

Now let us define H = (Hl,..., Hh) by

Hh
o
(@
A
o
[A
}.3
.
5
0
l_]
N
N
=

(5.21) M =M + [ HA& , o<t<T,

Furthermore, the increasing process (3.28) occurring in the definition of
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2(z) 1is, by (5.6),

T - t
- Eve ook ok W1/2 k2 i/2
(5.22) (0 052a02%,25 )2 2 (f (0% as) M2
s S S kk
0 0
. 3 i . . 3 *

This process 1s continuocus, so it is locally integrable (under P ) by
(5.19), and we conclude that H € ¥ (Z). To repeat, every M e # can
be represented as M = My + [ HaZ for some H e #(Z), so il =.4(Z)
and hence the model 1s complete by (5.55),

One can greatly generalize the diffusion model discussed in this

J

section and gtill have completeness., The diffusion coefficients aij can

be made to depend on past and present prices in a more or less arbitrary
— . s e k R

way, and the drift coefficients may depend on even more than that.

(#e'1l not attempt to even make these statements precise, let alone justify

them. ) ut it appears that the riskless interest rate must be determi-

nistic if one 1s to get completeness, although it may vary with time,

and that the dirftusion coefficients may not depend on more than past and

present prices., We're not sure how one even states this latter property

precisely, but see the example of § 6ec.

5c. Explicit Computations

We now censider a class of contingent claims X for which one can

caleulate guite explicitly the associated price 7 =E (BTX) and a trading

strategy © that generates XK. Specifically, we assume in this section

5 rt K
(5.23) X=e W(ZT) for some V¥:R_ —+ IR .
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. k
Since ZT = ex
is a function
convenient to

It is easy to

sponds to the

assuning that

exercise price

k . .
p(-rT)ST for k=1,..., K, this means simply that X
of the final stock prices oniy. As usual, though, it is more
speak in terms of the discounted price process Z throughout,

verify that the Furopean call option discussed in § la corre-

function

Vv(x) = [Xl - ce-rtJ+

we're talking about a call option on stock k = 1 (with

¢ and expiration date T),

Let X be given by (5.23) and assume hereafter that it is inte-

grable, meanin

Then we know T
Pprice 7., Lor

vV o=V (®) fo

Our cbjective

Tirst let's de

iy f)E\,
el

g that
* X, w7 * _
= B (BX) = B (e Ty - E [4(2,)] < .

rom the completeness result of 8 5b that X is attainable at
eover, we know from § 32 that the discounted value process

r any ¢ generating X 1s given by

=B (pxl #) = u(z) | 7,0, o<t<T.,

*

o

%
now is to calculate V  and hence 7 (since T =7V

tine the normal density function

I‘t(z) = (2%)-1{‘/2 exp(~%lz|d)

for t> 0 and 2z € IRh. Observe that

(5.26)

~t)ea|lFz ) =T (z)az ,
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meaning that ¢ - & is independent of Fi and has density T

T T %t o ()
*
under P . This, of course, folleows from (5.14%) and the fact that

T = ﬁFg. Now (5.9) and (5.12) give us

(

N

.27) 7z =n(Z,, A(E - gt), T-t) , 0<t<T,

so combining (5.24)-(5.27) we have

&
o
(@)
SN
<
I
=3
—
<
—~
=
~~
S
=
—~
Ure
I
ina)

En - £), T-t)) | &, ]

Il

fv(n(z,, Az, T-t))FT_t(z)dz R

.t}

-

, . . K -
where the integral is over R . Defining

N
()
»
o
\O
o

f*(x,t) = fv(n(x, Az,t))Ft(z)dz

1"
. 1 . . ,
for x ¢ jE+ and t > O, (5.28) is more compacily stated as

AL

N *
(5.30) v, = £ (4, T-t) o<t<T,

v

In particular, cur final valuation formula for X is

—~
1
o
\H
)_J
Qg
3
Il
<

X
= f (ZO,T) .

Obvicusly (5.29) and (5.31) give the most explicit valuation formula possible

without further information on the pavoff function V.

F3

'0 determine the trading strategy © that generates X, we compute
* *
the differential of V  from (5.30) and Ito's Formula, observing that f

d ¥
has the necessary regularity by its definition (5.29). Letting P f

*,
denote the partial derivative of f  with respect to its second argument,
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and using (5.6), we have

¥ K > k X Q. %
(5.32) v, = kZi S;E f (bt, T-t)dZt + (L - 57)f (Z. T-t)dt ,

'
where L is the linear partial differential operator

K

>k
N[

K .
S a,.x'x 3
i=1 j=1 *J

Starting from the fact that T (z) satisfies the heat equation

t

d . 1 £

) =5 L )
k=1 dzk

*
and fighting through all the transformations that define f in (5.29),

* *
it can be verified that S0 f =L f . Thus, taking
k S

(5.33) Pp= % f (Z, T-t) for 0<t<T, k=2L1..., K,

Ox
we see that (5.3%2) gives

K t

* * 1
(5.24) Vo= Y 1 erat, 0<t<T.,

t 0 Hy Tt ==

Then (3.32) shows that strategy ¢ = (@O,@l,oa., ® ) generates X, where

. o .
the bond component ¢ is given by

K

K
0 * Xk * k
Oy =V - ,23 :Zt = (2, T-t) - 2 vz -
k=1 k=1

From the general representation result (3.32) and the completeness
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* *
result of §5b, we knew that our process V,_ = f (Z

. T-t) was going to

.tJ
be representable in the form (5.34), and from (5.32) we see that this is

* *
the case if and only if £ satisfies the differential equation oy f

= L*f*. Thus the differential equation has arisen here as a logical con-
sequence of various general propositions. In contrast, it was by solving
an analogous differential equation that Black and Scholes [ 2 ] originally
obtained their option pricing formula.

Because all the calculations of this section had been done in dis-
counted terms, they do not mesh precisely with the earlier discussion of
optiocn pricing in§1. The interested reader should have no trouble making
the linkage, however, by recasting the earlier discussion in discounted
terms. In particular, the function f(x,t) defined by (1.5) can be gotten
by evaluating (5.29) for v(x) = Lxl -c exp(—rT)]+, as we've indicated

earlier,
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6. TFurther Examples

We collect in this section four concrete examples that illustrate
the diversity, and some of the intricacy, that one encounters in models with
continuous trading. The first example is of a trading strategy that turns
scmething into nothing. The remaining three are chosen to shed light on
the important subject of completeness. We make no attempt to connect these
examples with any realistic problems, and the analyses are neither systematic

nor rigorous.

ba. A Bad Strategy

Consider the Black-Scholes model of 8 la, specialized to the case

r =0 (so that g0

.

=1l), T=1, and S5 = 1. As before, we call g0
1

and S the bond price process and stock price process respectively. As

a first step in constructing the suicide strategy alluded to in § 3b,

suppose b > C and consider the strategy

1+b if k

]

O and 0< t

[N

7(b)

1 and O0<t

N

@i = b if k (b) ,

0 otherwise

where

7(b)

inf{t:si =1 + 1/p} = inf(t:Vt(@) =0,

The investor starts with one dollar of wealth, he sells b shares of stock
short and buys 1 + b bonds, holding this portfolio up until + =1 or
he is ruined, whichever comes first. The probability of ruin under this

strategy is p(b) = P(7(b) < 1), and it’s clear that p(b) increases
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frem zerc to one as b increases from zero to infinity. By selling short
a very large amount of stock, the investor makes his own ruin alimost certain,
but he will probably make a great deal of money if he survives,

The chance of survival can be completely eliminated, however, by
escalating the amount of stock sold short in the following way. On the
time interval [O, 1/2} we follow the strategy of the last paragraph with
parameter b = 1. The probability of ruin during [O, 1/2] is then
p = P(7(1) <1/2). 1f 7(1) > 1/2, we adjust the amount of stock scld

short to a new level bl at time 1/2, simultaneously changing the amount

of bond held in a self-financing fashion. Specifically, the number bl

is chosen so as to make the conditional probability of ruin during the

12

interval (2, i equal tc¢c p again. In general, if at any time

t,o=1- (1/2)™ we still have positive wealth, then we readjust (typically

increase) the amount of stock sold short so that the conditional probability

of ruin during (tn, t ] is again p. To keep the strategy self- financing,

n+l
the amount of bond held must be adjusted at each time tn as well, of
)I’l

course. The prcbability of survival through time tn is then (1l-p) ,

which vanishes as n —»® (tn - 1). Thus we obtain a piecewise constant,

(9) =1, v(p) >0, and V_ (9) = 0.

gself-financing strategy ¢ with V 1

o
This is closely related to an example presented by Kreps [20].

&b. A Point Process Model

Consider the model with K =1, 5 =1, and
(6.1) st = s exp(bN, - pt) ,

t

where N = {Nﬁ; 0<t< T} is a Poisson process with intensity A > O,

66



and b and u are positive constants. This is the model of Cox and Ross
[5 ], specialized to the case of zero riskless interest rate. Corresponding

to Sl is the return process (see§ 4b)
1
(6.2) Rt = (exp(b) - l)N£ - ut .

For the filtration T we take the one generated by Sl itself,

Let

p/ (exp(b) - 1) and

o)
W
pa—_
>
1

* Nt X
(/N 7 exp((-NT)E) 0<t<T.

=
I

Observing that M dis a strictly positive martingale with M. = 1, we

0
* *
define an equivalent probability measure P by dP = M’TdP° From the
change of measure theorem for point processes [ 3 , pp. 377-379] we have
* *
that N 1is a Poisson process with intensity A under P . It follows
- 1 . . *
from (6.2) and (6.3) that R is a martingale under P , and then from

(6.1) that st is too., Hence we can (and do) adopt B as our reference
measure.

It is well-known, cf. Jacod [18, p. 3471, that RY has the martin-
gale representation property for (Q,IF,P*), and it is straightforward
to verify that the same must be true of Sl. Thus this model is complete
(see §3d), and the price associated with any integrable contingent claim

X is

*
T=E (X)
because P = 1. In particular, consider the call option
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X = (8 - c]+

1

T
) * *

Using the fact that N has intensity A under P , we have the valuation

formula

T = E*([S% )

X +
=D ([Sg exp(bN, - uT) - c]’)
e8] x .
= 2 ?} (™ T)D[Sl exp(bn - pT) - c] .
noh B 0

This is a special case {the riskless interest rate is zero) of the formula
obtained by Cox and Ross [5 ]. The precise trading strategy that generates

this contingent claim X can be computed ruch as in §5c.

6c., A Model That Is Not Complete

Let (9, #,P) be a probability space on which is defined a standard

+ 2

u

Brownian motion W = {¥W_; 0<% < T} and an independent process

0= (0,3 0<t<T) such that
2 for 0 <+t <T/2 with probability 1
0, =¢ 1 for T/2<t<T with probability 1/2
. St
% for T/2<t<T with probability 1/2 .
0

et K=1, assume S 1 (the riskless interest rate is zero throughout),

and define
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. 1 . .
Thus the return process R for the stock evolves as a driftless Brownian

2
moticn with variance parameter Ot = 4 over the interval [0, T/2) and

then & coin is flipped. If head is observed, then the variance parameter

2
increases to Oi = g, but if a tail is observed 1t decreases to Ut =1,
Observe that

t
) 2
(6.1) xt, ®Yy, =/ o%ds , 0<t<T.
t o S - -

Let the filtration IF be that generated by Rl, or eguivalently by Sl,

so investors have access only to past and present price information. The
filtration IF 1s the same as that generated by W except that, by (6.4)
and the right continuity of IF, 3;t is augmented by the outcome oi the
coin flip for T/2 <t <T., Obviously Rl is a martingale, and it is
easy to check that the same is true for S:L = <§(Rl) = exp(Rl - %[Rl, Rl]).
Of course Zl = Sl, because P = 1. Thus we can (and do) adopt P itself
as our reference measure,

It is easy to prove, using the fact that W has the martingale
representation property for its own filtration, that every martingale on

(2, I7,P) has the form

(6.5} a = wldsl + wgdo y 0

AN
ot
A
H

where wl and Wg are predictable. Since Zl = S:L is continuous, only
continuous martingales M can be represented as stochastic integrals with
respect to Zl, so by (3.35) this model is not complete. The investors
do not have available enough financial instruments to span all scurces of

uncertainty.
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This model can be made complete, however, by the introduction of

ancther security. Let

1, 0<t<1/2

2

5,=¢ 0, T/2 <t <T and o =1
2, T/2<t<T and o =3 .

Thiis 1s the price process for a ticket which can be bought (or sold) at
a pfice of one dollar at any time before T/2. If a head (a variance
increase) is then observed, then the ticket becomes worth two dollars, but
che ticket beccmes worthless if a tail is observed. The tickets represent
an institutionalized means of betting on the outcome of the coin flip, and
we impose the strong assumption that the price of the tickets is certain
to remain constant up until the time of the coin toss (this assumption is
not essential, but it eliminates a lot of complexity). Clearly 82 = 22
is a martingazle, so P remains a valid reference measure.

How from (6.5) and the definitions of o and 82 we have that

every martingale M satisfies

1 2
GM = ¢lds“ + wgds = Wlel + ngZg

for some predictable integrands Wl and vg, so the model is now complete
by (3.35).

This example suggests another natural sort of question that one
might ask about security markets with continuous trading. Given only a
filtered probability space (Q,IF,P*), what is the minimal number of
securities adapted to IF with which one can create a complete market,
and what is their form? See Davis and Varaiya [7 ] for a discussion of this

question (cast in purely mathematical terms).
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6d. A Model of Mixed Type

This subsection is devoted to yet another example with a bond and
one stock (K = 1). We believe, but cannot prove, that this model is
complete. Be that as it may, this example provides a vehicle for discussion
of several important points. The bond price process is SO = 1, s0 the
riskless interest rate is zero. To simplify notation, the stock price
process will be denoted by S rather than Sl, and the corresponding
return process by R rather than Rla Because B =1, there is no dis=~
tinction between § and Z = B3, or between R and Y =R - €, so welre
free to (and shall) reuse the letters Y and Z with completely new
neanings. The time parameters of various processes will appear as sub-
scripts at some points and as functional arguments at others, depending
on which is more convenient.

Begin with a probability space (9, 37,P) on which is defined a

standard (zero drift and unit variance) Brownian motion W = {W,; t > 0},

£
a Poisson prccess N = {N(t); t > 0} with intensity A > 0, and an IID

sequence of binary random variables (X }  such that Xn =+ 1

10 X2,...
with equal probability. We assume that W, N and {Xn] are also inde-
pendent of one another, with WO = N(0) = O.

Let £ = {£; t> 0} be the local time of W at the origin,

meaning that

t
\ 1
(6.6) L, = lim =— [ 1 ds , t> 0.,
- 7 1< -
6 26 Uu l<el
From this definition, it is apparent that
(6.7) £ increases only at times t where Wt =0,
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and it is well-known that £ is continuous but not absolutely continuous.
In fact, because the set {t:Wt = 0} has zero Lebesgue measure (almost
surely), we have from (6.6) that £ is flat except on a set of measure

zero. Next, let 7T,= O,
(6.8) T =inf{t >0 :W, =n} for n=1,2,..., and

M(t) = supln >0 : v <t} , t>0.

Finally, let 7 be a constant ( 0 <7 < 1) and define

—~
(@)Y
O
jos)
11

J + X, +
& ‘t Kt Yt , Where

—
[02
[
o
b

il

N(Z,) - a2, , and
t T

= X 4 eee X
vy = vl * Xy

Wote that each of the jump times T T of X must be a point of

l) 2)..-

increase for £, and thus W(Tn) =0 forall n by (6.7). In contrast,

Y Jjumps by 7Xl, VXE,... at the hitting times 7., T respectively,

l, 2,.-.

so the two sequences of jump times are disjoint. Also, £ dis a continuous

VF process. Thus (see § 3a) we have

[Wwl, =t
—_— 2 _
(X%, = . é‘)t(AXS) = n(4,) ,
[v,¥], = > (AYS)2 = 7u(t)
s<t

(w,x] = [Ww,Y] = [X,Y] =0..
We now set ©§ = éfR), taking SO = 1 <for convenience. From the preceding
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equations and §ha we see that S = &[R) = W) &(X) E(Y). The general

formula (M.5) for the semimartingale exponential then gives us
1 N(e) M(t)

A = - — - + X o

(6.11) S, exp(Wt 5 t)2 exp( xﬂt)n:l (L +7y n)

Observe that our stock price process S sgatisfies 45 = SdW when the
underlying Brownian motion W is not at an integer level., At each of the
times Tn where W hits a positive integer level n for the first time,
S either jumps to (1 + y) times its previous value or else drops to

(1 - y) times its previous value (with equal probability). Also, ﬁhere

T

are times T at which S Jjumps to double its previous value,

17 Tpreee
but these only occur when W 1is in state zero, and it is at just such
times that the factor exp(-kﬂt) is pulling the stock price down (in a
continuous fashion).

We take the filtration for our example to be IF = IFR = IFS
(see §3d), meaning that investors have access only to rast and present
stock price information. It is apparent that W, X, Y and hence R are
martingales over IF, so S = 6(R) is at least a local martingale.
Direct calculation shows that S is moreover a martingale, so we can
(and shall) take P itself as our reference measure.

Readers familiar with martingale theory will recognize (6.9) as
the decomposition of R into its continuous martingale part (W), the
sum of its predictable jumps (Y), and the compensated sum of its totally
inaccessible jumps (X). Meyer [ 32, pp. 261-267] explains how an arbitrary
martingale can be so decomposed, and we shall review here just the two

egsential definitions. A stopping time T 1is said to be predictable if

.
there exists an increasing sequence of stopping times (7} such that
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Tk'r T almost surely as k1t o, in which case the sequence {Tk} is

said to announce 7. Fach of the hitting times 7 in (6.8) is predictable,
because we can construct a sequence {Tk} announcing 2 (for example)

by taking

T = inf{t > 0 : W,

1l
=

!
JE
-
o
i
=
-
l\)

At the other extreme, a stopping time T 1is said to be totally inaccessible

if P(1 = 7') = 0 for every predictable stopping time <'. The jump
times of a Poisson process are the canonical examples of totally inaccessible
stopping times, and from this one can quite easily show that the jump times

T Tg,... above are totally inaccessible. This categorization of stopping

l)
times is of fundamental importance in martingale theory, and the definitions
also Sseem natural and useful for purposes of economic wodeling.

The return process R (or equivalently S) in this example was
devised so as to exhibit both predictable and totally inaccessible jumps,
plus a nontrivial contimious martingale part, and in this sense it is
representative of the most general martingale possible. Our example also
has the feature that R (or S)cm1MNeoMyfﬁﬁuﬂymmij@sina
finite amount of time, however, and in this regard it is quite special.

A general martingale may have a countably infinite number of Jumps in
a finite amount of time, and it is this feature that generates most of
the difficulties in the general theory of stochastic integration.

Now what is the general form of a predictable trading strategy in
this model? That is a very long story, which we'll not go into here.
The reader with a serious interest in the general theory of continuous

trading will find further analysis of this example an educational exercise,

however, and we'll say just a few more words to facilitate such study.
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If f, g and h are any three predictable processes, then the process

® defined by

1l
O

ft(co) if wt(w)

@t(w) = gt(w) if Tn(w) =t for some n

ht(dﬂ otherwise

is also predictable because the sets {(t,w) : Wt(aﬂ = 0} and {(t,w)

Tn(uﬂ =t for some n) are elements of the predictable c-algebra.

Furthermore, with ¢ defined in this way we have

Jpas = [os_aR = [oS_(aW + dX + dY)

= [hS aW + [fS ax + [gs 4y ,

using the fact that ¢ = h except on a set of time points having zero
Lebesgue measure. What this ultimately means is that investors are able
tc use completely different trading strategies relative to the three
components (W, X and Y) of the return process R. From the known
completeness of Brownian motion, the Poisson martingale N(t) - At, and
the one-dimensional random walk in discrete time, we then conjecture that

this model is complete.
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7. Concluding Remarks

This section presents a list of unresolved questions that we
think merit further study by probabilists and/or economists. It may be that
some of the answers are already known, or that they can be gotten by
straightforward application of existing theory. At the end, we discuss
briefly the questions of why one ought to study continuous trading at all.

In §3 we sidestepped the whole question of viability with
continuous trading. How does one justify the critical assumption (3.20)
from more primitive economic considerations, or is (3.20) even the right
expression of viability? Should we replace (3.20) by the weaker requirement
that Z be just a local martingale under some equivalent measure (Q ,
or perhaps by the stronger requirement that Z be a square integrable
martingale under some such (@ ? Again we refer the interested reader to
Harrison and Kreps [20] for more on this very complex subject.

The definition of an attainable contingent claim depends directly
on the definition of a self-financing strategy, which in turn depends on
how cne defines the gains operator G . In §3 we have not defended our
restriction to predictable trading strategies, nor our definition of G
as a stochastic integral. We have no doubt that these are the right definitions,
but a careful study of this issue is certainly needed. It should be possible
to show, for example, that a claim is attainable according to our definition
if and only if it is the limit (in some appropriate sense) of claims
generated by simple (see §3a) self-financing strategies.

In 53b we temporarily restricted attention to locally bounded
predictable strategies. TFor any integrand ¢ of this class, and any

semi-martingale S , the stochastic integral f¢ dS is well defined,
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this definition depending on the underlying probability measure only
through its null sets. There is furthermore a well developed stochastic
calculus for locally bounded integrands [32, Ch. IV}, and we used parts
of this calculus to shoy that all our essential definitions could be
recast in terms of discounted quantities. Then we fixed a reference
measure P* and used it to define a new class of strategies &% |

some of whose members are not locally bounded. Can the undiscounted gains

process G(¢) = f¢ dS be meaningfully defined for each ¢ € ¢* 7 If
50, can the final formulation of 83c, which was expressed entirely in
terms of discounted quantities, be equivalently recast in undiscounted terms?
Another important question concerns the extent to which our
choice of reference measure (when there is a choice) affects the set of
contingent claims that are ultimately found to be attainable and the prices
associated with these claims. There is of course some effect, but we
believe it is relatively small. More particularly, we conjecture (but
cannot prove) that the following two statements are true. First, a bounded
claim is attainable with one choice of reference measure if and only if it
is attainable with any choice of reference measure. Second, if a claim is
attainable under two different choices of reference measure, then it has the
same associated price under each. Resolution of these issues is a matter
of highest priority.
The definition of &% din $3c retains only those self-financing
strategies ¢ for which V*(d) 1is a martingale, this ensuring that the
price associated with each attainable claim is unique. One would like to

know that in making this definition, we have discarded only logically
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dominated strategies. This requires a result of the following type. Let
X be a contingent claim, and let %(X) be the set of all self-financing
strategies ¢ such that V#*(d) > 0 and V§(¢) = BTX

(7.1) Conjecture. If &(X) 1is nonempty, then &(X) (] &% 1is nonempty.

We know from (3.26) that V#*(¢) is a local martingale, and hence a
supermartingale, under P* for each ¢ & ¢(X) , so a proof of (7.1)
would show that we have retained only that strategy {or perhaps those
strategies) which attain X at the lowest possible price.

In the first paragraph of %1 we said that the mathematical struc~
ture developed here is potentially useful for study of consumption-investment
problems. Consider first the pure investment problem where one starts with
wealth 7 at t = 0 and wishes to find a self-financing strategy ¢ such
that VO (&) = 1 and VT ($) has maximal expected utility. In this problem
the choice set is essentially the set of all contingent claims attainable

at price 7w , so our conceptual framework is precisely appropriate. For

a true consumption-investment problem, however, one must allow investors to
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withdraw wealth for consumption over the interval [0,T] . Roughly speaking,
this requires that the formulation of 83 be generalized in the following
way.

The set of admissible trading strategies would be enlarged to
include those ¢ for which V{(¢) > 0 and I(¢) = VO(¢) + G() - v(P)

is an increasing process (rather than just identically zero), where

V(4) = ¢S and G(¢) = f& dS as before. We would interpret It(¢) as
the cumulative amount of wealth withdrawn from the portfolio over the

interval [0,t] for consumption, calling I(¢) the consumption stream

or cash flow generated by strategy ¢ . An investor starting with wealth
n  weuld then choose among those admissible strategies ¢ with VG(¢) =T
making his selection in such a way that I($d) and VT(¢) jointly maximize
some measure of felicity. Here we are thinking in terms of the case where
there is utility associated both with consumption during [0,T] and with
terminal wealth. Tor a treatment of consumption-investment problems with
diffusion price processes see Merton [26,27].

We have observed in 83d that existing general results on the
martingale representation property do not give much insight as to the
conditions that yield complete markets. More specifically, the result cited
in §2d for discrete models suggests that the ultimate characterization of
completeness with continuous trading ought to involve the fine structure of
the filtration IF . Perhaps the relationships between completeness and
the martingale representation property (see 83d) will suggest new lines of
attack on the mathematical problem itself. Be that as it may, one of our

central conclusions is that there exists potential benefit for financial.
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economics in continued study of the martingale representation property.
Finally, let's consider the question of why bother with continuous
trading, focusing solely on the problem of contingent claim valuation.
Recall from 82e that a finite market with a deterministic bond and two
independent stocks following geometric random walks is not complete. 1In
contrast, we've seen in §5 that the continuous limit of this model, having
a deterministic bond and two independent stocks following geometric
Brownian motions, is complete. It should then be possible to demonstrate
that, under the usual conditions justifying a diffusion approximation, the

finite market is in some sense nearly complete, or that each contingent

claim is in some sense nearly attainable. This point of view has been

discussed by Kreps [20], who quite rightly observes that making these
statements precise is a mathematical task of imposing proportiomns. Still
we feel confident that a satisfactory convergence theory can be developed,
and the notion of asymptotic completeness, if accompanied by a reasonable
understanding of how and when it occurs, is of great potential importance.
The Black-Scholes model and its various generalizations are important
precisely because they may approximate so many other types of models that

are not themselves complete.
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