
A System and Language for Building System-Specific,
Static Analyses

Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler
Stanford University

ABSTRACT
This paper presents a novel approach to bug-finding anal-
ysis and an implementation of that approach. Our goal is
to find as many serious bugs as possible. To do so, we de-
signed a flexible, easy-to-use extension language for speci-
fying analyses and an efficent algorithm for executing these
extensions. The language, metal, allows the users of our
system to specify a broad class of analyses in terms that re-
semble the intuitive description of the rules that they check.
The system, xgcc, executes these analyses efficiently using a
context-sensitive, interprocedural analysis.

Our prior work has shown that the approach described
in this paper is effective: it has successfully found thousands
of bugs in real systems code. This paper describes the un-
derlying system used to achieve these results. We believe
that our system is an effective framework for deploying new
bug-finding analyses quickly and easily.

Keywords
Extensible compilation, error detection.

General Terms
Reliability, Security, Verification.

Categories and Subject Descriptors
Software [Software Engineering]: Coding Tools and
Techniques

1. INTRODUCTION
This paper describes the implementation of an unusual

approach to finding bugs that we call metacompilation
(MC). The focus of our approach is pragmatism: we want
to find as many serious bugs as possible. We do so using
programmer-written compiler extensions (checkers). This
paper presents a language, metal, for implementing these
extensions, and an analysis engine, xgcc, that executes ex-
tensions using a context-sensitive, interprocedural analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

The main barrier to finding bugs is simply knowing the
correctness rules that code must obey. The more rules you
can check, the more bugs you will find. Thus, we designed
metal to be (1) easy to use and (2) flexible enough to ex-
press a broad range of rules within a unified framework.
Metal must be easy to use since many rules are known only
to programmers; if they cannot write extensions, we can-
not check these rules. Thus, metal is designed for system
implementers, not compiler writers. Metal must be flexible
because we want to check arbitrary rules. We do not want
a system that is limited to checking a specific set of proper-
ties (e.g., synchronization constraints; temporal rules) or a
specific underlying assumption (e.g., “the analysis must be
conservative”).

Metal is easy to use because it provides the state ma-
chine (SM) as a fundamental abstraction. State machines
are an easy abstraction because they are a familiar concept
in systems programming. Metal is flexible because it allows
the extension writer to enhance the SM abstraction in near-
arbitrary ways with general-purpose code. Metal’s flexibility
allows extensions to make the analysis rule-specific without
modifying the language or the underlying system.

Our prior work has shown that metal works well. It
requires little investment to get results: a day’s work can
produce an extension that finds tens or even hundreds of se-
rious errors in actual code. Further, extensions are small —
usually between 10 and 200 lines of code, depending mostly
on the amount of error reporting that they do. Metal’s
flexibility is demonstrated by the fact that we were able to
write over fifty checkers that express significantly different
types of analyses including: (1) finding violations of known
correctness rules [1, 9] and (2) automatically inferring such
rules from source code [10]. We describe metal in Sections 2
through 4.

We have three main requirements for xgcc; it must: (1)
provide the analysis needed to find bugs, (2) not significantly
restrict what metal extensions can do, and (3) scale to large
programs. Our ideal division of labor is that extensions en-
code only the property to check, leaving the details of how
to check the rule to xgcc. The second and third requirements
are important since the more rules we check and the more
code we analyze, the more bugs we will find. The main re-
striction that xgcc places on extensions is determinism; they
can otherwise perform arbitrary computations internally. In
this paper, we present the analysis algorithm, implemented
in xgcc, that executes our extensions. We describe xgcc in
Sections 5 and 6.

In Section 7, we discuss the approximations that our

1: state decl any_pointer v;
2:
3: start: { kfree(v) } ==> v.freed;
4:
5: v.freed: { *v } ==> v.stop,
6: { err("using %s after free!", mc_identifier(v)); }
7: | { kfree(v) } ==> v.stop,
8: { err("double free of %s!", mc_identifier(v)); }
9: ;

Figure 1: Free Checker

analyses make and their implications. Section 8 discusses
several analysis techniques for handling false positives in-
cluding a simple, path-sensitive analysis for eliminating
nonexecutable paths. Section 9 continues the false positive
discussion by presenting the ways in which xgcc ranks er-
ror reports. Finally, Section 10 discusses related work and
Section 11 concludes.

2. OVERVIEW
Our extensions are written in metal, a language for ex-

pressing a broad class of customized, static, bug-finding
analyses. The common thread among these analyses is that
they all exploit the fact that many abstract program restric-
tions map clearly to source code actions [9]. While metal ex-
tensions are executed much like a traditional dataflow anal-
ysis, they can easily be augmented in ways outside the scope
of traditional approaches, such as using statistical analysis
to discover rules [10].

To check a rule, an extension does two things: (1) recog-
nizes interesting source code actions relevant to a given rule
and (2) checks that these actions satisfy some rule-specific
constraint. Metal organizes extensions around a state ma-
chine (SM) abstraction. State machines are a concise way to
represent many program properties. Note that the SM ab-
straction provides sugar for common operations, it does not
limit extensions to checking finite-state properties. When
needed, extensions can be augmented with general-purpose
code. Metal extensions are executed by the interprocedural
analysis engine, xgcc.

Figure 1 shows the free checker that flags when freed
pointers are dereferenced or double-freed. We use this
checker and the code example in Figure 2 throughout the
paper. The extension will find two errors in the example
(lines 12 and 17).

2.1 Metal Extensions and State Machines
Metal extensions define a collection of one or more state

machines. During execution of an extension, the current
state of the extension is simply the combination of all the
current states of the underlying state machines that the ex-
tension defines. Each of these state machines is logically
separate: transitions in one SM do not affect any of the oth-
ers. The number of state machines grows and shrinks during
the course of the analysis.

Each individual SM’s current state consists of one global
state value and one or more variable-specific state val-
ues. Global state values capture a program-wide prop-
erty (e.g.,“interrupts are disabled”). Variable-specific state
values capture program properties associated with specific
source objects (e.g., “pointer p is freed”).

Each state value defined above is assigned to an instance
of a state variable. Each extension defines one global state

1:int contrived(int *p, int *w, int x) {
2: int *q;
3:
4: if(x)
5: {
6: kfree(w);
7: q = p;
8: p = 0;
9: }
10: if(!x)
11: return *w; // safe
12: return *q; // using ’q’ after free!
13:}
14:int contrived_caller (int *w, int x, int *p) {
15: kfree (p);
16: contrived (p, w, x);
17: return *w; // using ’w’ after free!
18:}

Figure 2: Free Checker Example Code

variable and, optionally, a variable-specific state variable.
For simplicity, the discussion assumes that an extension has
exactly one of each. A state variable has one or more in-
stances, each of which is assigned a state value. The global
state variable has exactly one instance that persists through-
out the analysis. The variable-specific state variable has one
instance for each program object with an attached state.
The number of such instances grows and shrinks as the anal-
ysis decides to track new program objects and ignore pre-
viously tracked objects. An SM state consists of the value
of the global instance and the value of one of the variable-
specific instances. Thus, the number of SMs defined within
each extension at a given point in the analysis is equal to
the number of program objects with attached state.

In the free checker, the variable-specific state variable,
v, is declared with the keywords state decl. The notation
v.freed means that the state value freed is bound to v. Thus,
only instances of v can be assigned the value freed. The
global state variable is implicitly-defined. The state value
start is bound to the global state variable because it has no
explicit binding.

The alphabet of each SM is defined by the metal pat-
terns used within the extension. Patterns are used to iden-
tify source code actions that are relevant to a particular
rule. The free checker uses patterns to recognize dealloca-
tions (using the pattern “{kfree(v)}”) and dereferences of
deallocated variables (using the pattern “{*v}”). The vari-
able v in these patterns will match pointers of any type.

Each state value defines a list of transitions. In the free
checker, the start state defines a single transition rule and
the v.freed state defines two. The transition for the start
state (line 3) says that when the global instance has the
value start and the current program point matches the pat-
tern {kfree(v)}, a transition should execute that attaches
the state freed to the abstract syntax tree (AST) matching v

(i.e., the freed pointer). The transition from start to v.freed
is a special type of transition that creates a new instance of
v and, thus, a new state machine.

The v.freed state value has two transition rules: the first
triggers when a freed variable is dereferenced, and the second
triggers when a freed variable is freed again. Both transi-
tions print an error message that describes the error and
identifies the particular variable to which the erroneous ac-
tion was applied. A transition that begins in a variable-

specific state value is triggered by a specific instance of the
state variable bound to that value. Thus, the two transi-
tions in the v.freed state are triggered when one of the freed
variables that the extension is tracking is either double-freed
or dereferenced. These transitions update the value of the
instance that triggered the transition to the special value
stop. When an instance is assigned the value stop, the state
machine tracking that instance is removed from the exten-
sion’s collection of SMs. However, if the variable associated
with the instance is freed again, the transition in the start
state will execute and thus reinstantiate the deleted SM.

The initial state of an extension contains one state ma-
chine that expresses the fact that nothing is known about
the program at the start of the analysis. Thus, the global
state variable in the free checker initially has the value start,
and v has the special value <> that reflects the fact that
the extension does not know about any freed variables.

xgcc applies an extension to the control flow graph
(CFG) for a single function in depth-first order, one exe-
cution path at a time, beginning at the entry points to the
callgraph for the source base. At each program point, the ex-
tension looks for executable transitions in any of the current
SMs. After iterating over all the SMs, the analysis moves
on to the next program point. As described in Section 8,
xgcc also enhances the extension with additional analysis to
prune non-executable paths, follow simple value flow, and
delete the state attached to an expression that is redefined.

2.2 Execution of the Free Checker
We tie all of these pieces together by following the exe-

cution of the free checker on the example in Figure 2.

1. Line 14: contrived caller has no known callers and
is, thus, an entry point to the callgraph for our exam-
ple. We assume that none of the input parameters are
aliased. The extension begins in the initial state.

2. Line 15: The kfree call will match the pattern in the
start state and the transition on line 3 of the checker
will execute, attaching the state freed to p.

3. Line 16: xgcc follows the call to contrived, tracking
the variable p because it is passed as a parameter.

4. Line 4: The analysis splits down the true and false
paths, following the true path first. When the anal-
ysis splits, a separate copy of the extension’s state is
applied to each path. The analysis tracks that x equals
0 and is not equal to 0 down each respective path.

5. Line 6: The call to kfree places w in the freed state.
At this point, there are two instances of v with the
value freed: p and w.

6. Line 7: The assignment causes xgcc to transparently
create another instance of v for the variable q, also in
the freed state.

7. Line 8: The assignment to variable p causes xgcc to
transition p to the stop state, removing p from the
extension’s state.

8. Line 10: Rather than splitting at the conditional, xgcc
uses the information that x is non-zero on this path
to prune the true branch. If the true branch were
followed, there would be a false error report at line 11
because w has attached state freed (line 6).

9. Line 12: The dereference pattern for v.freed matches *q
and reports a use-after-free error. q is transitioned to
the stop state. After analyzing the return, the analysis
backtracks to follow the false branch from line 4.

10. Line 10: Rather than splitting at the conditional, xgcc
uses the information that x is equal to 0 on this path
to prune the false branch.

11. Line 11: The path ends. We have explored all paths
through contrived.

12. Line 17: Control returns to the caller. The set of out-
going instances of v is the union of all instances active
at the exit from any path through contrived. There
are two such instances, p and w, active at lines 11 and
12, respectively. The extension flags an error at the
subsequent dereference on line 17.

The next two sections describe metal in more detail.

3. METAL STATES AND TRANSITIONS

3.1 Metal States
Each state variable’s domain consists of all the state

values bound to that variable. This section elaborates the
discussion of state variables and provides a more precise defi-
nition of the extension’s state and each state machine within
it. The definition of extension state that we describe here is
translated to the data structures described in Section 5 that
define an extension from xgcc’s perspective.

The extension must be allowed to extend the state space
using general-purpose code. The advantage of this form of
flexibility is that it allows our extensions to express proper-
ties where the state space is defined dynamically.

We allow extensions to grow the state space by extend-
ing the domain of each instance within general purpose code.
For this reason, we enhance each variable-specific instance
with a data value that is a C structure of arbitrary size that
the extension can manipulate within the escapes to C code.
Extensions may also update the value of the global instance
directly within an escape to C code to allow more complex
transitions.

An extension’s state is defined as a set of state tuples,
each of which corresponds to a single SM contained within
that extension. A state tuple has one component that is
filled by the value of the global instance. In the free exam-
ple, this slot always contains the value start. The second
component contains the value of a variable-specific instance
(e.g., an instance of v in the free checker). For example,
after analyzing line 15 in Figure 2, the free checker’s state
would include the tuple (start, v : p 7→ freed) because the
state variable v has an instance attached to the program
object p whose value is freed.

While the state tuples in this paper have only two com-
ponents, the actual implementation of metal allows the ex-
tension to define tuples with additional components. The
actual implementation of the algorithms in this paper han-
dles the more general case.

3.2 Metal Transitions
A simple metal transition consists of a source state value,

a pattern, and a destination state value. The transition on
line 3 of the free checker follows this template. The extension

state decl { lock_t } l;

start:
{trylock(l) != 0} ==> true=l.locked, false=l.stop

| {trylock(l) == 0} ==> true=l.stop, false=l.locked
| {lock(l);} ==> l.locked
| {unlock(l);} ==>
{ err("%s is not locked", mc_identifier (l)); }
;

l.locked:
{lock(l);} || {trylock(l)} ==>

{ err("dbl. lock of %s", mc_identifier (l)); }
| {unlock(l);} ==> l.unlocked
| end_of_path ==>

{ err("path ends with lock held"); }
;

Figure 3: Lock checker

determines which transitions to execute by iterating through
both global and variable-specific instances and determining
whether the value of each instance defines a transition that
can execute. A transition can execute if its pattern matches
at the current point in the analysis. An instance cannot
trigger a transition at the statement where that instance
was created; this restriction prevents a variable that is freed
for the first time from triggering a double-free error at the
same program point. Simple transitions can be enhanced
with path-specific destination states and C code actions.

Path-specific transitions. Path-specific transitions
allow the extension to track the value of simple boolean
predicates (e.g., l is locked, p is null) or model functions
that can have two possible outcomes. If a transition occurs
at a branch condition in the source code, the extension can
specify a different destination state depending on whether
the analysis follows the true branch or the false branch from
the condition. Figure 3 shows the lock checker, which warns
when locks are (1) released without being acquired, (2) dou-
ble acquired, or (3) not released at all. The routine trylock,
used for nonblocking lock acquisition, returns 1 if it acquires
the lock and 0 otherwise. Thus, in the first transition, we
attach the state locked to the lock on the true path, and the
state stop to the lock on the false path. The special pattern
$end of path$ in the last transition evaluates to true when
either an instance of l in the locked state permanently leaves
scope or when the program terminates.

C Code actions. Transitions can include C code ac-
tions that execute whenever the transition executes. Actions
are another way that an extension can extend the basic SM
abstraction. C code actions allow the extension to perform
arbitrary computations whenever a transition executes. We
describe two types of actions that we have found useful:
those that perform complex error reporting and those that
enhance the analysis machinery.

To make error messages useful, checkers must report not
only what the error was, but also why the error occurred.
Thus, all of our checkers track the calculations that found
each error. These calculations depend on the particular
characteristics of the extension. The code to track why an
error was flagged accounts for the bulk of each extension.

In [10], we describe several checkers that use statisti-
cal analysis to infer checking rules. For example, to infer
whether routines a and b must be paired: (1) assume that
they must, (2) count the number of times they occur to-

gether and (3) count the number of times they do not (rule
violations). The reported violations are then sorted using
a statistical significance test. We implemented this func-
tionality by using the C code actions to count the correct
pairings and violations during the analysis. (Section 9 uses
the same technique to rank rule violations.)

By default, a metal extension has a finite, statically de-
termined domain for each state variable. The extension can
extend this model by using C code actions to manipulate
the extension’s state directly using xgcc’s internal interface.
For example, we could extend the lock checker described
above to handle recursive locks by using the data values in
each instance of l to track the current depth of the lock.
Whenever a lock operation or an unlock operation occurs,
the resulting transition could either increment or decrement
the lock depth within the C code action. If this depth ever
went below 0 or exceeded a small constant, the extension
would report an incorrect lock pairing.

Composition is another mechanism extensions can use
to enhance the SM model. Extensions can be composed such
that each extension uses the results of the previous one in
its own analysis. Extensions implement this composition by
using xgcc’s internal interface to annotate the ASTs with
arbitrary data values. Subsequent extensions can retrieve
and use these values. One common use of composition is
the path-kill extension [10], which flags all calls to panic

so that subsequent analyses will not report errors on paths
dominated by these calls. When a subsequent extension sees
a flagged function call, it stops traversing the current path.

4. METAL PATTERNS
Metal patterns provide a simple way for extensions to

identify source actions that are relevant to a particular rule.
Patterns are written in an extended version of the source
language (C) and can specify almost arbitrary language con-
structs such as declarations, expressions, and statements.
Patterns are easy to use because they syntactically mirror
the source constructs that they are intended to match.

A base pattern in metal is a bracketed code fragment
written in our augmented version of C. Base patterns can
be composed with the logical connectives && and ||. The
simplest base patterns in metal syntactically match the code
that the extension wishes to recognize. Because we match
ASTs, spaces and other lexical artifacts do not interfere
with matching. For example, the base pattern {rand()}
will match all calls to the rand function.

A simple pattern could not, for example, match all
pointer dereferences because each dereference refers to a dif-
ferent pointer. The pattern on line 5 in the free checker
matches all dereferences with a metal hole variable. Any
metal variable declared with the keyword decl is a hole vari-
able. Hole variables let patterns contain positions where any
source construct of the appropriate type will match.

Hole variables in metal must be typed. If a hole variable
is assigned a C type, the hole can be “filled” by any expres-
sion of that type. To match all pointer dereferences in the
free checker, though, we cannot assign v any single C type.
Metal introduces new meta types that broaden holes to an
entire class of related types. The hole variable v is declared
with the meta type any pointer, which matches pointers to
storage of any type. Table 1 lists the hole types and their
meanings.

If the same hole variable appears multiple times in a pat-

Hole Type Matches

Any C type any expression of that type
any expr any legal expression
any scalar any scalar value (int, float, etc.)
any pointer any pointer of any type
any arguments any argument list
any fn call any function call

Table 1: Hole types and their meanings.

tern, each appearance must contain equivalent ASTs. For
example, the pattern {foo(x,x)} matches calls of the form
foo(0,0) and foo(a[i],a[i]), but not foo(0,1).

A hole variable used within an action (as opposed to
a pattern) refers to the AST node that matches the hole.
Thus, the use of v on line 8 in the free checker refers to the
AST for the freed pointer matched on line 7.

Callouts let programmers extend the matching language
to express unanticipated or linguistically awkward features
by writing boolean expressions in C code that determine
whether a match occurs. Callouts are identified syntactically
by appending the prefix $ to a base pattern.

The degenerate callouts, ${0} and ${1}, match nothing
and everything respectively. Callouts are most often used as
a conjunct that refines a more general pattern. For example,

{ fn(args) } && ${ mc_is_call_to(fn, "gets") }

refines a pattern that matches all function calls to one that
only matches calls to gets. The variable fn is a hole variable
of type any fn call, and the variable args is a hole with
type any arguments. This pattern could have been written
as literal C code as well.

Used alone, callout functions can only refer to the cur-
rent program point, mc stmt, and any global state either
within the extension or within xgcc. Used as a conjunct or
disjunct with other patterns, the callout can refer to the
hole variables used in these patterns as arguments (see fn

in the example above). xgcc provides an extensive library of
functions useful as callouts.

Legal patterns can specify any C expression or statement
(including loops, conditionals, or switch statements) with
two restrictions. First, all identifiers in the pattern must be
either hole variables defined in the extension or legal names
in the scope of the code base being checked. Second, the
C constructs used in the pattern must compile in isolation.
Example illegal patterns include a single case arm without
any enclosing switch statement; an isolated break; etc. All
of these constructs can be matched with a callout.

5. INTRAPROCEDURAL ANALYSIS
This section describes our intraprocedural algorithm

that applies metal extensions to a source base. The goal
of this algorithm is to execute checkers efficiently without
compromising metal’s flexibility.

Extensions are applied to each AST in a single path in
execution order. Execution order means that the tree for
each individual statement is visited in the order that the
corresponding instructions would execute. For example, a
function call’s arguments are visited before the call; an as-
signment’s right-hand side is visited first, then the left-hand
side, then the assignment. We refer to AST nodes as pro-
gram points. At each program point, the extension decides

whether to execute any transitions and which transitions to
execute.

We implement this traversal with a simple depth-first
search (DFS) of the CFG starting at the entry block. Thus,
the algorithm follows a single control path, traversing each
block along this path until the end of the function, then
backtracks to the last branch point. The DFS portion of
the analysis is straightforward; the important feature of the
analysis is the use of block-level state caching for speed. The
algorithm records the extension state in each basic block
before traversing that block. At a subsequent traversal of
the same block, the traversal is aborted and the analysis
backtracks to the last branch point if the extension state is
contained within this cache.

We first describe how to execute an extension at a single
program point. We then describe caching at the block level.
Finally, we outline the pseudocode for the DFS algorithm.

5.1 Applying an extension to a program point
Figure 4 shows a simplified version of the DFS algo-

rithm. We describe the data structures below.
Each variable-specific instance (var state) consists of

an integer holding a state value, a tree for the program ob-
ject to which the state is attached, and an extension-defined
data value of arbitrary size. The tree in the var field can be
any tree in the code (e.g., an l-value, a general expression,
a statement).

An extension’s state is represented by an sm instance

structure, which has three main components: (1) the exten-
sion’s single global state, gstate, (2) a list of all variable-
specific instances, active vars, and (3) a pointer to the
extension code, sm fn. Modifications to both gstate and
active vars are private to each path: mutations revert
when the extension backtracks.

The extension code performs the following functions: (1)
it determines which transitions to execute and (2) it exe-
cutes these transitions. Together, these two steps specify
the transfer functions for the analysis. When a transition
does execute, it can have one of the following effects on the
sm instance structure: (1) it can alter gstate, (2) it can
add or remove elements from active vars, (3) it can alter
the state and/or data value of a member of active vars, or
(4) it can leave the sm instance unchanged.

To make the analysis algorithm efficient, we exploit the
fact that if the extension is deterministic, applying the ex-
tension to the same program point in the same state will
always produce the same result. Thus, we only need to ap-
ply the extension to each program point once in each state.
More precisely, the determinism condition that we require
says that given a single state tuple and a program point,
if we set the extension’s state to that tuple and apply the
sm fn function to the program point, it will always produce
the same transformations to the sm instance structure. In
addition, we require that each state tuple is a logically sep-
arate state machine. We revisit the latter condition below.

5.2 Caching
From xgcc’s perspective, the state of an extension is

viewed as a set of state tuples represented as pairs, (gstate,
v), where gstate is the extension’s global instance and
v is either a state variable instance from active vars or
the distinguished placeholder “<>.” The placeholder en-
sures that when the analysis begins, the extension state

// instance of a state variable
struct var_state {

AST var; // AST for var
int s; // state of var
ANY data; // extension-specific data

};
// a summary edge.
struct edge {

struct point {
int gstate; // global state
var_state v; // state var instance

} start, end;
};
struct block {

block succs[]; // successors; includes backedges
AST trees[]; // block’s trees in execution order
set edge blk_add;
set edge blk_transition;

* set edge sfx_add;
* set edge sfx_transition;
};
struct sm_instance {

int gstate; // global state
set var_state active_vars; // instances
sm_fn(sm_instance, AST); // SM function

};
// Build set of all vars not in block summary
set cache_misses(sm, b) {

s = {};
foreach v in sm.active_vars

if((s1, s2) in b.blk_transition
where s1 = (sm.gstate, v))

s U= v;
return sm.active_vars - s;

}
// DFS traversal
void traverse_cfg(sm, backtrace, caller, b) {

push (backtrace, b);
sm.active_vars = cache_misses(sm, b);
// prune path if visited block in current state before
if(sm.active_vars = {})

* relax (backtrace);
return;

sm’ = copy(sm);
// apply extension function to each AST node in block
foreach tree t in b.trees {
sm->sm_fn (sm, t);

* if (t is function call) {
* // t is last tree in b; b has exactly one succ
* follow_call(sm,backtrace,caller,t,b->succs);
* return;

}
}
// compute add and transition edges
foreach v in sm.active_vars {

e = (sm.gstate, v);
// if v was active at block entry: create a
// transition edge.
if v’ in sm’.active_vars where v.tree = v’.tree

b.blk_transition U= ((sm’.gstate, v’), e);
// otherwise v was created by b: create an add edge.
else

v’ = (v.tree, unknown, nil);
b.blk_add U= ((sm’.gstate, v’), e);

}
if is_exit_block(b)

* relax(backtrace);
else

// apply successor blocks to copy of current sm
foreach s in b->succs

traverse_cfg(copy(sm),copy(backtrace),caller,s);
}

Figure 4: Depth-first CFG traversal. Lines marked
with a * are only relevant to the interprocedural
case.

contains exactly one state tuple. For example, the initial
state of the free checker would be represented by the set
{(start,<>)}, and, after the first free at line 15, would
change to {(start,<>), (start, v : p 7→ freed)}.

As we described in Section 3, an extension’s state is
represented as a set of state tuples. Each basic block, b,
contains a block summary that records the union of all ex-
tension states that reach that block and also records how the
SM corresponding to each tuple is transitioned during the
analysis of that block. Basic blocks are xgcc’s internal repre-
sentation of the CFG for a function. The transitions caused
by the basic block are visible to xgcc through modifications
to the current sm instance structure. We divide the po-
tential ways an sm instance can change while traversing a
single block into two categories: (1) transitions that change
the value of either the global instance or a variable-specific
instance and (2) additions that create a new variable-specific
instance. The summary for a block, b, represents these ef-
fects using two types of directed edges:

1. Transition edges: (s, v : t 7→ vs) → (s′, v : t 7→ v′

s).
The initial state tuple specifies that at the entry to b,
the global instance had the value s and there was an in-
stance of state variable v with value vs attached to the
program object t. The final state tuple specifies that,
during the analysis of the block, the SM correspond-
ing to the initial state tuple transitioned to the state
where the global instance has value s′ and the variable-
specific instance for t has value v′

s. Each state tuple
that reaches a block generates exactly one transition
edge, where the transition can be the identity.

Figure 5 shows the CFG for the example in Figure 2.
The first row in each block in the figure shows the
block summary. An example transition edge from the
block summary in block 7 is: (start,v : p 7→ freed) →
(start, v : p 7→ stop). This says that the free checker
enters block 7 in the global state start with an instance
for p in the freed state and p is transitioned to the stop
state (killed) during the analysis of block 7.

2. Add edges: (s, v : t 7→ unknown) → (s′, v : t 7→ v′

s).
The add edge says that when the global instance has
initial value s, a new instance of v that attaches state
v′

s to t is created while traversing the block. The start
tuple for an add edge contains the special value v :
t 7→ unknown because the edge only applies when we
know nothing about t at the entry to b.

An example add edge for block 2 in Figure 5 would be:
(start, v : p 7→ unknown) → (start, v : p 7→ freed).
At block 2’s entry, the global instance has the value
start. At its exit, the global instance still has the value
start, but the variable p now has attached state freed.
The need for the special value in the start tuple is clear
if we consider that if we knew that p was freed at the
entry to block 2, we would report a double-free error
instead of transitioning p to the freed state.

The block summary is the union of all add and transition
edges produced by that block. Before applying the exten-
sion to a block, the analysis converts the current extension
to a set, s, of state tuples. It then removes any tuple, e,
from s that is equivalent to the initial state tuple for some
transition edge. After this process, if s is empty, the traver-
sal of the current path is aborted. After a block is traversed,

the transition edges for each e ∈ s and the add edges are
both added to the summary.

Note that while the intraprocedural algorithm does not
use either the add edges or the destination tuple of the tran-
sition edges, they are crucial for the interprocedural caching
described in the next section.

Our algorithm computes a fixed point that is similar to
the meet-over-paths solution in a traditional dataflow anal-
ysis [16]. The analysis stops when the block summary (i.e.,
cache) at each block contains all state tuples that can reach
that block along any control path (i.e., the maximal fixed-
point solution).

The algorithm in this section adds an additional restric-
tion to metal extensions beyond determinism. The transi-
tions that a variable-specific instance attached to program
object v undergoes at a program point cannot be affected
by the presence, absence, or state of any other instance at-
tached to object v′. This independence condition allows us
to combine all state tuples that reach a block into a single set
in the block summary because the state tuples represent in-
dependent state machines that could, logically, execute sep-
arately. Without independence, the number of times that
we analyze each program point would grow exponentially
with the number of variable-specific instances. With inde-
pendence, this number scales linearly with the number of
these instances. Note that transitions on a variable-specific
instance can be coupled to the value of the global instance.

5.3 DFS With Caching Pseudocode
An extension, sm, is applied to a procedure, f , by calling

the routine traverse cfg in Figure 4 with four arguments:
sm, which is initialized to the start state, an empty stack, the
caller (relevant in the interprocedural case), and the entry
block to f ’s CFG. In the start state, gstate is initialized to
the first state in the extension text (start for the free checker)
and the active vars set contains one element in the special
<> state so that the extension’s state consists of exactly one
state tuple. This element persists throughout the analysis,
but it is ignored whenever active vars is nonempty. Thus,
we omit it from the block summaries in Figure 5 that contain
at least one other element.

The routine traverse cfg implements the depth-first
search with caching. This routine is mostly a standard recur-
sive DFS except that at the entry to each new basic block, b,
it calls the function cache misses to determine if the current
extension state is a subset of the block summary as discussed
above. cache misses returns an updated active vars set
such that the sm instance with the new set will only contain
state tuples that were not in the block summary. If all of
the tuples in the current sm instance are in the block sum-
mary, the DFS backtracks to the last branch point. If not,
traverse cfg applies the extension code to every tree in b in
execution order and then traverses b’s successors. Successors
are applied to a copy of the current extension state.

6. INTERPROCEDURAL ANALYSIS
This section describes our context-sensitive, interproce-

dural analysis. At a high level, it works as follows:

1. The first preprocessing pass compiles each file in isola-
tion, emitting ASTs to a temporary file. These emit-
ted files include all type declarations, variable declara-
tions, and code within the source file and are typically

four or five times larger than the text representation.

2. The second analysis pass reads these temporary files,
reassembles their ASTs, and constructs the CFG and
call graph. Functions with no callers are considered
roots. When computing roots, recursive call chains
are broken arbitrarily.

3. The system applies each extension to the CFG with
a DFS traversal starting at each callgraph root. On
each function call, the system retrieves the CFG for the
callee and restarts the traversal there. The extension
state is refined at the call boundary and restored at
the return. The rules for refine and restore follow C
scoping rules unless the extension specifies otherwise.

By default, if the function’s CFG is not available, the
system silently continues to the next CFG node.

To make the DFS algorithm efficient, we add a summary
cache to each function computed by combining the block
summaries. This cache is checked at each function call. Sim-
ilar to the intraprocedural caching, if a hit occurs, the call
is not followed. Unlike the intraprocedural case, however,
we cannot simply abort the current path when there is a
cache hit at a function boundary. Because there are many
callsites for each function, we may not have analyzed the
code after the call in the current state. Thus, on a cache
hit, we use both add and transition edges to update the
sm instance and the traversal resumes after the function
call. The function summary memoizes the results of the
state transformation defined by each function.

Our algorithm does not require that the extension has a
finite state space, or that the state space is even known when
the analysis begins. The algorithm that we describe here
is inspired by the dynamic programming algorithm in [18],
but the algorithm in [18] requires that the state space of the
analysis is finite. The resulting practical difference is that
our algorithm executes metal extensions top-down. Thus,
rather than analyzing each function starting from all pos-
sible states, we only analyze each function starting in the
states that can reach that function along an interprocedu-
rally valid path (i.e., an interprocedural path that respects
call and return sites).

6.1 Refine and Restore
State refinement occurs when a function call is encoun-

tered and that function call is followed. The state is restored
when the analysis returns from the callee and resumes an-
alyzing the caller. The extension’s global instance passes
across the function call boundary unchanged.

When the call is followed, any object that passes from
the caller’s scope to the callee’s scope should retain its state.
This operation often requires moving the state from an ob-
ject in the caller’s scope to the corresponding object in the
callee’s scope. When the call returns, the restore opera-
tion may need to move the state back from an object in the
callee’s scope to the appropriate object in the caller’s scope
and, potentially, restore the original state in the caller. In
addition, any variable-specific instances that left scope when
the call was followed should reappear when the call returns.

We refine and restore the extension state at a function
call according to the list of rules in Table 2. Each rule
lists the actual parameter, the formal parameter, the object
whose state needs to be transferred, and how this state is

Actual Formal State in Refine rule Restore rule

xa xf xa state (xf) = state (xa) state (xa) = state (xf) (by reference)
or state (xa) unchanged (by value)

&xa xf xa state (∗xf) = state (xa) state (xa) = state (∗xf)
xa xf xa.field state (xf .field) = state (xa.field) state (xa.field) = state (xf .field) (reference)

or state (xa.field) unchanged (value)
xa xf xa->field state (xf->field) = state (xa->field) state (xa->field) = state (xf->field)
xa xf ∗xa state (∗xf) = state (∗xa) state (∗xa) = state (∗xf)

Table 2: Refine and restore semantics for retargeting the analysis across a function call. The final four rules
actually apply at all levels of indirection (e.g., p is the argument, **p has state). Note that the extension writer
may specify whether or not the actual parameter should be treated as pass by value or pass by reference.

B1: (start,<>) --> (start,<>)

(start,v:p->unknown) --> (start,v:p->freed)

Entry to contrived_caller

B2: (start,v:p->unknown) --> (start,v:p->freed)

(start,v:p->unknown) --> (start,v:p->freed)

kfree(p);

B5: (start,v:p->freed) --> (start,v:p->freed)

(start,v:p->freed) --> (start,v:p->freed),
(start,v:w->unknown) --> (start,v:w->freed)

Entry to contrived

B6: (start,v:p->freed) --> (start,v:p->freed)

(start,v:p->freed) --> (start,v:p->freed),
(start,v:w->unknown) --> (start,v:w->freed)

int *q;
if (x)

B3’: (start,v:p->freed) --> (start,v:p->freed),
(start,v:w->freed) --> (start,v:w->stop)

(start,v:p->freed) --> (start,v:p->freed)

return *w;

B4: (start,v:p->freed) --> (start,v:p->freed)

(start,v:p->freed) --> (start,v:p->freed)

Exit from contrived_caller

B8: (start,v:w->freed) --> (start,v:w->freed),
(start,v:q->freed) --> (start,v:q->freed),
(start,v:p->freed) --> (start,v:p->freed)

(start,v:p->freed) --> (start,v:p->freed),
(start,v:w->freed) --> (start,v:w->freed)

if (!x)

B9: (start,v:p->freed) --> (start,v:p->freed)

(start,v:p->freed) --> (start,v:p->freed)

return *w;

T (x==0)

B10: (start,v:w->freed) --> (start,v:w->freed),
(start,v:q->freed) --> (start,v:q->stop)

(start,v:w->freed) --> (start,v:w->freed)

return *q;

F (x!=0)

B3: (start,v:p->freed) --> (start, v:p->freed)

(start,v:p->freed) --> (start,v:p->freed)

contrived(p, w, x);

F (x==0)

B7: (start,v:w->unknown) --> (start,v:w->freed),
(start,v:q->unknown) --> (start,v:q->freed),

(start,v:p->freed) --> (start,v:p->stop)

(start,v:w->unknown) --> (start,v:w->freed)

kfree(w);
q = p;
p = 0;

T (x!=0)

B11: (start,v:w->freed) --> (start,v:w->freed),
(start,v:p->freed) --> (start,v:p->freed)

(start,v:p->freed) --> (start,v:p->freed),
(start,v:w->freed) --> (start,v:w->freed)

Exit from contrived

Figure 5: Supergraph for the example code shown in Figure 2. The top field in each basic block shows the
block summary, the middle field shows the suffix summary, and the bottom field shows the source code in
the block. Each block’s number is listed in the first field. Note that none of the suffix summaries record any
information about q because q is a local variable so the analysis would never use these edges. Edges that
start and end in a tuple containing the placeholder <> are omitted from the cache unless this tuple is the
only element in the cache. Also, the suffix summary intentionally omits edges that end in a tuple with the
value stop. Suffix edges are only relaxed along traversed paths, i.e. those not suppressed by the algorithm
described in Section 8. The analysis does not follow calls to kfree because the extension matches these calls.
Thus, they are not considered callsites in the supergraph construction.

refined to the callee and then restored to the caller. The
rules in the table only cover the case where the state passes
through a function argument.

Global variables with attached state are not affected by
the refine and restore operations. File-scope variables will
leave scope if the call is to a different file. One important
nuance with file-scope variables is that they may reenter
scope before the callee returns if the analysis reaches a func-
tion further down the call chain that is in the same file as
the original caller. For this reason, file-scope variables are
passed across the function boundary but they are temporar-
ily inactivated (and, thus, ignored by the analysis) until the
analysis returns to the file in which they were declared. All
state attached to variables and expressions that are local to
the caller is saved at the call boundary, deleted from the
sm instance before the call is followed, then restored to the
sm instance when the call returns.

6.2 Dynamic programming summaries
This subsection describes how we use block summaries

to build additional summaries at the function level and at
the suffix level. A function summary stores add and transi-
tion edges that summarize how an entire function updates
the extension state. Function summaries are used to repro-
duce the effects of analyzing a function when a cache hit
occurs at a function call boundary. Each block, b, also has
a suffix summary that consists of add and transition edges
starting at b and ending at the exit point, ep, to the enclos-
ing function, p. A function summary can be viewed as a
suffix summary beginning at the entry block sp. ep’s suffix
summary equals its block summary.

The second row for each block in Figure 5 shows the
suffix summary for that block. For example, the summary
in block 10 says that if the analysis reaches that block in the
state (start,v : w 7→ freed), then the analysis will also reach
the exit block in the state (start, v : w 7→ freed). Thus, the
transition edge

(start, v : w 7→ freed) → (start, v : w 7→ freed)
is part of block 10’s suffix summary. Notice that none of the
edges in the suffix summaries end in a tuple containing the
stop state. These edges are unnecessary to the analysis.

Suffix summaries are necessary because distinct SMs can
transition to the same state. Thus, an extension can begin
analyzing a function call in a new state so that there is no
cache hit at the function boundary, but still have a cache hit
within the called function. A common example occurs when
some source variable v is killed at a program point p that
it reaches in two different states. To accurately reflect the
effects of the function call to the caller, the analysis must
recreate the effects of fully analyzing the called function.
Suffix summaries provide exactly this information.

The relax function, which computes the suffix sum-
maries, is called whenever the analysis hits the end of an
intraprocedural path or the analysis aborts a path because
of a cache hit. Figure 6 gives a sketch of the edge com-
putation algorithm in the relax function. The code walks
backwards through the list of blocks on the current path,
stored in the backtrace, combining the edges in each block
summary with the suffix edges of the subsequent block in
the backtrace. Each block stores the set of suffix edges in
the fields sfx add and sfx transition. Initially, all block
and suffix summaries are empty.

More specifically, the code first checks if the current

// Propagate addition and transition edges up path.
relax(backtrace) {
b = pop(backtrace);
// Initialize suffix edges.
if(is_exit_block(b)) {

b.sfx_add U= b.blk_add;
b.sfx_transition U= b.blk_transition;

}
foreach prev in backtrace {

// All add edges propagate backwards
foreach e in b.sfx_add

// Relabel gstate component of add state tuple
foreach s in prev.blk_transition where

s.end.gstate = e.start.gstate {
e’ = e;
e’.start.gstate = s.start.gstate;
prev.sfx_add U= e’;

}
// Transition edges can descend from both edge types
foreach e in b.sfx_transition {

foreach s in prev.blk_transition where
s.end = e.start

prev.sfx_transition U= (s.start, e.end);
foreach s in prev.blk_add where s.end = e.start
prev.sfx_add U= (s.start, e.end);

}
b = prev;

}
}

Figure 6: Pseudocode for the summary computation

block, b, is an exit block. If so, it adds b’s block sum-
mary to its suffix summary. It then propagates both add
and transition edges in b’s suffix summary backwards to the
previous block’s (prev’s) suffix summary. This backwards
propagation uses the block summary to extend the length
of all of the suffix edges in b by one block. It does so by
creating new edges from the start point of a block summary
edge and the endpoint of a suffix summary edge and adding
these extended edges to prev’s suffix summary.

For a suffix add edge, ea, in b, the algorithm looks for
an edge in prev’s block summary whose end point matches
the start of ea. Recall that if ea adds an instance attached
to the program object p, the start tuple of ea will contain
the special value v : p 7→ unknown. Each block summary
records how that block updates the global instance with an
edge whose endpoints are state tuples that only include the
global instance and the placeholder <>. For the purposes
of relaxation, these special transition edges will match the
initial state of an add edge if the values of the global in-
stance match. For a suffix transition edge, et, the algorithm
looks for an add edge or transition edge in prev’s block
summary whose end tuple is equivalent to et’s start tuple.
The algorithm stops when it either finishes walking over the
backtrace or when no new edges are propagated (i.e., the
previous block’s summary does not grow).

The input to our algorithm is the supergraph for the
source base, which is defined in [18]. The supergraph is
constructed from the CFG for every function in the source
base with the following modifications. First, the algorithm
adds two nodes to each routine p: an entry node, sp, and an
exit node, ep. Second, it splits calls to p into two nodes: a
callsite node, cp, and a return-site node, rp. Finally, it adds
two directed edges: one from cp to sp, the other from ep back
to rp. The supergraph ensures that the only intraprocedural
successor of cp is rp.

6.3 The Top-Down Algorithm in Detail
The top-down algorithm traverses the supergraph

depth-first starting at all function roots. As shown in Fig-
ure 4, when a function call is encountered, follow call is
called to restart the traversal at the entry to the callee. The
routine takes the sm instance, the caller’s backtrace, the
caller’s AST, the callee’s AST, and the return-site node,
and performs the following operations:

1. Refines the extension state to the callee’s scope as de-
scribed in Section 6.1.

2. Calls traverse cfg with the refined sm instance, an
empty backtrace, the callee’s AST, and the callee’s
entry block.

3. Uses the callee’s function summary to compute a set,
s, of transition and add edges that apply to the current
extension state.

4. Restores the edges in s to the caller’s context.

5. Creates new sm instance structures for each disjoint
exit state. The sm instance can only assign one
state value to each instance (in both gstate and
active vars), and active vars can only contain one
instance attached to a particular program object.
Thus, s is partitioned into disjoint sets, each of which
contains edges whose global instance has the same
value and whose variable-specific instances are all at-
tached to different program objects. These partitions
are used to construct the new sm instance structures.

6. Uses the new sm instance structures to analyze the re-
mainder of the caller by calling traverse cfg on each
new sm instance, the backtrace saved at the callsite,
the caller’s AST, and the return block at the callsite.

When a state variable instance is transitioned to the sink
state, stop, in the callee, the instance should be deleted from
the extension state when the analysis returns to the caller.
Any edges that end with a tuple containing an instance in
the stop state are omitted from the function summary. Thus,
steps 4-6 in the list above will not add the stopped variable
to the outgoing extension state.

The analysis will terminate if each SM within an exten-
sion reaches a final state after a finite number of transitions
from every state. The complexity of this algorithm is similar
to that in [18]. Note that our algorithm has an implementa-
tion disadvantage over the algorithms in [5, 18] because we
may analyze any given function at several different points
in the analysis as we reach a call to that function in differ-
ent states. Thus, we cannot free the storage associated with
a function until we are sure that it will not be analyzed
again. For large programs, it may be necessary to create
compact path summaries that only retain those portions of
the AST that are relevant to the analysis. This has not,
however, prevented our analysis from running effectively on
the Linux kernel. We leave this computation to future work.

7. UNSOUNDNESS
The strength of our extensions is that they can express

many rules in a concise way; they are not designed to express
sound analyses. It is easy for extensions to make approxima-
tions or use analyses that are not conservative. Because the

extensions are not intended to be sound, building a sound
analysis engine is a misdirected effort; the analysis should
instead focus on executing the extensions effectively.

Metal extensions often introduce unsoundness by mak-
ing approximations or by using analysis techniques that pro-
duce good results but are not necessarily correct. For exam-
ple, using statistical analysis to infer which routines must be
paired (such as lock and unlock) is an effective technique,
but cannot guarantee that these inferences are correct.

The interprocedural analysis algorithm in xgcc is un-
sound because it does not analyze recursive loops conser-
vatively, and it does not analyze value flow conservatively.
When a function cache hit occurs during a recursive loop,
the function summary may not be complete. The conserva-
tive solution is to assume that the extension could be in any
possible state after the cache hit. Instead, our algorithm
assumes that the existing function summary is sufficient.

Our approach is vulnerable to both false negatives and
false positives. False negatives occur when a checker fails
to warn about an error in the program. For certain classes
of errors, such as security holes, false negatives may be a
serious problem. However, even here, the tradeoff between
soundness and unsoundness at a practical level is not clear-
cut. Our focus on expressiveness means that we can easily
check many security properties. As a result, to the best of
our knowledge, we are able to find more security holes than
sound analyses [1, 9, 10].

False positives present a different problem: if a checker’s
warnings are often wrong, then a user will ignore all of its
warnings. The next two sections discuss how we counter
false positives with a variety of lightweight suppression tech-
niques and a post-processing ranking step that tries to order
the rule violations that we report such that the most impor-
tant, most likely violations appear first.

In an ideal world, we could write effective, sound anal-
yses to check every program rule that we could think of.
Unfortunately, it is well known that it is infeasible to prove
programs correct, so it is unlikely that we will ever approach
this goal. Thus, the ideal approach is one that is sound when
it can be and unsound where the sound approach fails. Our
approach explores the benefits and uses of unsoundness.

Program rules fall into equivalence classes where a vi-
olation of one rule is no less or more important than a vi-
olation of another. Common classes include the set of all
exploitable security holes or nondeterministic bugs. In such
cases, finding 1000 bugs of a given class is more important
than all 10 violations of a single rule in that class. It is
the observable behavior of the program that actually mat-
ters, not its behavior with respect to any of these properties.
The observable behavior will not be correct until all of the
bugs in the system are fixed. We are essentially making an
end-to-end argument [20]: it makes little sense to expend
significant resources reducing the error rate of one part of a
system below the residual error rate of the other parts. An
unsound analysis that finds more bugs improves the end-to-
end behavior of the system more than a sound analysis that
finds fewer bugs.

8. FALSE POSITIVE SUPPRESSION
Static analyses can make approximations that lead to in-

correct error reports (false positives). This section describes
our main techniques for false positive suppression.

Killing variables and expressions. Whenever a vari-

able is defined, xgcc iterates through the list of program
objects with attached state and determines if the defined
variable is used within any of these objects. If so, the ob-
ject is transitioned to the stop state, thereby deleting the
corresponding state variable instance. In Figure 2, xgcc au-
tomatically transitions the variable p from the freed state to
the stop state at the assignment, “p = 0,” at line 8. The
assignment case is obvious; the slightly more subtle case is
that an expression (e.g., a[i]) with attached state is transi-
tioned to the stop state when a component of that expression
(e.g., i) is redefined. This analysis runs transparently unless
a checker requests otherwise, and it is the single most im-
portant technique for suppressing false positives in checkers
that attach state to specific program objects.

Synonyms. If a variable tracked by an extension is as-
signed to another variable, both variables become synonyms:
state changes in one are mirrored in the other. For exam-
ple, since p and q are equal in the following code fragment,
a successful check that p is not null also implies that q is
not null at the dereference:

p = q = kmalloc(...);
if(!p)

return 0;
q; / safe dereference: q = p = not null */

We implemented synonyms with a 50 line addition to our
system. In addition to reducing false positives, synonyms
also increase coverage by increasing the number of variables
with an attached state. In Figure 2, the assignment on line
7 allows the analysis to catch the error on line 12.

False path pruning.1 Nonexecutable “false paths”
caused by data dependencies are another source of false-
positives. xgcc’s simple path-sensitive analysis uses basic
value tracking combined with a congruence closure algo-
rithm to prune infeasible paths. In Figure 2, because the
conditions on lines 4 and 10 are contradictory, there are only
two executable paths through the function contrived, not
four. xgcc’s algorithm will prune the two infeasible paths.
The algorithm executes the following steps:

1. We track all variable assignments and comparisons, ei-
ther to constants (e.g., x = 10, x < 100) or to other
variables (e.g., y = x, x < y). For each assignment to
a variable, we assign a new name to that variable so
that different definitions of the variable are not con-
fused. If we see the statement (x < y), we record that
x < y holds along the true branch and x >= y holds
along the false branch.

2. When we see an expression (e.g., y = x + 1), we try
to evaluate the expression based on what we already
know. If we know that x is 10, then we will assign y

the value 11. If we know nothing about x, we store the
entire expression.

3. If we see a loop, we set the value of all variables defined
in the loop to “unknown” after the loop body. This
step eliminates the need to unroll loops.

4. We infer which variables must have the same value
through the =, ==, and != operators and place them

1Note that the algorithm described here was implemented
in a previous version of xgcc. We have not yet ported it to
the current version with interprocedural analysis.

into a single equivalence class. Using a congruence clo-
sure algorithm [8], we then derive as many equalities
and non-equalities as possible from the list of tracked
assignments. If an equivalence class contains a con-
stant, we know the exact value of everything in that
equivalence class. If not, using the tracked inequal-
ities we can derive relationships between equivalence
classes. For example, if x < y holds, then everything
in x’s equivalence class is smaller than everything in
y’s equivalence class.

5. When the extension reaches a branch in the CFG, we
first check if the branch condition is a comparison be-
tween an expression and a constant and we know the
value of the expression. If so, we evaluate the condition
and prune the false path. If not, we look through the
list of relations between congruence classes. If there is
a relationship that either contradicts or confirms the
branch condition, we prune the true or false path. Oth-
erwise, we assume both paths are possible.

6. If a path is pruned, we remove all block summary en-
tries that were inserted while analyzing the pruned
path so that the summaries at each block do not con-
tain any non-reachable state tuples.

Our algorithm is scalable because it does not track values
or evaluate branches too precisely. The justification for this
choice is that most paths are executable and most data de-
pendencies are simple. Complex data dependencies are dif-
ficult for programmers to understand, so they avoid them as
bad practice.

Targeted suppression of false positives. One com-
mon cause of false positives is a conflict between an idiomatic
code sequence and an analysis approximation. Metal makes
it easy for an extension to suppress these system-specific id-
ioms. In some cases, this conflict is an indication that the
approximation is too coarse and a more thorough analysis is
appropriate; in other cases, it is best to suppress the prob-
lematic sequence directly.

A conservative version of the free checker that flags all
uses of freed variables as errors is a good example. The
false positives for this checker came from two sources: (1)
passing a freed pointer to a debugging function that prints
the pointer, and (2) in BSD, passing the addresses of freed
variables to functions that redefine them. We added eight
lines of code to the checker to suppress both classes of false
positives.

History. Initially, we worried that after the errors we
reported were fixed, we would only detect false positives in
newer versions that would require heavyweight techniques
to eliminate. A simple alternative is to just remember false
positives from past versions and suppress them in future ver-
sions. We match error reports across versions by comparing
file name, function name, variable names involved in the
analysis, and the actual error itself as stated by the checker.
These fields are relatively invariant under edits (unlike, for
example, line numbers) and seem to work well in practice.

9. RANKING
Given ten errors, you can inspect all of them. Given

1000 errors, you cannot. An effective bug-finding approach
will report 100s or 1000s of errors in a real system. The ideal

error ranking will rank all true error reports before false er-
ror reports, and it will order the true error reports according
to the severity of each bug. We try to approximate the ideal
ranking by first stratifying errors based on their severity,
then sorting within each class based on both the probability
of the error being a false positive and the difficulty of in-
spection. The user can then start with the most important
class, inspect within that class until the false positive rate
is too high or inspection requires too much effort, and skip
to the next class of errors.2

From our experience with Linux and BSD, implementers
almost always fix errors that are difficult to diagnose with
testing first. These include use-after-free errors, missing lock
releases, and security holes. We rank these errors over those
that are easier to diagnose with testing, such as memory
allocation failures.

We also group all errors that are computed from a com-
mon analysis fact into the same class. For example, all use-
after-free errors that involve the same freeing function are
placed in the same class. Such grouping makes it easy to
suppress them all if the analysis is wrong.

Generic ranking. By default, our system sorts error
messages using the following criteria:

1. Distance. Errors that span hundreds of lines are more
difficult to diagnose than those that span a few. We
rank based on the distance between the statement that
contains the error and the statement where the exten-
sion started checking the property that led to the error.

2. Number of conditionals. The more conditionals an er-
ror spans, the harder it is to diagnose and the more
likely it is to be a false path. Each conditional is arbi-
trarily weighted as ten lines of distance.

3. Degree of indirection. We rank errors that use syn-
onyms below those that do not; the former are more
difficult to inspect. We then sort synonyms based on
the length of the assignment chain.

4. Local versus interprocedural. Local errors can take
seconds to diagnose, whereas interprocedural errors
can take minutes. We rank all local errors over global
ones and then order global errors based on the length
of the shortest call chain that causes the error.

The latter two criteria partition error messages into different
classes, which are then sorted using the first two criteria.

In dealing with Linux and OpenBSD implementers, we
have observed a curious phenomenon: given errors of equal
importance, the more analysis required to find an error, the
lower the error should be ranked. As the number of analysis
steps increases, the likelihood that an analysis approxima-
tion made a mistake and the manual inspection effort both
increase. Thus, these error reports are more likely to be
false positives and more difficult to diagnose.

Checker-specific and system-specific ranking.
The domain knowledge that allows an extension to check a
rule also helps it to rank errors more effectively by gathering
checker-specific or system-specific information. We mostly
use checker-specific ranking to (1) rank errors by severity
and (2) perform targeted demotion of errors.

2From informal discussions with the PREfix implementers,
this strategy and many of the ranking rules in this section
have similarities to those that they use.

Many extensions are composed with a simple extension
that annotates paths that can be triggered by the user (us-
ing the string SECURITY) and paths that are likely to be error
paths (using the string ERROR). Errors on the first type of
path pose security risks, since they can be triggered by the
user. Errors on the second are empirically more likely to be
real errors, in part because error paths are less tested. The
extension can also add these two annotations and the ad-
ditional annotation MINOR manually. Errors annotated with
SECURITY are ranked highest, those annotated with ERROR

are ranked next, and those annotated with MINOR are ranked
last.

Statistical ranking. Our most novel ranking method
uses statistical analysis. We have observed that an analysis
mistake often leads to a local explosion of error reports. The
most reliable rules are followed many times and violated
rarely. We can use statistical analysis to sort errors based
on these numbers.

An earlier version of the free checker used a flow-
insensitive, interprocedural analysis to compute a list of all
functions that freed their arguments or passed an argument
to a function that did. It would then run a local pass that
used this list to find errors. The checker had an enormous
number of false positives, most due to a single limitation
of our analysis: a small number of functions only freed one
argument based on the value of another argument, but our
analysis decided that these functions always freed their ar-
gument. Thus, rather than having an error rate of one error
per few hundred callsites, these functions had rates closer
to fifty errors per hundred callsites. When we sorted errors
based on these rates, all of the real errors went to the top
and the errors caused by functions the analysis could not
handle were pushed to the bottom.

We rank errors based on the reliability of the rules that
caused them using the z-statistic for proportions. The z-
statistic evaluates the hypothesis that an outcome that oc-
curs e times out of n is consistent with an expected prob-
ability, p0, for that outcome. We compute the z-statistic
as

z(n, e) = (e/n − p0)/
√

(p0 ∗ (1− p0))/n

Our null hypothesis is that a rule is obeyed or violated
at random. In this case, we expect half of all checks to be
successful and half of all checks to fail, hence p0 = 0.5. If
a rule is obeyed at random, that rule is probably incorrect.
Conversely, if a rule is almost always followed, that rule is
probably correct.

We count the number of times the rule was followed
(or examples) as e and the number of rule violations (or
counterexamples) as c. The total number of events, n, is
the sum of e and c.

The larger the computed value of the z-statistic, the
higher the significance level at which we can reject the null
hypothesis. High values indicate a higher probability that
the counterexamples found are indeed violations of a valid
rule, and are, therefore, most likely errors.

For the free checker above, each freeing function defines
its own rule. That rule is violated when an error is reported
on a pointer passed to that function (c). The rule is followed
when a pointer passed to that function is never touched
again (e).

Ranking code. If a particular block of code causes
an explosion of errors, the analysis probably cannot handle

some aspect of that code. We first applied this observation
to an intraprocedural lock checker that flagged when calls
to a locking function did not have a matching unlock. The
major source of false positives for this extension was wrap-
per functions that either always acquired or always released
locks. In this case, the locking rule is context-dependent; in
some contexts the rule is correct, in some contexts it is not.

When each function is analyzed, we set e to the num-
ber of times the function correctly acquired and released
locks and c to the number of mismatched pairs. The high-
est ranked functions had a large number of successful ac-
quire/release pairs with only a few errors. These functions
are exactly the ones that most likely contain errors.

Interprocedural analysis would solve this particular
problem, but all analysis has limits. For example, if we ex-
tend the locking analysis to include the Linux semaphore
routines up and down, there will be a high rate of false
positives since semaphores are sometimes used as counters,
which need not be paired, and sometimes as locks, which
must be paired. Ranking easily distinguishes these two dif-
ferent uses, whereas adding interprocedural analysis will not.

Discussion. Statistical ranking can also be used to in-
fer the severity or likelihood of real errors. The most serious
or most likely errors tend to violate rules that are almost al-
ways followed. Thus, ranking is useful even for an approach
that does not report any false positives. Sound approaches
should find ranking especially useful because conservative
assumptions often lead to large numbers of false positives. In
our experience, false positives are not randomly distributed
but often come from a small set of analysis mistakes that
are automatically identified with ranking.

Ranking can be a simple technique, but, from the error-
inspector’s point of view, it makes an exhilarating difference.

10. RELATED WORK
In this section, we discuss other systems for finding bugs

in C programs. We divide these systems into those that re-
quire programmer annotations and those that do not. Most
of the systems discussed here are sound whereas our system
is not. We focus on checking a broad class of properties that
are either difficult or impossible to specify soundly. Because
metal is flexible, we believe that our system can check a
wider variety of properties with a wider variance in precision
than any other systems with similar goals. The discussion
below focuses on other differences between our system and
other static bug-finding tools.

10.1 Bug-Finding Without Annotations
ESP [5] is the project most similar in spirit to our own.

Properties are specified in ESP using a state machine lan-
guage similar to metal. These properties are then verified
using a sound, interprocedural dataflow analysis based on
the RHS algorithm [18]. ESP includes the “abstract sim-
ulation” algorithm, which is an interprocedural false-path
pruning algorithm. Our false-path pruning algorithm uses
a congruence closure algorithm which, in the intraprocedu-
ral case, is more powerful than the algorithm actually used
in ESP. The ESP approach is more likely to scale in the
interprocedural case than ours.

The SLAM project [2] aims to verify temporal safety
properties by using a combination of predicate abstrac-
tion [15], model checking [4], and predicate discovery. Our
approach and the SLAM approach have different goals:

SLAM is a verification tool intended for small, bug-prone
pieces of larger systems. It is effective within these scalabil-
ity limits. Our approach is intended for large systems.

Intrinsa’s PREfix [3] is an industrial-strength tool for C
that performs symbolic evaluation of interprocedural execu-
tion paths while looking for errors such as uses of uninitial-
ized memory, buffer overflows, NULL-pointer dereferences,
and memory leaks. PREfix works on large software systems.
It does a deeper, more expensive analysis than our system
by building a memory model along each execution path in
the program. However, it only finds a fixed set of error
types using a fixed set of analyses. We allow programmers
to extend both.

10.2 Bug-Finding With Annotations
There are many annotation-based checking projects.

One of the most developed is Extended Static Checking [7]
(ESC) and ESC/Java [19], which are annotation-based tools
that use a theorem prover to find errors. The annotations
used by ESC allow for varying levels of detail, which lets the
annotator balance annotation effort, completeness, and ver-
ification time. For basic programming errors, the reported
annotation overhead for ESC ran as high as one annotation
per three lines of code for small programs. Recent work
on inferring these annotations attempts to reduce this bur-
den [12]. Because of this effort, they run on small code bases,
and find relatively few bugs compared to our approach.

LCLint [11] statically and unsoundly checks C programs
with the aid of programmer annotations. LCLint requires
additional annotations to improve precision, which leads to
a significant annotation burden to produce useful results.

Cqual [14] is an annotation-based approach that adds
flow-sensitive qualifiers to standard C types. The analysis
is interprocedural and sound. However, it requires annota-
tions both to express program properties and to suppress
false positives caused by conservative aliasing assumptions.
These annotations are a significant practical drawback.

In general, bug-finding techniques that rely on annota-
tions require strenuous, invasive code modifications. This
annotation overhead can be prohibitive for large systems.
One of the most rigorous measurements of this overhead
comes from Flanagan and Freund who measured an annota-
tion overhead of one annotation per 50 lines of code at a cost
of one programmer hour per thousand lines of code [13]. For
a system the size of Linux (2MLOC), this would require two
spells of 40 days and 40 nights of continuous annotating for
a single property! In contrast, once the fixed cost of writing
a metal extension is paid (often a day or so) there is little
incremental cost to applying it to a large amount of code.

10.3 Language-based approaches
We view language-based approaches to preventing bugs

as largely complementary to our work. The Vault [6] lan-
guage lets users specify typestate properties within the lan-
guage; the role analysis concept proposed in [17] can specify
even more complex properties by providing a language mech-
anism for specifying legal aliasing relationships. Programs
written correctly using these languages would be protected
from some of the bugs that we find.

Tool-based analysis, however, does have some signifi-
cant practical advantages. First, our statistical extensions
can automatically infer some of the temporal properties that
a languages like Vault requires programmers to manually

specify [10]. Tools can also transparently check properties
without requiring the use of a specific language for code con-
struction or rewrites. Language adoption has historically
been an erratic process. Tools work immediately.

11. CONCLUSION
This paper describes a language for specifying program

properties, metal, and an analysis engine for checking these
properties statically, xgcc, that has found thousands of bugs
in real source code. The approach we present centers around
a single goal: to find as many bugs in real systems as pos-
sible. Metal and xgcc are designed to support this goal.
One implication of our work is that finding bugs is easy
given the right approach. We present one possible approach
that centers around extensibility. An extensible specifica-
tion language can express a broad class of properties within
a single framework. Expressiveness in this language must be
matched with an efficient algorithm that does not impose too
many restrictions on the analyses it executes. Thus, extensi-
bility is a system-wide property. We believe that metal and
xgcc are a reasonable step towards building such a system.

12. ACKNOWLEDGMENTS
Andy Chou built numerous pieces of the system that we

describe. Wilson Hsieh, David Chen, and David Gupta pro-
vided helpful comments. We especially thank Godmar Back,
Manu Sridharan, David Heine, and Robert Hallem for many
close reads, and John Mitchell for succinct, effective struc-
turing comments. This work was supported by NSF award
0086160 and by DARPA contract MDA904-98-C-A933.

13. REFERENCES
[1] Ken Ashcraft and Dawson Engler. Using

programmer-written compiler extensions to catch
security holes. In IEEE Symposium on Security and
Privacy, Oakland, California, May 2002.

[2] T. Ball and S.K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN 2001
Workshop on Model Checking of Software, May 2001.

[3] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static
analyzer for finding dynamic programming errors.
Software: Practice and Experience, 30(7):775–802,
2000.

[4] E.M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[5] Manuvir Das, Sorin Lerner, and Mark Seigle.
Path-sensitive program verification in polynomial
time. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation, Berlin, Germany, June 2002.

[6] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, June 2001.

[7] D.L. Detlefs. An overview of the extended static
checking system. In Proceedings of the First Workshop
on Formal Methods in Software Practice, pages 1–9,
January 1996.

[8] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations
on the common subexpression problem. Journal of the
ACM, 27(4):758–771, October 1980.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In
Proceedings of Operating Systems Design and
Implementation (OSDI), September 2000.

[10] D. Engler, D. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, 2001.

[11] D. Evans, J. Guttag, J. Horning, and Y.M. Tan.
Lclint: A tool for using specifications to check code. In
Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, December 1994.

[12] C. Flanagan, K. Rustan, and M. Leino. Houdini, an
annotation assistant for esc/java. In Symposium of
Formal Methods Europe, pages 500–517, March 2001.

[13] Cormac Flanagan and Stephen N. Freund. Type-based
race detection for Java. In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 219–232, 2000.

[14] J.S. Foster, T. Terauchi, and Alex Aiken.
Flow-sensitive type qualifiers. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, June 2002.

[15] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In CAV 97: Computer Aided
Verification, 1997.

[16] G. A. Kildall. A unified approach to global program
optimization. In Proceedings of the ACM Symposium
on Principles of Programming Languages, pages
194–206, 1973.

[17] Victor Kuncak, Patrick Lam, and Martin Rinard. Role
analysis. In Conference Record of the Twenty-Ninth
ACM Symposium of Principles of Programming
Languages, January 2002.

[18] Thomas Reps, Susan Horowitz, and Mooly Sagiv.
Precise interprocedural dataflow analysis via graph
reachability. In Proceedings of the 22th Annual
Symposium on Principles of Programming Languages,
pages 49–61, 1995.

[19] K. Rustan, M. Leino, G. Nelson, and J.B. Saxe.
Esc/Java user’s manual. Technical note 2000-002,
Compaq Systems Research Center, October 2001.

[20] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end
arguments in system design. ACM Transactions on
Computer Systems, 2(4):277–288, November 1984.

