
Deterministic Sorting in O(n log log n) Time
and Linear Space

Yijie Han
School of Interdisciplinary Computing and Engineering

University of Missouri at Kansas City
5100 Rockhill Road

Kansas City, MO 64110

hanyij@umkc.edu

ABSTRACT
We present a fast deterministic algorithm for integer sort-
ing in linear space. Our algorithm sorts n integers in the
range {0, 1, 2, ...,m − 1} in linear space in O(n log logn)
time. This improves our previous result[8] which sorts in
O(n log log n log log log n) time and linear space. This also
improves previous best deterministic sorting algorithm[3, 11]
which sorts in O(n log log n) time but uses O(mε) space.
Our results can also be compared with Thorup’s previous
result[16] which sorts in O(n log log n) time and linear space
but uses randomization.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Sort-
ing and searching, computations on discrete structures.

General Terms
Algorithms,Theory.

Keywords
Algorithms, sorting, integer sorting, time complexity, linear
space.

1. INTRODUCTION
Sorting is a classical problem which has been studied by

many researchers. Although the complexity for compari-
son sorting is now well understood, the picture for inte-
ger sorting is still not clear. The only known lower bound
for integer sorting is the trivial Ω(n) bound. Continuous
research efforts have been made by many researchers on
integer sorting[2, 3, 6, 7, 8, 9, 11, 12, 14, 15, 16]. Re-
cent advances in the design of algorithms for integers sort-
ing have resulted in fast algorithms[3, 11, 16]. However,
these algorithms use randomization or superlinear space.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’02, May 19-21, 2002, Montreal, Quebec, Canada
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

For sorting integers in {0, 1, ...,m− 1} O(mε) space is used
in the algorithms reported in [3, 11], When m is large (say
m = Ω(2n)) the space used is excessive. Integer sorting
using linear space is therefore extensively studied by re-
searchers. An earlier work by Fredman and Willard[6] shows
that n integers can be sorted in O(n logn/ log log n) time
in linear space. Raman[14] showed that sorting can be
done in O(n

√
log n log log n) time in linear space. Later An-

dersson[2] improved the time bound to O(n
√
log n). Then

Thorup[15] improved the time bound to O(n(log log n)2).

Our previous results showed time O(n(log logn)3/2) [9] and
the previous best result of O(n log log n log log log n) [8]. In
this paper we further improve upon previous results. We
show that n integers in {0, 1, 2, ...,m − 1} can be sorted in
O(n log log n) time in linear space.
Our result improves on time on the previous best linear

space sorting algorithm[8] which usesO(n log log n log log log n)
time. Our result also improves on space on the previous
fastest deterministic sorting algorithm[3, 11] which sorts in
O(n log log n) time and O(mε) space, where {0, 1, ...,m− 1}
is the range of the integers. This previous result was ob-
tained independently by Andersson et al. [3] and by Han
and Shen[11]. The space used in these previous algorithms
is actually O(m). But we may assume that space is reduced
to O(mε) by using radix sorting. Our result can also be com-
pared with Thorup’s result[16] which sorts in O(n log log n)
time and linear space using randomization. However, al-
though our algorithm do not use randomization we use mul-
tiplication instruction in our algorithm while Thorup’s algo-
rithm uses randomization but without using multiplication
instruction. The only algorithm sorts faster than our algo-
rithm and uses linear space is a randomized algorithm by
Andersson et al. [3]. Our algorithm is a deterministic algo-
rithm.
The techniques used in our algorithm include coordinated

pass down of integers on the Andersson’s exponential search
tree[2] and the linear time multi-dividing of the bits of in-
tegers. Although we used multi-dividing technique in our
previous design[8], there multi-dividing takes nonlinear time
and therefore is too slow. Our new multi-dividing can only
be accomplished with coordinated pass down of integers.
Instead of inserting integers one at a time into the exponen-
tial search tree we pass down all integers one level of the
exponential search tree at a time. Such coordinated passing
down provides us the chance of performing multi-dividing in
linear time and therefore speeding up our algorithm.

602

We would like to comment on the complexity ofO(n log log n).
This bound was manifested as the best bound even for non-
linear space deterministic sorting. Andersson [2] showed sev-
eral algorithms for sorting, none of them could break the
O(n log log n) bound. Even for very large integers Anders-
son showed time O(n(log n/ log b+ log log n)) where b is the
word length(the number of bits in a word). Thus no mat-
ter how large the integer is O(n log logn) time is needed in
Andersson’s algorithm. In contrast for very large integers
its large word length can be exploited in a randomized algo-
rithm[3]. Since Andersson’s exponential search tree requires
O(n log log n) time to balance, it would be unlikely that
any deterministic algorithm uses exponential search tree ap-
proach could undercut the O(n log logn) time complexity.
As the time of O(n log logn) is the converge point for cur-
rently the best bound for linear space sorting as demon-
strated in this paper, for non-linear space sorting as shown
in [3, 11], and for a randomized linear space sorting [16], it
can be viewed as we have reached a milestone.
Although O(n log logn) is a natural deterministic bound,

recently Han and Thorup find that this complexity can be
improved in a randomized setting. In [10] Han and Thorup
obtained a randomized integer sorting algorithm which sorts
in O(n

√
log log n) time and linear space.

2. PRELIMINARY
Our algorithm is built upon the concept of Andersson’s

exponential search tree[2]. An exponential search tree of n
leaves consists of a root r and nε exponential search sub-
trees, 0 < ε < 1, each having n1−ε leaves and rooted at a
child of r. Thus an exponential search tree has O(log logn)
levels. Sorting is done by inserting integers into the expo-
nential search tree. When imbalance happens in the tree
rebalance needs to be done. In [2] Andersson has shown
that rebalance takes O(n log logn) time when n integers are
inserted into the tree. The dominating time is taken by the
insertion. Andersson has shown that insertion can be done
in O(

√
log n) time. He inserts one integer into the expo-

nential tree at a time. Thorup[15] finds that by inserting
integers in batches the amortized time for insertion can be
reduced to O(log logn) for each level of the tree. The size
of one batch b at a node is defined by Thorup to be equal
to the number of children d of the node. In our previous de-
sign[8, 9] we pass down d2 integers in a batch. We showed[8,
9] that we can speed up computation by such a scheme.
An integer sorting algorithm sorts n integers in {0, 1, ...,m−

1} is called a conservative algorithm[12] if the word length
(the number of bits in a word) used in the algorithm is
O(log(m + n)). It is called a nonconservative algorithm if
the word length used is larger than O(log(m+ n)).
One way to speed up sorting is to reduce the number of

bits in integers. After the number of bits is reduced we can
apply nonconservative sorting. If we are sorting integers in
{0, 1, ...,m − 1} with word length k log(m + n) with k ≥ 1
then we say that we are sorting with nonconservative ad-
vantage k.
We use the following notation. For a set S we let min(S) =

min{a|a ∈ S} and max(S) = max{a|a ∈ S}. For two sets
S1, S2 we denote S1 < S2 if max(S1) ≤ min(S2).
One way to reduce the number of bits in an integer is to

use bisection (binary dividing) on the bits of the integer (it
is sometimes called exponential range reduction). This idea
was first invented by van Emde Boas et al. [4]. In each

step, the number of remaining bits is reduced to half. Thus
in log logm steps logm bits of the integers are reduced to
constant number of bits. This scheme, although very fast,
requires a very large amount of memory. It requires O(m)
memory cells and therefore cannot be directly executed in
linear space (O(n) space). Andersson[2] invented the expo-
nential search tree and he used perfect hashing to reduce
the space to linear. He can store only one integer into a
word and then applies the hash function. To speed up the
algorithm for sorting, we need to pack several integers into
one word and then to use constant number of steps to ac-
complish the hashing for all integers stored in the word. In
order to achieve this we relax the demand of perfect hashing.
We do not demand n integers to be hashed into a table of
size O(n) without any collision. A hash function hashes n
integers into a table of size O(n2) in constant time and with-
out collision suffice for us. Therefore we use the improved
version of the hashing function given by Dietzfelbinger et al.
[5] and Raman[14] as shown in the following Lemma.
Let b ≥ 0 be an integer and let U = {0, ..., 2b − 1}. The

classHb,s of hash functions from U to {0, ..., 2s−1} is defined
as Hb,s = {ha|0 < a < 2b, and a is odd } and for all x ∈ U :

ha(x) = (ax mod 2
b) div 2b−s

Lemma 1(Lemma 9 in [14]): Given integer b ≥ s ≥ 0

and T ⊆ {0, ..., 2b − 1} with |T | = n, and t ≥ 2−s+1

(
n
2

)
,

a function ha ∈ Hb,s can be chosen in O(n
2b) time such that

the number of collisions coll(ha, T) ≤ t.
Take s = 2 log n we obtain a hash function ha which

hashes n integers in U into a table of size O(n2) without
any collision. Obviously ha(x) can be computed for any
given x in constant time. If we pack several integers into
one word and have these integers properly separated with
several bits of 0’s we can safely apply ha to the whole word
and the result is that hashing values for all integers in the
word have been computed. Note that this is possible be-
cause only the computation of a multiplication, mod 2b and
div 2b−s is involved in computing a hash value.
Andersson et al. [3] used a randomized version of a hash

function in H because they could not afford to construct the
function deterministically.
A problem with Raman’s hash function is that it takes

O(n2b) time to find the right hash function. Here b is the
number of the bits in an integer. What we needed is a
hash function which can be found in O(nc) time for a con-
stant c because this is needed in the exponential search tree
[2, 14]. Obviously Raman’s hash function does not sat-
isfy this criterion when b is large. However, Andersson’s
result[2] says that n integers can be sorted in linear space in
O(n(log n/ log b+ log log n)) time. Thus if b > n we simply
use Andersson’s sorting algorithm to sort in O(n log log n)
time. Thus the only situation we have to consider is b ≤ n.
Fortunately for this range of b O(n2b) = O(n3). Therefore
we can assume the right hash function can be found in O(n3)
time.
Note that although the hash table has size O(n2) it does

not affect our linear space claim because we do not use hash
value to index into a table. Hashing is only used to serve
the purpose of reducing the number of bits in an integer.

603

3. SORTING ON SMALL INTEGERS
In this and the next section we will show how the following

Lemma 2 is proved. The contents of this and next section
have appeared in [8]. We include a modified version of them
here for the completeness of this paper.
Lemma 2: n integers can be sorted into

√
n sets S1, S2, ...,

S√
n such that each set has

√
n integers and Si < Sj if

i < j, in time O(n log logn/ log k) and linear space with
nonconservative advantage k log logn.
In integer sorting we often pack several small integers into

one word. We always assume that all the integers packed
in a word use the same number of bits. Suppose g inte-
gers each having l bits are packed into one word. By using
the test bit technique [1, 3] we can do a pairwise compari-
son of the corresponding integers in two words and extract
the larger integers into one word and smaller integers into
another word in constant time. Therefore by adapting well-
known selection algorithms we obtain the following lemma:
Lemma 3: Selecting the s-th largest integer among the n
integers packed into n/g words can be done in O(n log g/g)
time and O(n/g) space. In particular the median can be
found in O(n log g/g) time and O(n/g) space.
Proof: Since we can do pairwise comparison of g integers
in one word with g integers in another word and extract the
larger integers in one word and smaller integers in another
word in constant time, we can extract the medians of the
1st, 2nd, ... g-th integer of 5 words into one word in constant
time. Thus the set S of medians are now contained in n/(5g)
words. Recursively find the median m in S. Use m to elim-
inate at lease n/4 integers among the n integers. Then pack
the remaining integers in n/g words into 3n/(4g) words (the
packing incurs the factor log g in the time complexity) and
then recurse. Packing can be done by the packing algorithm
in Leighton[13] (Section 3.4.3).
Now consider sorting small integers. Let g integers be

packed in one word. We say that the ng integers in n words
are sorted if gi-th to (g(i + 1) − 1)-th smallest integers are
sorted and packed in the i-th word, 0 ≤ i < n. We have the
following lemma:
Lemma 4: If k integers using a total of (log n)/2 bits are
packed into one word, then the n integers in n/g words can
be sorted in O((n/g) log g) time and O(n/g) space.
Proof: Because only (log n)/2 bits are used in each word to
store g integers we can use bucket sorting to sort all words
by treating each word as one integer and this takes O(n/g)
time and space. Because only (log n)/2 bits are used in each
word there are only

√
n patterns for all the words. We then

put k < (log n)/2 words with the same pattern into one
group. For each pattern there are at most g − 1 words left
which cannot form a group. Therefore at most

√
n · (g − 1)

words cannot form groups. For each group we move the i-
th integer in all g words into one word. That is, we take
g g-integer vectors and produce g g-integer vectors where
the i’s vector contains i-th integer from each input vector.
This transpose operation can be done with Lemma 5.4 in
Thorup[16] in time O(g log g) and space O(g). Therefore for
all groups it takes O((n/g) log g) time and O(n/g) space.
For the words not in a group (there are at most

√
n ·

(g − 1) of them) we simply disassemble the words and then
reassemble the words. This will take no more than O(n/g)
time and space. After all these are done we then use bucket
sorting again to sort the n words. This will have all the
integers sorted.

Note that when g = O(log n) we are sorting O(n) integers
packed in n/g words in O((n/g) log logn) time and O(n/g)
space. Therefore the saving is considerable.
Lemma 5: Assume that each word has logm > log n bits,
that g integers each having (logm)/g bits are packed into
one word, that each integer has a label containing (log n)/(2g)
bits, and that the g labels are packed into one word the same
way as integers are packed into words (that is, if integer a
is packed as the s-th integer in the t-th word then the label
for a is packed as the s-th label in the t-th word for labels),
then n integers in n/g words can be sorted by their labels in
O((n log log n)/g) time and O(n/g) space.
Proof: The words for labels can be sorted by bucket sort-
ing because each word uses (log n)/2 bits. The sorting will
group words for integers into groups as in Lemma 4. We can
transpose each group of words for integers.
Note also that the sorting algorithm given in Lemma 4

and Lemma 5 are not stable. As will be seen that sorting
algorithms built on them can be made stable by using the
well known method of appending the address bits to each
input integer.
If we have larger word length the sorting can be done

faster as shown in the following lemma.
Lemma 6: Assume that each word has logm log log n >
log n bits, that g integers each having (logm)/g bits are
packed into one word, that each integer has a label contain-
ing (log n)/(2g) bits, and that the g labels are packed into
one word the same way as integers are packed into words,
then n integers in n/g words can be sorted by their labels
in O(n/g) time and O(n/g) space.
Proof: Note that although word length is logm log log n
only logm bits are used for storing packed integers. As in
Lemmas 4 and 5 we sort the words containing packed labels
by bucket sorting. In order to transpose words of integers
we put g log logn words of integers into one group instead of
putting g words of integers into one group. To transpose the
integers in a group containing g log log n words we first fur-
ther pack g log log n words into g words by packing log log n
words of integers into one word. We then do transpose on
the g words. Thus transpose takes only O(g log log n) time
for each group and O(n/g) time for all integers. After fin-
ishing transpose we then unpack the integers in the g words
into g log logn words.
Note also if the word length is logm log logn and only

logm bits are used to pack g ≤ logn integers into one word.
Then the selection in Lemma 3 can be done in O(n/g) time
and space because the packing in the proof of Lemma 3 can
now be done in O(n/g) time.

4. SORT N INTEGERS INTO
√

N SETS
Consider the problem of sorting n integers in {0, 1, ...,m−

1} into √
n sets as given in Lemma 2. We assume that each

word has k log log n logm bits and stores an integer of logm
bits. Therefore the nonconservative advantage is k log log n.
We also assume that logm ≥ logn log log n. Otherwise we
can use radix sorting to sort in O(n log logn) time and linear
space. We divide the logm bits used for representing each
integer into log n blocks. Each block thus contains at least
log log n bits. The i-th block containing (i logm/ log n)-th
to ((i + 1) logm/ log n − 1)-th bits. Bits are counted from
the least significant bit starting at 0. We now give a 2 log n
stage algorithm which works as follows.
In each stage we work on one block of bits. We call these

604

blocks small integers because each small integer now con-
tains only logm/ logn bits. Each integer is represented by
and corresponds to a small integer which we are working
on. Consider the 0-th stage which works on the most signif-
icant block (the (logn− 1)-th block). Assume that the bits
in these small integers are packed into n/ logn words with
log n small integers packed into one word. For the moment
we ignore the time needed for packing these small integers
into n/ log n words and assume that this is done for free. By
Lemma 3 we can find the median of these n small integers
in O(n/ log n) time(note that we have at least log logn non-
conservative advantage) and O(n/ logn) space. Let a be the
median found. Then n small integers can be divided into at
most three sets S1, S2, and S3. S1 contains small integers
which are less than a. S2 contains small integers which are
equal to a. S3 contains small integers which are greater than
a. We also have |S1| ≤ n/2 and |S3| ≤ n/2. Although |S2|
could be larger than n/2 all small integers in S2 are equal.
Let S′

2 be the set of integers whose most significant block
is in S2. Then we can eliminate logm/ logn bits (the most
significant block) from each integer in S′

2 from further con-
sideration. Thus after one stage each integer is either in a
set whose size is at most half of the size of the set at the be-
ginning of the stage, or one block of bits (logm/ logn bits)
of the integer can be eliminated from further computation.
Because there are only logn blocks in each integer, each inte-
ger takes at most log n stages to eliminate blocks of bits. An
integer can be put in a half sized set for at most log n times.
Therefore after 2 log n stages all integers are sorted. Be-
cause in each stage we are dealing with only n/ logn words,
if we ignore the time needed for packing small integers into
words and for moving small integers to the right set then
the remaining time complexity will be O(n) because there
are only 2 log n stages.
The subtle part of the algorithm is how to move small in-

tegers into the set where the corresponding integer belongs
after previous set dividing operations of our algorithm. Sup-
pose that n integers have already been divided into e sets.
We can use log e bits to label each set. We wish to apply
Lemma 6. Since the total label size in each word has to be
log n/2, and each label uses log e bits, the number g of la-
bels in each word has to be at most log n/(2 log e). Further,
since g = log n/(2 log e) small integers should fit in a word,
and each word contains k log log n logn blocks, each small
integer can contain O(k logn/g) = O(k log e) blocks. Note
that we reserve log log n nonconservative advantage for the
purpose of being used in Lemma 6. Thus we assume that
(logn)/(2 log e) small integers each containing k log e contin-
uous blocks of an integer are packed into one word. For each
small integer we use a label of log e bits indicating which set
it belongs. Assume that the labels are also packed into words
the same way as the small integers are packed into words
with (log n)/(2 log e) labels packed into one word. Thus if
small integer a is packed as the s-th small integer in the t-th
word then the label for a is packed as the s-th label in the
t-th word for labels. Note that we cannot disassemble the
small integers from the words and then move them because
this will incur O(n) time. Because each word for labels con-
tains (log n)/(2 log e) labels therefore only (log n)/2 bits are
used for each such word. Thus Lemma 6 can be applied here
to move the small integers into the sets they belong to.

Because only O((n log e)/ logn) words are used the time
complexity for moving small integers to their sets is
O((n log e)/ logn).
Note that O(k log e) blocks for each small integer is the

most number of bits we can move in applying Lemma 6
because each word has k log log n logm bits and we want to
reserve log log n nonconservative advantage. Note also that
the moving process is not stable as the sorting algorithm in
Lemma 6 is not stable.
With such a moving scheme we immediately face the fol-

lowing problem. If integer a is the i-th member of a set S.
That is, a block of a (call it a′) is listed as the i-th (small)
integer in S. When we use the above scheme to move the
next several blocks of a (call it a′′) into S, a′′ is merely
moved into a position in set S, but not necessarily to the
i-th position (the position where a′ locates). If the value of
the block for a′ is identical for all integers in S that does
not create problem because that block is identical no mat-
ter which position in S a′′ is moved to. If the value of the
block for a′ is not identical for all integers in S then we have
problem continuing the sorting process. What we do is the
following. At each stage the integers in one set works on a
common block which is called the current block of the set.
The blocks which precede the current block contain more
significant bits of the integer and are identical for all inte-
gers in the set. When we are moving more bits into the
set we move the following blocks together with the current
block into the set. That is, in the above moving process we
assume the most significant block among the k log e contin-
uous blocks is the current block. Thus after we move these
k log e blocks into the set we delete the original current block
because we know that the k log e blocks are moved into the
correct set and that where the original current block locates
is not important because that current block is contained in
the k log e blocks.
Another problem we would like to mention is that the size

of the sets after several stages of dividing will become small.
The scheme of Lemmas 4, 5 and 6 relies on the fact that the
size of the set is not very small. Since we are sorting a set of
size n to sets of size

√
n we should have no problem. If we

want to use our scheme to sort the whole input set we can
use a recursion to keep sorting input set into smaller sets.
The details of this can be found in [8].
Below is our sorting algorithm which is used to sort inte-

gers into sets of size
√
n. This algorithm uses yet another

recursion (do not confuse this recursion with the recursion
mentioned in the above paragraph).

Algorithm Sort(k log log n, level, a0, a1, ..., at)
/* k log log n is the nonconservative advantage. ai’s are the
input integers in a set to be sorted. level is the recursion
level. */
1. if level = 1 then examine the size of the set (i.e. t). If
the size of the set is less than or equal to

√
n then return.

Otherwise use the current block to divide the set into at
most three sets by using Lemma 3 to find the median and
then using Lemma 6 to sort. For the set all of its elements
are equal to the median eliminate the current block and
note the next block to become the current block. Create
a label which is the set number (0, 1 or 2 because the set
is divided into at most three sets) for each integers. Then
reverse the computation to route the label for each integer
back to the position where the integer located in the input

605

to the procedure call. Also route a number (a 2 bit number)
for each integer indicating the current block back to the
location of the integer. Return.
2.
for u = 1 to k do:
begin

2.1. Pack a
(v)
i ’s into a fraction of 1/k-th of the number of

words, where a
(v)
i contains several contiguous blocks

which consist of 1/k-th of the bits in ai and has the
current block as its most significant block.

2.2. Call Sort(k log logn, level−1, a(v)
0 , a

(v)
1 , ..., a

(v)
t). /*When

the algorithm returns from this recursive call the label
for each integer indicating the set the integer belongs is
already routed back to the position where the integer
locates in the input of the procedure call. A number
having at most the number of bits in ai indicating the
current block in ai is also routed back to ai. */

2.3. Route ai’s to their sets by using Lemma 6.

end

Note that when the recursive call at step 2.2. returns the
number of eliminated bits in different sets could be different.
For the subsequent recursive calls to continue we have to

pack a
(v)
i ’s, namely we have to extract a segment which has

the current block as its most significant block. Also note
that since we have nonconservative advantage k we can move
the whole ai in step 2.3.
We let a block contain (4 logm)/ logn bits. Then if we call

Sort(k log log n, logk((log n)/4), a0, a1, ..., an−1) where ai’s are
the input integers, (log n)/4 calls to the level 1 procedure will

be executed. This could split the input set into 3(log n)/4 sets.
And therefore we need log 3(log n)/4 bits to represent/index
each set. We call Sort several times as below:

Algorithm IterateSort
Call Sort(k log log n, logk((logn)/4), a0, a1, ..., an−1);
for j = 1 to 5 do

begin
Move ai to its set by bucket sorting because there

are only about
√
n sets;

For each set S = {ai0 , ai1 , ..., ait} if t >
√
n then call

Sort(k log log n, logk((log n)/4), ai0 , ai1 , ..., ait);
end

Then (3/2) log n calls to the level 1 procedure are exe-
cuted. Blocks can be eliminated at most log n times. The
other (1/2) logn calls are sufficient to partition the input set
of size n into sets of size no larger than

√
n.

At level j we use only n/klogk((log n)/4)−j words to store
small integers. Each call to the Sort procedure involves a
sorting on labels and a transposition of packed integers (use
Lemma 6) and therefore uses linear time in terms of the
number of words used. Thus the time complexity of algo-
rithm Sort is:

T (level) = kT (level − 1) + cn/klogk((log n)/4)−level; (1)
T (0) = 0.

where c is a constant. Thus T (logk((log n)/4))
= O(n log log n/ log k).
We have thus proved Lemma 2.

5. SORTING IN O(N log log N) TIME AND
LINEAR SPACE

For sorting n integers in the range {0, 1, 2, ...,m − 1} we
assume that the word length used in our conservative algo-
rithm is O(log(m + n)). The same assumption is made in
previous designs [2, 6, 8, 9, 14, 15]. In integer sorting we
often pack several small integers into one word. We always
assume that all the integers packed in a word use the same
number of bits.
We take 1/ε = 5 in Andersson’s exponential search tree.

Thus the root has n1/5 children and each exponential search
tree rooted at a child of the root has n4/5 leaves.
In Andersson’s exponential search tree[2], integers are in-

serted (passed down) into the tree one at a time. Thorup[15]
suggested to pass down d integers at a time, where d is the
number of children of the node in the tree where integers are
to be passed down. In our previous design[8, 9] we passed
down d2 integers at a time. Here we will stick with this
scheme, namely passing down d2 integers at a time. What
is different from our previous design is that we will not pass
down the d2 integers all the way down the tree. Instead we
will pass down one level of the tree d2 integer at a time until
all integers are passed down one level. Thus at the root we
pass down n2/5 integers at a time to the next level. After
we have passed down all integers to the next level we essen-
tially partitioned integers into t1 = n1/5 sets S1, S2, ..., St1

with each Si containing n
4/5 integers and Si < Sj if i < j.

We then take n
4
5 · 25 integers from each Si at a time and

coordinate them to be passed down to the next level of the
exponential tree. We repeat this until all integers are passed
down to the next level. At this time we have partitioned in-
tegers into t2 = n

1/5 · n4/25 = n9/25 sets T1, T2, ..., Tt2 with
each set containing n16/25 integers and Ti < Tj if i < j.
Now we are ready to pass integers down to the next level in
the exponential search tree.
It should not be difficult to see that the tree balance op-

eration takes O(n log log n) time with O(n) time for each
level. This is the same as in the original exponential search
tree proposed by Andersson[2]. For example, at the root we

first take n1/5 integers and sort them by comparison sort-
ing. This builds one level of the exponential search tree. We
then start to pass integers down the level. If the number of
integers at a child exceeds 2n4/5 we split the node into two
nodes. Thus at the end of this passing down we end up with
at most 2n1/5 children for the root. We then regroup them
to form exactly n1/5 sets S1, S2, ..., St1 as mentioned above.
We shall number the levels of the exponential search tree

top down so that root is at level 0. Now consider the passing
down at level s. Here we have t = n1−(4/5)s

sets U1, U2, ..., Ut

with each set containing n(4/5)s

integers and Ui < Uj if

i < j. Because each node at this level has p = n(1/5)(4/5)s

children at level s + 1 we will pass down q = n(2/5)(4/5)s

integers for each set, or a total of qt ≥ n2/5 integers for all
sets, at a time.
The pass down can be viewed as sorting q integers in each

set together with the p integers a1, a2, ..., ap in the exponen-
tial search tree so that these q integers are partitioned into
p+ 1 sets S0, S1, ..., Sp such that S0 < {a1} < S1 < {a2} <
... < {ap} < Sp.
Since we do not have to totally sort the q integers and

q = p2. A temptation is to use Lemma 2 to sort. For
that we need nonconservative advantage which we will derive

606

below. We will use linear timed multi-dividing technique to
accomplish this.
In Section 7 of [8] it is shown that sorting the integers

down the exponential search tree takes no more than
O(n

√
log log n) time per level. Therefore we assume we have

already sorted to level l = 2 log log log n and we are consid-
ering the sorting down the levels greater than 2 log log log n.
We use signature sorting[3] to accomplish multi-dividing.

We adapt signature sorting to work for us as follows. Sup-
pose we have a set T of p integers already sorted as a1, a2, ..., ap

and we wish to use the integers in T to partition a set S of
q integers b1, b2, ..., bq to p + 1 sets S0, S1, ...Sp such that
S0 < {a1} < S1 < ... < {ap} < Sp. We will call this as par-
titioning q integers by p integers. Let h = log n/(c log p)
for a constant c > 1. h/ log logn log p-bit integers can
be stored in one word such that each word contains only
(logn)/(c log log n) bits. We first view the bits in each ai

and each bi as of h/ log log n segments of equal length. We
view each segment as an integer. To gain nonconservative
advantage for sorting we hash the integers in these words
(ai’s and bi’s) to get h/ log logn hashed values in one word.
In order to have intermediate values in the computing of
hash values do not interfere between adjacent segments we
can separate even and odd segments into two words by ap-
plying a suitable mask. We then compute hash values for the
two words and then combine the hashed values of these two
words into one. Let a′i be the hashed word corresponding
to ai and b

′
i be the hashed word corresponding to bi. Note

that the hashed values total has (2 log n)/(c log logn) bits.
However, these hashed values are separated into h/ log logn
segments in each words. There are “null spaces” between
two adjacent segments. We can set these “null spaces” to
0’s by applying a mask. We first pack all segments into
(2 log n)/(c log logn) bits(details below, the log log n in the
denominator is needed for this purpose). Now we view each
hashed word as an integer and sort all these hashed words
(this sorting which takes linear time will be described in de-
tail below). After this sorting the bits in ai and bi are cut
to (log log n/h)-th. Thus we have additional multiplicative
advantage of h/ log logn.
After repeating the above process g times we gain noncon-

servative advantage of (h/ log log n)g while we expend only
O(gqt) time because each multi-dividing is done in linear
(O(qt)) time.
The hashing function we used for hashing is obtained as

follows. Because we will hash segments which are log log n/h-
th, (log log n/h)2-th,... of the whole integer, we will use hash
functions for segments which are log log n/h-th, (log logn/h)2-
th.... of the whole integer. The hash function for seg-
ments which are (log log n/h)t-th of the whole integer is ob-
tained by cutting each of the p integers into (h/ log log n)t

segemtns. Viewing each segment as an integer we obtain
p(h/ log log n)t integers. We then obtain one hash function
for these p(h/ log log n)t integers. Because t < logn we ob-
tain no more than logn hash functions.
Now let us take a look at the linear time sorting we men-

tioned earlier. Assume that we have packed the hashed
values for each word into (2 log n)/(c log logn) bits. We
have t sets with each set containing q + p hashed words
of (2 logn)/(c log log n) bits each. These integers are to be
sorted within each set. If we sort each set individually we
cannot achieve linear time. What we do is to combine all
hashed words into one pool and sort them as follows.

Procedure Linear-Time-Sort
Input: there are r ≥ n2/5 integer di’s. di.value is the integer
value of di which has (2 logn)/(c log logn) bits. di.set is the
set di is in. Note that there are only t sets.
begin
1. Sort all di’s by di.value using bucket sort. Assume that
the sorted integers are in A[1..r]. This step takes linear time

because there are at least n2/5 integers to be sorted.
2. for j = 1 to r do

Put A[j] into set A[j].set;

Thus we have all sets sorted in linear time.
As we have said that after g times of reduction of bits

we have nonconservative advantage (h/ log log n)g. We do
not carry this bits reduction to the end because after we
gained sufficient nonconservative advantage we can switch
to Lemma 2 for completion of partitioning q integers by
the p intergers for each set. Note that by the nature of
bits reduction, the original partitioning problem (partition
q integers by p integers) for each set has been transformed to
w partitioning subproblems on w subsets, for some integer
w.
Now for each set we combine all its subsets in subproblems

into one set. We then invoke Lemma 2 to do the partition.
Because we have (h/ log log n)g nonconservative advantage
the algorithm in Lemma 2 takes O(qt log logn/(g(log h −
log log log n)− log log log n)) time. Let qtg = qt log log n
/(g(log h − log log log n) − log log log n). We arrive at g =

(log logn/(log h− log log log n− (log log log n)/g))1/2

< (log log n/(log h − 2 log log log n))1/2. Since we have as-
sumed that we are working on levels greater than 2 log log log n
we need to sum g for log h = 2 log log log n to log logn, for
which we have

∑log log n
log h=2 log log log n g

≤ ∑log log n
log h=2 log log log n(log logn/(log h − 2 log log log n))1/2 =

O(log log n).
We have partitioned q integers by p integers in each set.

Thus we have S0 < {e1} < S1 < ... < {ep} < Sp, where ei

is a segment of ai obtained by bits reduction. (Because bits
reduction each of the p integers could produce several seg-
ments and therefore we could have more than p but less than
p logn ei’s and Si’s. But this does not affect the analysis of
our algorithm.) What we have done the partitioning is by
combining all subsets of subproblems. Assume integers are
stored in array B such that integers in Si precede integers
in Sj if i < j. And ei is stored after Si−1 and before Si. Let
B[i] in subset B[i].subset. To let the partitioning be done
for each subset we do the following:

for j = 1 to q do
Put B[j] into subset B[j].subset.

This takes linear time and O(n) space.
Now we are back to the packing problem which we solve

as follows. We can assume that the number of bits logm in a
word satisfying logm ≥ logn log log n, for otherwise we can
use radix sort to sort the integers. A word has h/ log log n
hashed values (segments) in it at level log h of the exponen-
tial search tree. The total number of hashed bits in a word
is (2 log n)/(c log log n) bits. Terefore the hashed bits in a
word looks like 0it10

it20
i...th/ log log n, where tk’s are hashed

bits and 0i are the null spaces between hashed bits. We first
pack log log n words into one word to get w1 = 0jt11t21 ...

607

tlog log n,10
jt12t22 ... tlog log n,20

j ... t1,h/ log log nt2,h/ log log n ...
tlog log n,h/ log log n, where ti,k’s, k = 1, 2, ..., h/ log logn, are
from the i-th word. We then use O(log logn) steps to pack

w1 to w2 = 0jh/ log log nt11t21 ... tlog log n,1t12t22 ... tlog log n,2

... t1,h/ log log nt2,h/ log log n ... tlog log n,h/ log log n. Now the packed
hash bits in w2 has only 2 log n/c bits. We use O(log logn)

time to unpack w2 to log logn words w3,k = 0
jh/ log log n0rtk10

r

tk20
r...tk,h/ log log n, k = 1, 2, ..., log logn. We then use

O(log logn) time to pack these log log n words into one word
w4 = 0

rt110
rt120

rt130
r ... t1,h/ log log n0

rt210
rt220

r ...
t2,h/ log log n0

r ... tlog log n,10
rtlog log n,20

r ... tlog log n,h/ log log n.
We then useO(log logn) steps to pack w4 to w5 = 0

st11t12t13
... t1,h/ log log nt21t22 ... t2,h/ log log n ... tlog log n,1tlog log n,2 ...
tlog log n,h/ log log n. We finally use O(log logn) steps to un-
pack w5 to log log n packed words. Overall we expended
O(log logn) time for packing log log n words. Thus for each
word the time expended is constant.
Thus we have:

Theorem 1: n integers can be sorted in O(n log logn) time
and linear space.

6. CONCLUSIONS
We have finally achieved O(n log log n) time and linear

space for integer sorting. Although it is not known whether
this is the lower bound, we believe that breaking this bound
deterministically should be very difficult.

7. REFERENCES
[1] S. Albers and T. Hagerup. Improved parallel integer

sorting without concurrent writing. Information and
Computation, 136, 25-51(1997).

[2] A. Andersson. Fast deterministic sorting and
searching in linear space. Proc. 1996 IEEE Symp. on
Foundations of Computer Science, 135-141(1996).

[3] A. Andersson, T. Hagerup, S. Nilsson, R. Raman.
Sorting in linear time? Proc. 1995 Symposium on
Theory of Computing, 427-436(1995).

[4] P. van Emde Boas, R. Kaas, E. Zijlstra. Design and
implementation of an efficient priority queue. Math.
Syst. Theory 10 99-127(1977).

[5] M. Dietzfelbinger, T. Hagerup, J. Katajainen, M.
Penttonen. A reliable randomized algorithm for the
closest-pair problem. J. Algorithms 25, 19-51(1997).

[6] M.L. Fredman, D.E. Willard. Surpassing the
information theoretic bound with fusion trees. J.
Comput. System Sci. 47, 424-436(1994).

[7] T. Hagerup and H. Shen. Improved nonconservative
sequential and parallel integer sorting. Infom.
Process. Lett. 36, pp. 57-63(1990).

[8] Y. Han. Improved fast integer sorting in linear
space. Information and Computation, Vol. 170, No.
1, 81-94(Oct. 2001).

[9] Y. Han, Fast integer sorting in linear space. Proc.
Symp. Theoretical Aspects of Computing
(STACS’2000), Lecture Notes in Computer Science
1170, 242-253(Feb. 2000).

[10] Y. Han, M. Thorup. Sorting integers in
O(n

√
log log n) expected time and linear space.

Manuscript.

[11] Y. Han, X. Shen. Conservative algorithms for
parallel and sequential integer sorting. Proc. 1995
International Computing and Combinatorics
Conference, Lecture Notes in Computer Science
959, 324-333(August, 1995).

[12] D. Kirkpatrick and S. Reisch. Upper bounds for
sorting integers on random access machines.
Theoretical Computer Science 28, 263-276(1984).

[13] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes.
Morgan Kaufmann Publ., San Mateo, CA. 1992.

[14] R. Raman. Priority queues: small, monotone and
trans-dichotomous. Proc. 1996 European Symp. on
Algorithms, Lecture Notes in Computer Science
1136, 121-137(1996).

[15] M. Thorup. Fast deterministic sorting and priority
queues in linear space. Proc. 1998 ACM-SIAM
Symp. on Discrete Algorithms (SODA’98),
550-555(1998).

[16] M. Thorup. Randomized sorting in O(n log log n)
time and linear space using addition, shift, and
bit-wise boolean operations. Proc. 8th ACM-SIAM
Symp. on Discrete Algorithms (SODA’97),
352-359(1997).

608

