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Abstract

Many powerful Monte Carlo techniques for
estimating partition functions, such as an-
nealed importance sampling (AIS), are based
on sampling from a sequence of intermedi-
ate distributions which interpolate between
a tractable initial distribution and an in-
tractable target distribution. The near-
universal practice is to use geometric aver-
ages of the initial and target distributions,
but alternative paths can perform substan-
tially better. We present a novel sequence
of intermediate distributions for exponen-
tial families: averaging the moments of the
initial and target distributions. We derive
an asymptotically optimal piecewise linear
schedule for the moments path and show that
it performs at least as well as geometric aver-
ages with a linear schedule. Moment averag-
ing performs well empirically at estimating
partition functions of restricted Boltzmann
machines (RBMs), which form the building
blocks of many deep learning models.

1. Introduction

Many generative models are defined in terms of an
unnormalized probability distribution, and comput-
ing the probability of a data point requires comput-
ing the (usually intractable) partition function. This
is problematic for model selection, since one often
wishes to compute the probability assigned to held-out
test data. While partition function estimation is in-
tractable in general, there has been extensive research
on variational (Yedidia et al., 2005; Wainwright et al.,
2005; Globerson & Jaakkola, 2007) and sampling-
based (Neal, 2001; Skilling, 2006; Moral et al., 2006)

approximations. In the context of model comparison,
annealed importance sampling (AIS) (Neal, 2001) is
especially widely used because given enough compu-
tational resources, it can provide high-accuracy esti-
mates. AIS has enabled precise quantitative compar-
isons of powerful generative models in image statis-
tics (Sohl-Dickstein & Culpepper, 2012; Theis et al.,
2011) and deep learning, including restricted Boltz-
mann Machines and Deep Belief Networks (Salakhut-
dinov & Murray, 2008; Desjardins et al., 2011; Taylor
& Hinton, 2009). Unfortunately, applying AIS in prac-
tice can be computationally-intensive and require la-
borious hand-tuning of annealing schedules. Because
of this, many generative models still have not been
quantitatively compared in terms of held-out likeli-
hood (LeRoux et al., 2011).

AIS requires defining a path of intermediate distribu-
tions which interpolate between a tractable initial dis-
tribution and the intractable target distribution. Typ-
ically, one uses geometric averages of the initial and
target distributions. Tantalizingly, Gelman & Meng
(1998) derived the optimal paths for some toy models
in the context of path sampling, and showed that they
vastly outperformed geometric averages. However, as
choosing an optimal path is generally intractable, ge-
ometric averages still predominate.

In this paper, we present a theoretical framework for
evaluating alternative paths. We propose a novel se-
quence of intermediate distributions defined by averag-
ing moments of the initial and target distributions. We
show that the two sequences optimize different vari-
ational objectives, derive an asymptotically optimal
piecewise linear schedule, and give strong theoretical
guarantees of the performance under perfect mixing.
Our proposed path often outperforms geometric av-
erages at estimating partition functions of restricted
Boltzmann machines (RBMs).
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Algorithm 1 Annealed Importance Sampling

for i = 1 to M do
x0 ← sample from p0(x)
w(i) ← Za
for k = 1 to K do
w(i) ← w(i) fk(xk−1)

fk−1(xk−1)

xk ← sample from Tk (x |xk−1)
end for

end for
return Ẑb =

∑M
i=1 w

(i)/M

2. Estimating Partition Functions

Suppose we have a probability distribution pb(x) =
fb(x)/Zb defined on some space X , where fb(x) can
be computed efficiently for a given x ∈ X , and we
are interested in estimating the partition function Zb.
Annealed importance sampling (AIS) is an algorithm
which estimates Zb by gradually changing, or “anneal-
ing,” a distribution. In particular, suppose we have a
sequence of K + 1 intermediate distributions pk(x) =
fk(x)/Zk for k = 0, . . .K, where pa(x) = p0(x) is a
tractable initial distribution, and pb(x) = pK(x) is the
intractable target distribution. For simplicity, assume
all distributions are strictly positive on X . Suppose
that for each pk we have an MCMC transition opera-
tor Tk (e.g. Gibbs sampling) which leaves pk invariant.
AIS alternates between MCMC transitions and impor-
tance sampling updates, as shown in Alg 1.

The output of AIS is an unbiased estimate Ẑb of
Zb. Remarkably, this holds even in the context of
non-equilibrium samples along the chain (Neal, 2001;
Jarzynski, 1997). However, unless the intermediate
distributions and transition operators are carefully
chosen, Ẑb may have high variance and be far from
Zb with high probability.

The mathematical formulation of AIS leaves much flex-
ibility for choosing intermediate distributions. How-
ever, one typically defines a path γ : [0, 1] 7→ P
through some family P of distributions. The interme-
diate distributions pk are points along this path cor-
responding to a schedule 0 = β0 < β1 < . . . < βK = 1.
One typically uses the geometric path γGA, defined in
terms of geometric averages of pa and pb:

pβ(x) = fβ(x)/Z(β) = fa(x)1−βfb(x)β/Z(β). (1)

Commonly, fa is the uniform distribution, and (1) re-
duces to pβ(x) = fb(x)β/Z(β). This motivates the
term “annealing”, and β resembles an inverse temper-
ature parameter. As in simulated annealing, the “hot-
ter” distributions often allow faster mixing between
modes which are isolated in pb.

AIS is closely related to a broader family of techniques
for posterior inference and partition function estima-
tion, all based on the following identity from statistical
physics:

logZb − logZa =

∫ 1

0

Ex∼pβ

[
d

dβ
log fβ(x)

]
dβ. (2)

Thermodynamic integration (Frenkel & Smit, 2002)
estimates (2) using numerical quadrature, and path
sampling (Gelman & Meng, 1998) does so with Monte
Carlo integration. The weight update in AIS can be
seen as a finite difference approximation. Tempered
transitions (Neal, 1996) is a Metropolis-Hastings pro-
posal operator which heats up and cools down the dis-
tribution, and computes an acceptance ratio by ap-
proximating (2).

The choices of a path and a schedule are central to all
of these methods. Most work on adapting paths has
focused on tuning schedules along a geometric path
(Neal, 1996; Behrens et al., 2012; Calderhead & Giro-
lami, 2009). Neal (1996) showed that the geometric
schedule was optimal for annealing the scale parame-
ter of a Gaussian, and Behrens et al. (2012) extended
this result more broadly. The aim of this paper is to
propose, analyze, and evaluate a novel alternative to
γGA based on averaging moments of the initial and
target distributions.

3. Analyzing AIS Paths

When analyzing AIS, it is common to assume perfect
transitions, i.e. that each transition operator Tk re-
turns an independent and exact sample from the dis-
tribution pk (Neal, 2001). This is intended to model
the situation wheres the number of intermediate dis-
tributions is much larger than the mixing time. As
Neal (2001) points out, assuming perfect transitions,
the Central Limit Theorem shows that the w(i) are ap-
proximately log-normally distributed. In this case, the
variances var(w(i)) and var(logw(i)) are both mono-
tonically related to E[logw(i)]. Therefore, our analysis
focuses on E[logw(i)].

Assuming perfect transitions, the expected log weights
are given by:

E[logw(i)] = logZa +

K−1∑
k=0

Epk [log fk+1(x)− log fk(x)]

= logZb −
K−1∑
k=0

DKL(pk‖pk+1). (3)

In other words, each logw(i) can be seen as a biased
estimator of logZb, where the bias δ is given by the
sum of KL divergences

∑K−1
k=0 DKL(pk‖pk+1).
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Suppose P is a family of probability distributions pa-
rameterized by θ ∈ Θ, and the K + 1 distributions
p0, . . . , pK are chosen to be linearly spaced along a
path γ : [0, 1] 7→ P. Let θ(β) represent the parameters
of the distribution γ(β). As the number of intermedi-
ate distributions K is increased, the bias δ decays like
1/K, and the asymptotic behavior is determined by a
functional F(γ):

Theorem 1. Suppose K + 1 distributions pk are lin-
early spaced along a path γ. Under the assumption of
perfect transitions, if θ(β) and the Fisher information
matrix Gθ = covx∼pθ (∇θ log pθ(x)) are smooth, then
as K → ∞ the bias δ = logZb − E[logw(i)] is deter-
mined by the functional:

Kδ = K

K−1∑
k=0

DKL(pk‖pk+1)→ F(γ)

≡ 1

2

∫ 1

0

θ̇(β)TGθ(β)θ̇(β)dβ, (4)

where θ̇(β) represents the derivative of θ with respect
to β. [See appendix for proof.]

This result reveals a relationship with path sampling,
as Gelman & Meng (1998) showed that the variance
of the path sampling estimator is proportional to the
same functional. One useful result from their anal-
ysis is a derivation of the optimal schedule along a
given path. In particular, the value of F(γ) using the
optimal schedule is given by `(γ)2/2, where ` is the
Riemannian path length defined by

`(γ) =

∫ 1

0

√
θ̇(β)TGθ(β)θ̇(β)dβ. (5)

Intuitively, the optimal schedule moves more slowly
(i.e. assigns more intermediate distributions) along the
parts of the path with high curvature. While Gelman
& Meng (1998) derived the optimal paths and sched-
ules for some simple examples, they observed that this
is intractable in most cases and recommended using
geometric paths in practice.

The above analysis assumes perfect transitions, which
can be unrealistic in practice because many distribu-
tions of interest have separated modes between which
mixing is difficult. As Neal (2001) observed, in such
cases, AIS can be viewed as having two sources of
variability: that caused by movement within a mode,
and that caused by the allocation of samples to dif-
ferent modes. The former source of variability is well
modeled by the perfect transitions analysis, and can
be made small by adding more intermediate distri-
butions. The latter, however, can persist even with
large numbers of intermediate distributions. While our

theoretical analysis focuses on perfect transitions, our
proposed method often gave substantial improvement
empirically in situations with poor mixing.

4. Moment Averaging

As discussed in Section 2, the typical choice of inter-
mediate distributions for AIS is the geometric averages
path γGA given by (1). In this section, we propose an
alternative path for an exponential family model. An
exponential family model is defined as

p(x) =
1

Z(η)
h(x) exp

(
ηTg(x)

)
, (6)

where η are the natural parameters and g are the suf-
ficient statistics. Exponential families include a wide
variety of statistical models as special cases, including
Markov random fields.

In exponential families, geometric averages correspond
to averaging the natural parameters:

η(β) = (1− β)η(0) + βη(1) (7)

Exponential families can also be parameterized in
terms of their moments, or expected sufficient statis-
tics, s = E[g(x)]. For any exponential family, there
is a one-to-one mapping between moments and nat-
ural parameters. We propose an alternative to γGA
called the moment averages path, denoted γMA, and
defined by averaging the moments of the initial and
target distributions:

s(β) = (1− β)s(0) + βs(1). (8)

This path exists for any minimal exponential family
model, since the set of realizable moments is convex
(Wainwright & Jordan, 2008).

As an illustrative example, consider a multivariate
Gaussian distribution parameterized by the mean µ
and covariance Σ. The expected sufficient statistics
are E[x] = µ and − 1

2E[xxT ] = − 1
2 (Σ + µµT ). By

plugging these into (8), we find that γMA is given by:

µ(β) = (1− β)µ(0) + βµ(1) (9)

Σ(β) = (1− β)Σ(0) + βΣ(1) +

β(1− β)(µ(1)− µ(0))(µ(1)− µ(0))T . (10)

In other words, the means are linearly interpolated,
and the covariances are linearly interpolated and
stretched out in the direction containing the two
means. Intuitively, this stretching is a useful property,
because it means that each intermediate distribution
is more similar to the next. A comparison of the two
paths is shown in Figure 1.
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Figure 1. Comparison of γGA and γMA for multivariate
Gaussians: intermediate distribution for β = 0.5, and µ(β)
for β evenly spaced from 0 to 1.

Next consider the example of a restricted Boltzmann
machine (RBM), a widely used model in deep learning.
An RBM is a Markov random field with variables v
(the visible units) and h (the hidden units), and which
has the distribution

p(v,h) ∝ exp
(
aTv + bTh + vTWh

)
. (11)

The parameters of the model are the visible biases a,
the hidden biases b, and the weights W. Since these
parameters are also the natural parameters in the ex-
ponential family representation, γGA reduces to lin-
early averaging the biases and the weights. The suffi-
cient statistics of the model are the visible activations
v, the hidden activations h, and the products vhT .
Therefore, γMA is defined by:

E[v]β = (1− β)E[v]0 + βE[v]1 (12)

E[h]β = (1− β)E[h]0 + βE[h]1 (13)

E[vhT ]β = (1− β)E[vhT ]0 + βE[vhT ]1 (14)

For most models of interest, including RBMs, it is in-
feasible to determine γMA exactly, as it requires solv-
ing two often intractable problems: (1) estimating the
moments of pb, and (2) solving for model parameters
which match the averaged moments s(β). However,
much work has been devoted to practical approxima-
tions (Hinton, 2002; Tieleman, 2008), some of which
we use in our experiments with intractable models.
Since it would be infeasible to moment match every
βk even approximately, we introduce the moment av-
erage spline (MAS) path, denoted γMAS . We choose
a set of R values β1, . . . , βR called knots, and solve for
the natural parameters η(βj) to match the moments
s(βj) for each knot. We then interpolate between the
knots using geometric averages. The analysis of Sec-
tion 4.2 shows that, under the assumption of perfect
sampling, nothing is lost by using the piecewise geo-
metric path γMAS in place of the exact moment aver-
ages path γMA.

4.1. Variational Interpretation

We can interpret γGA and γMA as optimizing differ-
ent variational objectives, which provides additional
insight into their behavior. For geometric averages, the
intermediate distribution γGA(β) optimizes a weighted
sum of KL divergences to the initial and target distri-
butions:

arg min
p

(1− β)DKL(p‖p0) + βDKL(p‖p1). (15)

On the other hand, the γMA minimizes the sum of KL
divergences in the reverse direction:

arg min
p

(1− β)DKL(p0‖p) + βDKL(p1‖p). (16)

See the appendix for the derivations. The optimiza-
tion problem (15) is optimized by a distribution which
only puts significant mass in the “intersection” of p0
and p1, i.e. those regions which are likely under both
the initial and target distributions. By contrast, (16)
encourages the distribution to be spread out in order
to capture all high probability regions of both p0 and
p1. This interpretation helps explain why the interme-
diate distributions in the Gaussian example of Figure
1 take the shape that they do. In our experiments, we
found that γMA often gave more accurate results than
γGA because the intermediate distributions captured
regions of the target distribution which were missed
by γGA.

4.2. Asymptotics under Perfect Transitions

In general, we found that γGA and γMA can look very
different. Intriguingly, both paths always result in the
same value of the cost functional F(γ) of Theorem 1
for any exponential family model. Furthermore, noth-
ing is lost by using the spline approximation γMAS in
place of γMA:

Theorem 2. For any exponential family model with
natural parameters η and expected sufficient statistics
s, the functionals for the geometric and moments paths
are given by:

F(γGA) = F(γMA) = F(γMAS) =

1

2
(η(1)− η(0))T (s(1)− s(0)). (17)

Proof. The two parameterizations of exponential fam-
ilies satisfy the relationship Gηη̇ = ṡ (Amari & Na-
gaoka, 2000, sec. 3.3). Therefore, the cost functional

can be rewritten as F(γ) = 1
2

∫ 1

0
η̇(β)T ṡ(β)dβ. Be-

cause γGA and γMA interpolate the natural parameters
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and moments respectively,

F(γGA) =
1

2
(η(1)− η(0))T

∫ 1

0

ṡ(β)dβ

=
1

2
(η(1)− η(0))T (s(1)− s(0)) (18)

F(γMA) =
1

2
(s(1)− s(0))T

∫ 1

0

η̇(β)dβ

=
1

2
(s(1)− s(0))T (η(1)− η(0)). (19)

Finally, to show that F(γMAS) = F(γMA), observe
that γMAS uses the geometric path between each pair
of knots γ(βj) and γ(βj+1), while γMA uses the mo-
ments path. The above analysis shows the functionals
must be equal for each segment, and therefore equal
for the entire path.

This analysis shows that all three paths result in the
same expected log weights asymptotically, assuming
perfect transitions. There are several caveats, how-
ever. First, we have noticed experimentally that γMA

often yields substantially more accurate estimates of
Z than γGA even when the average log weights are
comparable. Second, the two paths can have very dif-
ferent mixing properties, which can strongly affect the
results. Third, Theorem 2 assumes linear schedules,
and there can be substantial room for improvement if
one is allowed to tune the schedule.

For instance, consider moving between two Gaussians
pa = N (µa, σ) and pb = N (µb, σ). The optimal sched-
ule for the geometric path is a linear schedule with
cost F(γGA) = O(d2), where d = |µb−µa|/σ. Using a
linear schedule, the moment path also has cost O(d2),
consistent with Theorem 2. However, most of the cost
of the path results from instability near the endpoints,
where the variance changes suddenly. Using an op-
timal schedule, which places more distributions near
the endpoints, the cost functional falls to O((log d)2),
which is within a constant factor of the optimal path
derived by Gelman & Meng (1998). (See the ap-
pendix for the derivations.) In other words, while
F(γGA) = F(γMA), they achieve this value for dif-
ferent reasons: γGA follows an optimal schedule along
a bad path, while γMA follows a bad schedule along a
near-optimal path. We speculate that, combined with
the procedure of Section 4.3 for choosing a schedule,
moment averages may result in large reductions in the
cost functional for some models.

4.3. Optimal Binned Schedules

In general, it is hard to choose a good schedule for a
given path. However, consider the set of binned sched-

ules, where the path is divided into segments, some
number Kj of intermediate distributions are allocated
to each segment, and the distributions are spaced lin-
early within each segment. Under the assumption of
perfect transitions, there is a simple formula for an
asymptotically optimal binned schedule which requires
only the parameters obtained through moment aver-
aging:

Theorem 3. Let γ be any path for an exponential
family model defined by a set of knots βj, each with
natural parameters ηj and moments sj, connected by
segments of either γGA or γMA paths. Then, under
the assumption of perfect transitions, an asymptoti-
cally optimal allocation of intermediate distributions
to each segment is given by:

Kj ∝
√

(ηj+1 − ηj)
T (sj+1 − sj). (20)

Proof. By Theorem 2, the cost functional for segment
j is Fj = 1

2 (ηj+1 − ηj)
T (sj+1 − sj). Hence, with

Kj distributions allocated to it, it contributes Fj/Kj

to the total cost. The values of Kj which minimize∑
j Fj/Kj subject to

∑
j Kj = K and Kj > 0 are

given by Kj ∝
√
Fj .

5. Experimental Results

In order to compare our proposed path with geometric
averages, we ran AIS to estimate partition functions of
several probability distributions using each path. For
all of our experiments, we report two sets of results.
First, we show the estimates of logZ as a function of
the number of intermediate distributions in order to
visualize the amount of computation necessary to ob-
tain reasonable accuracy. Second, as recommended by
Neal (2001), we report the effective sample size (ESS)
of the weights after a large number of intermediate dis-
tributions. This statistic roughly measures how many
independent samples one obtains using AIS.1 All re-
sults are based on 5,000 independent AIS runs, so the
maximum possible ESS is 5,000.

1ESS is defined as ESS = M/(1 + s2(w
(i)
∗ )) where

s2(w
(i)
∗ ) is the sample variance of the normalized weights

(Neal, 2001). In general, one should regard ESS estimates
cautiously, as they can give misleading results in cases
where an algorithm completely misses an important mode
of the distribution. However, as we report the ESS in cases
where the estimated partition functions are close to the
true value (when known) or agree closely with each other,
we believe them to be more accurate in our comparisons.
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Figure 2. Estimates of the log partition function of a normalized Gaussian as the number of intermediate distributions
increases. Error bars show bootstrap 95% confidence intervals. (Best viewed in color.)

5.1. Annealing Between Two Distant
Gaussians

In our first experiment, the initial and target distribu-
tions were the two Gaussians shown in Fig. 1, whose
parameters are given by N

((−10
0

)
,
(

1 −0.85
−0.85 1

))
and

N
((

10
0

)
,
(

1 0.85
0.85 1

))
. As both distributions are nor-

malized, Za = Zb = 1. We compared γGA and γMA

both under perfect transitions, and using the Gibbs
transition operator. We also compared linear sched-
ules with the optimal binned schedules of Section 4.3,
using 10 segments evenly spaced from 0 to 1.

Figure 2 shows the estimates of logZb for numbers of
intermediate distributions ranging from 10 to 1,000.
Observe that by 1,000 intermediate distributions, all
paths yield accurate estimates of logZ. However, γMA

gave accurate estimates with smaller numbers of inter-
mediate distributions. For example the moment path
achieves an average within one nat of logZb after 25
intermediate distributions, while the geometric path is
still off by 27 nats.

When comparing γGA and γMA using perfect tran-
sitions, Theorem 2 implies that both paths have ex-
actly the same cost functional F , and therefore the
log weights should be roughly the same.2 In fact, the
average log weights were close throughout; e.g., at 25
intermediate distributions, the average was -27.15 for
γMA and -28.04 for γGA. However, the log weights for
γMA had much larger variance, 1437.89, compared to
58.4 for γGA. This is because the intermediate dis-
tributions on γMA were broader, as predicted by the
analysis of Section 4.1. Most of the particles died out,
but enough of them landed in high probability regions
to yield reasonable estimates of logZb.

5.2. Partition Function Estimation for RBMs

Our next set of experiments focused on RBMs, a build-
ing block of many deep learning models (see Section

2As Theorem 1 is an asymptotic result, the average log
weights need not agree closely for finite K. In this example,
however, the values were close even for small K.

CD1(20) PCD(20)
logZ = 279.59 logZ = 178.06

pa(v) path log Ẑ ESS log Ẑ ESS

uni. GA lin. 279.60 248 177.99 204
uni. GA bin opt. 279.51 124 177.92 142
uni. MAS lin. 279.59 2686 178.09 289
uni. MAS bin opt. 279.60 2619 178.08 934

Table 1. Comparing estimates of the log partition function
of toy RBMs under different paths using 100,000 intermedi-
ate distributions annealing from uniform with 5,000 chains
and Gibbs transitions. ESS is the effective sample size of
the 5,000 chains, bolded values are ESS estimates that are
not significantly different (bootstrap hypothesis test with
1,000 samples at α = 0.05 significance level) under path
with highest ESS.

4). We considered RBMs trained with three different
algorithms: contrastive divergence (CD) with one step
(CD1) (Hinton, 2002), CD with 25 steps (CD25), and
persistent contrastive divergence (PCD) (Tieleman,
2008). All of the RBMs were trained on the MNIST
handwritten digits dataset (LeCun et al., 1998), which
has long served as a benchmark for deep learning al-
gorithms. We experimented both on small, tractable
RBMs and and full-size, intractable RBMs.

Since it is hard to compute γMA exactly for RBMs, we
used the moments spline path γMAS of Section 4 with
the 9 knot locations 0.1, 0.2, . . . , 0.9. We considered
the two initial distributions discussed by Salakhutdi-
nov & Murray (2008): (1) the uniform distribution,
equivalent to an RBM where all the weights and bi-
ases are set to 0, and (2) the base rate RBM, where
the weights and hidden biases are set to 0, and the hid-
den biases are set to match the averages of the pixels
over the MNIST training set.

Small, Tractable RBMs: To better understand the
behavior of γGA and γMAS , we first evaluated the
paths on RBMs with only 20 hidden units. Here, it is
possible to compute the exact partition function and
moments and generate exact samples by exhaustively
summing over all 220 hidden configurations. In this ex-
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Figure 3. Estimates of the log partition function of PCD(20) toy RBM (CD1(20) analogous) as the number of intermediate
distributions increases. Error bars show bootstrap 95% confidence intervals. (Best viewed in color.)

periment, the moments of the target RBMs were com-
puted exactly, and moment matching was performed
using conjugate gradient with the exact gradients com-
puted by exhaustive enumeration.

The results are shown in Figure 3 and Table 1. As ex-
pected under Theorem 2, both γGA and γMA were able
to accurately estimate the partition function using as
few as 100 intermediate distributions under exact sam-
pling. However, when limited to a single Gibbs step,
γMA achieved good accuracy using much fewer inter-
mediate distributions (Figure 3), and a higher ESS at
100,000 distributions. To check that the improved per-
formance didn’t rely on accurate moments of pb, we re-
peated the experiment with highly biased moments3,
and found that the results did not change substan-
tially.

Full-size, Intractable RBMs: For intractable
RBMs, moment averaging required approximately
solving two intractable problems: moment estimation
for the target RBM, and moment matching. We es-
timated the moments from 1,000 independent Gibbs
chains, using 10,000 Gibbs steps with 1,000 steps of
burn-in. The moment averaged RBMs were trained
using persistent contrastive divergence (PCD) (Tiele-
man, 2008). (We used 50,000 updates with a fixed
learning rate of 0.01 and no momentum.) We also
ran a cheap, inaccurate moment matching scheme (de-
noted MAS cheap) where visible moments were esti-
mated from the empirical MNIST base rate and the
hidden moments from the conditional distributions of
the hidden units given the MNIST digits. Intermedi-
ate RBMs were fit using 1,000 PCD updates and 100
particles, for a total computational cost far smaller
than that of AIS itself. Performance was comparable
under this approximation, suggesting that γMA can
be approximated cheaply and effectively. As with the
tractable RBMs, we found that optimal binned sched-
ules made little difference in performance, so we focus

3In particular, we computed the biased moments from
the conditional distributions of the hidden units given the
MNIST training examples, where each example of digit
class i was counted i+ 1 times.

here on linear schedules.

The most serious failure was γGA for CD1(500) with
uniform initialization, which under-estimated our best
estimates of the log partition function (and hence over-
estimated held-out likelihood) by nearly 20 nats. The
geometric path from uniform to PCD(500) and the mo-
ments path from uniform to CD1(500) also resulted in
underestimates, though less drastic. The rest of the
paths agreed closely with each other on their partition
function estimates, although some methods achieved
substantially higher ESS values on some RBMs. One
conclusion is that it’s worth exploring multiple initial-
izations and paths for a given RBM in order to ensure
accurate results.

Figure 4 compares samples along γGA and γMA for the
PCD(500) RBM, starting from the base rate RBM. For
a wide range of β values, the γGA RBMs assigned most
of their probability mass to an all-black image. As dis-
cussed in Section 4.1, γGA prefers configurations which
are probable under both the initial and target distribu-
tions. In this case, the hidden activations were closer
to uniform conditioned on the black image than on a
digit, so γGA preferred the black image. By contrast,
γMA yielded diverse, blurry digits which gradually co-
alesced into crisper ones.

6. Conclusion

We presented a theoretical analysis of the performance
of AIS paths and introduced a novel path for exponen-
tial families based on averaging moments. We gave a
variational interpretation of this path and an asymp-
totically optimal piecewise linear schedule, and showed
that it asymptotically outperforms geometric averages
with a linear schedule. Moment averages performed
well empirically at estimating partition functions of
RBMs. Many widely used sampling algorithms are
also based on paths, and our contributions are poten-
tially relevant to any of these algorithms.
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Figure 4. Visible activations for samples from PCD(500) RBM. (left) base rate RBM, β = 0 (top) geometric path
(bottom) moments path (right) target RBM, β = 1.
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Figure 5. Estimates of the log partition function of RBMs as the number of intermediate distributions increases on some
representative paths. Error bars show bootstrap 95% confidence intervals. (Best viewed in color.)
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Appendix

Proof of Theorem 1 from Section 3

Theorem 1. Suppose K + 1 distributions pk are lin-
early spaced along a path γ. Under the assumption of
perfect transitions, if θ(β) and the Fisher information
matrix Gθ = covx∼pθ (∇θ log pθ(x)) are smooth, then
as K → ∞ the bias δ = logZb − E[logw(i)] is deter-
mined by the functional:

Kδ = K

K−1∑
k=0

DKL(pk‖pk+1)→ F(γ)

≡ 1

2

∫ 1

0

θ̇(β)TGθ(β)θ̇(β)dβ, (21)

where θ̇(β) represents the derivative of θ with respect
to β.

Proof. First, consider a second-order Taylor expansion
of DKL(θ(β)‖θ(β + h)) around h = 0. The constant
and first order terms are zero. For the second order
term,

∇2
θDKL(θ‖θ0)

∣∣
θ=θ0

= Gθ,

so the second-order Taylor expansion is given by:

DKL(θ(β)‖θ(β + h)) =
1

2
h2θ̇

T
(β)Gθ(β)θ̇(β) + ε,

where

|ε| ≤ h3

6
max
β

∣∣∣∣ d3dh3 DKL(θ(β)‖θ(β + h))

∣∣∣∣ .



Annealing Between Distributions by Averaging Moments

Assuming a linear schedule, the bias is given by

δ =

K−1∑
k=0

DKL(pk‖pk+1)

=

K−1∑
k=0

DKL(θ(k/K) ‖ θ((k + 1)/K))

=
1

2K2

K−1∑
k=0

θ̇(βk)TGθ(βk)θ̇(βk) +

K−1∑
k=0

εk

The second term decays like 1/K2, so it approaches
zero even when scaled by K. The asymptotic bias,
therefore, is determined by the first term. When scaled
by K, this approaches

F(γ) ≡ 1

2

∫ 1

β=0

θ̇(β)TGθ(β)θ̇(β)dβ.

Therefore, Kδ → F(γ).

Derivation of variational interpretation from
Section 4.1

Geometric averages

For simplicity of notation, assume the state space X
is discrete. Consider solving for a distribution q to
minimize the weighted sum of KL divergences

(1− β)DKL(q‖p0) + βDKL(q‖p1) (22)

with the constraint that
∑

x q(x) = 1. The Lagrangian
is given by:

L(q) = λ
∑
x

q(x) + (1− β)
∑
x

q(x) (log q(x)− log pa(x))

+ β
∑
x

q(x) (log q(x)− log pb(x))

=
∑
x

λq(x) + q(x) log q(x)

− q(x) [(1− β) log pa(x)− β log pb(x)]

Differentiating with respect to q(x),

∂L(q)

∂q(x)
= λ+ 1 + log q(x)− (1− β) log pa(x)− β log pb(x).

Setting this to zero gives:

q(x) ∝ pa(x)1−βpb(x)β .

This is the optimum over the probability simplex. If
pa and pb belong to an exponential family P, with nat-
ural parameters ηpa and ηpb , the optimum is achieved
within P using ηβ = (1− β)ηpa + βηpb .

Moment averages

Suppose we wish to minimize

(1− β)DKL(p0‖q) + βDKL(p1‖q).

with respect to the natural parameters η of an ex-
ponential family distribution q. We expand the cost
function to get

J(η) = (1− β)
∑
x

pa(x)(log pa(x)− log q(x))

+ β
∑
x

pb(x)(log pb(x)− log q(x))

= const−
∑
x

[(1− β)pa(x) + βpb(x)] log q(x)

= const + logZ(η)

−
∑
x

[(1− β)pa(x) + βpb(x)]ηTg(x)

The partial derivatives are given by:

∂J

∂ηi
=
∑
x

q(x)gi(x)−
∑
x

[(1− β)pa(x) + βpb(x)] gi(x)

= Eq[gi(x)]− (1− β)Epa(gi(x))− βEpb(gi(x))

Setting this to zero, we see that the optimum solution
is given by averaging the moments of pa and pb:

Eq[gi(x)] = (1− β)Epa(gi(x)) + βEpb(gi(x))

Intuitively, this can be thought of as a maximum like-
lihood estimate of η for a dataset with (1−β) fraction
of the points drawn from pa and β fraction drawn from
pb.

Analysis of Gaussian example in Section 4.2

Here we evaluate the cost functionals for the Gaus-
sian example of Section 4.2 under γGA and γMA us-
ing both linear and optimal schedules. Recall that
pa = N (µ0, σ) and pb = N (µ1, σ). The natural pa-
rameters of the Gaussian are the information form
representation, with precision λ = 1/σ2 and poten-
tial h = λµ. The sufficient statistics are the first
and (rescaled) second moments given by E[x] = µ and
− 1

2E[x2] = − 1
2s ≡ −

1
2 (σ2 + µ2).

To simplify calculations, let β range from −1/2 to 1/2
(rather than 0 to 1), and assume µ0 = −1/2 and µ1 =
1/2. The general case can be obtained by rescaling µ0,
µ1, and σ.
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Geometric averages

Geometric averages correspond to averaging the natu-
ral parameters:

λ(β) = 1/σ2

h(β) = β/σ2

Solving for the moments,

µ(β) = β

s(β) = σ2 + β2.

The derivatives are given by:

λ̇(β) = 0

ḣ(β) = 1/σ2

µ̇(β) = 1

ṡ(β) = t

Ignoring the constant, the cost functional is given by:

F(γ) =
1

2

∫ 1/2

−1/2

ḣ(β)µ̇(β)− 1

2
λ̇(β)ṡ(β)dβ

=
1

2

∫ 1/2

−1/2

1

σ2
dβ

=
1

2σ2
.

We can also compute the cost under the optimal sched-
ule by computing the path length (see Section 3):

`(γ) =

∫ 1/2

−1/2

√
ḣ(β)µ̇(β)− 1

2
λ̇(β)ṡ(β)dβ

=

∫ 1/2

−1/2

√
1/σ2dβ

=
1

σ
.

Since the functional under the optimal schedule is
given by `2/2, these two answers agree with each other,
i.e. the linear schedule is optimal.

We assumed for simplicity that µ0 = −1/2 and µ1 =
1/2. In general, we can rescale σ and µ1 − µ0 by the
same amount without changing the functional. There-
fore, F(γGA) is given by:

(µ1 − µ0)2

2σ2
≡ d2

2
.

Moment averaging

Now let’s look at moment averaging. The parameter-
izations are given by:

µ(β) = β

s(β) = σ2 +
1

4

λ(β) =

(
σ2 +

1

4
− β2

)−1

h(β) =

(
σ2 +

1

4
− β2

)−1

β

with derivatives

µ̇(β) = 1

ṡ(β) = 0

λ̇(β) = 2

(
σ2 +

1

4
− β2

)−2

β

ḣ(β) = λ(β)µ̇(β) + µ(β)λ̇(β)

=

(
σ2 +

1

4
− β2

)−1

+ 2

(
σ2 +

1

4
− β2

)−2

β2

The cost functional is given by:

F(γMA) =
1

2

∫ 1/2

−1/2

µ̇(β)ḣ(β)− 1

2
ṡ(β)λ̇(β)

=
1

2

∫ 1/2

−1/2

ḣ(β)dβ

=
1

2
[h(1/2)− h(−1/2)]

=
1

2σ2
.

This agrees exactly with F(γGA), consistent with The-
orem 2.

However, we can see by inspection that for small σ,
most of the mass of this integral is concentrated near
the endpoints, where the variance changes suddenly.
This suggests that the optimal schedule would place
more intermediate distributions near the endpoints.

We can bound the cost under the optimal schedule by
bounding the path length `(γMA):



Annealing Between Distributions by Averaging Moments

`(γMA) =

∫ 1/2

−1/2

√
µ̇(β)ḣ(β)− 1

2
ṡ(β)λ̇(β)dβ

=

∫ 1/2

−1/2

√
ḣ(β)dβ

=

∫ 1/2

−1/2

√
λ(β)µ̇(β) + µ(β)λ̇(β)dβ

≤
∫ 1/2

−1/2

√
|λ(β)µ̇(β)|dβ +

∫ 1/2

−1/2

√
|µ(β)λ̇(β)|dβ

=

∫ 1/2

−1/2

1√
σ2 + 1

4 − β2
dβ +

√
2

∫ 1/2

−1/2

|β|
σ2 + 1

4 − β2
dβ

= 2 sin−1

(
1√

4σ2 + 1

)
+
√

2 log

(
1 +

1

4σ2

)
≤ π +

√
2 log

(
1 +

1

4σ2

)
The path length has dropped from linear to loga-
rithmic! Since F grows like `2, the cost drops from
quadratic to log squared.

This shows that even though Theorem 2 guarantees
that both γGA and γMA have the same functional un-
der a linear schedule, one path may do substantially
better than the other if one is allowed to change the
schedule.


