
Computer Networks and ISDN Systems 30 (1998) 107- 117

The anatomy of a large-scale hypertextual Web search engine ’

Sergey Brin *, Lawrence Page *Z
Computer Science Department. Stanford Univer.sity Stanford. CA 94305, USA

Abstract

In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure
present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search
results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available
at http:llgoogle.stanford.edu/

To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of Web pages
involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance
of large-scale search engines on the Web, very little academic research has been done on them. Furthermore, due to rapid
advance in technology and Web proliferation, creating a Web search engine today is very different from three years
ago. This paper provides an in-depth description of our large-scale Web search engine - the first such detailed public
description we know of to date.

Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical
challenges involved with using the additional information present in hypertext to produce better search results. This paper
addresses this question of how to build a practical large-scale system which can exploit the additional information present
in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone
can publish anything they want. 0 1998 Published by Elsevier Science B.V. All rights reserved.

Keywords: World Wide Web; Search engines; Information retrieval; PageRank: Google

1. Introduction

The Web creates new challenges for information
retrieval. The amount of information on the Web is
growing rapidly, as well as the number of new users
inexperienced in the art of Web research. People are

’ Corresponding author.
’ There are two versions of this paper - a longer full version
and a shorter printed version. The full version is available on the
Web and the conference CD-ROM.
’ E-mail: (sergey, page] @cs.stanford.edu

likely to surf the Web using its link graph, often start-
ing with high quality human maintained indices such
as Yahoo! 3 or with search engines. Human main-
tained lists cover popular topics effectively but are
subjective, expensive to build and maintain, slow to
improve, and cannot cover all esoteric topics. Auto-
mated search engines that rely on keyword matching
usually return too many low quality matches. To make
matters worse, some advertisers attempt to gain peo-
ple’s attention by taking measures meant to mislead

’ http://www.yahoo.com

0169-7552/9X/$19.00 0 1998 Published by Elsevier Science B.V. All rights reserved.
PII SOl69-7552(98)001 IO-X

108 S. Brin, L. Puge/Computer Networks and ISDN Systems 30 (1998) 107-117

automated search engines. We have built a large-scale
search engine which addresses many of the problems
of existing systems. It makes especially heavy use of
the additional structure present in hypertext to provide
much higher quality search results. We chose our sys-
tem name, Google, because it is a common spelling
of googol, or 10100 and fits well with our goal of
building very large-scale search engines.

1.1. Web search engines - scaling up: 1994-2000

Search engine technology has had to scale dra-
matically to keep up with the growth of the Web. In
1994, one of the first Web search engines, the World
Wide Web Worm (WWWW) [6] had an index of
110,000 Web pages and Web accessible documents.
As of November. 1997, the top search engines claim
to index from 2 million (WebCrawler) to 100 million
Web documents (from Search Engine Watch4). It
is foreseeable that by the year 2000, a comprehen-
sive index of the Web will contain over a billion
documents. At the same time, the number of queries
search engines handle has grown incredibly too. In
March and April 1994, the World Wide Web Worm
received an average of about 1500 queries per day.
In November 1997, Altavista claimed it handled
roughly 20 million queries per day. With the increas-
ing number of users on the Web, and automated
systems which query search engines, it is likely that
top search engines will handle hundreds of millions
of queries per day by the year 2000. The goal of our
system is to address many of the problems, both in
quality and scalability, introduced by scaling search
engine technology to such extraordinary numbers.

These tasks are becoming increasingly difficult as
the Web grows. However, hardware performance and
cost have improved dramatically to partially offset
the difficulty. There are, however, several notable
exceptions to this progress such as disk seek time and
operating system robustness. In designing Google,
we have considered both the rate of growth of the
Web and technological changes. Google is designed
to scale well to extremely large data sets. It makes
efficient use of storage space to store the index. Its
data structures are optimized for fast and efficient
access (see Section 4.2). Further, we expect that
the cost to index and store text or HTML will
eventually decline relative to the amount that will
be available (see Appendix B in the full version).
This will result in favorable scaling properties for
centralized systems like Google.

1.3. Design goals

I .3.1. Improved search quality

1.2. Google: scaling with the Web

Creating a search engine which scales even to to-
day’s Web presents many challenges. Fast crawling
technology is needed to gather the Web documents
and keep them up to date. Storage space must be
used efficiently to store indices and, optionally, the
documents themselves. The indexing system must
process hundreds of gigabytes of data efficiently.
Queries must be handled quickly, at a rate of hun-
dreds to thousands per second.

Our main goal is to improve the quality of Web
search engines. In 1994, some people believed that
a complete search index would make it possible to
find anything easily. According to Best of the Web
1994 - Navigators5, “The best navigation service
should make it easy to find almost anything on the
Web (once all the data is entered).” However, the
Web of 1997 is quite different. Anyone who has
used a search engine recently, can readily testify
that the completeness of the index is not the only
factor in the quality of search results. “Junk results”
often wash out any results that a user is interested
in. In fact, as of November 1997. only one of the
top four commercial search engines finds itself (re-
turns its own search page in response to its name
in the top ten results). One of the main causes of
this problem is that the number of documents in
the indices has been increasing by many orders of
magnitude, but the user’s ability to look at docu-
ments has not. People are still only willing to look
at the first few tens of results. Because of this, as
the collection size grows, we need tools that have
very high precision (number of relevant documents
returned, say in the top tens of results). Indeed, we
want our notion of “relevant” to only include the

’ http://www.searchenginewatch.com/ 5 http://botw.org/l99Wawardslnavigators.html

S. Brftz. L. Pup/Cotttp~rrer NetM.orks and ISDN Sufettu 30 (IYYK) 107-I 17 109

very best documents since there may be tens of
thousands of slightly relevant documents. This very
high precision is important even at the expense of
recall (the total number of relevant documents the
system is able to return). There is quite a bit of
recent optimism that the use of more hypertextual
information can help improve search and other ap-
plications [4.9,12,3]. In particular, link structure 171
and link text provide a lot of information for making
relevance judgments and quality filtering. Google
makes use of both link structure and anchor text (see
Sections 2.1 and 2.2).

1.32. Academic search engine research
Aside from tremendous growth, the Web has also

become increasingly commercial over time. In 1993,
1.5% of Web servers were on .com domains. This
number grew to over 60% in 1997. At the same time,
search engines have migrated from the academic
domain to the commercial. Up until now most search
engine development has gone on at companies with
little publication of technical details. This causes
search engine technology to remain largely a black
art and to be advertising oriented (see Appendix A
in the full version). With Google, we have a strong
goal to push more development and understanding
into the academic realm.

Another important design goal was to build sys-
tems that reasonable numbers of people can actually
use. Usage was important to us because we think
some of the most interesting research will involve
leveraging the vast amount of usage data that is
available from modern Web systems. For example,
there are many tens of millions of searches per-
formed every day. However, it is very difficult to get
this data. mainly because it is considered commer-
cially valuable.

Our final design goal was to build an architecture
that can support novel research activities on large-
scale Web data. To support novel research uses,
Google stores all of the actual documents it crawls
in compressed form. One of our main goals in de-
signing Google was to set up an environment where
other researchers can come in quickly, process large
chunks of the Web, and produce interesting results
that would have been very difficult to produce other-
wise. In the short time the system has been up, there
have already been several papers using databases

generated by Google, and many others are underway.
Another goal we have is to set up a Spacelab-like
environment where researchers or even students can
propose and do interesting experiments on our large-
scale Web data.

2. System features

The Google search engine has two important fea-
tures that help it produce high precision results. First,
it makes use of the link structure of the Web to cal-
culate a quality ranking for each Web page. This
ranking is called PageRank and is described in de-
tail in [7]. Second, Google utilizes links to improve
search results.

2.1. PageRank: bringing order to the Weh

The citation (link) graph of the Web is an impor-
tant resource that has largely gone unused in existing
Web search engines. We have created maps contain-
ing as many as 518 million of these hyperlinks, a
significant sample of the total. These maps allow
rapid calculation of a Web page’s “PageRank”, an
objective measure of its citation importance that cor-
responds well with people’s subjective idea of impor-
tance. Because of this correspondence, PageRank is
an excellent way to prioritize the results of Web key-
word searches. For most popular subjects, a simple
text matching search that is restricted to Web page
titles performs admirably when PageRank prioritizes
the results (demo available at google.stanford.edu).
For the type of full text searches in the main Google
system, PageRank also helps a great deal.

2.1.1. Description of PageRank calculation
Academic citation literature has been applied to

the Web, largely by counting citations or backlinks
to a given page. This gives some approximation of a
page’s importance or quality. PageRank extends this
idea by not counting links from all pages equally,
and by normalizing by the number of links on a
page. PageRank is defined as follows:

We assume page A has pages TI...Tn bt*hich point
to ir (i.e., are citations). The parameter d is N
damping j&or which can he .set hetK*ern 0 and 1.
We usually Set d to 0.85. There are tnore details

about d in the ne-vt section. Also C(A) is defined
as the number of links going out of page A. The
PageRank of u page A is given as,follows:

PR(A) = (I -d)

PR(TI)
+d(p

PR(Tn)

C(Tl)
+...+-

C(Tn) >

Note that the PageRanks form a probability dis-
tribution over Web pages, so the sum of all Web
pages’ PageRanks will be one.
PageRank or PR(A) can be calculated using a

simple iterative algorithm, and corresponds to the
principal eigenvector of the normalized link matrix
of the Web. Also. a PageRank for 26 million Web
pages can be computed in a few hours on a medium
size workstation. There are many other details which
are beyond the scope of this paper.

2.12. ltituitit!e jitst~fificatioi~
PageRank can be thought of as a model of user

behavior. We assume there is a “random surfer” who
is given a Web page at random and keeps clicking on
links. never hitting “back” but eventually gets bored
and starts on another random page. The probability
that the random surfer visits a page is its PageRank.
And, the d damping factor is the probability at each
page the “random surfer” will get bored and request
another random page. One important variation is to
only add the damping factor d to a single page, or a
group of pages. This allows for personalization and
can make it nearly impossible to deliberately mislead
the system in order to get a higher ranking. We have
several other extensions to PageRank, again see [7].

Another intuitive justification is that a page can
have a high PageRank if there are many pages that
point to it. or if there are some pages that point to
it and have a high PageRank. Intuitively, pages that
are well cited from many places around the Web
are worth looking at. Also, pages that have perhaps
only one citation from something like the Yahoo! h
homepage are also generally worth looking at. If a
page was not high quality, or was a broken link,
it is quite likely that Yahoo’s homepage would not
link to it. PageRank handles both these cases and
everything in between by recursively propagating
weights through the link structure of the Web.

h http:llwww.yahoo.comi

2.2. Anchor- test

The text of links is treated in a special way in
our search engine. Most search engines associate the
text of a link with the page that the link is on. In
addition, we associate it with the page the link points
to. This has several advantages. First, anchors often
provide more accurate descriptions of Web pages
than the pages themselves. Second, anchors may
exist for documents which cannot be indexed by a
text-based search engine, such as images, programs.
and databases. This makes it possible to return Web
pages which have not actually been crawled. Note
that pages that have not been crawled can cause
problems. since they are never checked for validity
before being returned to the user. In this case, the
search engine can even return a page that never
actually existed, but had hyperlinks pointing to it.
However, it is possible to sort the results, so that this
particular problem rarely happens.

This idea of propagating anchor text to the page
it refers to was implemented in the World Wide Web
Worm [61 especially because it helps search non-text
information, and expands the search coverage with
fewer downloaded documents. We use anchor prop-
agation mostly because anchor text can help provide
better quality results. Using anchor text efficiently is
technically difficult because of the large amounts of
data which must be processed. In our current crawl
of 24 million pages. we had over 259 million anchors
which we indexed.

3. Related work

Search research on the Web has a short and con-
cise history. The World Wide Web Worm (WWWW)
[6] was one of the first Web search engines. It was
subsequently followed by several academic search
engines, many of which are now public companies.
Compared to the growth of the Web and the im-
portance of search engines there are precious few
documents about recent search engines [S]. Accord-
ing to Michael Mauldin (chief scientist, Lycos Inc.)
1.51, “the various services (including Lycos) closely
guard the details of these databases”. However, there
has been a fair amount of work on specific fea-
tures of search engines. Especially well represented

is work which can get results by post-processing
the results of existing commercial search engines, or
produce small scale “individualized’ search engines.
Finally, there has been a lot of research on informa-
tion retrieval systems. especially on well controlled
collections [111.

However. work on information retrieval has
mostly been on fairly small. well controlled col-
lections such as the Text Retrieval Conference [lo].
Things that work well on TREC often do not produce
good results on the Web. For example, the standard
vector space model tries to return the document that
most closely approximates the query, given that both
query and document are vectors defined by their
word occurrence. On the Web, this strategy often
returns very short documents that are the query plus
a few words. For example. we have seen a major
search engine return a page containing only “Bill
Clinton Sucks” and picture from a “Bill Clinton”
query. Given examples like these, we believe that
the standard information retrieval work needs to be
extended to deal effectively with the Web.

The Web is a vast collection of completely uncon-
trolled heterogeneous documents. Documents vary
significantly in language, format, and style. There
can be many orders of magnitude of difference in
two documents’ size, quality, popularity, and trust-
worthiness. All of these are significant challenges to
effective searching on the Web. They are somewhat
mediated by the availability of auxiliary data such as
hyperlinks and formatting and Google tries to take
advantage of both of these.

4. System anatomy

In this section, we will give a high level overview
of how the whole system works as pictured in Fig. 1.
Further sections will discuss the applications and
data structures not mentioned in this section. Most
of Google is implemented in C or C++ for efficiency
and can run in either Solaris or Linux.

In Google, the Web crawling (downloading of
Web pages) is done by several distributed crawlers.
There is a URLserver that sends lists of URLs to
be fetched to the crawlers. The Web pages that are

Fig I High level Goo$le architecture

fetched are then sent to the storeserver. The store-
server then compresses and stores the Web pages into
a repository. Every Web page has an associated 1D
number called a docID which is assigned whenever
a new URL is parsed out of a Web page. The in-
dexing function is performed by the indexer and the
sorter. The indexer performs a number of functions.
It reads the repository, uncompresses the documents.
and parses them. Each document is converted into a
set of word occurrences called hits. The hits record
the word, position in document, an approximation of
font size, and capitalization. The indexer distributes
these hits into a set of “barrels”, creating a partially
sorted forward index. The indexer performs another
important function. It parses out all the links in every
Web page and stores important information about
them in an anchors tile. This file contains enough in-
formation to determine where each link points from
and to. and the text of the link.

The URLresolver reads the anchors tile and con-
verts relative URLs into absolute URLs and in turn
into doclDs. It puts the anchor text into the forward
index, associated with the docfD that the anchor
points to. It also generates a database of links which
are pairs of docIDs. The links database is used to
compute PageRanks for all the documents.

The sorter takes the barrels, which are sorted by
docID (this is a simplification, see Section 4.2.5 in
the full version), and resorts them by wordID to
generate the inverted index. This is done in place
so that little temporary space is needed for this op-
eration. The sorter also produces a list of wordIDs
and offsets into the inverted index. A program called
DumpLexicon takes this list together with the lex-
icon produced by the indexer and generates a new
lexicon to be used by the searcher. The searcher is
run by a Web server and uses the lexicon built by
DumpLexicon together with the inverted index and
the PageRanks to answer queries.

Google’s data structures are optimized so that a
large document collection can be crawled, indexed.
and searched with little cost. Although, CPUs and
bulk input output rates have improved dramatically
over the years, a disk seek still requires about 10 ms
to complete. Google is designed to avoid disk seeks
whenever possible, and this has had a considerable
influence on the design of the data structures. The
full version of this paper contains a detailed discus-
sion of all the major data structures. We only give a
brief overview here.

Almost all of the data for Google is stored in
Bigfiles which are virtual tiles we developed that can
span multiple tile systems and support compression.
The raw HTML repository uses roughly half of the
necessary storage. It consists of the concatenation of
the compressed HTML of every page, preceded by
a small header. The document index keeps informa-
tion about each document. It is a fixed width ISAM
(Index sequential access mode) index, ordered by
doclD. The information stored in each entry includes
the current document status, a pointer into the repos-
itory, a document checksum, and various statistics.
Variable width information such as URL and title
is kept in a separate file. There is also an auxiliary
index to convert URLs into docIDs. The lexicon
has several different forms for different operations.
They all are memory-based hash tables with varying
values attached to each word.

A hit list corresponds to a list of occurrences of
a particular word in a particular document includ-
ing position, font, and capitalization information. Hit

lists account for most of the space used in both the
forward and the inverted indices. Because of this, it
is important to represent them as efficiently as possi-
ble. We considered several alternatives for encoding
position, font, and capitalization - simple encoding
(a triple of integers), a compact encoding (a hand
optimized allocation of bits), and Huffman coding.
In the end we chose a hand optimized compact en-
coding since it required far less space than the simple
encoding and far less bit manipulation than Huffman
coding.ding. Our compact coding uses two bytes for
every hit. The details of this coding are in the full
version of this paper. The length of a hit list is stored
before the hits themselves. To save space, the length
of the hit list is combined with the wordID in the
forward index and the docID in the inverted index.

The forward index is actually already partially
sorted. It is stored in a number of barrels (we used
64). Each barrel holds a range of wordIDs. If a docu-
ment contains words that fall into a particular barrel,
the docID is recorded into the barrel, followed by a
list of wordIDs with hitlists which correspond to those
words. This scheme requires slightly more storage be-
cause of duplicated docIDs but the difference is very
small for a reasonable number of buckets and saves
considerable time and coding complexity in the tinal
indexing phase done by the sorter. The inverted index
consists of the same barrels as the forward index. ex-
cept that they have been processed by the sorter. For
every valid wordID, the lexicon contains a pointer
into the barrel that wordID falls into. It points to a
list of docIDs together with their corresponding hit
lists. This list is called a doclist and represents all the
occurrences of that word in all documents.

An important issue is in what order the doclDs
should appear in the doclist. One simple solution
is to store them sorted by docID. This allows for
quick merging of different doclists for multiple word
queries. Another option is to store them sorted by
a ranking of the occurrence of the word in each
document. This makes answering one word queries
trivial and makes it likely that the answers to multiple
word queries are near the start. However, merging is
much more difticult. Also. this makes development
much more difficult in that a change to the ranking
function requires a rebuild of the index. We chose
a compromise between these options, keeping two
sets of inverted barrels - one set for hit lists which

S. Brin. L. Pugr/Computrr Netwurks and ISDN Systems 30 (1998) 107- I17 113

include title or anchor hits and another set for all
hit lists. This way. we check the first set of barrels
tirst and if there are not enough matches within those
barrels we check the larger ones.

search engines seemed to have made great progress
in terms of efficiency. Therefore, we have focused
more on quality of search in our research, although
we believe our solutions are scalable to commercial
volumes with a bit more effort.

4.3. Crmvling the Web

Running a Web crawler is a challenging task.
There are tricky performance and reliability issues
and even more importantly, there are social issues.
Crawling is the most fragile application since it
involves interacting with hundreds of thousands of
Web servers and various name servers which are all
beyond the control of the system.

In order to scale to hundreds of millions of Web
pages, Google has a fast distributed crawling sys-
tem. A single URLserver serves lists of URLs to a
number of crawlers (we typically ran about 3). Both
the URLserver and the crawlers are implemented in
Python. Each crawler keeps roughly 300 connections
open at once. This is necessary to retrieve Web pages
at a fast enough pace. At peak speeds, the system
can crawl over 100 Web pages per second using four
crawlers. A major performance stress is DNS lookup
so each crawler maintains a DNS cache. Each of the
hundreds of connections can be in a number of differ-
ent states: looking up DNS, connecting to host, send-
ing request. and receiving response. These factors
make the crawler a complex component of the system.
It uses asynchronous IO to manage events, and a num-
ber of queues to move page fetches from state to state.

Google maintains much more information about
Web documents than typical search engines. Ev-
ery hitlist includes position, font, and capitalization
information. Additionally, we factor in hits from
anchor text and the PageRank of the document.
Combining all of this information into a rank is dif-
ficult. We designed our ranking function so that no
one factor can have too much influence. For every
matching document we compute counts of hits 01
different types at different proximity levels. These
counts are then run through a series of lookup tables
and eventually are transformed into a rank. This pro-
cess involves many tunable parameters. We have not
spent much time tuning the system; instead we have
developed a feedback system which will help us tune
these parameters in the future.

5. Results and performance

The more than half million servers that we crawl
are run by tens of thousands of Webmasters. As
a result crawling the Web involves interacting with
a fair number of people. Almost daily we receive
emails like “Wow. you looked at a lot of pages
from my Web site. How did you like it?’ Other
interactions involve copyright issues and obscure
bugs which may only arise on one page out of
ten million. Since large complex systems such as
crawlers will invariably cause problems, there needs
to be significant resources devoted to reading the
email and solving these problems as they come up.

4.4. Searching

The most important measure of a search engine
is the quality of its search results. While a complete
user evaluation is beyond the scope of this paper,
our own experience with Google has shown it to
produce better results than the major commercial
search engines for most searches. As an example
which illustrates the use of PageRank, anchor text,
and proximity, Fig. 2 shows Google’s results for a
search on “bill Clinton”. These results demonstrates
some of Google’s features. The results are clus-
tered by server. This helps considerably when sifting
through result sets. A number of results are from
the whitehouse.gov domain which is what one may
reasonably expect from such a search. Currently,
most major commercial search engines do not return
any results from whitehouse.gov, much less the right
ones. Notice that there is no title for the first result.
Instead, Google relied on anchor text to determine
this was a good answer to the query. Similarly, the
fifth result is an email address which, of course. is
not crawlable. It is also a result of anchor text.

The goal of searching is to provide quality search All of the results are reasonably high quality
results efficiently. Many of the large commercial pages and. at last check, none were broken links.

Query: bill clinton
httn:/iwww.whitehouse.gov:’
100.00% - (no date) (OK)
http:llwww.whitehouse.govl

Office of the President
99.67%~ (Dee 23 1996) (2K)

http:/iwww.whitehouse.govWH/EOP/OPlhtmllOP_Home.htm~
Welcome To The White House
99.98% - (Nov 09 1997) (5K)
http:llwww.whitehouse.govAVHAVelcome.html
Send Electronic Mail to the President
99.86% s (Jul 14 1997) (5K)

mailto:nresident(~whitehouse.aov
99.98% -

mailto:President&whitehouse.aov
99.27% -

The “Unofficial” Bill Clinton
94.06’/- (Nov 11 1997) (14K)
http:ilzpub.comlunlun-bc.html

Bill Clinton Meets The Shrinks
86.27% si (Jun 29 1997) (63K)
http://zpub.com/unlun-bc9.html

President Bill Clinton - The Dark Side
97.27% - (Nov 10 1997) (15K)
http:lAvww.realchange.orgiclinton.htm
$3 Bill Clinton
94.73% P (no date) (4K)
http:/iwww.gatewy.net/-tjohnsonIc/clintonl.html

-
Fig. 2. Samplr rrults from Googlr.

This is largely because they all have high PageRank.
The PageRanks are the percentages in red along
with bar graphs. Finally. there are no results about
a Bill other than Clinton or about a Clinton other
than Bill. This is because we place heavy importance
on the proximity of word occurrences. Of course a
true test of the quality of a search engine would
involve an extensive user study or results analysis
which we do not have room for here. Instead. we
invite the reader to try Google for themselves at
http://google.stanford.edu.

Aside from search quality, Google is designed to
scale cost effectively to the size of the Web as it
grows. One aspect of this is to use storage efficiently.
Table 1 has a breakdown of some statistics and
storage requirements of Google.

It is important for a search engine to crawi and in-
dex efficiently. This way information can be kept up
to date and major changes to the system can be tested
relatively quickly. In total it took roughly 9 days to
download the 26 million pages (including errors).
However. once the system was running smoothly.

Table I
Statistics

Storage htiltistics

Total srze of fetched pages

Compreabed repoaitoq
Short inverted index
Full inverted index

Lexicon
Temporary anchor data

(not in total 1

Document index incl.
variahlc width data
Links database

Total without repository
Tmal w.nh rcpoaitorp

117.8 GB
5.33 GB

4.1 cl3
37.’ GB

203 MB

6.6 GB

Y.7 GB
3.‘) GB

55.2 GB
108.7 GB

Web page statihticx

Number of Web pages fetched 3-1 million
Number of tirls seen 76.5 million

Number of E-mail addresses I .7 million
Number of 404‘s I .6 million

it ran much faster, downloading the last 11 million
pages in just 63 hours, averaging just over 4 million
pages per day or 48.5 pages per second. The indexer
runs at roughly 54 pages per second. The sorters can
be run completely in parallel; using four machines,
the whole process of sorting takes about 24 hours.

Improving the performance of search was not the
major focus of our research up to this point. The
current version of Google answers most queries in
between 1 and 10 seconds. This time is mostly dom-
inated by disk IO over NFS (since our disks are
spread over a number of machines). Furthermore,
Google does not have many of the common op-
timizations used to speed up information retrieval
systems. such as query caching, subindices on com-
mon terms. and other common optimizations. We

Quer! Initial query

intend to speed up Google considerably in the fu-
ture. Table 2 has some sample query times from the
current version of Google.

6. Conclusions

Google is designed to be a scalable search en-
gine. The primary goal is to provide high quality
search results over a rapidly growing World Wide
Web. Google employs a number of techniques to
improve search quality including page rank. all-
char text. and proximity information. Furthermore,
Google is a complete architecture for gathering Web
pages, indexing them, and performing search queries
over them.

A large-scale Web search engine is a complex sys-
tem and much remains to be done. Our immediate
goals are to improve search efficiency and to scale to
approximately 100 million Web pages. Some simple
improvements to efficiency include query caching,
smart disk allocation, and subindices. Another area
which requires much research is updates. We must
have smart algorithms to decide what old Web pages
should be recrawled and what new ones should be
crawled. Work toward this goal has been done in
[2]. One promising area of research is using proxy
caches to build search databases. since they are
demand driven. We are planning to add simple fea-
tures supported by commercial search engines like
boolean operators. negation. and stemming. How-
ever. other features are just starting to be explored
such as relevance feedback and clustering (Google
currently supports a simple hostname based cluster-
ing). We also plan to support user context (like the

Same query repented (IO mostly cached t

CPU time (5)

0.09
I .77

0.15

1.31

Total time (s)

3.13
3.X-I

1.86
9.63

CPU time (\I

0.06
I.66

0.20
I.16

Total time (5 1

0.06
1.80
0.24

I.16

user’s location), and result summarization. We are
also working to extend the use of link structure and
link text. Simple experiments indicate PageRank can
be personalized by increasing the weight of a user’s
home page or bookmarks. As for link text, we are
experimenting with using text surrounding links in
addition to the link text itself. A Web search engine
is a very rich environment for research ideas. We
have far too many to list here so we do not expect
this Future Work section to become much shorter in
the near future.

6.2. High quality search

The biggest problem facing users of Web search
engines today is the quality of the results they get
back. While the results are often amusing and ex-
pand users’ horizons, they are often frustrating and
consume precious time. For example, the top re-
sult for a search for “Bill Clinton” on one of the
most popular commercial search engines was the
Bill Clinton Joke of the Day: April 14, 1997 ‘.
Google is designed to provide higher quality search
so as the Web continues to grow rapidly, informa-
tion can be found easily. In order to accomplish this
Google makes heavy use of hypertextual information
consisting of link structure and link (anchor) text.
Google also uses proximity and font information.
While evaluation of a search engine is difficult, we
have subjectively found that Google returns higher
quality search results than current commercial search
engines. The analysis of link structure via PageRank
allows Google to evaluate the quality of Web pages.
The use of link text as a description of what the link
points to helps the search engine return relevant (and
to some degree high quality) results. Finally, the use
of proximity information helps increase relevance a
great deal for many queries.

6.3. Scalable urchitecturr

Aside from the quality of search, Google is de-
signed to scale. It must be efficient in both space
and time, and constant factors are very important
when dealing with the entire Web. In implement-
ing Google, we have seen bottlenecks in CPU,

7 http://www.io.com/-cjburke/clinton/9704l4.html

memory access, memory capacity, disk seeks. disk
throughput, disk capacity, and network IO. Google
has evolved to overcome a number of these bot-
tlenecks during various operations. Google’s major
data structures make efficient use of available stor-
age space. Furthermore, the crawling, indexing. and
sorting operations are efficient enough to be able to
build an index of a substantial portion of the Web -
24 million pages, in less than one week. We expect
to be able to build an index of 100 million pages in
less than a month.

6.4. A wsearch tool

In addition to being a high quality search engine.
Google is a research tool. The data Google has
collected has already resulted in many other papers
submitted to conferences and many more on the way.
Recent research such as [11 has shown a number of
limitations to queries about the Web that may be
answered without having the Web available locally.
This means that Google (or a similar system) is not
only a valuable research tool but a necessary one
for a wide range of applications. We hope Google
will be a resource for searchers and researchers all
around the world and will spark the next generation
of search engine technology.

Acknowledgments

Scott Hassan and Alan Steremberg have been crit-
ical to the development of Google. Their talented
contributions are irreplaceable, and the authors owe
them much gratitude. We would also like to thank
Hector Garcia-Molina, Rajeev Motwani, Jeff Ull-
man, and Terry Winograd and the whole WebBase
group for their support and insightful discussions.
Finally we would like to recognize the generous
support of our equipment donors IBM, Intel, and
Sun and our funders. The research described here
was conducted as part of the Stanford Integrated
Digital Library Project, supported by the National
Science Foundation under Cooperative Agreement
IRI-94 11306. Funding for this cooperative agree-
ment is also provided by DARPA and NASA, and by
Interval Research, and the industrial partners of the
Stanford Digital Libraries Project.

References

S. Abitehoul and V. Vianu, Queries and computation on the
Web. in: Prm~eeding.c of’ rhr Inirrnurinnal ConJ>re~ce m

Du~dxzse T/rror?: Delphi. Greece, 1997.
.1. Cho, H. Garcia-Molina and L. Page. Efficient crawling

through URL ordering. in: Proc. of’ the 7th Intermitiontrl

World Wide Web Confereru (WWW 981. Brisbane. Aus-

tralia. April l5- IS, 1998: also Conr\~ct. NrfMvrks ISDN
.(;\.SICIII,S. 30(l-7): 161-172 (this volume).

J. Kleinberg. Authoritative sources in a hyperlinked cn-
vironment, in: Proc. ACM-SIAM Synposium on Di.scrrtr

.4/,yorifhm. 1998.

M. Marchiori. The quest for correct information on the
Web: hyper search engines, in: Prvc. of rhc 6rh Intema-
rimol WWW C’onftirrncr (WWW 971. Santa Clara. USA,

PIpril 7-l I, 1997.

Mauldin. M.L.. Lycos design choices in an Internet search
service. IEEE Expert Interview. http://www.computer.org/p
ubs/cxpcrt/l997/trends/xl008/mauldin.htm

0-A. McBryan, GENVL and WWWW: tools for taming the
Web. in: Pm,. 01 the 1st I~~trrnufional Cmferrncr on the
World Wide Wrh. CERN. Geneva, Switzerland, May 25-27.

1991. http://www.cs.colorado.edu/home/mcbryan/mypapers

/www93.ps
L. Page. S. Brin, R. Motwani and T. Winograd. The

PageRank citation ranking: bringing order to the Web,
Manuscript in Progress. http://google.stanford.edu/-backru
h/pageranksub.ps

B. Pinkerton. Finding what people want: experiences with

the W&Crawler. in: Proc. of thr 2nd /tzfu~zationd WWW
C;@>rerrce Chicago, USA, October 17-20, 1994, http://inf

o.webcrawler.com/bplWWW94.html
191 E. Spertus. Parasite: mining structural information on the

Web, in: Proc. of‘ the 6th lnterncrtiond WWW Conf&xcr

(WWW Y7J. Santa Clam. USA, April 7-l I. 1997.
1 IO] D.K. Harman and E.M. Voorhees (Eds.). Proceedings of

fhr F~ff/l Trrt REtrieid Conjtirrnce (TREC-5). Gaithers-

burg. Maryland. November 20-Z. 1996, Department of
Commerce. National Institute of Standards and Technology.

1996: full text at http:l/trec.nist.gov/
[I I] LH Witten. A. Moffat. and T.C. Bell. Mmcrgin(: Gj,#~m,.s:

ComprcxGg cd Inde.~itrsy Documents cmd ftnu,y~s. Van
Nostrand Reinhold, New York. NY, 1994.

[I21 R. Weiss. B. Velcz. M.A. Sheldon, C. Manpremprc. P

Szilagyi. A. Duda. and D. K. Gifford, HyPursuit: a hicr-
archical network search engine that exploits content-linh

hypertext clustering. in: Proc. oj rhr 7th .4C’M Clmfi~rrnc~,

on H\pertc.a. New York. 1996.

Sergey Brin recetved his B.S. de-

gree in mathematics and computer

science from the University of Mary-
land at College Park in 3993. Cur-

rently. he is a Ph.D. candidate in

computer science at Stanford Univcr-
sity where he received his MS. in
1995. He is a recipient of a National

Science Foundation Graduate Fellow-
ship. His research interests include

search engines. information extrac-
tion from unstructured sources. and

data mining of large text collections and scientilic data.

Lawrence Page was born in East
Lansing, Michigan. and received a

B.S.E. in Computer Engineering at

the University of Michigan Ann Ar-
bor in 1995. He is currently a Ph.D.

candidate in Computer Science at
Stanford University. Some of his re-

search interests include the link struc-
ture of the Web. human computer in-
teraction, search engines, scalability

of information access interfaces. and
personal data mining.

