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Game theory is not only the primary method for the formal modelling of interactions between individuals,
but it also underlies how biologists think about social interactions on an intuitive level. Most biologists
equate game theory with the notion of an evolutionary stable strategy (ESS). Maynard Smith’s definition
of an ESS formalized an intuitive concept of stable population equilibria in game theory models. This has
proven extremely useful, both to formal modelling efforts, and to a much wider range of biologists in gen-
eral. The formal definition of an ESS often cannot be met for an entire class of games, extensive form games
with nodes off the supported path. Games of this form are the most reasonable models for a great many
animal behaviours. This means that formal ESSs will not exist for these games, even though evolutionary
stable strategies, in the intuitive sense, do exist. More powerful analytical solution concepts, such as evo-
lutionarily stable sets (ES sets), are required to describe stable endpoints formally, but finding such solu-
tions can be extremely difficult. In this paper we use genetic algorithms as an alternative method of
searching for such solutions in a well-studied game of biological communication. Using this technique,
we show a previously unknown solution to this game. We discuss the properties of biological communi-
cation that make it a particularly difficult subject to model using ESSs as the solution concept, and suggest

that these issues also apply to a larger class of social models.
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Game theory is one of the most well-established tools for
modelling of social interactions, the application of which
has led to notable advances in biological topics as diverse
as sex ratio theory, cooperative behaviour, sexual selec-
tion, sperm competition, parent—offspring conflict, social
foraging and agonistic behaviour (Hamilton 1967;
Maynard Smith 1982; Axelrod 1984; Andersson 1994;
Giraldeau & Livoreil 1998; Riechert 1998). The topic of bi-
ological communication has been particularly influenced
by game theoretical thinking (Johnstone 1997, 1998§;
Bradbury & Vehrencamp 1998; Maynard Smith & Harper
2003; Searcy & Nowicki 2005). The question of whether
or not animals with conflicting interests should be ex-
pected to communicate reliably (or ‘honestly’) has been
strongly shaped by either intuitive (e.g. Zahavi 1975,
1977; Dawkins & Krebs 1978; Caryl 1979; Hinde 1981;
Krebs & Dawkins 1984) or formal (e.g. Enquist 1985; En-
quist et al. 1985; Grafen 1990; Maynard Smith 1991;
Owens & Hartley 1991; Johnstone & Grafen 1993; John-
stone & Norris 1993; Hurd 1995; Kim 1995; Hurd &
Enquist 1998) game theoretical models.
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In this paper we draw attention to properties of
communication that make it a particularly difficult subject
to model using formal game theory. In particular, we argue
that the highly influential concept of an evolutionary
stable strategy (ESS) is a poorly suited solution concept for
models of communication, and we discuss the need for
the use of more powerful analytical solution concepts on
such models. To aid in this task, we explore genetic
algorithms as an alternative method of finding analytical
outcomes to a relatively complicated model of communi-
cation. Communication requires a more complex model
structure than many other biological game theoretical
problems; while we focus on models of biological com-
munication to provide a concrete setting for our discus-
sion, the general lessons and caveats apply to any game
theoretical model of comparable structure. Any game
theoretical model in which players have underlying states,
or make more than one move per game, will have the level
of complexity required for these ESS-preventing effects to
exist (Selten 1975, 1983, 1988; Cressman 2003).

Most behavioural biologists are familiar with game theo-
retical models presented in their normal form, as payoff
matrices. This form is appropriate in games where all players
choose and play their strategies simultaneously (Gibbons
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1992). Such interactions, with a single simultaneous behav-
iour, fail to capture the essence of communication and
most other social interactions. Communication requires
that individuals not only react to each other in a temporal
sequence, but that they are also likely to vary in some under-
lying states such as differing RHP states, varying resource val-
uations, or territorial ownership status that may be hidden
from each other (Johnstone 1998; Maynard Smith & Harper
2003). Extensive form games are the appropriate game theo-
retical formulation of such interactions as they allow strate-
gies to be explicitly composed of several different possible
moves made under different contingencies (Selten 1983,
1988; Cressman 2003; Hurd & Enquist 2005). Any game the-
oretical model that incorporates individual variation in abil-
ity or need, or variable moves made in response to the
choices of the other players, cannot properly be expressed
in payoff matrix form alone.

The extra clarity inherent in the extensive form is
especially obvious when the game is one of imperfect
information, where one or more choices may be made by
a player who is unaware of the outcome of decisions made
by other players. Card games such as poker are the classic
examples of games of this type. Each player knows the
cards in their hand, but not those of other players (except
in a probabilistic sense), while actions such as bets are
common knowledge and provide information (even if
ambiguous) to receivers about the signallers’ hand. The
parallels to biological communication are clear, but the
discussion is not limited to communication games. For
instance, a forager in a social foraging game who makes
use of one conditional strategy when hungry and another
when relatively satiated, or a sequence of life-history
decisions in which the payoffs are not only frequency
dependent but a function of the earlier and subsequent
decisions, will have the same structural consequences as
the communication game studied here.

Whether in their normal or extensive forms, game
theoretical models in biology are typically solved by identi-
fying evolutionary stable strategies (ESSs; Parker 1984;
Houston & McNamara 1999). ESSs are single strategies (or
a single specific mixture of strategies; see Appendix 1) which,

P1 Strong

ifadopted by all members of a population, cannot be invaded
by any other strategy (Maynard Smith 1982). The ESS con-
cept has the virtue of intuitive clarity that allows for a greater
understanding of social behaviour, but it is a mathematical
formalism that is strongest when applied to simple models.
Attempts to increase the biological realism of these models,
by adding variables such as strength states or signalling
stages, can easily create a model that has no ESS
(Kim 1995). This problem is especially pressing in extensive
form games (Selten 1975, 1980, 1983, 1988), because of two
inter-related problems: nonpervasive strategies and large
strategy spaces.

The first, and most serious, problem in solving extensive
form games stems from the formal conditions required to
be an ESS (Appendix 1), which can only be met if the strat-
egy is ‘pervasive’ (Selten 1983). Pervasiveness is a property
of strategies in which all possible decision points (infor-
mation sets) in the game are reached with a nonzero prob-
ability. For example, consider the game presented in Fig. 1.
Player 2’s node ‘b’ is never reached when the players are
playing optimally, and therefore neither are Player 1's
nodes ‘c’ and ‘d’. It does not matter which moves the
players would make at these nodes, but the formal defini-
tion of an ESS requires not only that the moves to be made
be specified under such moot conditions, but that the
strategy be stable against invasion by strategies that differ
only in the moves at these nodes. This requires that the
‘ESS’ be stable against invasion by the moves at these
nodes. This requirement that the ‘ESS’ be stable against in-
vasion by silent mutations is obviously impossible to meet.

To cope with the problem of nonpervasive strategies,
more powerful analytical solution concepts, such as
evolutionarily stable sets (ES sets), must be used. In
intuitive terms, an ES set is a set of strategies that,
individually, would be ESSs were it not for the fact that
each member of the set scores equally well against all
other members of the set, making the set’s members
neutral to each other (Thomas 1985a, b; Cressman 1992;
Balkenborg & Schlag 2001; see also Appendix 1). Thus,
any strategy that would be invaded by a silent mutation
will be part of the ES set. Note that this is different from

Threaten

Figure 1. An example of a simple non-ESS extensive form game solution. The game has two players. Player 1 (P1) is either Strong or Weak, and
chooses an initial move, either ‘Threaten’ or ‘Appease’. Player 2 (P2) responds with either ‘Challenge’ or ‘Mitigate’, then Player 1 moves again
choosing one of ‘Engage’ or ‘Withdraw’. Assume that evolution converges upon an optimal strategy in which Player 1 always chooses
‘Threaten’ when Strong, so that the population evolves to a point at which, whenever the node marked ‘a’ is reached, play never proceeds
to the node marked ‘b’. Since ‘b’ is never reached, Player 2’s behaviour at this node is never under any selective pressure, and neither is Player
1’s at nodes ‘c’ and ‘d’. Strategies that differ only in their choice of behaviour at these nodes are functionally equivalent, but no single strategy
can possibly meet the definition of an ESS.



a mixed ESS in that a mixed ESS requires a precise mixture
of pure strategies to be present, while for an ES set, any of
the members may be present in any ratio. If we view the
players as being chosen from a polymorphic population
where each member plays a pure strategy, then at equilib-
rium, a mixed ESS would be in the form of a specific ratio
of each pure strategy in support of the ESS. An ES set
would differ in that the equilibrium population could be
equivalently composed of any conceivable mixture of
the ES set strategies, to the point where the entire popula-
tion could play only one member of the set. ES sets are not
the only way to circumvent the pervasiveness issue (e.g.
limit ESSs: Selten 1983, 1988; Leimar 1997; McNamara
et al. 1997), but they are the most amenable to an intui-
tive definition and fit naturally with the results of our ge-
netic algorithm explorations (see below).

The second problem to solving realistic communication
games is that of large strategy spaces. Simple communica-
tion models are constrained to produce a single type of
signal, and more complicated models are required to
produce phenomena such as conventional signals, which
arguably have good empirical support (Hurd & Enquist
2001, 2005; Hurd 2004). For example, in the simplest
signalling game (Hurd 1995) each player has four pure
strategies to choose from. The original Sir Philip Sidney
game (Maynard Smith 1991) has four pure strategies per
player, the version presented by Johnstone & Grafen
(1993) has four for the donor and 16 for the beneficiary,
while Maynard Smith’s (1994) mutual signalling version
has four beneficiary strategies and 64 donor strategies. In
Kim's (1995) aggressiveness signalling game, each player
has 32 pure strategies, while in the conventional signalling
game (hereafter called the E85 game; Enquist 1985), each
player has 324 pure strategies. Increasing the number of
player states in the E85 game from two states to two states
with three levels each, while retaining the dichotomous
signals and three end moves, results in over 10 million
pure strategies per player. Even if an ESS exists in such a
large game, other forms of solutions, such as ES sets, or limit
cycles in strategy space, will be more likely as the strategy
space expands. The existence of any single form of solution
does not preclude other, potentially more biologically rele-
vant forms. This suggests that analytical demonstrations
of stable outcomes ought to be supplemented by searches
for other regular patterns of strategy change.

A commonly used alternative for identifying solutions
to games is an approach known as ‘evolutionary game
theory’ (Hammerstein 1998), or ‘replicator dynamics’, in
which a reasonable method of strategy replication and
population dynamics is posited and the space of all possi-
ble population compositions is mapped analytically
(Taylor & Jonker 1978; Hofbauer & Sigmund 1988;
Cressman 2003). Evolutionary game theory analysis may
be tractable when there are few pure strategies, but as
each new strategy adds another dimension to the strategy
space, analysing dynamics in a dozen, or more, dimen-
sions is not.

Furthermore, in terms of population evolution, equilib-
ria such as ESSs and ES sets are strategies that are
presupposed to have reached fixation in a population.
There is nothing in the definition of an ESS that requires
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that selection takes the strategy to fixation from even
a small proportion of the phenotypic strategy space. In
other words, while ESSs are stable points, they are not
necessarily attracting states (Nowak 1990). Games may
also have more than one equilibrium solution, and the
question of which solution has more attractive power in
the strategy space may be analytically intractable. Games
with large strategy spaces may even have nonequilibrium
solutions, such as strategies with large attractive basins
that are none the less beaten by an otherwise poor strat-
egy, or quasistable outcomes such as limit cycles through
strategy space. Although evolutionary game theory can
provide a picture of the population dynamics, we have al-
ready noted the problems of analysing these dynamics in
a large strategy space.

ES sets and other solution concepts provide a remedy to
the shortcomings of the ESS formalism, but as noted in the
introduction, a final problem remains. Analytical solutions
are a way of describing what an evolutionarily stable
population equilibrium will look like, in terms of what
strategy or strategies will be used by the population when it
is at that equilibrium. Yet for all but the most simplistic
models, finding these solutions to begin with can prove to
be a vexing exercise. For games as large as E85 or the Kim
game, considerable effort is required to find and show
these solutions, and for games that are much larger than
E8S, the task may prove difficult or even impossible.

To help deal with the computational challenge of
finding the required solutions to more complex game
theory models, we suggest a possible alternative. Genetic
algorithms (GAs; Holland 1975; Goldberg 1989; Sumida
et al. 1990), computer simulations of strategy change by
natural selection, hold great promise as a method for solv-
ing games. By tapping their heuristic optimization capa-
bilities, the use of a GA can clarify attractive points in
the strategy space that correspond to analytical solutions
of game theory models, and by examining the evolution
of the population over time and across runs, we can
gain insight into the population dynamics. Despite the
apparent promise, this approach remains relatively
unexplored. To show the advantages of adopting this
technique, we have applied a genetic algorithm to a well-
studied game of communication, the conventional signal-
ling game (Enquist 1985; Hurd 1997; Enquist et al. 1998;
Hurd & Enquist 1998; Szamad6 2000, 2003) to compare
the simulation results to prior analytical work.

METHODS
The Conventional Signalling Game

In the E85 game, two players of varying discrete
strength states compete over an indivisible resource,
communicating with conventional signals before choos-
ing behaviours with which to respond. The structure of
the game is as follows.

(1) Each player is randomly assigned a strength state,
either ‘Strong’ or ‘Weak’ in a ‘move by nature’.

(2) Knowing their own state, but not that of their
opponent, each player then chooses a signal (‘A’ or ‘B’)
and sends it simultaneously.
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(3) Knowing their own state and the opponent’s signal,
each player chooses and executes a behavioural response,
one of ‘Full Attack’, ‘Pause-Attack’, or ‘Flee’ (hereafter A, P
or F) at the same time.

(4) Payoffs are then calculated based on the players’
strength states and their behavioural responses.

Note that the choice of signal has no direct effect on
payoff; any cost to making a particular signal will come
from the response of the other player, which makes the
signals ‘conventional’ (Hurd & Enquist 2005). The E8S
game, with its 324 pure strategies, is the simplest example
of a conventional signalling game that we are aware of
(Hurd & Enquist 2005).

The E85 model has more than one payoff parameteri-
zation. We used two different payoff quantifications for
the genetic algorithm’s fitness function. The first, which
we will refer to as TCNP, is the minimum variable version
of the E85 game (Table A3.1 in Hurd & Enquist 1998),
where T=1.0, C=0.7, N=0.4, and P =0.1. The second
payoff scheme, referred to here as VCDE is from the
most biologically plausible version of the model (Table 1
in Hurd 1997); where V=100, C_,=15 Cy=15,
C1=70,Fy=35, Fp=5.

Both the TCNP and VCDF payoffs used have only one
ESS, the communicating strategy described by Enquist
(1985) (actually, there are two ESSs, which are identical
by symmetry, when the use of the costless signals is re-
versed; we can safely ignore this for the most part, but
we will revisit the mirror ESS briefly in the results). The
property of having a single ESS is useful in that it allows
us to identify, a priori, a single strategy that should pre-
dominate. We can also use this strategy as a test of the
genetic algorithm’s ability to find the ‘correct’ solution.

The Genetic Algorithm

Simulations of the E85 model were done with a popula-
tion size of 100 for a total of 500 generations. We calcu-
lated the fitness of each population member in each
generation as the mean from five plays of the game against
other randomly chosen individual members of the popu-
lation. Five per cent of the population was killed in each
generation. The probability that a population member was
killed was inversely proportional to their share of the total
fitness of the population, and each killed member was
replaced with a strategy chosen at random from the top
20% of the population, as ranked by fitness. After replacing
the killed strategies, each locus was mutated with a prob-
ability set by the mutation rate parameter. If a locus was
selected to be mutated, the current value was replaced
equiprobably with any of the allowable values (including
the original value) for that locus.

We tested the genetic algorithm on simpler problems
with known solutions; the genetic algorithm performed
well in finding the ESS to the hawk—dove game, and
readily found the ESS to the E85 game when the opponent
population was fixed to that strategy (Appendix 2). Pre-
liminary work with alternative genetic algorithm methods,
such as other methods of selecting strategies to die or re-
produce, or implementation of crossover matings showed

no discernible sensitivity to the details of the simulation
methodology (Appendix 3).

Representation of a strategy from the E85 game in the
GA was done using a six character chromosome in string
form. Each locus specified the pure local strategy (sensu
Selten 1983) for a different information set. All informa-
tion sets in the game except for the move by nature,
which assigns strength states to each player, corresponded
to a chromosome locus, so that the entire chromosome
codes for a pure behaviour strategy (sensu Selten 1983)
with the noted exceptions. The first two loci represented
the signalling portion of the chromosome, and the final
four loci represented the end-game behaviours when:
ego state is strong and the opponent uses signal ‘B’, state
is weak and opponent uses signal ‘A’, state is strong and
opponent signals ‘B’, and state is weak and opponent sig-
nals ‘A’, respectively. A strong strength state or signal that
the player is strong is rendered as ‘A’, and a weak state or
signal is rendered as ‘B’. Thus, the representation of the
E85 ESS under this scheme is ‘ABAFPA’: signal strong
when strong, signal weak when weak, and end-game be-
haviours of Attack, Pause-Attack, Flee, and Pause-Attack
under the combinations given above. Another example:
a nonsignalling strategy that displays strong when strong
and strong when weak and then attacks at all end-move
combinations would be represented as ‘“AAAAAA’. Further
example strategies are presented in Table 1.

We carried out two sets of simulations, the first varied
mutation rate from 0.001 to 0.005 at levels of initial ‘seed’
(percentage of the population initialized to the ESS
strategy) from 0% to 75%; 10 runs were done at each
combination of mutation rate and initial seed, for a total
of 750 distinct simulations. This set was used to explore
the probability of the ESS achieving fixation at different
levels of the parameters (experiment 1). The second set
was used to investigate non-ESS endpoints found by the
GA (experiment 2). These runs varied mutation rate from
0.001 to 0.005 at three levels of initial seed: 0%, 5%, and
10%. One hundred runs at each combination of mutation
rate and seed were done for this set, giving a total of 1500
distinct simulations. This set was used to enumerate the
various outcomes of the GA and determine the formal
solutions that arose from the runs.

Characterizing Outcomes

For each simulation we plotted the change in strategy
composition of the population over the course of the 500
generations. To plot the strategies, we first divided each
into two components, those loci used when weak, and
those used when strong. Each of these two components
had 18 possible permutations and can be represented as
a point in a three dimensional array. One dimension
indicated which signal the player uses (A or B), the other
two dimensions indicated which behaviour to use (A, P or F)
in response to opponent signal A, and which behaviour to
use (again, A, P or F) in response to opponent signal B.
Nine colours were chosen to represent the possible allelic
combinations of the two behaviour loci (Table A1) with
dark or light shades indicating whether the players signal



Table 1. Encoding strategies onto chromosomes
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End-game behaviour choice loci
Signal choice loci Opp. signal is ‘A’ Opp. signal is ‘B’
When ego When ego Ego Ego Ego Ego
is strong is weak strong weak strong weak
Locus number 1 2 3 4 5 6 Chromosome
Example strategies
ESS A B A F P A ABAFPA
Anti-ESS B A P A A F BAPAAF
Nonsignalling (A), All-Attack A A A A A A AAAAAA
Signalling, All-Attack B A A A A A BAAAAA
Nonsignalling (B), Attack if strong, B B A F A F BBAFAF
Flee if weak

Five examples of strategies are presented here as encoded into chromosome form for the genetic algorithm. The first two loci code for signal
choice, either signal ‘A’ or ‘B’ when strong and weak, respectively. If the signals used in these two strength states are the same (i.e. the alleles at
loci number 1 and 2 are identical), then we say that the strategy is nonsignalling. Loci 3—6 code for end-game moves as a function of the

opponents signal choice and ego’s strength state.

move was A or B, respectively. We used the red—green col-
our dimension for the ‘Always Attack’ to ‘Always Flee’ di-
mension, and the yellow—blue colour dimension for the
orthogonal dimension (running from Flee from A signal-
lers and Attack B signallers, yellow, to Attack A signallers
and Flee B signallers, blue).

This colour coding was used to graph the evolution of
strategies over the 500 generations (Fig. 2). The strategy
each run fixated on was recorded, or if no strategy
predominated, this was also recorded. A strategy was
considered to have gone to fixation if it had achieved
80% representation in the population in the last 50 gener-
ations (10% of the simulation). Dominance of 80% was
chosen to serve as a criterion for those runs with higher
mutation rates, where mutation pressure could create a
large amount of noisy variation from the clearly dominant
strategy. Only a small number of cases required this liberal
threshold. For example, in the simulations done for exper-
iment 2, only 87 (7%) of the 1263 runs that were labelled
as having achieved fixation did so at less than 95%
representation.

RESULTS

We tested the performance of the GA in a number of runs
in which the opponent population was held fixed at the
ESS. Instead of playing the game against other random
members of the population, strategies played against only
the ESS. In every single run, the GA evolved from
a random starting population to fixation on the ESS in
under 100 generations.

Experiment 1: ESS Fixation as a Function
of Mutation Rate and Seed Level

The genetic algorithm only converged on the ESS when
the initial population was seeded with a high proportion

of ESS players (Fig. 3). Both payoff parameters and muta-
tion rate influenced the probability that the ESS would
go to fixation. Fixation on the ESS was more likely in
the TCNP payoff version of the model. At least 10—15%
of the initial ESS players were required to ensure a reliable
fixation on the ESS in this case. Mutation rate had a larger
effect on probability of ESS fixation in the VCDF payoff
version. Higher rates made it more and more difficult for
the GA to fixate on the ESS. Even at low mutation rates,
20—30% of the initial population had to be playing the
ESS before fixation was likely. In both cases, the ESS
is clearly a very weak attractor and the probability that
a randomly generated population will evolve to the ESS
is virtually nil, particularly at high mutation rates.

Experiment 2: Characterization of
Non-ESS Outcomes

While the ESS appears to have a very small basin of
attraction (only 11% of the runs converged on the ESS;
Figs 4 and 5), there is another outcome that the GA con-
verges upon with high probability for most parameter
combinations (73% or the runs). This outcome corre-
sponds to the strategy set **AAAA, where * is any choice
of allele at the loci responsible for choice of signal. None
of these strategies is an ESS because they are invaded by
their fellow set members, but the set as a whole meets
the definition of an ES set (Thomas 1985a, b; Appendix 2).
This solution has not been identified in previous analyti-
cal work on the model (e.g. Enquist 1985; Hurd 1997;
Hurd & Enquist 1998; Szamado 2000, 2003), and will be
referred to hereafter as the All-Attack ES set.

We can easily verify that the ESS is a global optimum
and the ES set is a local optimum by examining the
payoffs to ESS and ES set players in populations of either
ESS or ES set players. From the stability table (see
Appendix 2 in Hurd & Enquist 1998), we can show that
the expected payoff in a population of ESS players
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Strategy when strong

100

% Fixation

Strategy when weak

500

Tracked generations

Figure 2. A representative graph of strategy change over 500 discrete generations of time. The run depicted was conducted at mutation rate
0.003 and initial ESS (light purple—dark yellow) seed of 10%. The ES set (light red—red) reaches fixation by approximately the 300th

generation.

(summed over all four possible ego and opponent state
combinations) is:

(%V—Co) +V40+ Gv—co) =2V-2C, (1)

or, the value of winning twice minus the cost of fighting
an opponent of equal strength twice.

The expected payoff to any member of the ES set
playing in a population of ES set players (from Table A3
in Appendix 4) is:

(%Vf co) +(V-Cq)+(-Cq)+ (%V* Co)

=2V -2C—-C.1 - C (2)
or, the value of winning twice minus the cost of fighting
twice against an opponent of equal strength and once
each against a stronger and a weaker opponent.

The ESS equilibrium payoff is greater, on average, than
the All-Attack ES set equilibrium payoff by C_; + Cj, or the

Probability of ESS fixation

rate from 0.001 to 0.005 (—: 0.001; --: 0.002; ---: 0.003; ---: 0.004;

Seed

Figure 3. The probability that the ESS goes to fixation as a function of initial seed from 0% to 75%, increasing by 5% each time, and mutation

————— : 0.005), increasing by 0.001 each time. Logistic curves were fitted

to data from 10 simulations per mutation rate and initial seed combination, for a total of 750 individual runs used.
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0.001 0.003 0.005 0.001

0.003 0.005 0.001 0.003 0.005

Mutation rate at initial seed 0, 5 or 10%

Figure 4. Stacked bar graph showing the percentage of runs for the TCNP model in which the ESS (O) ES set ([1), or Other (M) strategies
fixated at each level of mutation rate (0.001—0.005) and initial seed (0, 5, or 10%). Each combination of mutation rate and initial seed

was simulated 100 times, for a total of 1500 individual runs.

cost of two fights, one against a stronger opponent, the
other against a weaker opponent, for every four encounters.
From this, it is clear that a population composed of ESS
players will be globally maximizing their fitness, making
the ES set a local optimum.

The ESS and ‘Light red/Red’ All-Attack ES set are not the
only outcomes from the GA simulations (Figs 4 and 5).

100

80

60

20+

% Runs fixating at the ESS, ES set, or Other

Two hundred and thirty-six of the 1500 runs (16%) re-
sulted in outcomes that were neither of the two stable out-
comes identified above. These are grouped into several
different classes summarized in Table A2. In the first
case, the GA did not fixate on a single strategy or set of
strategies and the population was still in flux at the end
of the run. The second case is where the GA was clearly

0.001 0.003 0.005 0.001

0.003 0.005 0.001 0.003 0.005

Mutation rate at initial seed 0, 5 or 10%

Figure 5. Stacked bar graph showing the percentage of runs for the VCDF model in which the ESS (O) ES set ((1), or Other (M) strategies
fixated at each level of mutation rate (0.001—0.005) and initial seed (0, 5, or 10%). Each combination of mutation rate and initial seed

was simulated 100 times, for a total of 1500 individual runs.
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trending towards either the ESS or Light red/Red but sim-
ply did not reach the fixation criteria in time. In some
runs at higher mutation rates, this occurred when muta-
tion pressure kept enough other players in the population
to forestall any strategy from reaching the cutoff for fixa-
tion no matter how dominant it was. Between them, the
strategies in the first two categories accounted for 12%
of the 1500 runs of the VCDF model (see the first entry
in Table A2). The third case is composed of outcomes
where the GA found the reversed signal convention ver-
sion of the E85 ESS, the strategy BAPAAF. The small num-
ber of outcomes in which this occurred is not surprising
given that when a run was seeded with ESS players, it
was done solely with the ABAFPA version of the ESS.

The fourth case includes all of those runs wherein the
GA fixated on a strategy or strategy set not yet mentioned.
The single strategy outcomes (rows 2—8 in Table A2) are
composed of nonsignalling strategies that appear to be
indifferent at two loci and play Pause-Attack at loci 3
(strategies that always signal A) or 4 (strategies that always
signal B) as well as similarly playing Flee at loci 5 or 6. An-
alytical investigation has confirmed that these strategies
are indifferent at some loci, similar to the All-Attack ES
set, but they do not meet the formal criteria of an ES set
and should not be stable. Their ability to invade each
other probably gives them a slightly greater attractive
power in the strategy space, but they still amount to a rel-
atively small basin of attraction that the GA was stranded
on by the end of the simulation. The sporadic appearance
of these strategies, their rapidly declining representation
as the mutation rate increases, and their lack of analyti-
cally demonstrated stability suggests that runs in which
they appeared to be dominant were simply not continued
long enough for them to be displaced. These cases do,
however, highlight that the GA will find outcomes that
might be attracting (if only temporarily) even if they do
not show analytical stability. They also highlight the con-
tinued need for analytical investigation to distinguish be-
tween and describe outcomes that are stable and outcomes
that merely appear stable.

In the fifth case are outcomes where the GA appeared to
be stable on a mixture of three or more strategies. These
were not analysed extensively, but their low rate of
occurrence (1.3%) suggests that these are unstable local
attractors, although a more detailed analytical examina-
tion would be required to prove that conclusively.

DISCUSSION

In our genetic algorithm investigation of the E85 conven-
tional signalling game, we discovered a previously un-
known ES set solution to the game. The ES set, always
attack, is a noncommunicating strategy that does not
respond to signals and that has a very large basin of
attraction in the fitness landscape. This equilibrium is a
local optima, it scores less at fixation than does the ESS.
What these results mean for the E85 game as a model of
the evolution of conventional signalling is not clear. The
simulations show the importance of assumptions about
the evolutionary starting points of strategic signalling
systems. The process of display ritualization (Tinbergen

1952) may mean that the strategic evolution of signal
use starts so close to the eventual ESS that arguments
based on the relative sizes of the attractive basins are
moot. However, the difficulty in reaching the global opti-
mum, the ESS, in this case is quite remarkable.

Since its formal introduction by Maynard Smith & Price
(1973), the notion of an evolutionary stable strategy has
had a profound impact not merely on formal models of
social behaviour, but more informally in verbal models
and discussions. Among nontheoreticians the term ‘ESS’
has become nearly synonymous with frequency depen-
dence and game theoretical thinking in general. This
term communicates an important and intuitive biological
concept. While undoubtedly useful, this wider nontechni-
cal use risks theoretical work by focusing formal attention
on this one single equilibrium definition. There are several
reasons why it is necessary to widen the definition of evo-
lutionary stability when solving communication models
and other games of similar complexity.

First, as in the E85 game studied here, ESSs may not be
strong attractors. As Nowak (1990, page 237) noted of
ESSs some time ago ‘it is a common but misleading con-
clusion that evolution will tend towards such a strategy’.
Although other investigations have examined the dy-
namic stability of a population that is already at or in
the neighbourhood of an evolutionarily stable solution
(Selten 1975, 1983, 1988; Taylor & Jonker 1978; Thomas
1984, 1985a, b; Hofbauer & Sigmund 1988; Nowak 1990;
Takada & Kigami 1991; Leimar 1997), little attention has
been paid to the process by which a population might
come to approach an ESS in the first place. We have
shown that a local optimum in the form of an ES set
with a large basin of attraction is most probably the evo-
lutionary endpoint from most starting populations of
this game.

Second, and possibly more importantly, is the likeli-
hood that games will not have an ESS at all. Any game of
realistic complexity will probably have problems with
nonpervasive strategies, and may therefore have no ESS.
The number of strategies per player increases geometri-
cally with increases in the complexity of extensive form
games. While the condition of pervasiveness is met by the
ESS solutions of communication games such as E85 and
Kim’s aggressiveness signalling game (Enquist 1985; Kim
19953), it becomes less and less likely as variables are added.
Games any more complicated than E8S5, especially games
with both variable RHP and subjective resource valuation
states, are virtually guaranteed not to have ESSs for this
reason. Methods using other solution definitions must
be developed to allow for the complexity of biological
models. Given that these models are exceptionally diffi-
cult to solve by hand, genetic algorithms provide one
tractable alternative to analytical investigation. Genetic
algorithms can never replace analytical work completely,
even for complicated game theoretical problems. Ideally,
once potential solutions are identified by the genetic
algorithm, analytical methods may be brought to bear to
investigate the strategy properties. This is the process
that we followed in proving analytically that the solution
the genetic algorithm converged on is an ES set
(Appendix 4).



A potential caveat to the use of genetic algorithms on
game theory models lies in the nature of the search space.
A genetic algorithm is a powerful optimization tool with
which we can quickly and reliably simulate the process of
evolution as it applies to the E85 game, to determine what
solution arandom starting population playing the game will
come to find. However, despite the widespread use of genetic
algorithms to solve optimization problems in a variety of
fields (Mitchell 1998), GAs work best on a solution space that
is static and unchanging (e.g. a system of equations); less is
known about the performance of GAs in a dynamic solution
space, such as a constantly evolving population. The magni-
tude of this effect can be seen in the difference in fixation
times when the target population is set at the ESS (<100 gen-
erations) versus the time to fixation when the target popula-
tion evolves (=300 generations).

Previous investigations using genetic algorithms have
either usually investigated the effect of stochastic events on
very simple 2 x 2 matrix games (e.g. Maynard Smith 1988S;
Bergstrom & Godfrey-Smith 1998; Orzack & Hines 2005),
or explored interactions far too complicated to be solved
analytically (Barta et al. 1997; Hoffmeister & Roitberg 1998;
Just & Morris 2003). More work needs to be done on games
ofintermediate complexity if genetic algorithms are tobe ap-
plied to game theory with the intention of finding the solu-
tions that would be found using analytical techniques. The
results of the two techniques must be compared before their
results are considered interchangeable. This caveat does not
apply to the use of genetic algorithms in evolving neural net-
works to address the same issues (e.g. Enquist & Arak 1993,
1994; Johnstone 1994; Ezoe & Iwasa 1997; Huse et al.
1999; Blumstein et al. 2006). Neural network models seek
to avoid assumptions made by game theoretical models
about signal space divisions, and whose purpose is to
produce results at odds with game theory. When stochastic
simulations disagree with analytical results (e.g. McNamara
et al. 2004), it may be argued that the simulations are more
biologically important than the analytical results. In the
present case, however, the simulations identify an over-
looked class of analytical solutions, ES sets. These non-ESS
evolutionarily stable outcomes may or may not be more
biologically plausible outcomes than the ESS depending
upon the assumptions made about the evolutionary starting
point of the population.

Taken together, the questions raised by our application
of evolutionary algorithms to the conventional signalling
model present an interesting avenue for exploration in
game theoretical approaches to evolutionary questions, as
well as casting healthy scepticism on the biological
relevance of ESSs. Not all evolutionarily stable outcomes
are ESSs. ESSs are not the best, or only, solutions to
biological game theory questions.
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Appendix 1: Stability Concepts

The following are definitions of the solution concepts
used in this paper.

Nash equilibrium

A Nash equilibrium (Nash 1951) is a set of strategies,
one for each player, such that no player can increase their
payoff by unilaterally switching to another strategy. In
a symmetrical game such as E85, if a player choosing
strategy J in a population where all other players play
strategy I receives a payoff of E(J,I), then strategy I is
a Nash equilibrium if

E(ILI) > E(J.I) V]I (A1)

The Nash equilibrium definition allows for the possibil-
ity that strategy J is a neutral alternative to I. It may score
equally well, but not better. A Nash equilibrium is
presumed to be stable even if ] scores equally well, on
the assumption that players do not play ] because of the
application of rational foresight. Strict Nash equilibria
are stable without such biologically implausible foresight.

Strict nash equilibrium

At a strict Nash equilibrium (Harsanyi 1973) no player
can unilaterally switch to another strategy without de-
creasing their payoff.

E(II)>E(J,I) VJ#I (A2)

An ESS is a less restrictive subset of Nash equilibria than
strict Nash but still requires no rational foresight to
maintain stability.

Evolutionary stable strategy
Maynard Smith (1982) defined an ESS as either

E(I,I) > E(J,I) VI#] (A3)
or
E(I,I) = E(J,I) (A4)
and
E(L])>E(].]) VI#] (AS)

Condition (A3) is that I is a strict Nash or, failing that,
an ESS may be a Nash equilibrium (equation (A4)) that
meets the additional condition (equation (AS)) that the
strategy is a better alternative against a potential neutral
invader than that neutral invader is against itself. This
‘second condition’ means that a strategy may invade by
drift, but that it must be selected against by the original
strategy if the invader becomes appreciably common in
the population.

ES sets relax the ‘second condition’ (equation (AS)) and
allow for equilibria composed of a set of mutually interin-
vading strategies whose proportions are free to drift.
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Evolutionarily stable sets

A set of Nash equilibrium strategies L is an ES set
(Thomas 1985b) if

E(L,]) > E(],]) VIe],J&L (A6)

and

E(L])=E(,]) VIJeL (A7)

ES sets versus mixed equilibria

An ES set is only superficially similar to the concept of
a mixed Nash equilibrium or a mixed ESS. Mixed equilib-
ria, either Nash or ESS, are compositions of two or more
pure strategies at precise proportions. Any deviation of the
population away from this optimal mixture, either in
terms of population composition in the case of a poly-
morphic population of pure strategists, or a uniform
population of probabilistic mixers, will be returned to
the optimal mixture in the case of an ESS, or lead to non-
equilibrium strategies in the case of a mixed Nash. Either
way, these mixed equilibria form a single equilibrium
point in the strategy space. On the other hand, an ES set
produces a line, area, or volume in the strategy space that
contains an infinite number of different pure strategy
mixtures that are all co-equilibria.

Appendix 2: Performance of the GA on
Other Tasks

To test the ability of the genetic algorithm to find
the ESS to a simpler game we ran a minimally modified
version on several versions of the hawk—dove game
(Maynard Smith 1982) without role asymmetry (Hurd
2006). This game has a simple mixed ESS when V< C,
to play hawk with probability P = V/C, and a pure hawk
ESS when V < C. We ran three versions in which V and
C were varied so that the ESS was to play hawk with
16%, 83% or 100% probability.

We ran 10 replications for each of the three variable
combinations, the GA parameters were kept as close as
possible to those used in the E85 simulations: population
size of 100, simulation length of 500 generations, five
encounters per individual per generation, and mutation
rate of 0.005. Initial seed of ESS players was not used (all
initial populations were randomly generated). No cross-
over operator was used (since the chromosome consisted
of a single locus (hawk or dove allele) none could be
implemented anyway). The percentage of the population
playing hawk was averaged over the last 200 generations
of each run.

When the ESS was to play hawk with 16%, the GA
resulted in a mean of 17.4 + 0.6%, when the ESS was 83%,
the GA produced a mean of 80.0 + 0.7%, and when the
ESS was 100%, the GA produced a mean of 97.9 + 0.3%.
The bias towards 50% evident in these results can be ex-
plained by the fact that mutation will increase the per-
centage of the least common strategy. Indeed, when we
did a further set of 10 simulations for the 83% hawk ESS
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with mutation set to zero, the mean outcome was 82.9%
hawk.

We also ran a number of simulations of the E85 GA in
which we held the opponent strategy constant at the ESS.
From a 0% ESS seed starting point, the population evolved
to the ESS in about 100 generations. These results show
that the genetic algorithm is capable of finding ESSs when
they exist and have large basins of attraction and other
non-ESS optima do not exist.

Appendix 3: Sensitivity of the Results
to Methods and Parameters

To test for sensitivity of the major results to the
simulation parameter values, we ran a set of simulations
in which we varied the following model parameters:
length of simulation (i.e. number of generations), pop-
ulation size, number of fights per individual per genera-
tion, and the use of a crossover operator to make
reproduction sexual. Each manipulation was simulated
50 times at each of two levels of initial ESS seed, 0%
and 25%. Mutation rate was held constant at 0.002
(a value favourable to the ESS), and all other parameters
were held constant at the values used in the main
simulations.

These simulations are compared to two similar sets with
no manipulations (one at each of 0% and 25% ESS seed)
with respect to the number of ESS, ES set, or Other
outcomes obtained. The parameter manipulations com-
prised six sets of simulations in which we increased the
number of fights per individual per generation from 5 to
25, 50, and 100 fights, two sets in which we increased
population size to 1000, and four sets in which we
increased the generations simulated from 500 to 1000
and 5000. Finally, we added a uniform crossover operator
that formed an offspring chromosome by swapping
between parental chromosomes with a fixed percentage
(the crossover ‘weight’) at each locus. For example, if the
first parent was AAAAAA and the second was BBFFFE, with
a crossover weight of 20%, each locus would be evaluated
individually and swapped with a 20% change. Thus, if the
second and sixth loci were selected to be swapped, the
returned offspring would be ABAAAF and BAFFFA. We ran
four sets of simulations, with crossover weights of 20%
and 50% (and ESS seed at 0% and 25%).

None of the manipulations showed an improvement in
convergence on the ESS (Table A3) with the exception of
the population size increasing at 25% initial seed. Signifi-
cant improvement in convergence on the ESS was found
at both the 1000 (G=10.5, P=0.005) and 2500
(G, =10.3, P=0.006) population sizes. The number of
Other outcomes did not decrease, but the ES set outcomes
were less likely at these larger population sizes. Note, how-
ever, that no such effect was seen when the population
was started from a random point in strategy space.
When the ESS seed was 0% the population never evolved
to the ESS at these population sizes.

In conclusion, above and beyond the demonstrated
analytical stability of the evolutionarily stable set (see
Appendix 4), the present results suggest that our discovery

Table A1. Colours used to map strategy evolution

Behaviour when

Opponent signal is A

Opponent

signal is B A P F

A Red Pink Yellow
P Purple Grey Brown
F Blue Cyan Green

Each of the nine possible behaviour strategies (given the player’s
own strength) was assigned a different colour. The red—green
dimension was used to map the always Attack to always Flee dimen-
sion, and the blue—yellow dimension was used to map the Other
dimension. A lighter shade denoted use of signal ‘A’ and a darker
shade the use of signal ‘B’. This scheme allowed for 18 colours to
represent behaviour in a given strength state, and therefore each
of the 324 possible strategies could be denoted by a colour pair.
The ESS is light purple—dark yellow.

Table A2. Breakdown of every unclassified outcome in 1500 runs of
the VCDF model by mutation rate and outcome type

0.001 0.002 0.003 0.004 0.005 Total

Outcome

Unstable mixture 21 25 27 40 36 149
Did not fixate 3 1 3 10 14 31
in time

BAPAAF

(alternative ESS)
BBAPAF

BBAPPF

AAPAAF

AAPPFF

AAPAFF

BBAPFF

Stable mix of 1
three or more
strategies

[¢]
[¢]
[o)}
o
o

22

oo —==N0
wW==NOOO
[N NeNo oo o)
[eNeoNoNoloNo o)
[eNeoNoNoloNo o)
ON=WwW=NWL

Note that stable non-ESS and non-ES set runs are increasingly uncom-
mon as the mutation rate increases, with most nonoptimal outcomes
at mutation rates of 0.004 and 0.005 composed of unstable mixtures
or runs that did not reach the fixation criteria by the end of 500 gene-
rations. With the exception of the symmetric version of the ESS
(BAPAAF), none of the alternative outcomes was analytically stable.

of the new solution to the E85 game using the genetic al-
gorithm was not simply because of our specific choice of
implementation or parameter values.

Appendix 4: Proof that **AAAA is an ES Set

Following Enquist (1985) and Hurd (1997) we can con-
firm the stability of the Light red/Red All-Attack ES set
analytically using what we have termed ‘stability tables’.
A stability table for a particular strategy lists the payoffs
to a player playing against a population of the target
strategy (e.g. the ESS or the ES set) and is logically equiv-
alent to performing a dynamic programming optimiza-
tion (Houston & McNamara 1999) against the target



Table A3. Effect of varying genetic algorithm parameters on the sim-
ulation outcomes

Parameter Value ESS ESset Other
0% ESS seed
Baseline Defaults 1 11 8
No. of fights 25 4 38 8
50 3 46 1
100 1 141 8
Population size 1000 0 44 6
2500 0 49 1
Simulation length 1000 3 141 7
5000 1 40 9
Crossover Weight: 20% 0 46 4
Weight: 50% 1 46 3
25% ESS seed
Baseline Defaults 40 7 3
No. of fights 25 28 19 3
50 38 11 1
100 36 11 3
Population size 1000 45 0 5
2500 46 0 4
Simulation length 1000 34 14 2
5000 39 9 2
Crossover Weight: 20% 28 15 7
Weight: 50% 23 24 3

The parameters varied (and their default values) were: No. of
fights: the number of fights used to calculate each individual’s
fitness each generation (5); Population size (500); Simulation
length: the number of generations simulated (500); Crossover
weight: the likelihood of recombination (0). The only parameter to
increase the probability that the ESS would go to fixation in the
population was the population size but only when the initial
population was heavily loaded with ESS players. Increasing the pop-
ulation size did not favour the ESS when starting from a random
population.

Table A4. Stability table for ABAAAA
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strategy. From the table, we can determine what the best
reply to the target strategy is; if the best reply is the target
strategy alone, then it is a strict Nash. Here, we present
stability tables for two strategies in the Light red/Red
set, ABAAAA and AAAAAA (Tables A4, A6). The other
strategies of the set, BAAAAA and BBAAAA, are identical
by symmetry to the two presented, and so we have omit-
ted their stability tables.

From the tables, it is clear that the following conditions
will make ABAAAA stable (Table A4; numbers in square
brackets below refer to the numbered cells in the table):

%V>C0 and V > C,l [1,2}

and
Fp>0 [3,4,5,6,7]

Since cells [3] and [5] are equal, the best reply to ABAAAA
is **A[A/F]AA, where * is any allele at the signalling loci. To
show that a strategy choosing F at the fourth locus is not
a member of the ES set, we present its stability table (Table
AS). The best reply to ABAFAA, one of the potential set
members, is not itself but a different strategy AAA[A/F]PP.
This strategy is therefore not a member of the ES set. Sim-
ilar analysis (data not shown) showed that the other three
strategies with F at the fourth locus (AAAFAA, BAAFAA,
BBAFAA) were not ES set members either.

The situation for AAAAAA is slightly more compli-
cated, as the strategy violates pervasiveness such that
the best response to AAAAAA is **AA** (Table A6). As
in the previous case, the two alleles at the signalling
loci all achieve the same payoff. The last two lodi,
which code for responses to the ‘B’ signal are silent,
since the target population never uses the ‘B’ signal.
The stability table is constructed with the labels strong

Behaviour
Opponent Opponent
Display display behaviour Attack Pause-Attack Flee
Strong 1 1
A A Attack EV -G [1] EV —Co—F -G
B Attack V—-C,42 V-C —-F —C
B A Attack %V — C() [1] %V — C() —F 7C()
B Attack V-C, [2] V-Ch4-hk —C4
Weak
A A Attack 7C1 [3} 7C1 — Fp [4] 7C1 [5]
B Attack %V -G [6] %V -G -k [7] -G
B A Attack e [3} -G -k [4] e [5]
B Attack %V -G [6} -IEV —C -k [7] —Co

Payoffs for all possible outcomes while playing against the communicating All-Attack strategy ABAAAA. The variables used as in Hurd (1997): V:
value of the resource; Cx: cost of an escalated fight against an opponent x of higher (C;), lower (C_;) or equal (Co) strength; Fp: cost of pausing
before attacking an opponent that is simply attacking. ABAAA is stable when 2 V > Coand V > C_; [1,2] and F, > 0 [3,4,5,6,7].
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Table AS5. Stability table for ABAFAA

Behaviour
Opponent Opponent

Display display behaviour Attack Pause-Attack Flee

Strong 1 1
A A Attack EV -G EV —GCo—F -G
B Flee V — Fa v %V

1 1
B A Attack EV — G EV —C—F -G
B Attack V-C,4 V-CH4-Fk —C4

Weak
A A Attack 7(.‘,1 7(.‘,1 — Fp 7C,1
1

B Flee V — Fa v EV
A A Attack —C_4 —-Cq1-h —C_4
B Attack V—Fa v %V

Payoffs for all possible outcomes while playing against the communicating strategy ABAFAA. The variables used are as in Table A4; F, is the cost
of attacking an opponent who is fleeing.

(‘s’) or weak (‘w’) in place of the signals ‘A’ or ‘B’. potential invaders (18 by symmetry). The method for
Both these rows happen equiprobably following an separating the ES set members from the nonmembers
‘A’ signal, and so the expected payoff is the mean of proceeds exactly as in the last case. In the interest
their values. The **AA** silent mutations produces 36 of space, the details are omitted.

Table A6. Stability table for AAAAAA

Behaviour
Opponent Opponent
Display display behaviour Attack Pause-Attack Flee
Strong 1 1
A A (S) Attack EV — Co EV — Co —F 7C0
A (w) Attack V—-C, V-Cq1-F —C ;4
B A (S) Attack -IEV -G %V —C—Fk )
A (w) Attack V—-C,4 V-Ch4-Fk —C4
Weak
A A (S) Attack 7C1 7(.‘,1 — Fp 7(:1
A (W) Attack .IEV — Co %V — Co —F 7C0
B A (S) Attack 7C1 7C,1 —F 7C1
A (w) Attack -IEV -G %V -G -k —Co

Payoffs for all possible outcomes while playing against the noncommunicating All-Attack strategy AAAAAA. The variables used are as in
Table A4.
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