A framework for merging
and ranking of answers

in DeepQA

The final stage in the IBM DeepQA pipeline involves ranking all
candidate answers according to their evidence scores and judging
the likelihood that each candidate answer is correct. In DeepQA,
this is done using a machine learning framework that is phase-based,
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providing capabilities for manipulating the data and applying
machine learning in successive applications. We show how this
design can be used to implement solutions to particular challenges
that arise in applying machine learning for evidence-based
hypothesis evaluation. Our approach facilitates an agile development
environment for DeepQA; evidence scoring strategies can be easily
introduced, revised, and reconfigured without the need for
error-prone manual effort to determine how to combine the

various evidence scores. We describe the framework, explain the
challenges, and evaluate the gain over a baseline machine

learning approach.

Introduction

IBM Watson* answers questions by first analyzing the
question, generating candidate answers, and then attempting
to collect evidence over its resources supporting or refuting
those answers. For each answer, the individual pieces of
evidence are scored by answer scorers, yielding a numeric
representation of the degree to which evidence justifies

or refutes an answer. The role of final merging is to use the
answer scores in order to rank the candidate answers and
estimate a confidence indicating the likelihood that the
answer is correct. Crafting successful strategies for resolving
thousands of answer scores into a final ranking would be
difficult, if not impossible, to optimize by hand; hence,
DeepQA instead uses machine learning to train over existing
questions and their correct answers. DeepQA provides a
confidence estimation framework that uses a common

data model for registration of answer scores and performs
machine learning over large sets of training data in order
to produce models for answer ranking and confidence
estimation. When answering a question, the models

are then applied to produce the ranked list and confidences.
This approach allows developers to focus on optimizing
the performance of their component and entrust to the
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framework the assessment and proper combination of the
component’s scores for the end-to-end question-answering
task.

We first identify some of the challenges we faced in
applying machine learning in the question-answering
domain. We then describe how our approach fits in an agile
development setting with many contributors. We discuss
the framework designed in the DeepQA system and the
capabilities it provides for applying machine learning
techniques. Then, we discuss how capabilities of that
framework were used to address the challenges in this
domain. We finish with an experimental evaluation showing
some of the major contributors to improvements in system
accuracy.

Challenges arising in question answering
There are a number of characteristics of the
question-answering domain and the design of DeepQA
that impose special challenges in using machine learning
to rank answers and estimate confidence. The following
are most notable:

e Some sets of candidate answers may be equivalent,
whereas others may be closely related; in the latter case,
evidence for one of those answers may be relevant to
the other.

©Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed
royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/12/$5.00 © 2012 IBM

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 14 MAY/JULY 2012

D. C. GONDEK ET AL. 14 :1



e The significance of the various features may be radically
different for different questions and question classes
(e.g., puzzles and language translation), and there may
be little training data available for some question classes
(e.g., language translation clues are very rare in
Jeopardy!*%*).

e Some features are more or less valuable at different stages
of ranking. For example, after a preliminary ranking is
performed, some features that had minimal impact on the
preliminary ranking may be disproportionately important
for making finer distinctions among the high-ranked
candidates.

o Features are extremely heterogeneous. They are
derived from a variety of distinct algorithms that were
independently developed. Consequently, many features
are not normalized in any way, and their distribution may
vary considerably conditioned on characteristics of
the question. Feature values are frequently missing, and
some occur sparsely in the training set.

e There is a large class imbalance. The system may find an
enormous number of candidate answers using text search [1].
However, few of these will be correct answers.

Challenges in deploying machine learning in an
agile development environment

Machine learning for confidence estimation has been vital for
the development of Watson since its early beginnings when
it had just two features to combine. As part of the Watson
methodology [2], experiments are conducted to measure the
effect of the addition or modification of any component.

To properly assess the impact, models must be retrained
with the changes incorporated. The confidence estimation
framework has been used in more than 7,000 experiments.
This is a dramatically different environment in which to
deploy machine learning compared with traditional settings
where models are trained over static feature sets and allow
extensive and expert tuning by hand. In our setting, the
framework must be as turnkey and automatic as possible,
driving the framework’s facilities for missing value
imputation, filtering sparse features, and use of robust
machine learning techniques without sensitive parameter
selection.

Framework

The machine learning framework takes a set of candidate
answers and their evidence scores. It trains a model for
ranking them and for estimating a confidence that each is
correct. Here, an instance is a question—answer pair and
the features are the candidate answer scores. Most of
these scores provide some measure of how justified the
answer is for the question; there are also scores capturing
question-level features, which indicate information about
the question, for instance, the lexical answer type (LAT) [3].
Although question-level features will be shared across
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candidate answers for a given question, they can help better
assess confidence (which substantially varies depending

on question type) and may also be used to better weigh the
other features to help in ranking.

We assume that there is a training set X = {xo,x1,...xy}
with ground truth labels ¥ = {yo,y1,...yn} with
vi = {+1, —1} representing whether an answer is correct
or incorrect. The goal for a test question X = {x¢,...,x)} is
to rank x; in order to optimize a metric, typically question
accuracy (whether the top-ranked answer is correct).

This and other metrics are discussed in more detail in

the “Experiments” section. The Watson system was trained
with a set of approximately 25,000 Jeopardy! questions
comprising 5.7 million question-answer pairs (instances)
where each instance had 550 features.

The DeepQA machine learning framework is phase-based.
In each phase, candidate answers and their features may be
manipulated, after which a model is trained and applied to
produce a confidence score for each answer. An answer’s
confidence score from one phase may be used by later
phases. This general framework of successive application
of models allows for implementation of machine learning
techniques such as transfer learning, stacking [4], and
successive refinement. The number and function of phases
are configurable and, in Watson’s instantiation for Jeopardy!,
consisted of the following seven phases:

1. Hitlist Normalization—Rank and retain top 100 answers
(see the section “Successive refinement”).

2. Base—Partition into question classes (see the section
“Specializing to question classes”).

3. Transfer Learning—Transfer learning for uncommon
question classes (see “Transfer learning”).

4. Answer Merging—Merge evidence between equivalent
answers and select a canonical form (see “Answer
Merging”).

5. Elite—Successive refinement to retain top five answers
(see “Successive refinement”).

6. Evidence Diffusion—Diffuse evidence between related
answers (see “Evidence diffusion”).

7. Multi-Answers—Join answer candidates for questions
requiring multiple answers.

Within each phase, there are three main steps:

1. Evidence Merging combines evidence for a given instance
across different occurrences (e.g., different passages
containing a given answer).

2. Postprocessing transforms the matrix of instances and
their feature values (e.g., removing answers and/or
features, deriving new features from existing
features).

3. Classifier Training/Application runs in either training
mode, in which a model is produced over training data,
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or application mode, where the previously trained models
are used to rank and estimate confidence in answers for
a run-time question.

e Training—This step treats the combined results of
evidence merging and postprocessing as a set of
instances for training a model. It uses a manually
created answer key as ground truth for supervised
learning. This step occurs only on training data.

e Application—This step applies the model developed
during training to the combined results of evidence
merging and postprocessing. It produces a confidence
score. Answers are ranked in accordance with their
confidence scores. This step occurs on test data.

In addition, this step occurs on the training data
for each phase affer training is complete for all
instances on that phase but before training begins
on the next phase; this ordering is essential because
later phases can use the classifier rank and score

of earlier phases as additional features for each
instance.

The ease of experimentation is achieved by wrapping these
high-level constructs in a domain-specific language (DSL)
[5] targeted toward a declarative exploration of what-if
scenarios in machine learning. In the following subsection,
we drill-down into different issues that occur in one or more
steps of one or more of these phases. Then, in the “Integrated
design” section, we provide a broader perspective on how
these pieces fit together.

Techniques

We now detail some of the algorithmic techniques
implemented within the DeepQA confidence estimation
framework. First, the facility for final merging is discussed,
in which answers and their evidence may be merged.
Then, we discuss the application of machine learning and
particular machine learning technologies that are used.

Answer Merging

There is often more than one way to textually refer to the
same entity, e.g., “John F. Kennedy,” “J.F.K.,” and
“Kennedy.” Multiple candidate answers for a question may
in fact be potentially equivalent despite their different surface
forms. This is particularly confusing to ranking techniques
that make use of relative differences between candidates.
Without merging, ranking algorithms would be comparing
multiple surface forms that represent the same answer

and trying to discriminate among them. Although one line
of research has been proposed based on boosting confidence
in equivalent candidates after confidence scores are estimated
[6], our approach is designed to first merge evidence in
equivalent candidates and then estimate confidence of

the combination. Different surface forms are often disparately
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supported in the evidence (for instance, “John Fitzgerald
Kennedy” may be encoded in a knowledge-base, whereas
“Kennedy” or “JFK” may be more commonly used in a
textual content) and therefore result in complementary
scores. This motivates an approach that merges answer scores
before ranking and confidence estimation are performed.
Using an ensemble of matching, normalization, and
co-reference resolution algorithms, Watson identifies
equivalent and related hypotheses and then enables custom
merging per feature to combine scores.

The task of Answer Merging is to examine each pair of
answers, determine whether they are equivalent or strongly
related, and if so, merge the answers, select a canonical
form, and trigger the evidence merging of their feature
vectors into one. How exactly the features are combined
is determined by the Feature Merging component
(described below).

Our Answer Merging implementation consists of a number
of independent components that use different techniques.

A Morphological merger uses knowledge of English
morphology to merge different inflections of the same base
word. Pattern-based mergers are applied for certain semantic
types (e.g., for person names, FirstName LastName

is more specific than LastName; for locations, City,
State/Country is more specific than City). Table
Lookup mergers use prebuilt tables of related entities.

We have automatically extracted these tables from
semi-structured text, for example, Wikipedia** redirects and
disambiguation pages and boldface terms in the first
paragraph of a Wikipedia article.

One important consideration is that whenever two answers
are combined, we must choose a single string to represent
the combined answer (called the “canonical form” of the
combined answer). Answer strings are often ambiguous, and
detecting equivalence is noisy; thus, the system will, at times,
merge nonequivalent answers. Robust techniques to select
canonical form are needed, as selecting poorly can be a
disaster, causing a correct answer (which, in many cases,
may have been ranked in first place) to be supplanted by
the incorrect answer that it was merged with. Consider
a question where the correct answer is John F. Kennedy.

If we spuriously merge our answer “J.F.K.” with

“John F. Kennedy International Airport,” selecting the better
canonical form can mean the difference between being
judged correct or incorrect. Our strategy in selecting a
canonical form follows the intuition that the correct form
(in this case, “J.F.K.”) will likely have better evidence for the
question than the incorrect form.

We used our multiphase learning architecture to greatly
improve the selection of the canonical form. In an initial
phase, we do no answer merging. The machine learning
model trained in this phase is used to generate an initial
ranking of the individual answers. Later, we introduce an
Answer Merging phase that examines each pair of answers
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and decides which pairs should be merged. Because we have
done the initial ranking, we can then choose the canonical
form by selecting whichever answer had the better initial
ranking (unless there is significant evidence that suggests
overriding this and choosing a different canonical form).
By using this strategy, we can avoid the serious problem
where we lose a top-ranked answer by merging it with some
wrong answer and choosing the wrong answer as the
canonical form.

Answer Merging can merge answers that are connected
by a relation other than equivalence. For example,
our implementation merges answers when it detects a
more specific relation between them. In addition to
combining their evidence, this was used during a Jeopardy!
game to address the case where Watson selected a canonical
form for the answer that was not wrong but was not
specific enough. When the host asked “more specific?”,
if the answer had a variant that was more specific
than the canonical form, it would be given. In one sparring
game question:

MYTHING IN ACTION: One legend says this was
given by the Lady of the Lake & thrown back in the
lake on King Arthur’s death.

Watson merged the two answers “sword” and “Excalibur”
and selected “sword” as the canonical form (because it
happened to have a better initial ranking). The host asked
“more specific?” and Watson was able to correctly answer
“Excalibur” due to having detected a more specific
relation between the two.

Answer Merging takes place in the Evidence Merging step
of the Answer Merging phase.

Feature Merging
In the input to the final merger, an answer is often associated
with multiple pieces of evidence, and a given feature can
have a different value in each (e.g., if an answer occurs in
several different passages, each passage-scoring algorithm
will provide a distinct score for that answer in each
passage [7]). In order to produce a feature vector that is
appropriate for our machine learning model, we need to
transform this input such that each feature has exactly one
value. In addition, when Answer Merging occurs, we must
combine the feature vectors of the individual answers and
produce a single feature vector for the merged answer.
Feature Merging is the task of reducing the multiple values
associated with each feature label down to one value per
feature label. Our implementation supports plugging in
a different feature-merging policy for each feature. For
many features, it works well to select the “best” of all
of the values (maximum or minimum, depending on the
feature). However, there are situations where one can
do better.
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For example, in Watson’s massively parallel architecture,
a passage-scoring feature [7] computes a score for each
candidate on the basis of a single supporting passage for the
candidate. Selecting the best value for the feature results in
considering the evidence only from the one passage that best
supports that answer. This can be an effective policy for
scorers that use deep semantic analysis and only give high
scores when a passage provides clear direct evidence of the
answer being correct. In contrast, other passage-scoring
algorithms only consider whether the answer appears in
proximity to terms from the question; for those features,
we are particularly interested in combining results across
multiple passages with the expectation that correct answers
are more likely to have higher combined scores. One
technique that we use to combine results across passages
is to sum the scores for each passage. Another strategy that
we use for some passage-scoring features is “decaying sum.”
Decaying sum is defined as

K
decay(p()a cee 7pK) = 2%7
i=0

where py, ..., px are the scores of the passages that contain
the answers, sorted in descending order. Decaying sum

is designed to perform better than sum in cases in which
having a few passages that seem to match the question well
is better than having many questions that match less well.
Decaying sum performs better empirically than the other
merging strategies for many passage-scoring features;
hence, we configure the feature merger to use it for those
features.

Feature Merging takes place in the Evidence Merging
step of various phases. Specifically, Feature Merging is first
employed in the Hitlist Normalization phase to combine
merge features across different instantiations of an answer
(e.g., different passages containing the same answer).
Feature Merging is also employed after Answer Merging
in the Answer Merging phase. It is then employed one
last time after Evidence Diffusion in the Evidence
Diffusion phase.

Ranking with classifiers
The DeepQA framework is designed to allow for
experimentation with a range of machine learning
approaches, and it is straightforward to integrate new ranking
approaches. Many existing approaches to ranking take
advantage of the fact that ranking may be reduced to
classification [8]. The DeepQA framework has native support
for classification techniques to be applied using the simple
heuristic of sorting by classification score; this is the
approach used in the Watson Jeopardy! application.

Over the course of the project, we have experimented
with logistic regression, support vector machines (SVMs)
with linear and nonlinear kernels, ranking SVM [9, 10],
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boosting, single and multilayer neural nets, decision trees,
and locally weighted learning [11]; however, we have
consistently found better performance using regularized
logistic regression, which is the technique used in the final
Watson system. Logistic regression produces a score
between 0 and 1 according to the formula

=t

M
o= Bum
1+e =

where m ranges over the M features for instance x and (3, is
the “intercept” or “bias” term. (For details, the interested
reader is referred to [19].)

An instance x is a vector of numerical feature values,
corresponding to one single occurrence of whatever the
logistic regression is intended to classify. Output f'(x) may be
used like a probability, and learned parameters (3,, may be
interpreted as “weights” gauging the contribution of each
feature. For example, a logistic regression to classify carrots
as edible or inedible would have one instance per carrot,
and each instance would list numerical features such as the
thickness and age of that carrot. The training data consists
of many such instances along with labels indicating the
correct f'(x) value for each (e.g., 1 for edible carrots and 0 for
inedible carrots). The learning system computes the model
(the /3 vector) that provides the best fit between f(x) and
the labels in the training data. That model is then used
on test data to classify instances. In Watson’s case, instances
correspond to individual question/candidate-answer pairs,
and the numerical values for the instance vector are
features computed by Watson’s candidate generation and
answer-scoring components. The labels on the training data
encode whether the answer is correct or incorrect. Thus,
Watson learns the values for the (3 vector that best distinguish
correct answers from incorrect answers in the training data.
Those (3 values are then used on test data (such as a live
Jeopardy! game) to compute f'(x), our confidence that each
candidate answer is correct. Candidate answers with higher
confidence scores are ranked ahead of candidate answers
with lower confidence scores.

Logistic regression benefits from having no tuning
parameters beyond the regularization coefficient and
optimization parameters to set and therefore was robust
without requiring parameter fitting in every experimental run.
Answers must be both ranked and given confidence scores;
thus, the framework does allow for separate models to be
trained to perform ranking and confidence estimation. In
practice, however, we found competitive performance using
a single logistic regression model where ranking was done
by sorting on the confidence scores.

Ranking with classifiers is performed in the Classifier
Application step of each phase. It uses a model produced
in the Classifier Training step for that phase.
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Standardization

One aspect of ranking that can be lost when converting a
ranking task to a classification task is the relative values of
features within a set of instances to be ranked. It can be
useful to look at how the value of the feature for one instance
compares with the value of the same feature for other
instances in the same class. For example, consider the
features that indicate whether the candidate answer is an
instance of the LAT that the question is asking for [12].

In cases where a large proportion of the candidate answers
that the system has generated appear to have the desired type,
the fact that any one of them does so should give the system
relatively little confidence that the answer is correct. In
contrast, if our search and candidate generation strategies
were only able to find one answer of that appears to have
the desired type, that fact is very strong evidence that

the answer is correct.

To capture this signal in a system that ranks answers using
classification, we have augmented the existing features with a
set of standardized features. Standardization is per query,
where for each feature j and candidate answer i in the
set Q of all candidate answers for a single question, the
standardized feature x;.td is calculated from feature x;;
by centering (subtracting the mean p) and scaling to unit
variance (dividing by the standard deviation o) over all
candidate answers for that question

0|

W Xl 1

wd =M = 2N
015

ij o
gj

For each feature provided as input to the ranking component,
we generate an additional new feature that is the standardized
version of that feature. Both mean and standard deviation
are computed within a single question since the purpose

of standardization is to provide a contrast with the other
candidates that the answer is being ranked against. We
chose to retain the base features and augment with the
standardized features as that approach showed better
empirical performance than using standardized features

or base features alone.

Standardization is performed during the postprocessing
step of several different phases. It is performed in the Hitlist
Normalization phase because that is the first phase so no
standardized features exist. It is also performed in the Base
and Elite phases because some answers are removed at
the start of those phases; hence, the revised set of answers
can have different mean and standard deviation. Furthermore,
it is performed in the Answer Merging and Evidence
Diffusion phases because the Feature Merging step for these
phases makes substantial changes to the feature values of
the instances. It is not performed in other phases because
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those phases are able to inherit the standardized values from
their predecessors.

Imputing missing values
Many answer scorers within the system are designed
to use forms of analysis or resources that do not apply
to every question (e.g., temporal scorers require that
a temporal expression occur in the clue) or answer (e.g.,
knowledge-base-driven type coercion requires an answer
to exist in its knowledge-base [12]). As a result, the feature
vector may have many missing values. The fact that a feature
is missing may provide important additional information
in estimating correctness for an answer, providing a different
signal from a zero feature score. The DeepQA confidence
estimation framework provides an extensible set of
configurable imputation policies that may incorporate
feature scores of any candidate answers for that question as
well as averages taken over the training set. One important
capability is the ability to add a response indicator, here
called a “missing flag,” for each feature indicating whether
it is missing. The response indicator is then treated as
another feature in the training. The experimental results
below show a sizable gain from employing this imputation
strategy over the conventional baseline of imputing to
train set mean.

Imputing missing values occurs as a postprocessing
step during the first phase and in every other additional
phase that introduces new features that might be
missing.

Specializing to question classes
Different classes of questions such as multiple choice, useless
LAT (e.g., “it” or “this”), date questions, and so forth
may require different weighing of evidence. The DeepQA
confidence estimation framework supports this through the
concept of routes. Each phase specifies its set of routes,
where for each route, a specialized model is trained. This
is an ensemble approach where the space of questions is
partitioned on question classes. In the Jeopardy! system,
profitable question classes for specialized routing were
manually identified. Then, components using the LAT or
other features of the question were added to automatically
identify the class of a question at train and test time.
Although routes in Watson were manually identified,
deriving routes from automatic techniques to learn
mixtures of experts (as introduced in [13]) could also
be done.

Specializing to question classes is done in the classifier
training and classifier application steps of each phase.

Feature selection

Our machine learning framework allows each pair of phase
and route to learn over some or all of the features in the
complete system. Making all features available for every
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phase and route would be problematic because we have a
very large number of features and some routes are specific
to relatively uncommon types of questions; many features
but few training instances tend to lead to overfitting. Thus,
for those phase/route pairs for which we have a limited
amount of training data, it is important to use only a subset
of all features for training.

One useful metric for selecting features is the correlation
between the feature value and whether the answer is correct.
However, naively selecting features according to this
criterion can lead to selecting many features, each of which
is good individually but collectively do poorly because they
overlap too heavily in the signal they provide. When we
first started experimenting with routes for infrequently
occurring question types, we ranked all features according
to correlation and then manually selected features that were
well correlated with correctness, making an effort to avoid
too many features that we expected to have very similar
behavior; for example, if many features relating to typing
answers [12] were all highly correlated with answer
correctness, we might select a few that were particularly high
and then skip a few to get a more diverse set of features.
This approach seemed effective but was also labor intensive
and arbitrary.

To address this limitation, we experimented with a variety
of off-the-shelf and custom techniques for automatically
selecting features. One approach that we found to be effective
employs a combination of correlation with correctness and
best first search driven by the consistency subset attribute
evaluator [14] in the Weka (Waikato Environment for
Knowledge Analysis) machine learning toolkit [15].
Specifically, we used the best first consistency subset
technique to select an initial set of features. However,
in some cases, this approach appeared to be more
conservative than we intended in terms of the number of
features used (some features that appeared to be very useful
for identifying right answers were omitted). Then, if the
number of features selected was less than our heuristic
estimate of the number of features desired (one for every
ten training questions), we added in the features that
had the highest correlation with correctness that were not
included in the initial set. This process was separately
performed for each phase/route pair with limited training
data. We used this approach to select the features that
were employed in the Jeopardy! configuration that performed
on television.

Even in routes for which there is sufficient training data
available, there may be some scorers that produce scores
for only a very small portion of that training data. As
discussed in the previous section, this sparse feature
phenomenon is common for natural-language processing
(NLP)-based scorers. Features of this sort can lead to
overfitting since the learning algorithm has very little
experience with those features. Although this effect may be
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somewhat ameliorated by use of regularization techniques,
the DeepQA framework provides an additional capability for
sparse feature filtering in which features firing less than a
predefined threshold are filtered out of the set used in training
(during the Classifier Training step of each phase).

Feature selection is performed before training. We perform
feature selection in each phase for each route that has
a relatively small amount of training data. The list of
selected features for each route of each phase is used during
Classifier Training (to determine what features to use as
training data) and during Classifier Application (to determine
what features to apply to the model).

Transfer learning for rare question classes

Certain question classes of questions, for example, definition
or translation questions, may benefit from specialized
models. Because of their rarity, however, even over

our entire set of questions, there may not be sufficient
training instances. The phase-based framework supports

a straightforward parameter-transfer approach to transfer
learning by passing one phase’s output of a general model
into the next phase as a feature into a specialized model.
In the case of logistic regression, which uses a linear
combination of weights, the weights that are learned in the
transfer phase can be roughly interpreted as an update to
the parameters learned from the general task. Transfer
learning is performed in the Transfer Learning phase.

Successive refinement

Although a single question in the Watson system typically
results in hundreds of candidate answers, many of these
will score quite poorly and a model trained over these may
not optimally differentiate among high-scoring candidates.
The Watson system implements successive refinement in
which the first phase (i.e., the Hitlist Normalization phase)
is used to weed out extremely bad candidates; the top

100 candidates after hitlist normalization are passed to later
phases. A later “elite” phase near the end of the learning
pipeline trains and applies to only the top five answers as
ranked by the previous phase.

Instance weighting

As noted earlier, question answering tends to lead to severe
class imbalance because it is easy to find many candidate
answers and most questions have few correct answers. In the
case of Jeopardy!, the system produces far more incorrect
than correct answers with a class imbalance of approximately
94 to 1 in the main phases. We have experimented with
instance weighting, cost-sensitive learning, and resampling
techniques (based on sampling uniformly and sampling
with bias toward those instances close to the decision
boundary of a previously trained model). Logistic regression
allows for instance weights to be associated with sets

of instances. Ultimately, we settled on using an instance
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weighting of 0.5 for the incorrect instances, which showed
the best empirical performance. Instance weighting is
employed during the Classifier Training step of every phase.

Evidence diffusion
Evidence diffusion is inspired by [6]: gathering additional
answer evidence on the basis of background relationship
information between candidate answers. We attempt to infer
from the context of the question and relationships between
the candidates whether evidence found for one candidate is
also meaningful evidence for another. In contrast with [6],
which merges final answer scores, our approach merges
evidence directly.

Consider the following Jeopardy! question:

WORLD TRAVEL: If you want to visit this country,
you can fly into Sunan International Airport or ... or
not visit this country. (Correct answer: “North Korea”)

The Sunan International Airport mentioned in the question
is located in the city of Pyongyang. Most text sources tend to
mention this fact, as opposed to the country, North Korea,
where the airport is located. As a result, there is strong textual
evidence for the candidate answer “Pyongyang” [7], which
can overwhelm the type-based evidence [12] for the correct
answer “North Korea”, causing the question-answering
system to prefer Pyongyang although it is of the wrong type.

In DeepQA, evidence may be diffused from source
(Pyongyang) to target (North Korea) if a source-target pair
meets the following evidence diffusion criteria.

1. The target meets the expected answer type (in this
example, “country”).

2. There is a semantic relation between the two candidates
(in this case, located-in).

3. The transitivity of the relation allows for meaningful
diffusion given the question.

Criterion 1 is evaluated using the LAT of the question
and candidate type coercion scores [12], which indicate
whether a candidate answer meets the expected answer type.
This identifies suitable target candidates.

Criterion 2 requires identification of relationships between
two given candidate answers using background knowledge
sources. This is done in two ways.

e Consulting structured knowledge-bases such as
DBpedia [16] by mapping the source and target to
corresponding resources in a structured knowledge-base.
As described in [12] and [17], this is a nontrivial entity
disambiguation task.

e Using shallow lexical knowledge extracted from
unstructured text [18], we mine over a large text corpus
for frequent textual relations that link source and target.
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Criterion 3 is particularly challenging because it requires
a deep understanding of the semantics of the question
and the relations found between answers and entities
expressed in the question. For example, although
located-in may be meaningful for the example question,

a formerly-ruled-by relation (between Pyongyang and Japan)
would not be meaningful for this question. For now, we
use a restricted simple strategy that ignores the semantics
of the relation and question and instead uses a preidentified
set of relations that was filtered according to popularity
and requires that the source answer is of the wrong

type (which is judged using type-matching scores [12]).

If all criteria are met, we augment the target answer
with a new set of features that are the scores of the source
answer. The diffusion phase can then learn how to tradeoff
between diffused and original scores. Suppose that the
incoming phase uses a linear classifier with weights 3,,.
The input features to the evidence diffusion phase are the
previous score, f(x) = >, Bux, as well as transferred
features x/,. Suppose weights y are learned for a linear
model f(x) in the Evidence Diffusion phase. The output
of Evidence Diffusion is then

f,(x) =% + Z '-me:n + ’YM-%—lf(x)

=% + Z ’me:n + Ym+1 (50 + Z ﬁmxm> )
m m

=0+ W+180 + Y VnXpy + Yot 415,
m

where yy110, versus v, can be interpreted as a weighted
linear combination of original features x,, and transferred
features x/,. Thus, the Evidence Diffusion phase learns how
to tradeoff between an answer’s original features and its
transferred features diffused from related answers. It should
be noted that in the actual implementation, we found good
empirical performance using logistic regression for all
phases, which further introduces the logistic function to the
calculation of f/(x).

Evidence Diffusion is performed in the Evidence Merging
step of the Evidence Diffusion phase.

Integrated design

Figure 1 provides a partial illustration of how the elements
described above are integrated in Watson. A different
DeepQA application may combine and configure these
capabilities differently. The figure shows the first four phases
of processing. Answers begin at the Hitlist Normalization
phase. At the start of this phase, answers whose string values
are identical are merged (even if they are derived from
different sources). After merging, the standardized feature
values are computed. The answers are then sent to one of a
set of routes based on how the question was classified. There
are distinct routes for Puzzle questions, Multiple-Choice
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questions, questions asking for a date, and questions asking
for a number. There is also a route for questions with no
focus, for which some passage-scoring algorithms may be
less effective [7], and a route for questions with no LAT, for
which the type coercion algorithms are not applicable [12].
Question characteristics that have an impact on the
effectiveness of a broad class of scoring algorithms are
generally good candidates for a distinct route because there is
a reason to expect that different weights for the features are
ideal for those classes. The last route is the default route,
which handles answers for questions that do not fit into any
of the other categories.

At the start of the base phase, answers are ranked
according to the scores assigned by the Hitlist Normalization
phase, and only the 100 highest scoring answers from that
phase are retained. With at most 100 answers per question,
the standardized features are recomputed. The recomputation
of the standardized features at the start of the base phase is
the primary reason that the Hitlist Normalization phase
exists: By eliminating a large volume of “junk” answers
(i.e., ones that were not remotely close to being considered),
the remaining answers provide a more useful distribution of
feature values to compare each answer to. The base phase
provides the same set of routes as the previous phase.

The score assigned to each answer by the model (for the
selected route) in the base phase is provided as an input
feature to the Transfer Learning phase. The Transfer
Learning phase provides additional routes for which we
expect the results of the base model to provide a useful
starting point but not an ideal complete model. For example,
Final Jeopardy! questions are very similar to ordinary
Jeopardy! questions in many respects, but there are some
systematic differences in terms of topic areas and level of
complexity. If we put a Final Jeopardy! model into the earlier
phases, then our ability to rank Final Jeopardy! answers
would be limited by the size of the available training data,
which is much smaller than the available data for all
Jeopardy! questions. On the other hand, if we did not provide
a Final Jeopardy! model in any phase, then our learning
system would have no way to build a model that is tuned to
that class of questions. Introducing the Final Jeopardy! route
in the Transfer Learning phase provides a compromise
between these extremes; the model in the Final Jeopardy!
route of the Transfer Learning phase is able to learn how
much to trust the base model and how much to adjust those
results on the basis of how various features perform on Final
Jeopardy! questions.

The Answer Merging phase combines equivalent answers.
As noted earlier in the “Answer Merging” section, it uses a
variety of resources to determine equivalence. The reason
there is a distinct Answer Merging phase is that the merging
process uses the results of the previous phase to determine
which of the various forms being merged is “canonical.”
The selected canonical form is the one that is used when
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presenting final answers. After merging, the answers are
again divided up among the various routes to combine their
features into a score for each answer. It is important to
recombine the features after answer merging because
different variants of an answer can have different kinds of
evidence. For example, given a question asking for a
president from Massachusetts, we might have evidence that
“John F. Kennedy” is a president and “Jack Kennedy” is
from Massachusetts. If we combine these answers (using
whichever of those two labels scored higher in the previous
phase), we want to then score that answer on the basis of the
combination of those two kinds of evidence.

The remaining phases are not shown in Figure 1 because
of space limitations. The elite phase works much like the
base phase but employs only the top five answers from the
previous phase. The Evidence Diffusion phase is similar to
the Answer Merging phase but combines evidence from
related answers, not equivalent ones (as described earlier).
The Multi-Answer phase provides one additional type of
merging that is only invoked for questions that ask for
multiple distinct answers (e.g., a question asking for two
countries that share a common characteristic); it combines

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 14 MAY/JULY 2012

multiple answers from earlier phases into a final answer.
For those questions (only), it employs one additional model
(with one route) that scores combined answers.

Experiments

We evaluate correctness and confidence using precision and
percentage answered. Precision measures the percentage

of questions that the system gets right out of those it chooses
to answer. Percentage answered is the percentage of
questions it chooses to answer (correctly or incorrectly).
The system chooses which questions to answer on the basis
of an estimated confidence score: For a given threshold,

the system will answer all questions with confidence scores
above that threshold. The threshold controls the tradeoff
between precision and percentage answered. Assuming
reasonable confidence estimation, for higher thresholds, the
system will be more conservative, answering fewer questions
with higher precision. For lower thresholds, it will be more
aggressive, answering more questions with lower precision.
Accuracy refers to the precision if all questions are answered;
it corresponds to the vertical axis value on the far right of
Figure 2. We often consider Precision@70 as a numerical
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Figure 2

Precision versus percentage attempted: (green) perfect confidence
estimation and (blue) no confidence estimation. (Modified and used,
with permission, from D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan,
D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager,
N. Schlaefer, and C. Welty, “Building Watson: an overview of the
DeepQA project,” A Magazine, vol. 31, no. 3, pp. 59-79, 2010; ©2010
Association for the Advancement of Artificial Intelligence.)

measure that combines the ability to correctly answer
questions and the ability to measure confidence; this metric
corresponds to the precision when the system answers

70% of the questions for which it is most confident; it
corresponds to the vertical axis value for the 70% horizontal
axis value. Figure 2 shows the impact of confidence
estimation for a plot of precision versus percentage attempted
curves for two theoretical systems, obtained by evaluating
the two systems over a range of confidence thresholds.
Both systems have 40% accuracy. They differ only in their
confidence estimation. The green line represents an ideal
system with perfect confidence estimation. Such a system
would identify exactly which questions it gets right and
wrong and give higher confidence to those it got right.

The blue line represents a system without meaningful
confidence estimation. Because it cannot distinguish between
which questions it is more or less likely to get correct,

it has constant precision for all percent attempted.

Figure 3 shows the effect of our enhancements on
confidence estimation. The red baseline curve is for a system
using a single phase of logistic regression. The next line
shows the effect of adding standardized scores to this phase,
which results in a small gain in precision values. The next
line adds in our custom per-query imputation strategy, which
results in a jump of +2.4% accuracy. The gain from
imputation may be surprising in comparison but shows the
importance of imputation strategies within a system where
many of the answer scorers may not fire. Finally, the top
line is the system with all phases of confidence estimation
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Improvements to answer precision from Final Merger enhancements.
The precision at 100% answered represents the system accuracy.

integrated, which shows a further 41.6% incremental gain in
accuracy. This version includes multiple routes for different
question types as well as phases that perform transfer
learning, successive refinement, and canonical form answer
merging. Overall, the impact on system performance from
the enhancements to the confidence estimation and machine
learning is +4.5% accuracy and +5.9% improvement to
Precision@70. The accuracy differences among these four
configurations are all statistically significant (p < 0.1%
from McNemar’s test with Yates’ correction for continuity)
except for the difference between the first two (“base” and
“base + standard” in Figure 1).

Conclusion

The DeepQA final merger framework is critically responsible
for ranking and estimating confidence over candidate
answers for a question. Throughout the development of
DeepQA, this framework served as the test bed for a

range of experiments on machine learning techniques to
optimize ranking and confidence estimation for candidate
answers. It also performs as the daily workhorse for
integration of new scores as people experiment with adding
answer scorers to the DeepQA system. Correspondingly,

it must be robust and stable while also affording the
flexibility to allow experimentation with advanced machine
learning and answer-merging approaches. We have
explained the framework and how it may be used to
implement strategies to address the challenges that we have
encountered in evidence-based hypothesis evaluation.
Finally, we evaluated the enhancements to confidence
estimation over a standard baseline and showed that they
contribute a substantial improvement to system accuracy
and precision.
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