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Abstract
We present a framework to represent and reason about narra-
tives that combines logical and probabilistic representations
of commonsense knowledge. Unlike most natural language
understanding systems which merely extract facts or seman-
tic roles, our system builds probabilistic representations of
the temporal sequence of world states and events implied
by a narrative. We use probabilistic transitions to represent
ambiguities and uncertainties in the narrative sentences. We
present exact and approximate reasoning algorithms that take
a representation of a narrative, derive all possible or the most
likely interpretations of the narrative, and answer probabilis-
tic queries by marginalizing over these interpretations. In
our experiments, we show that our representation together
with reasoning algorithms enables semantic understanding of
narratives and answering probabilistic questions whose re-
sponses are not contained in the narrative. We report our re-
sults for two domains of Robocup soccer commentaries and a
children story with focus on spatial contexts. To this end, we
apply natural language processing (NLP) tools together with
statistical approaches over common sense knowledge bases
to represent a narrative in our framework.

1 Introduction
Understanding narratives and answering questions about
them is an important problem in both natural language pro-
cessing and linguistics (Hobbs et al. 1993). It is funda-
mental to question answering systems, help desk systems,
dialog generators, and robot command interfaces. In many
applications, questionnaires ask semantic questions whose
responses are not contained in the written text. For example,
it is very hard to answer a question like “Who has the posses-
sion of the ball at every step?” about soccer commentaries
which do not explicitly mention the possession of the ball
at every sentence. Answering this question requires under-
standing real events that happen in the game and following
those events to track the possession of the ball.

There are recent approaches that map narratives to a
sequence of meaningful events (Branavan et al. 2009;
Vogel & Jurafsky 2010; Chen, Kim, & Mooney 2010). This
mapping allows deeper understanding of the narratives, but
deos not succeed in answering semantic questions without
using advanced reasoning techniques. Answering questions
whose answers are not included in the text requires a power-
ful representation integrating with reasoning algorithms and
commonsense and domain-specific prior knowledge.

In this paper we use a powerful framework (extension
of probabilistic situation calculus (Reiter 2001)) to repre-

sent narratives that incorporates events, the effects of events,
and probability. We introduce reasoning algorithms in this
framework to answer questions about the narrative. Our ex-
periments demonstrate the benefit of our representation and
reasoning algorithms to understand the semantics of narra-
tives and answering semantic questions in two domains of
children stories and soccer commentaries.

In this paper, we model a narrative as a sequence of proba-
bilistic transitions which express uncertain changes imposed
by the narrative sentences. For example, the verb went in
John went to the store shows uncertainty between walk, run,
drive, and so on. Probabilistic transitions give rise to deter-
ministic events according to a probability distribution that
depends on the current state. For instance, when the agent is
tired, the agent is more likely to drive than to run. Determin-
istic events in turn give rise to changes in the world accord-
ing to a transition function that also depends on the current
state. For example, the deterministic event run makes the
runner tired and drive uses up gasoline.

We then present exact and approximate inference algo-
rithms for answering probabilistic queries about a narrative
represented as above. An advantage of our exact algorithm is
that it maintains and grows all feasible interpretations of the
narrative in a forest of trees in an online fashion. This prop-
erty allows to answer queries in real-time about dynamic
narratives in which the text is iteratively growing. When
a new sentence appears, our algorithm updates the current
state forward and then backward to keep the forest consis-
tent. For example, the sentence John put his wallet on the
table implies that John was holding his wallet at the previ-
ous time step and our algorithm propagates this information
backward for consistency. Our approximate algorithm ap-
proximates the most likely interpretation of the narrative.

We further extend our algorithms to answer queries about
narratives with sentences universally quantified over vari-
ables. An example of such sentence is John moves the brief-
case. This implies that all the objects inside the briefcase
have also been moved.

Finally, we use our framework for answering semantic
questions about Robocup soccer commentaries and a chil-
dren story with a focus on spatial contexts. We show that
our system is able to find responses not contained in the text.

Related Work: There are several symbolic narrative un-
derstanding systems (e.g., (Hobbs et al. 1993)) that do not
model uncertainty, an essential part for narrative understand-
ing. (Narayanan & Harabagiu 2004) uses reasoning about
actions for question answering, however, their transition rep-



resentation and reasoning algorithms are different than ours.
In addition, they do not show an approach to compute uncer-
tainties of sentences. Still, their approach cannot answer se-
mantic questions whose responses not contained in the text.

Hidden Markov Models (HMMs) (Rabiner 1989) and log-
ical HMMs (Kersting, Raedt, & Raiko 2006) use sequences
of variables to represent dynamic systems. In contrast, our
model applies a transition model as a distribution over deter-
ministic events. Both formalisms are universal and can rep-
resent each other, however, problem solving methods can
take advantage of each formalism. In particular, relational
elements in our representation allow more compact repre-
sentation and more efficient algorithms in our narrative un-
derstanding problem.

There have been various reasoning formalisms that tackle
probabilistic actions in propositional domains, however,
they are not focused on the application of narrative un-
derstanding. (Baral & Tuan 2002; Iocchi et al. 2004;
Reiter 2001) introduce exact reasoning, but their methods
do not maintain the possible interpretations online and are
restricted to answer queries about the last time step. Fur-
thermore, their methods are required to know at the initial
time step which propositions would appear in the later steps.

2 Narrative Representation
In this section we define our framework Probabilistic Ac-
tion Model (PAM) to represent narratives. PAM is a general
probabilistic logical framework for representing dynamic
systems and consists of elements to model prior knowledge
and dynamic transitions. The transitions are modeled using
a probability distribution over several deterministic events.
Language: The language of PAM consists of a set of con-
stants, variables, predicates (called fluents), and determin-
istic events. In PAM every constant and variable has a
type, and every fluent and deterministic event has a schema.
Specifically, f(τ1, . . . , τk) (or (f(~τ)) is a fluent schema
where f is a fluent symbol and τ1, . . . , τk are types.
Definition 1. The language L of a RPAM is a tuple L =
(T, I, Itype,V,Vtype,F,DA) consisting of
• a set of types T
• a set of constants I and a function Itype which maps every

constant to a type Itype : I→ T
• a set of variables V and a function Vtype : V→ T
• a set of fluent schemas F
• a set of deterministic event schemas DA

Grounding a fluent or action schema is defined as replac-
ing every variable in the schema with a constant. In PAM, a
world state s is defined as a complete truth assignment to all
the groundings of fluent schemas F . It is generally the case
that the truth value of all the fluents are not known at a spe-
cific time step, therefore, we use notion of partial states. A
partial state σ is a function σ : GF→ {true, false, unknown}
where GF is the set of ground fluents. We can interchange-
ably represent a partial state σ as a conjunction of fluent lit-
erals where a fluent literal is in the form of either f (for
σ(f) = true) or ¬f (for σ(f) = false).

For example, the language L consists of types {o, l}, con-
stants {Glass : o,Room : l}, and the fluent schemas
{Holding(o),At(o, l),Atloc(l),Tired()}. Then, in this
domain Holding(Glass) ∧ ¬At(Glass,Room) is a par-
tial state, while Holding(Glass) ∧ At(Glass,Room) ∧

Atloc(Room) ∧ ¬Tired() is a complete state.
Deterministic Events: We define effect axioms to represent
deterministic event schemas.
Definition 2. Let da(~x) be a deterministic event schema,
and Effect(~x, ~y) and Precond(~x, ~y) be partial states whose
variables appear in ~x, ~y. Then, effect axioms for da is:
• da(~x) initiates Effect(~x, ~y) when Precond(~x, ~y).

Note that every fluent schema f(~x, ~y) appearing in Effect
and Precond can contain free variables denoted by ~y. The
semantics of the above definition is as follows: For every
time t and every free variable y, if Precond holds at time t,
then the deterministic event da initiates Effect at time t+ 1.

For example, Run(l2) initiates Atloc(l2) ∧ Tired()
when Empty(l2) describes that the agent runs to the empty
location l2. Walkobj(l2) initiates Atloc(l2) ∧ At(o, l2)
whenHolding(o), Empty(l2) describes that the location of
all the objects o held by the agent is changed to l2.
Transition Probability is associated with every sentence
of the narrative and is modeled as a probability distribution
over different deterministic events.
Definition 3. Let ψ1(~x), . . . , ψN (~x) be partial states parti-
tioning the world (called Partitions(pa)) . The following is
the transition model pa:
pa(~x) produces
• da11, . . . , daM1 with p11, . . . , pm1 when ψ1(~x)
• . . .
• da1N , . . . , daMN with p1N , . . . , pmN when ψN (~x)

where piJ is the probability of choosing event dai
J in the par-

tition ψJ and p1J + . . .+ pmJ = 1.
For example, the probabilistic transitions Movobj and Put
are defined as: Moveobj(l2) produces
• Runobj(l2),Walkobj(l2) with .8, .2 when Empty(l2)
• Nothing with 1.0 when ¬Empty(l2)
Put(o): produces
• PutDown(o) with 1.0 when Holding(o)
• Nothing with 1.0 when ¬Holding(o)
Finally, PAM is defined using the above definitions.
Definition 4. A RAM (L,EA,PA, P0) consists of
• language L = (T, I, Itype,V,Vtype,F,DA) (Def. 1)
• effect axioms EA (Def. 2)
• probability transitions PA (Def. 3)
• graphical model prior probability P0

A narrative for a PAM is modeled as Tx = (T,OA) where
OA is the sequence of T sentences as grounded probabilistic
transitions (a transition a(s1, . . . , sk) is grounded if every
argument si of transition a is a constant).

3 Query Answering Algorithm
Our query answering algorithm takes as input a narrative
model Tx = (T,OA = 〈a1, . . . , aT 〉) and builds the PAM
representation corresponding to the narrative where each
sentence at is mapped to a transition probability of PAM.
A query about the narrative inquires about the probability
of a formula (conjunction of literals) in the PAM. Our query
answering algorithm applies a exact, approximate, and lifted
reasoning algorithms to answer queries. For our reasoning
algorithms we assume that the transition probability corre-
sponding to every sentence is available. Next in section 4
we show how we compute transition distribution.



Algorithm 1. ExactInf(Tx, PAM, q)
• Input: Narrative Tx = (T,OA) for PAM , formula q
• Output: p(q) ∈ [0, 1]
1. Forest← MakeForest(Tx, T)
2. PATHS← DetPathsFromForest(Forest)
3. for 〈ev1, . . . , evT 〉 ∈ (PATHS)
4. pathi ← 〈ev1, . . . , evT 〉
5. q0 ← BackupToRoot(q, pathi)
6. Qri ← P0(q0|pathi[0].σ)
7. return

∑
i PPath(pathi, T)(Qri)

Algorithm 2. AppxInf(Tx,PAM,q)
• Input: Narrative Tx = (T,OA) for PAM, Query q
• Output: true,false
1. 〈ev1, . . . , evT 〉 ← MostLikelySeq(Tx,PAM)
2. st ← ProgressSeq(〈ev1, . . . , evT 〉, s0)
3. return st ∧ q

Figure 1: Algorithm ExactInf to find all the interpretations of the
narrative and compute the probability of query. Algorithm AppxInf
to approximate the most likely interpretation of the narrative and
evaluate the truth of the query.
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Figure 2: (a) Interpretation forest for Move(L) and calculation of
P(Atloc(L)). (b) Adding a new tree in the forest with observation
of Holding(O) at one branch at step 1.

3.1 Exact Reasoning
Algorithm ExactInf (Algorithm 1) answers queries about a
narrative model Tx = (T,OA) for a PAM. It first builds an
interpretation forest for the narrative. Then, for every inter-
pretation in the forest it updates the query backward to time
0 and computes the probability of the query using the prior
distribution P0. Finally, it integrates all the answers.

Propositional Reasoning We first assume that the events
do not include free variables in their effect axioms. In this
setting we define an interpretation forest as follows:
Definition 5. Forest F is an interpretation forest of the narra-
tive Tx if the nodes represent the current state of the narrative
and the edges represent deterministic events corresponding
to every sentence and has following properties:
1. The labels of roots partition the set of states S.
2. Sum of probabilities of the edges e(da, p) = 〈n,−〉 lead-

ing from any node n is 1 i.e.,
∑

e=〈n,−〉(e.p) = 1.
3. For edge e(da, p) = between nodes nt and nt+1:

nt+1 = Progress(nt, da), nt = Regress(nt+1, da, nt).
4. If a fluent f appears in a node n, then it should appear at

all descendants of the node unless there is an edge e(da, p)
leading to n and f is in Effects(da).
Our exact reasoning algorithm uses MakeForest subrou-

tine to build the interpretation forest of the narrative to
maintain all, and only, feasible interpretations of the nar-
rative in an online fashion. MakeForest initializes interpre-

tations by setting the current state of the interpretation into
Partitions(a0). It then grows each interpretation by adding
new branches associated with every deterministic event dat
of the sentence at. Then, the algorithm updates the current
state of the narrative by progressing with dat. To maintain
the properties of the forest, it replicates the current node into
several nodes and regresses the information back to the root.

Figure 2(a) shows the forest construction with tran-
sition Move(L). If Holding(O) is observed at step
1 at one branch of the tree then its truth value
should be known in the roots to satisfy property
(4). Then to satisfy property (1) new trees should
be generated with roots (¬Empty(L),¬Holding(O)),
(Empty(L), Holding(O)), (Empty(L),¬Holding(O)),
(¬Empty(L), Holding(O)). Figure 2(b) shows a part of
this update step.

Progress subroutine Progress(st−1, da) takes as input an
event da and the current state st−1 and returns the updated
state st if the preconditions of the event da is consistent
with st−1. The current state st is then updated by apply-
ing the effect axioms of the event da. Regress subroutine
Regress(st, da, st−1) takes as input an event da and current
and previous states of the narrative and updates st−1 using
the preconditions of da.

An interpretation of the narrative is a path path =
〈(−, σ0), (da1, σ1), . . . , (daT , σT )〉 in the forest where σt is
a narrative state at time t and dat is a deterministic event.
The following indicates the likelihood of the interpretation:
PPath(path, 0) = P0(σ0) and
PPath(path, t) = PPath(path, t− 1)PA(dat|at, σt−1).

To compute the probability of query formula, ExactInf
builds qi0 by regresses the query q backward to the root given
the ith interpretation. Note that regressing a formula back-
ward with a deterministic sequence does not change its prob-
ability. The algorithm computes the probability of the query
conditioned on the root label of each interpretation because
the root formula encodes the state of the narrative in that
interpretation. Finally, the algorithm marginalizes over all
derived probabilities and answers the query using equation
P(q|OA) =

∑
i PPath(pathi, T )P0(q

i
0|pathi · σ0). Figure 2

shows the calculation for P (Atloc(L)).

Lemma 1. PPath returns a probability distribution over all
the interpretations in the forest from time step 0 to time step
T (i.e.,

∑
i PPath(pathi,T) = 1).

Theorem 1. Let Tx = (T,OA) be a narrative model for a
PAM. If q is a conjunction of literals at an arbitrary time step,
then ExactInf returns the correct answer to the probability of
query formula q given Tx.

Lifted Reasoning We introduce a lifted reasoning ap-
proach to handle free variables that appear in effect axioms.
One naive approach is to ground all the free variables (sim-
ilar to (Helmert 2008)) and use the propositional reasoning
algorithm. The problem with grounding is that we need to
deal with a huge state space. Instead, we use a lifted algo-
rithm that considers a variable x as a potential set of con-
stants. The algorithm does not ground variable x unless a
constant c included in x appears in the narrative. In this
case, the constant c is no longer in the span of variable x
which still includes other constants.

More specifically, our algorithm replaces every free vari-



able x with a new auxiliary constant AuxC plus a table
possTable that restricts its possible values. For example, if
possTable(AuxC) = {C1, . . . , Ck} and Q is an arbitrary flu-
ent then: Q(AuxC) ≡ Q(C1)∨ . . .∨Q(Ck). After replacing
variables with auxiliary constants, our algorithm treats every
auxiliary constant as a regular constant in the operations. In
this case, the interpretation forest is no longer well-defined if
the algorithm directly applies auxiliary constants in progres-
sion and regression. To satisfy the properties of the forest
the algorithm Normalizes the node formulas by grounding
some other fluent schemas. A normal formula is defined as
follows:
Definition 6 (normal formula). A formula fm = f1∧. . .∧fk
is in normal form means that: if a constant C is a grounding
of a variable x in the arguments of one fluent schema fi, then
C is the grounding of variable x in all other fluent schemas
that has x as an argument.

Procedure Normalize(fm) is applied after each progres-
sion or regression operation, It first checks whether a
formula fm is in normal form or not. If it is not
then Normalize returns a set of formulas {fm1, . . . , fmk}
whose disjunctions have the same truth value as fm and
every fmi is in normal form. Then, Normalize repli-
cates the current node (labeled by fm) in the forest into
k different nodes whose formulas are fmi. For ex-
ample, if the combination Q(AuxC), P (AuxC), Q(C) ex-
ists in fm then it extracts C from the possTable(AuxC)
and builds two disjuncts by including two new literals
P (C) and ¬P (C) as (P (AuxC), Q(AuxC), Q(C), P (C))
and (P (AuxC), Q(AuxC), Q(C),¬P (C)).
Lemma 2. If formula fm′ = fm1 ∨ . . . ∨ fmk is the result of
Normalize(fm), then every fmi is (a) normal and (b) fm′ has
the same truth value as fm.

The following corollary shows that the lifted reasoning
improves the running time over grounding.
Corollary 1 (Complexity). Let T be the length of the narra-
tive, B be the maximum branching factor, GF be the ground
fluents, PathF be the fluents appearing in an interpretation
path. If I represents the constants and PathO represents
fluent schemas affected by the normalization step then the
running time of lifted reasoning is O(2|PathF|+|PathO||F|BT )

while the running time with grounding is O(2|GF||I|BT ).
ExactInf algorithm returns exact probability of the query

formula and allows to answer queries about every time step.
Moreover, it uses the notion of partial states instead of com-
plete states. In other exact algorithms (e.g., (Baral & Tuan
2002)) every world state should be represented completely if
they relax the hidden assumption that the initial state of the
narrative is known. Even with partial states, the number of
trees in the forest generated by our algorithm is exponential
in terms of number of fluents and deterministic events that
appear in the narrative. It is just feasible for narratives that
are short or have few ambiguities. Therefore, approximate
reasoning is of much interest.

3.2 Approximate Reasoning
The AppxInf algorithm returns the truth value of a query
formula given sentences 〈a1, . . . , aT 〉 and PAM representa-
tion. The algorithm uses a Viterbi-like (Rabiner 1989) dy-
namic programming subroutine that approximates the most

likely event sequence corresponding to a narrative given the
PAM representation instead of storing all the possible in-
terpretations of the narrative. This subroutine returns path
〈ev1, . . . , evT 〉 as an approximation of the most likely event
sequence corresponding to the narrative using the following
recurrence relations.

V1,da = Pa(da|a1, s0), S1,da = Prog(s0, da), Path1,da = [da]

Vt,da = Pa(da|at, st−1) + Vt−1,ev + lst−1,da

St,da = Prog(st−1, da),Patht,da = Patht−1,ev + [da] (1)

where ev = argmaxda∈DA(Vt−1,da), st−1 = St−1,ev , and
ls,da is a loss function.

Here Vt,da (not a probability function) shows the value
of the best sequence Patht,da for the first t sentences, and
St−1,da shows the current state of the narrative at time t−1.
The algorithm initializes the value of the path with the prob-
abilities of events for the first sentence. Then, at each time
step the algorithm integrates the probability of event da and
the maximum value derived for the step t − 1. If the pre-
conditions of da is not consistent with the current state st−1
we penalize the value of choosing this event using a loss
function lst−1,da which is a real number between 0 and -1.
Current state St,da is derived by Progressing state st−1 with
event da. The path Patht,ev is updated by keeping a pointer
to the previous selected event in the recursive step. Finally,
the best path is derived as: evT = argmaxda∈DA(VT,da)
and ev1..T−1 = PathevT ,T

Finally, AppxInf checks if the query holds in the current
state of the narrative. The current state of the narrative at the
query time is computed by progressing the initial state and
regressing the final state. Notice that the Viterbi-like ap-
proach does not return the exact most likely event sequence
as it depends on the loss function at every step that the event
is inconsistent. To deal with free variables we use the ap-
proach in (Nance, Vogel, & Amir 2006) for parametrized
filtering with a sequence of deterministic events.

4 Experiments: Reading Comprehension
In this section we show how we represent a narrative using
PAM for two domains: children story in spatial contexts and
Robocup soccer commentaries. Moreover, we show the per-
formance of our system for answering semantic questions
whose answers are not contained in the text.

4.1 Robocup Soccer Commentaries
We use a dataset from (Chen, Kim, & Mooney 2010) includ-
ing four commentaries of Robocup soccer games. We first
extract fluents and manually build effect axioms for about
20 events in the domain. We then apply an iterative learning
approach (Hajishirzi & Amir 2011) to compute the transi-
tion probability corresponding to every sentence. Next, we
apply AppxInf algorithm and answer queries about the com-
mentaries.

We compare the precision of our algorithm with a base-
line algorithm that returns a part of the text that has similar
features to the query. The baseline algorithm is a rough im-
plementation of a traditional reading comprehension system
(Rilo & Thelen 2000). We evaluate the precision of the re-
turned responses as the percentage of the steps that the algo-
rithm answers the query correctly.



Approach 1 2 3 4 Avg.
Query I: Who has the possession of the ball?

AppxInf .76 .70 .80 .74 .75
Baseline .27 .27 .26 .24 .26
Query II: Did a correct pass happen at this step?
AppxInf .95 .93 .99 .98 .96
Baseline .82 .50 .59 .57 .64

Table 1: Results of answering questions about four Robocup com-
mentaries using our approach AppxInf and a baseline.

For example, to answer the query “Who has the posses-
sion of the ball?” the baseline reports sentences that term
“ball” has appeared. Another example query is “Did a cor-
rect pass happen at the current time step?”. The baseline
algorithm looks for sentences that “pass” appears in them.
This way, they really do not distinguish between pass and
bad-pass events. The accuracies of both approaches are re-
ported in Table 1. The results suggests that mapping sen-
tences to meaningful events using our representation pro-
vides deeper understanding of the narrative as it can answer
questions whose responses are not contained in the text.

4.2 Children Story
Here we apply our framework to a less structured domain,
children stories with focus on spatial contexts. We use sta-
tistical approaches over commonsense knowledge bases to-
gether with NLP tools and build corresponding PAM repre-
sentation. We manually describe effect axioms for about 15
verbs extracted from 1000 most common nouns. In addition,
we build a set of predicates which may be extended given the
narrative. Our example narrative (Figure 3)(a) is a children
story1 . We first apply C&C tools (Curran, Clark, & Bos
2007) that maps texts to logical representations by generat-
ing a logical symbol for every element of the text. We ap-
ply postprocessing and derive the verbs and their arguments
from the narrative. Therefore, the narrative is represented as
a sequence of relationships of the form verb(args) (Figure
3(b)).

Transition Probability: The verbs in the sentences show
uncertainty between different deterministic events which are
manually described by effect axioms. We map every sen-
tence to a probability distribution over different determinis-
tic events and build the transition model of PAM.

We use hyponyms of a verb as possible deterministic
events corresponding to that verb. In linguistics, a hyponym
is a word that shares a type-of relationship with its hyper-
nym. For example, run, walk, and drive are all hyponyms
of go (their hypernym). We use WordNet (Fellbaum 1998)
to extract the list of hyponyms (deterministic events) associ-
ated with the verb. We then compute transition distribution
P (ev|s) of event ev given the sentence s = verb(args).
In fact, we identify how frequently event ev has been used
together with the arguments args in a corpus (Lee 1999).
The corpus consists of tuples in the form of (noun, verb, fre-
quency) extracted for 1000 most common nouns.

To compute the transition probability we divide the fre-
quency of the tuple (ev, args) over the frequency of args
in the corpus: P (ev|s) = |(ev, args)|/|args|. If ei-
ther of the terms in the args do not appear in the cor-
pus, we generalize that term by replacing it with its hy-
pernym and compute the frequency of new arguments. In

1http://www.goodnightstories.com/
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Figure 3: (a) Children story (b) logical representation correspond-
ing to the story (c) interpretation forest (d) semantic questions
about the story and responses.

addition, if the tuple (ev, args) do not appear in the cor-
pus, we find similar nouns Sims(arg) for each term arg
in the args. We then compute the weighted sum over fre-
quencies of similar nouns and the event ev. The weights
are derived by computing the semantic distance (Lee 1999)
between similar nouns and arg. Therefore, P (ev|s) ∝∏

arg∈args
∑

sim∈Sims(arg) |ev, sim|Dist(sim, arg).
To evaluate the precision of our method we test on another

corpus, SemCor2. We transform every sentence verb(args)
in SemCor to the form of hypernym(verb)(args) using
C&C tools and WordNet. For every new relation we apply
the above frequency counting and compute the probability
of all deterministic events associated with hypernym(verb).
For evaluation, we rank the events according to their prob-
abilities and check the rank of the original verb of the sen-
tence. Table 2 shows the result of our frequency checking
and a baseline to see if the original verb is among the first
k candidates. The baseline algorithm returns the most fre-
quent event independent of the args in the sentence. Table
3 shows transition probabilities derived using our approach
for some verbs including the verbs in the children story.

Prior Distribution We build a part of prior distribution

2http://www.seas.smu.edu/˜sanda/research/



top k top 1 top 2 top 3 top 4 top 5
our method .24 .52 .66 .75 .92

baseline .14 .43 .59 .68 .89
Table 2: Comparing the rank of the correct event in top k returned
deterministic events by our approach vs. Baseline.

verb,args
memorize,pattern make,tea go,home

ev
en

t,p

study .35 cook .42 ride .38
review .22 make .37 walk .28
absorb .18 throw .16 run .36

memorize .17 dip .05
Table 3: Some examples for the transition distributions over the
events (hyponyms of the verb)

P0 with a focus on spatial contexts by computing the prob-
abilities P(l, o), the probability that object o is in location
l. We extract object-location correlations from Open Mind
Common Sense (OMCS) knowledge base (Singh 2002),
findin file, which contains a set of sentences of the form,
“you often find (object o) (in location l)”. For each object
o and location l in OMCS we calculate P(l, o) as the fre-
quency of the appearance of object o close to location l in
corpus (American fiction downloaded from Project Guten-
berg)3. To compute P(l|o) and P(o|l) we divide this num-
ber by the frequency of the object o or the location l in the
corpus, respectively. Table 4 shows some results of object-
location probabilities including terms of our story.

Answering Questions: We build the PAM representation
and the forest corresponding to the story (Figure 3(c)) where
we use the transition probabilities from Table 3. Notice that
we infer the missing arguments of the events when we build
the forest as we know the effect axioms and the number of
arguments for each event.

Using our framework we can answer different categories
of questions (Figure 3(d)) whose responses are not contained
in the text. First category (Questions 2, 3, and 5) inquire
about the object locations or properties that can be explic-
itly inferred from the interpretation forest. Second cate-
gory (question 1) is about object locations which can be in-
ferred from the prior probability P0, a probabilistic version
of OpenMind. Third category(Question 4) inquires about
event probabilities derived from the transition distribution.

Answering these types of questions using current question
answering techniques is very hard. For example our rough
implementation of (Rilo & Thelen 2000) is not able to an-
swer these question as it looks for parts of texts that have
similar features to the question. The reason is that the re-
sponses are not mentioned in the narrative, and reasoning is
required to infer responses.

5 Discussion and Future Work
In this paper we introduced a framework together with exact
and approximate reasoning algorithms for representing nar-
ratives and answering queries about them. We suggest that
using action theories allows understanding semantics of the
narrative as well as answering questions whose responses
are not contained in the text using reasoning in the frame-
work. We demonstrate our results in a Robocup commentary
domain and a less structured domain of children stories.

Our current system is a flexible structure that can be aug-
mented with richer NLP tools such as dismbiguation, co-

3See http://www.gutenberg.org/.

Objects Locations
Animal Ball Bed street
wild .64 game .43 bedroom .43 vehicle .40
water .16 hand .33 hotel .29 pavement .28
forest .05 park .09 hospital .16 curb .25
cage .05 basket .08 store .12 bus stop .7

Table 4: Prior distribution P0(l|o) for locations given an object,
and P0(o|l) for objects given a location.

reference resolution, etc. For example, have ice cream in
our story should be disambiguated to eating and therefore a
branch of the tree should be removed. Our immediate future
work is to augment our system with such NLP tools and ap-
ply it in Remedia corpus for reading comprehension. Our
idea is to manually construct effect axioms for some events
and a noise event Nothing. This way we can model all the
verbs of the stories. Our current approach only works if the
sentences are consecutive; In future, we would like to ap-
ply partial planning ideas and deal with overlapping events
that happen in the narrative. Also, we would like to use this
approach to find missing events of narratives.
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