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Financial time series exhibit a number of interesting properties that are difficult to explain with
simple models. These properties include fat-tails in the distribution of price fluctuations (or returns)
that are slowly removed at longer timescales, strong autocorrelations in absolute returns but zero
autocorrelation in returns themselves, and multifractal scaling. Although the underlying cause of
these features is unknown, there is growing evidence they originate in the behavior of volatility,
i.e., in the behavior of the magnitude of price fluctuations. In this paper, we posit a feedback
mechanism for volatility that reproduces many of the non-trivial properties of empirical prices. The
model is parsimonious, requires only two parameters to fit a specific financial time series, and can be
grounded in a straightforward framework where volatility fluctuations are driven by the estimation
error of an exogenous Poisson rate.

PACS numbers:

Financial time series exhibit a number of interesting
regularities (or “stylized facts”, as economists call them)
that are well-documented in the literature[1–7]. They
include fat tails in the distribution of price fluctuations
(known as returns in finance) that are slowly removed
at longer timescales, strong autocorrelations in absolute
returns but zero autocorrelation in returns themselves,
multifractal scaling, and a negative correlation between
past returns and the future magnitude of returns (known
as the leverage effect).

Although there is currently no consensus on the under-
lying cause of these properties, there is growing evidence
they are all rooted in the behavior of volatility, i.e., in
the behavior of the magnitude of returns[3]. In addition,
there is evidence that returns – like earthquakes, turbu-
lent flow, and Barkhausen noise – are driven by strong
endogenous, or internal, feedback effects[8].

In this paper, we present a stochastic feedback model
for volatility that generates many of the stylized facts of
financial time series. The model is motivated by several
recent studies that have found the variance of price fluc-
tuations, i.e., the squared volatility, is slowly varying and
inverse gamma distributed so that returns are well-fit by
a Student’s t-distribution over intraday timescales[9, 10].
Here we extend these results by modelling the properties
of returns over timescales longer than one day. We pro-
pose a simple mechanism that generates inverse gamma
distributed variances and introduce a feedback parame-
ter that allows the variance to change slowly over time
as it does in real price series. As a result, returns are t-
distributed at daily intervals but slowly approach a Gaus-
sian as timescales are increased to weekly, monthly, and
yearly intervals.

The model is based on the following insight: when the
rate of a Poisson process is estimated using a fixed num-
ber of events, the resulting estimate is inverse gamma dis-
tributed. Assuming that price fluctuations are driven by

market participants who act according to this estimated
rate, squared volatility will be inverse gamma distributed
and returns will be t-distributed.

Although the results of the model match empirical
data very well, we make no strong claim that we have
uncovered the mechanism driving real-world volatility
fluctuations. Instead, we offer the proposed mechanism
as a novel explanation for these fluctuations and leave
any conclusions regarding the true mechanism for later
analysis. Alternative models that also produce inverse
gamma distributed variances (and therefore Student t-
distributed returns) include the well-known GARCH
model[3, 11, 12] which can be motivated by the posi-
tion of stop-loss orders in markets[13] and the Minimal
Market Model[14, 15] which describes the dynamics of a
growth optimal portfolio with deterministic drift.

To begin our analysis, we define the tth return as the
difference in logarithmic price from time t to time t+ ∆t
where t is measured in days,

rt(∆t) = ln (pt+∆t)− ln (pt). (1)

We model daily returns, rt(∆t = 1), as a discrete time
stochastic process with a fluctuating variance,

rt = µ+ σtξt, (2)

where µ is the daily average return, ξt is an IID Gaussian
N(0, 1) random variable, and σ2

t is the local variance of
returns (the square of the daily volatility, σt).

We assume that the daily variance of returns, σ2
t , is

determined by a stochastic feedback process so that,

σ2
t ∼

σ2
0

Gamma(1 +Bσ2
0/σ

2
t−1, 1 +B)

, (3)

where Gamma(a, b) is the gamma distribution,
f(x|a, b) = (ba/Γ[a])xa−1e−bx.
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Only two parameters are used in Eq. 3: 1/σ2
0 is the

equilibrium inverse variance of the return process and
B > 1 is a feedback parameter. Notice that when σ2

t−1 =
σ2

0 , the expected value of 1/σ2
t is 1/σ2

0 . Deviations from
this equilibrium value are removed over a length of time
determined by B. If B is large, the variance requires
many iterations to relax back towards σ2

0 , but for small
B, the relaxation is quick.

The model can be motivated by the following mecha-
nism. Suppose that detrended intraday returns are un-
correlated, are all of size ±δ, and occur at times deter-
mined by a Poisson process with changing rate parameter
λ(t). λ(t) is determined by market participants at the be-
ginning of the day as follows: (1) they observe a separate
exogenous Poisson process with rate parameter λe (this
process could describe, for example, the arrival of new
orders to the market or the arrival of economic news),
(2) they estimate the rate of this exogenous process us-
ing the past M events, and (3) they set λ(t) such that a
target number N price fluctuations occur per M exoge-
nous events. Denoting their estimate of the exogenous
rate by λ̂e(t),

λ(t) = (N/M)λ̂e(t). (4)

M exogenous events will occur in an amount of time,
τ ∼ Gamma(M,λe), making the estimated rate inverse

gamma distributed, λ̂e(t) ∼ M/Gamma(M,λe). The
local variance of daily returns is therefore,

σ2
t = δ2λ(t) ∼ δ2N

Gamma(M,λe)
. (5)

Notice that this mechanism produces inverse gamma dis-
tributed variances, but these variances are not autocor-
related.

To introduce feedback effects we assume that M varies
through time so that the sensitivity of the market to ex-
ogenous events (measured by N/M) is high when the
local variance is high and low when the local variance is
low. The simplest form of this relationship (taking into
account that M ≥ 1) is,

M(t) = 1 +A/σ2
t−1. (6)

The final result is,

σ2
t ∼

δ2N

Gamma(1 +A/σ2
t−1, λe)

. (7)

The equation can be simplified by introducing the equi-
librium inverse variance 1/σ2

0 , defined by the relation
E[1/σ2

t |σ2
t−1 = σ2

0 ] = 1/σ2
0 . Therefore, σ2

0 = δ2Nλe − A.
Using this relation and the simplifying assumption that
at equilibrium, E[τ |σ2

t−1 = σ2
0 ] = 1, so that A =

σ2
0(λe − 1), we have,

σ2
t ∼

σ2
0

Gamma(1 + (λe − 1)σ2
0/σ

2
t−1, λe)

. (8)

Notice this equation is identical to Eq. 3 with the change
of variable λe = 1 +B.

To determine how the parameters of the model affect
returns, we simulate the model using different choices of
σ2

0 and B (each run includes 50 million time steps). σ2
0

only influences the scale of the process and leaves the
statistical properties of returns unchanged (a result con-
firmed in our simulations), so we do not show the results
of varying σ2

0 here.

In Fig. 1, we show the properties of the model with
different B. We set σ2

0 = 10−4 and let B = 10, B =
100, B = 1000 respectively. To facilitate the presentation
of results, we define the following normalized variables:

r′t(∆t) ≡ (rt(∆t)− µ)/(σ0

√
∆t), (9)

σ′t ≡ σt/σ0, (10)

β′t ≡ σ2
0/σ

2
t . (11)

As seen in Figs. 1(a and b), the parameter B sets the
strength of volatility autocorrelations with larger values
of B producing stronger autocorrelations. Notice that
the autocorrelation function (Fig. 1(b)) drops rapidly at
the point where the lag approximately equals B. As
seen in Fig. 1(c), the distribution of the normalized in-
verse squared volatility, β′, is gamma distributed and
largely unaffected by B (although for B = 10, the peak of
the distribution is slightly below the others). A gamma
distributed β′ should produce t-distributed returns for
∆t = 1, which is observed in the topmost curves in
Fig. 1(d). As ∆t increases (moving to the lower curves
in Fig. 1(d)), the return distribution adjusts from a Stu-
dent’s t-distribution to a Gaussian, with the speed of
adjustment determined by B. Higher values of B cor-
respond to a slowly varying volatility and therefore to a
return distribution that retains its non-Gaussian shape
at larger ∆t.

In Fig. 2 we compare the results of the model (σ2
0 = 1,

B = 175) with three empirical financial time series: the
daily price series of (a) the Dow Jones Industrial Average
(DJIA) from January 4, 1960 to December 31, 1984, (b)
the DJIA from January 2, 1985 to December 31, 2009,
and (c) the FTSE 100 from January 2, 1985 to Decem-
ber 31, 2009. All data is from finance.yahoo.com. From
the price series, daily returns are calculated as in Eq. 1.
Squared volatilities are estimated using a rolling window
of two months of daily returns (42 trading days),

σ̂2
t =

∑20
i=−21(rt+i − µ̂)2

42
, (12)

where µ̂ is the estimated mean of the daily returns.

We have found that a good estimate of σ2
0 , is the inverse

of the mean inverse variance,

σ̂2
0 =

1

〈1/σ2
t 〉
. (13)
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FIG. 1: Properties of the model with various choices of the parameter B. (a) The volatility series for B = 10 (top), B = 100
(middle), and B = 1000 (bottom). (b) The autocorrelation function of absolute scaled returns. (c) The probability density
function of the scaled inverse variance (the inset plot is in semilog coordinates). A fit to the Gamma distribution is shown
for B=100. (d) The probability density function of scaled returns compared to a Student’s t-distribution and a Gaussian.
The curves at different ∆t are arbitrarily offset vertically and from top to bottom are for ∆t = 1, ∆t = 10, ∆t = 100, and
∆t = 1000.

Using this equation, we find σ̂2
0 = 4.2×10−5 for the early

DJIA data, σ̂2
0 = 6.0× 10−5 for the late DJIA data, and

σ̂2
0 = 6.3× 10−5 for the FTSE data.

We estimate B for each series by minimizing the sum
of the squared difference between 1/σ2

t and its expected
value, i.e., we find the B that minimizes

∑
e2
t , where et =

1/σ2
t − (1 +Bσ2

0/σ
2
t−1)/((1 +B)σ2

0). Using this method,

we find B̂ = 202 for the early DJIA data, B̂ = 156 for
the late DJIA data, and B̂ = 167 for the FTSE data.

Although we obtain a different B̂ for the each of the
empirical price series, the values are sufficiently similar
that we choose to compare all three series to the model
using only one set of parameters, σ2

0 = 1 and B = 175 =
(202+156+167)/3 (see Fig. 2). As in Fig. 1, the plots in
Fig. 2 use the renormalizations of Eqs. 9-11 but with the
estimated values of the parameters. As seen in Figs. 2(a-
d), the statistical properties of the empirical prices are
well-reproduced by the model.

Financial time series have been studied by mathemati-

cians and physicists over many years[1, 6, 16, 17]. Al-
though the dynamics of prices are now well-characterized
and understood, it is still unclear why prices exhibit the
interesting properties that they do. This lack of under-
standing is especially troublesome because prices fluc-
tuate in a universal, regular way, i.e., the returns of
many different traded items all possess the same non-
trival properties. It is therefore quite likely that some
simple, robust mechanism underlies price dynamics, even
if we have not yet discovered it[18].

We have presented a simple feedback model for volatil-
ity that matches empirical data very well and that can
be motivated by the estimation error of an exogenous
Poisson rate. The model reproduces several important
features of empirical prices: returns are t-distributed at
daily intervals but slowly become Gaussian when mea-
sured over longer timescales, and the absolute value of
returns is strongly autocorrelated. Although not shown
here, we have found that the model also replicates the
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FIG. 2: Comparison of the model (σ2
0 = 1, B = 175) with data. (a) The volatility series for the model (top), the early DJIA

data (top middle), the late DJIA data (bottom middle), and the FTSE data (bottom). (b) The autocorrelation function of
absolute scaled returns. (c) The probability density function of the scaled inverse variance. The inset plot shows 1 minus
the cumulative distribution function. (d) The probability density function of scaled returns. The curves at different ∆t are
arbitrarily offset vertically and from top to bottom are for ∆t = 1, ∆t = 10, and ∆t = 100.

multifractal structure of returns. The model does not
produce the well-known correlation between negative re-
turns and volatility (known as the leverage effect) nor
does it explicitly include feedback effects on multiple
timescales[13, 19–21], but these features could be added
to the model without difficulty.
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