The Principles and Practice of Probabilistic Programming

Noah D. Goodman
Stanford University

ngoodman®@stanford.edu

Categories and Subject Descriptors D [3]: m

Keywords probabilistic models, probabilistic programs

Probabilities describe degrees of belief, and probabilistic infer-
ence describes rational reasoning under uncertainty. It is no won-
der, then, that probabilistic models have exploded onto the scene of
modern artificial intelligence, cognitive science, and applied statis-
tics: these are all sciences of inference under uncertainty. But as
probabilistic models have become more sophisticated, the tools to
formally describe them and to perform probabilistic inference have
wrestled with new complexity. Just as programming beyond the
simplest algorithms requires tools for abstraction and composition,
complex probabilistic modeling requires new progress in model
representation—probabilistic programming languages. These lan-
guages provide compositional means for describing complex prob-
ability distributions; implementations of these languages provide
generic inference engines: tools for performing efficient probabilis-
tic inference over an arbitrary program.

In their simplest form, probabilistic programming languages
extend a well-specified deterministic programming language with
primitive constructs for random choice. This is a relatively old
idea, with foundational work by Giry, Kozen, Jones, Moggi, Saheb-
Djahromi, Plotkin, and others [see e.g. 7]. Yet it has seen a resur-
gence thanks to new tools for probabilistic inference and new com-
plexity of probabilistic modeling applications. There are a number
of recent probabilistic programming languages [e.g. 8, 9, 11-17],
embodying different tradeoffs in expressivity, efficiency, and per-
spicuity. We will focus on the probabilistic programming language
Church [6] for simplicity, but the design of probabilistic languages
to best support complex model representation and efficient infer-
ence is an active and important topic.

Church extends (the purely functional subset of) Scheme with
elementary random primitives, such as flip (a bernoulli), multino-
mial, and gaussian. In addition, Church includes language con-
structs that simplify modeling. For instance, mem, a higher-order
procedure that memoizes its input function, is useful for describing
persistent random properties and lazy model construction. (Inter-
estingly, memoization has a semantic effect in probabilistic lan-
guages.) If we view the semantics of the underlying deterministic
language as a map from programs to executions of the program,
the semantics of the probabilistic language will be a map from
programs to distributions over executions. When the program halts

Copyright is held by the author/owner(s).
POPL’13, January 23-25, 2013, Rome, Italy.
ACM 978-1-4503-1832-7/13/01.

DB w1

(define (rejection-query thunk condition)
(let ((val (thunk)))
(if (condition val)

val
(rejection-query thunk condition))))
(define (thunk)
1| (query ...defines...

...defines...
query-expression
condition-expression)

(pair query-expression
condition-expression))
(define condition rest)

woE w1 —

Figure 1. (Top) Defining conditional inference in Church as a
stochastic recursion: rejection sampling represents the conditional
probability of the thunk conditioned on the condition predicate
being true. We typically use special query syntax (Bottom, left),
which can be desugared into a query thunk (Bottom, right).

with probability one, this induces a proper distribution over return
values. Indeed, any computable distribution can be represented as
the distribution induced by a Church program in this way (see [3,
§6], [1, §11], and citations therein).

Probabilistic graphical models [10], aka Bayes nets, are one of
the most important ideas of modern Al. Probabilistic programs
extend probabilistic graphical models, leveraging concepts from
programming language research. Indeed, graphical models can be
seen as flow diagrams for probabilistic programs—and just as flow
diagrams for deterministic programs are useful but not powerful
enough to represent general computation, graphical models are a
useful but incomplete approach to probabilistic modeling. For an
example of this, we need look no further than the fundamental
operation for inference, probabilistic conditioning, which forms a
posterior distribution over executions from the prior distribution
specified by the program. Conditioning is typically viewed as a
special operation that happens fo a probabilistic model (capturing
observations or assumptions), not one that can be expressed as a
model. However, because probabilistic programs allow stochastic
recursion, conditioning can be defined as an ordinary probabilistic
function (Fig. 1, Top). (However see [1] for complications in the
case of continuous values.)

A wide variety of probabilistic models are useful for diverse
tasks, including unsupervised learning, vision, planning, and statis-
tical model selection. Due to space limitations, we only mention
two characteristic examples here. The first, Fig. 2, captures key
concepts for commonsense reasoning about the game tug-of-war.
This “conceptual library” of probabilistic functions can be used to
reason about many patterns of evidence, via different queries, with-
out needing to specify ahead of time the set of people, the teams,
or the matches. The program thus enables a very large numbers
of different inferences to be modeled, and the model predictions
match human intuitions quite well (a correlation of 0.98 between




;;Strength is a persistent property of each person,
hence memoized:
(define strength
(mem (lambda (person) (gaussian 1.0 1.0))))
;;Laziness varies from match to match:
(define (lazy person) (flip 0.3))

; ;When a person is lazy they pull less:

(define (pulling person) (if (lazy person)
(/ (strength person) 2)
(strength person)))

;;Total pulling of the team is the sum:
(define (total-pulling team) (sum (map pulling team)))

;5 The winning team pulls hardest:
(define (winner teaml team2)
(if (< (total-pulling teaml) (total-pulling team2))
team2
team1))

Figure 2. Modeling intuitive concepts in the tug-of-war domain.
While this model is simple, probabilistic queries can explain human
reasoning from diverse evidence with high quantitative accuracy

[4].

model and human judgements in the experiments of [4]). The abil-
ity to model many inferences is inherited from the productivity of
the underlying programming language, while the ability to capture
complex, graded commonsense reasoning is inherited from proba-
bilistic inference.

A more subtle model is shown in Fig. 3. Here we model prag-
matic inference in natural language following [2, 5, 18]. Critically,
because query is an ordinary function that may be nested in itself,
we are able to model a listener reasoning about a speaker, who rea-
sons about a naive listener. This model formalizes the idea that a
listener is trying to infer what the speaker intended, while a speaker
is trying to make the listener form a particular belief. Versions of
this model again predict human judgements with high quantitative
accuracy [2, 5].

The critical obstacle to probabilistic programming as a practical
tool is efficient implementation of the inference operator. It is
clear that the expected runtime for the rejection-query operator
in Fig. 1 increases as the probability of satisfying the condition
decreases. Hence, while rejection is useful as a definition, it is
impractical for real modeling tasks, where the condition is typically
very unlikely. An obvious alternative that does not take longer when
the condition is less likely is to enumerate all execution paths of the
program, for instance by using co-routines. Unfortunately, naive
enumeration takes time proportional to the number of executions,
which grows exponentially in the number of random choices. This
can be ameliorated in some cases by using dynamic programming.
Indeed it is possible to do inference for the simple pragmatics
model in Fig. 3 by using a sophisticated dynamic programming
approach [18].

For other classes of program, such as the tug-of-war model,
Fig. 2, it can be better to switch to an approximate inference
technique based on Markov chain Monte Carlo. One such algorithm
[6] can be derived from the Metropolis Hastings recipe: a random
change to a single random choice is made on each step, leading to
a random walk in the space of program executions. This walk is
guaranteed to visit executions in proportion to their probability. We
individuate random choices using their position in the execution—
this can be achieved by a code transformation, resulting in a very
lightweight inference process [20].

;;The basic listener: how is the world,
utterance is true?
(define (literal-listener utterance)
(query
(define world (world-prior))
world
((meaning utterance) world)))

given that the

;3 The speaker: what should I say, so that the listener
infer the right world?
(define (speaker world)
(query
(define utterance (language-prior))
utterance
(equal? world (literal-listener utterance))))

;3 The smart listener: how is the world, given that a
speaker chose this utterance to express it?
(define (listener utterance)
(query
(define world (world-prior))
world
(equal? utterance (speaker world))))

Figure 3. A probabilistic model of natural language pragmatics
using nested-query to model reasoning-about-reasoning.

Each step of this MCMC process requires re-executing the pro-
gram, in order to compute updated probabilities. Several orders
of magnitude in speed increases are seen by just-in-time com-
piling this probability update [21]. To do so, we separate struc-
tural random choices (those that can influence control flow) from
non-structural. When we encounter a new setting of the structural
choices we partially-evaluate the program to straight-line code,
which is aggressively optimized. Structural choices can sometimes
be found automatically by flow analysis, but in other instances must
be annotated by hand.

The distinction between structural and non-structural choices
can also be used to construct an algorithm that more effectively
explores the space of executions for “open universe” models—
those that define distributions over a variable number of entities
[22]. This class of programs is especially well-suited to complex
procedural modeling in computer graphics. For instance, Yeh et al.
[22] describe models for layout of virtual worlds. These procedural
models typically have many real-valued random choices. In this
setting Hamiltonian Monte Carlo, which exploits the gradient of
the score to make more well-directed steps in execution space, can
be a useful additional tool. The needed gradient can be derived
automatically by a non-standard interpretation of the program [19].

The sampling of inference algorithms described above suggests
an important generalization: advanced statistical inference tech-
niques can be implemented for arbitrary programs by leveraging
methods developed in programming language research (program
analysis, non-standard interpretation, partial evaluation, etc.). Ex-
isting research only scratches the surface of potential interactions
between statistics, Al, and PL. Though technically demanding, this
interaction may be the critical ingredient in bringing complex prob-
abilistic modeling to the wider world.

Acknowledgments

Thanks to Dan Roy, Cameron Freer, and Andreas Stuhlmiiller
for helpful comments. This work was supported by ONR grant
NO00014-09-0124.




References

[1] N. Ackerman, C. Freer, and D. Roy. Noncomputable conditional
distributions. In Logic in Computer Science (LICS), 2011 26th Annual
IEEE Symposium on, pages 107-116. IEEE, 2011.

[2] M. Frank and N. Goodman. Predicting pragmatic reasoning in language
games. Science, 336(6084):998-998, 2012.

[3] C. E. Freer and D. M. Roy. Computable de Finetti measures.
Annals of Pure and Applied Logic, 163(5):530-546, 2012. doi:
10.1016/j.apal.2011.06.011.

[4] T. Gerstenberg and N. D. Goodman. Ping pong in Church: Productive
use of concepts in human probabilistic inference. In Proceedings of the
34th annual conference of the cognitive science society, 2012.

[5] N. Goodman and A. Stuhlmiiller. Knowledge and implicature:
Modeling language understanding as social cognition. Topics in
Cognitive Science, 2013.

[6] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum.
Church: A language for generative models. In In UAI, 2008.

[7] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations.
In Logic in Computer Science (LICS), 1989 4th Annual IEEE Symposium
on, pages 186-195, Jun 1989. doi: 10.1109/LICS.1989.39173.

[8] A. Kimmig, B. Demoen, L. De Raedt, V. S. Costa, and R. Rocha.
On the implementation of the probabilistic logic programming language
ProbLog. Theory and Practice of Logic Programming, 11(2-3):235-262,
2011.

[9] O. Kiselyov and C. Shan. Embedded probabilistic programming. In
Domain-Specific Languages, pages 360-384, 2009.

[10] D. Koller and N. Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[11] A. McCallum, K. Schultz, and S. Singh. Factorie: Probabilistic
programming via imperatively defined factor graphs. In Neural
Information Processing Systems Conference (NIPS), 2009.

[12] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov.
BLOG: Probabilistic models with unknown objects. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 1352-1359,
2005.

[13] A. Pfeffer. IBAL: A probabilistic rational programming language. In
International Joint Conference on Artificial Intelligence (IJCAI), pages
733-740. Morgan Kaufmann Publ., 2001.

[14] A. Pfeffer. Figaro: An object-oriented probabilistic programming
language. Charles River Analytics Technical Report, 2009.

[15] D. Poole. The independent choice logic and beyond. Probabilistic
inductive logic programming, pages 222-243, 2008.

[16] M. Richardson and P. Domingos. Markov logic networks. Machine
Learning, 62:107-136, 2006.

[17] T. Sato and Y. Kameya. PRISM: A symbolic-statistical modeling
language. In International Joint Conference on Artificial Intelligence
(IJCAI), 1997.

[18] A. Stuhlmiiller and N. Goodman. A dynamic programming algorithm
for inference in recursive probabilistic programs. arXiv preprint
arXiv:1206.3555, 2012.

[19] D. Wingate, N. Goodman, A. Stuhlmueller, and J. Siskind. Nonstan-
dard interpretations of probabilistic programs for efficient inference. In
Advances in Neural Information Processing Systems 23, 2011.

[20] D. Wingate, A. Stuhlmueller, and N. Goodman. Lightweight imple-
mentations of probabilistic programming languages via transformational
compilation. In Proceedings of the 14th international conference on
Artificial Intelligence and Statistics, page 131, 2011.

[21] L. Yang, P. Hanrahan, and N. Goodman. Incrementalizing mcmc on
probabilistic programs through tracing and slicing. Under review.

[22] Y. Yeh, L. Yang, M. Watson, N. Goodman, and P. Hanrahan.
Synthesizing open worlds with constraints using locally annealed
reversible jump memc. ACM Transactions on Graphics (TOG), 31
(4):56, 2012.



