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Abstract. We present a protocol for two parties to generate an RSA
key in a distributed manner. At the end of the protocol the public key: a
modulus N = PQ, and an encryption exponent e are known to both par-
ties. Individually, neither party obtains information about the decryption
key d and the prime factors of N : P and Q. However, d is shared among
the parties so that threshold decryption is possible.

1 Introduction

We show how two parties can jointly generate RSA public and private keys.
Following the execution of our protocol each party learns the public key:N = PQ
and e, but does not know the factorization of N or the decryption exponent
d. The exponent d is shared among the two players in such a way that joint
decryption of cipher-texts is possible.

Generation of RSA keys in a private, distributed manner figures prominently
in several cryptographic protocols. An example is threshold cryptography, see
[12] for a survey. In a threshold RSA signature scheme there are k parties who
share the RSA keys in such a way that any t of them can sign a message,
but no subset of at most t − 1 players can generate a signature. A solution
to this problem is presented in [11]. An important requirement in that work
is that both the public modulus N and the private key are generated by a
dealer and subsequently distributed to the parties. The weakness of this model
is that there is a single point of failure– the dealer himself. Any adversary who
compromises the dealer can learn all the necessary information and in particular
forge signatures.

Boneh and Franklin show in [4] how to generate the keys without a dealer’s
help. Therefore, an adversary has to subvert a large enough coalition of the
participants in order to forge signatures. Several specific phases of the Boneh-
Franklin protocol utilize reduced and optimized versions of information theoret-
ically private multi-party computations [1,6]. Those phases require at least three
participants: Alice and Bob who share the secret key and Henry, a helper party,
who knows at the end of the protocol only the public RSA modulus N .

Subsequent works [8,9,20] and [13] consider other variants of the problem
of jointly generating RSA keys. In [8] Cocks proposes a method for two parties
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to jointly generate a key. He extends his technique to an arbitrary number of
parties k [9]. The proposed protocol suffers from several drawbacks. The first
is that the security is unproven and as Coppersmith pointed out (see [9]) the
privacy of the players may be compromised in certain situations. The second is
that the protocol is far less efficient than the Boneh-Franklin protocol. In [20]
Poupard and Stern show a different technique for two parties to jointly generate
a key. Their method has proven security given standard cryptographic assump-
tions. Some of the techniques employed in the current work are similar to the
ideas of [20] but the emphasis is different. Poupard and Stern focus on main-
taining robustness of the protocol, while we emphasize efficiency. In [13] Frankel,
Mackenzie and Yung investigate a model of malicious adversaries as opposed to
the passive adversaries considered in [4,8,9] and in our work. They show how to
jointly generate the keys in the presence of any minority of misbehaving parties.

The current work focuses on joint generation of RSA keys by two parties. We
use the Boneh-Franklin protocol and replace each three party sub-protocol with
a two party sub-protocol. We construct three protocols. The first is based on(
2
1

)
oblivious transfer of strings. Thus, its security guarantee is similar to that

of general circuit evaluation techniques [22,16]. The protocol is more efficient
than the general techniques and is approximately on par with Cocks’ method
and slightly faster than the Poupard-Stern method. The second utilizes a new
intractability assumption akin to noisy polynomial reconstruction that was pro-
posed in [19]. The third protocol is based on a certain type of homomorphic
encryption function (a concrete example is given By Benaloh in [2,3]). This pro-
tocol is significantly more efficient than the others both in computation and
communication. It’s running time is (by a rough estimate) about 10 times the
running time the Boneh-Franklin protocol.

There are several reasons for using 3 different protocols and assumptions.
The first assumption is the mildest one may hope to use. The second protocol
has the appealing property that unlike the other two protocols it is not affected
by the size of the moduli. In other words the larger the RSA modulus being
used, the more efficient this protocol becomes in comparison with the others.
Another interesting property of the first two protocols is that a good solution to
an open problem we state at the end of the paper may make them more efficient
in terms of computation than the homomorphic encryption protocol.

We assume that an adversary is passive and static. In other words, the two
parties follow the protocol to the letter. An adversary who compromises a party
may only try to learn extra information about the other party through its view
of the communication. Furthermore, an adversary who takes over Alice at some
point in the execution of the protocol cannot switch over to Bob later on, and
vice versa.

The remainder of the work is organized as follows. In section 2 we describe
some of the tools and techniques developed previously and used in this paper.
In section 3 we give an overview of the Boneh-Franklin protocol and of where
we diverge from it. In section 4 we describe how to compute a modulus N in
a distributed fashion using each of the three protocols. In section 5 we show
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how to amortize the cost of computing several candidate moduli N and how to
perform trial divisions of small primes. In section 6 we show how to compute the
decryption exponent d. In section 7 we describe how to improve the efficiency of
the homomorphic encryption protocol. In section 8 we discuss some performance
issues.

2 Preliminaries

Notation 1: The size of the RSA modulus N is σ bits (e.g σ = 1024).

2.1 Smallest Primes

At several points in our work we are interested in the j smallest distinct primes
p1, . . . , pj such that πj

i=1pi > 2σ. The following table provides several useful
parameters for a few typical values of σ.

σ j pj

∑j
i=1dlog pie

512 76 383 557
1024 133 751 1108
1536 185 1103 1634
2048 235 1483 2189

2.2 Useful Techniques

In this subsection we review several problems and techniques that were re-
searched extensively in previous work, and which we use here.

Symmetrically private information retrieval: In the problem of private
information retrieval presented by Chor et al. [7] k databases (k ≥ 1) hold
copies of the same n bit binary string x and a user wishes to retrieve the i-th
bit xi. A PIR scheme is a protocol which allows the user to learn xi without
revealing any information about i to any individual database. Symmetrically
private information retrieval, introduced in [15], is identical to PIR except for
the additional requirement that the user learn no information about x apart from
xi. This problem is also called 1 out of m oblivious transfer and all or nothing
disclosure of secrets (ANDOS). The techniques presented in [15] are especially
suited for the multi-database (k ≥ 2) setting. In a recent work Naor and Pinkas
[19] solve this problem by constructing a SPIR scheme out of any PIR scheme, in
particular single database PIR schemes. The trivial single database PIR scheme
is to simply have the database send the whole data string to the user. Clever
PIR schemes involving a single database have been proposed in several works:
[18,5,21]. They rely on a variety of cryptographic assumptions and share the
property that for ”small” values of n their communication complexity is worse
than that of the trivial PIR scheme.

We now give a brief description of the SPIR scheme we use, which is the
Naor-Pinkas method in conjunction with the trivial PIR scheme. In our scenario
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the data string x is made up of n substrings of length `. The user retrieves
the i-th substring without learning any other information and without leaking
information about i. The database randomly chooses logn pairs of seeds for a
pseudo-random generator G: (s01, s11), . . . , (s0log n, s

1
log n). Every seed sb

j (1 ≤ j ≤
logn, b ∈ {0, 1}) is expanded into n` bits G(sb

j), which can be viewed as n
substrings of length `. It then prepares a new data string y of n substrings.
Suppose the binary representation of i is ilog n . . . i1. The i-th substring of y
is the exclusive-or of the i-th substring of x and the i-th substring of each of
G(si1

1 ), G(si2
2 ), . . . , G(silog n

log n ). The user and database combine in logn
(
2
1

)
-OT

of strings to provide the user with a single seed from every pair. Finally, the
database sends y to the user, who is now able to learn a single substring of
x. The parameters of the data strings we use are such that the running time is
dominated by the log n

(
2
1

)
-OTs and the communication complexity is dominated

by the n` bits of the data string, which are sent to the user.
Dense probabilistic and homomorphic encryption: we are interested in

an encryption method that provides two basic properties: (1) Semantic security:
as defined in [17]. (2) Additive homomorphism: we can efficiently compute a
function f such that f(ENC(a),ENC(b)) = ENC(a + b). Furthermore, the sum
is modulo some number t, where t can be defined flexibly as part of the system.

As a concrete example we use Benaloh’s encryption [2,3]. The system works

as follows. Select two primes p, q such that: m
4
= pq ≈ 2σ, t|p − 1, gcd(t, (p −

1)/t) = 1 and gcd(t, q − 1) = 1 1. The density of such primes along appropriate
arithmetic sequences is large enough to ensure efficient generation of p, q (see
[2] for details). Select y ∈ Z∗

m such that yφ(m)/t 6≡ 1 mod m. The public key is
m, y, and encryption of M ∈ Zt is performed by choosing a random u ∈ Z∗

m and
sending yMut mod m.

In order to decrypt, the holder of the secret key computes at a preprocessing
stage TM

4= yMφ(m)/t mod m for every M ∈ Zt . Hence, t is small enough that t
exponentiations can be performed. Decryption of z is by computing zφ(m)/t mod
m and finding the unique TM to which it is equal. The scheme is semantically
secure based on the assumption that deciding higher residuosity is intractable
[3]. Most of our requirements are met by the weaker assumption that deciding
prime residuosity is intractable [2].

Oblivious polynomial evaluation: In this problem, presented by Naor
and Pinkas in [19] Alice holds a field element α ∈ F and Bob holds a polynomial
B(x) over F . At the end of the protocol Alice learns only B(α) and Bob learns
nothing at all. The intractability assumption used in [19] is new and states the
following. Let S(·) is a degree k polynomial over F and letm, dQ,x be two security
parameters (dQ,x > k). Given 2dQ,x + 1 sets of m field elements such that in
each set there is one value of S at a unique point different than 0 and m − 1
random field elements, the value S(0) is pseudo-random.

We now give a brief description of the protocol presented in [19] as used in
our application where the polynomial B is of degree 1. Bob chooses a random

1 Therefore t is odd.
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bivariate polynomialQ(x, y) such that the degree of y is 1, the degree of x is dQ,x

and Q(0, ·) = B(·). Alice chooses a random polynomial S of degree dQ,x such
that S(0) = α. Define R(x) as the degree 2dQ,x polynomial R(x) = Q(x, S(x)).
Alice chooses 2dQ,x + 1 different non-zero points xj for j = 1, . . . , 2dQ,x + 1. For
each such j Alice randomly selects m−1 field elements yj,1, . . . , yj,m−1 and sends
to Bob xj and a random permutation of the m elements S(xj), yj,1, . . . , yj,m−1

(denoted by zj,1, . . . , zj,m). Bob computes Q(xj, zj,i) for i = 1, . . . , m. Alice and
Bob execute a SPIR scheme in which Alice retrieves Q(xj , S(xj)). Given 2dQ,x+1
such pairs of xj, R(xj) Alice can interpolate and compute R(0) = B(α).

The complexity of the protocol is 2dQ,x + 1 executions of the SPIR scheme
for data strings of m elements.

3 Overview

In this section we give an overview of our protocol. The stages in which we use
the Boneh-Franklin protocol exactly are the selection of candidates and the full
primality test (the other stages require a third party in [4]). The protocol is
executed in the following steps.

1. Choosing candidates Alice chooses independently at random two σ/2− 1
bit integers Pa, Qa ≡ 3 mod 4, and Bob chooses similarly Pb, Qb ≡ 0 mod 4.
The two parties keep their choices secret and set as candidates P = Pa +Pb

and Q = Qa +Qb.
2. Computing N Alice and Bob compute N = (Pa +Pb)(Qa +Qb). We show

how to perform the computation using three different protocols and three
different intractability assumptions.

3. Initial primality test For each of the smallest k primes p1, . . . , pk the par-
ticipants check if pi | N (i = 1, . . . , k). This stage is executed in conjunction
with the computation of N . If N fails the initial primality test, computing
a new candidate N is easier than computing it from scratch (as is the case
following a failure of the full primality test)

4. Full primality test The test of [4] is essentially as follows: Alice and Bob
agree on g ∈ Z∗

N . If the Jacobi symbol
(

g
N

)
is not equal to 1 choose a new g.

Otherwise Alice computes va = g(N−Pa−Qa+1)/4 mod N , and Bob computes
vb = g(Pb+Qb)/4 mod N . If va = vb or va = −vb mod N the test passes.

5. Computing and sharing d In this step we compute the decryption expo-
nent d assuming that e is known to both parties and that gcd(e, φ(N)) = 1.
Alice receives da and Bob receives db so that d = da + db mod φ(N) and
de ≡ 1 mod m. Boneh and Franklin describe two protocols for the compu-
tation of d. The first is very efficient and can be performed by two parties,
but leaks φ(n) mod e. Therefore, this method is suitable for small public
exponents and not for the general case. The second protocol computes d for
any e but requires the help of a third party.
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4 Computing N

Alice holds Pa, Qa and Bob holds Pb, Qb. They wish to compute

N = (Pa + Pb)(Qa +Qb) = PaQa + PaQb + PbQa + PbQb.

We show how to carry out the computation privately using three different pro-
tocols.

4.1 Oblivious Transfers

Let R be a publicly known ring and let a, b ∈ R. Denote ρ = log |R| (each
element in R can be encoded using ρ bits). Assume Alice holds a and Bob holds
b. They wish to perform a computation by which Alice obtains x and Bob obtains
y such that x+ y = ab where all operations are in R. Furthermore, the protocol
ensures the privacy of each player given the existence of oblivious transfers. In
other words the protocol does not help Alice and Bob to obtain information
about b and a respectively. The protocol:

1. Bob selects uniformly at random and independently ρ ring elements denoted
by s0 , . . . , sρ−1 ∈ R. Bob proceeds by preparing ρ pairs of elements in R:

(t00, t
1
0), . . . , (t

0
ρ−1, t

1
ρ−1). For every i (0 ≤ i ≤ ρ− 1) Bob defines t0i

4= si and
t1i = 2ib+ si.

2. Let the binary representation of a be aρ−1 . . . a0. Alice and Bob execute ρ(
2
1

)
-OTs. In the i-th invocation Alice chooses tai

i from the pair (t0i , t
1
i ).

3. Alice sets x 4=
∑ρ−1

i=0 t
ai

i and Bob sets y 4= −∑ρ−1
i=0 si.

Lemma 1. x+ y = ab over the ring R.

Proof. Since aρ−1, . . . , a0 is the binary representation of a we can write a =∑ρ−1
i=0 ai · 2i.

x+ y =
ρ−1∑

i=0

tai

i −
ρ−1∑

i=0

si

≡
ρ−1∑

i=0

(ai · 2ib+ si) −
ρ−1∑

i=0

si

≡ b

ρ−1∑

i=0

ai · 2i

≡ ab

ut
In the following protocol for computing N the ring R is Z2σ , the integers

modulo 2σ.
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1. Alice and Bob use the previous protocol twice to additively share PaQb =
x1 + y1 mod 2σ and PbQa = x2 + y2 mod 2σ. Alice holds x1, x2 and Bob
holds y1, y2.

2. Bob sends y 4= y1 + y2 + PbQb mod 2σ to Alice.
3. Alice computes PaQa+y mod 2σ. Alice now holdsN mod 2σ, which is simply
N due to the choice of σ.

Lemma 2. The transcript of the view of the execution of the protocol can be
simulated for both Alice and Bob and therefore the protocol is secure.

Proof. We denote the messages that Alice receives during the sharing of PaQb by
ta0
0 , . . . , t

aσ−1
σ−1 and the messages received while sharing PbQa by taσ

σ , . . . , t
a2σ−1
2σ−1 .

In the same manner we denote Bob’s random choices for the sharing of PaQb

and PbQa by s0, . . . , sσ−1 and sσ , . . . , s2σ−1 respectively.
Bob’s view can be simulated because the only messages Alice sent him were

her part of 2σ independent oblivious transfers.
Alice receives 2σ + 1 elements in Z2σ :

ta0
0 , . . . , t

a2σ−1
2σ−1 , y.

The uniformly random and independent choices by which s0, . . . , s2σ−1 are se-
lected ensure that the messages Alice receives are distributed uniformly subject
to the condition that

2σ−1∑

i=0

tai

i + y ≡ N − PaQa mod 2σ.

Since Alice can compute N −PaQa a simulator Sa can produce the same distri-
bution as that of the messages Alice receives, given N, Pa, Qa. ut
Lemma 3. The computation time and the communication complexity of the pro-
tocol are dominated by 2σ oblivious transfers. The transfered strings are of length
σ.

4.2 Oblivious Polynomial Evaluation

Alice and Bob agree on a prime p > 2σ and set F to be GF (p). They employ
the following protocol to compute N :

1. Bob chooses a random element r ∈ F . He prepares two polynomials over F :
B1(x) = Pbx+ r and B2 = Qbx− r + PbQb.

2. Alice uses the oblivious polynomial evaluation protocol of [19] to attain
B1(Qa) and B2(Pa). Alice computes N = PaQa + B1(Qa) + B2(Pa).

The security of the protocol depends on the security of the cryptographic
assumption outlined in subsection 2.2 and of a similar argument to the proof of
lemma 2.

Lemma 4. The computational complexity of the protocol is dominated by the
execution of 2 logm(2dQ,x + 1) oblivious transfers, where m and dQ,x are the
security parameters. The communication complexity is less than 3m(2dQ,x +1)σ.
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4.3 Benaloh’s Encryption

We now compute N by using the homomorphic encryption described in sub-
section 2.2. Let p1, . . . , pj be the smallest primes such that πj

i=1pi > 2σ. The
following protocol is used to compute N mod pi:

1. Let t 4= pi. Alice constructs the encryption system: an appropriate p, q, y, and
sends the public key y,m = pq to Bob. Alice also sends the encryption of her
shares, i.e z1

4= yPaut
1 mod m and z2

4= yQaut
2 mod m, where u1, u2 ∈ Z∗

m

are selected uniformly at random and independently .
2. Bob computes the encryption of PbQb mod t, which is denoted by z3, calcu-

lates
z

4
= zQb

1 · zPb

2 · z3 mod m

and sends z to Alice.
3. Alice decrypts z, adds to the result PaQa modulo t and obtains N mod t.

The two players repeat this protocol for each pi, i = 1, . . . , j. Alice is able
to reconstruct N from N mod pi, i = 1, . . . , j by using the Chinese remainder
theorem.

Lemma 5. Assuming the intractability of the prime residuosity problem, the
transcript of the views of both parties in the protocol can be simulated.

Proof. The distribution of Bob’s view can be simulated by encrypting two arbi-
trary messages assuming the intractability of prime residuosity. Therefore, Al-
ice’s privacy is assured.

The distribution of Alice’s view can be simulated as follows. GivenN ,N mod
pi can be computed for every i. The only message that Alice receives is z 4=
zQb

1 · zPb

2 · z3 mod m. By the definition of z3 and the encryption system z3 =
yPbQbut mod m where u is a random in Z∗

m. Thus z is a random element in the
appropriate coset (all the elements whose decryption is N − PaQa mod t). ut

Lemma 6. The running time of the protocol is dominated by the single decryp-
tion Alice executes, the communication complexity is 3σ and the protocol requires
one round of communication.

5 Amortization and Initial Primality Test

The initial primality test consists of checking whether a candidate N is divisible
by one of the first k primes p1, . . . , pk. If it is then either P = Pa + Pb or
Q = Qa +Qb is not a prime. This test can be carried out by Alice following the
computation of N .

If a candidate N passes the initial primality test, Alice publishes its value and
it becomes a candidate for the full primality test of [4]. However, if it fails the test
a new N has to be computed. In this section we show how to efficiently find a new
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candidate following a failure of the initial test by the previous candidate. The
total cost of computing a series of candidates is lower than using the protocols
of section 4 each time anew. We show two different approaches. One for the
oblivious transfer and oblivious polynomial evaluation protocols, and the other
for the homomorphic encryption protocol.

5.1 OT and Oblivious Polynomial Evaluation

Suppose that after Alice and Bob discard a certain candidate N they compute
a new one by having Alice retain the previous Pa, Qa and having Bob choose
new Pb, Qb. In that case, as we show below, computing the new N can be much
more efficient than if both parties choose new shares. The drawback is that given
both values of N Bob can gain information about Pa, Qa. Therefore, in this stage
(unlike the full primality test) Alice does not send the value of N to Bob.

Assume Bob holds two sequences of strings: (a0
1, . . . , a

0
n), (a1

1, . . . , a
1
n) and

Alice wishes to retrieve one sequence without revealing which one to Bob and
without gaining information about the second sequence. Instead of invoking a(
2
1

)
-OT protocol n times the players agree on a pseudo-random generator G and

do the following:

1. Bob chooses two random seeds s1 , s2.
2. Alice uses a single invocation of

(
2
1

)
-OT to gain sb, where b ∈ {0, 1} denotes

the desired string sequence.
3. Bob sends to Alice the first sequence masked (i.e bit by bit exclusive-or) by
G(s1) and the second sequence masked by G(s2).

Alice can unmask the required sequence while the second sequence remains
pseudo-random. In the protocol of subsection 4.1N is computed using only obliv-
ious transfers in which Alice retrieves a set of 2σ strings from Bob. Alice’s choices
of which strings to retrieve depend only on her input Pa, Qa. Therefore if Alice
retains Pa and Qa while Bob selects a sequence of inputs (P 1

b , Q
1
b), . . . , (P

n
b , Q

n
b ),

the two players can compute a sequence of candidates N1, . . . , Nn with as many
oblivious transfers as are needed to compute a single N .

The same idea can be used in the oblivious polynomial evaluation protocol,
as noted in [19]. The evaluation of many polynomials at the same point requires
as many oblivious transfers as the evaluation of a single polynomial at that point.
Thus, computing a sequence of candidates N requires only 2 logm(2dQ,x + 1)
computations of

(
2
1

)
-OT.

5.2 Homomorphic Encryption

Alice and Bob combine the two stages of computing N and trial divisions by
using the protocol of subsection 4.3 flexibly. Let p1, . . . , pj′ be the j′ smallest
distinct primes such that πj′

i=1pi > 2(σ−1)/2. Alice and Bob pick their elements
at random in the range 0, . . . , πj′

i=1pi − 1 by choosing random elements in each
Zpi for i = 1, . . . , j′.
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Alice and Bob compute N mod pi as described in subsection 4.3. If N ≡
0 mod pi then at least one of the elements P = Pa + Pb or Q = Qa + Qb

is divided by pi. In that case, Alice and Bob choose new, random elements:
Pa, Pb, Qa, Qb mod pi, and recompute N mod pi. The probability of this hap-
pening is less than 2/pi. Thus the expected number of re-computations is less
than

∑j′

i=1 2/pi. This quantity is about 3.1 for σ = 1024 (2 does not cause a
problem because Pa ≡ Qa ≡ 3 mod 4 and Pb ≡ Qb ≡ 0 mod 4).

Setting Pa mod pi for i = 1, . . . , j′ determines Pa, and by the same reasoning
the other 3 shares that Alice and Bob hold are also set. The two players complete
the computation of N by determining the value of N mod pi (using the protocol
of subsection 4.3) for i = j′ + 1, . . . , j, where πj

i=1pi > 2σ. If for one of these
primesN ≡ 0 mod pi Alice and Bob discard their shares and pick new candidates
2.

6 Computing d

Alice and Bob share φ(N) in an additive manner. Alice holds φa
4= N − Pa −

Qa + 1, Bob holds φb = −Qb − Pb and φa + φb = φ(N). The two parties agree

on a public exponent e. Denote η 4= dlog ee. We follow in the footsteps of the
Boneh-Franklin protocol and employ their algorithm to invert e modulo φ(N)
without making reductions modulo φ(N):

1. Compute ζ = −φ(N)−1 mod e.
2. Compute d = (ζφ(N) + 1)/e.

Now de ≡ 1 mod φ(N) and therefore d is the inverse of e modulo φ(N).
As a first step Alice and Bob change the additive sharing of φ(N) into a

multiplicative sharing modulo e, without leaking information about φ(N) to
either party. At the end of the sub-protocol Alice holds rφ(N) mod e and Bob
holds r−1 mod e, where r is a random element in Z∗

e .

1. Bob chooses uniformly at random r ∈ Z∗
e . Alice and Bob invoke the protocol

of subsection 4.1, setting R 4= Ze, a
4= φa and b

4= r. At the end of the
protocol Alice holds x and Bob holds y such that x+ y ≡ φar mod e.

2. Bob sends y + φbr mod e to Alice.
3. Alice computes x+ y + φbr ≡ rφ(N) mod e, and Bob computes r−1 mod e.

Lemma 7. The computation time and the communication complexity of the pro-
tocol are dominated by η oblivious transfers.

After completing the sub-protocol we described above, Alice and Bob finish
the inversion algorithm by performing the following steps:
2 An interesting optimization is not to discard the whole share (Pa, Pb, Qa, Qb), but

for each specific share, say Pa, only to select a new Pa mod pi for i = j′ − c, . . . , j′,
where c is a small constant. The probability is very high that the new N thus defined
is not a multiple of pi.
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1. The two parties hold multiplicative shares of φ(N) mod e. They compute
the inverse of their shares modulo e and thus have ζa, ζb respectively such
that ζa · ζb ≡ −φ(N)−1 ≡ ζ mod e.

2. Alice and Bob re-convert their current shares into additive shares modulo e,
i.e ψa, ψb such that ψa + ψb ≡ ζ mod e. Bob chooses randomly ψb ∈ Ze and
the two parties combine to enable Alice to gain ψa

4
= −ψb +ζaζb mod e. This

is done by employing essentially the same protocol we used for transforming
φa, φb into a multiplicative sharing. If we replace ζa by φa, ζb by r and −ψb

by rφb we get the same protocol.
3. The two parties would like to compute ζφ(N). What they actually compute is

α
4
= (ψa+ψb)(φa+φb). The result is either exactly ζφ(N) or (ζ+e)φ(N). The

computation is carried out similarly to the computation of N in subsection
4.1. The ring used is Zk where k > 4e · 2σ. We modify the protocol in two
ways. The first modification is that α is not revealed to Alice but remains
split additively over Zk among the two players. In other words they perform
step 1 of the protocol in subsection 4.1 and additively share ψaφb + ψbφa.
Alice adds ψaφa to her share and Bob adds ψbφb to his.
The sum of the two shares over the integers is either α or α+ k. The second
option is unacceptable (unlike the two possibilities for the value of α). In or-
der to forestall this problem we introduce a second modification. The sharing
of α results in Alice holding α+ y′ mod k and Bob holding −y′ mod k. Fur-
thermore Bob selects y′ by his random choices. We require Bob to make those
choices subject to the condition that y′ < k/2. Since y′ is not completely
random, Alice might gain a slight advantage. However, that advantage is at
most a single bit of knowledge about φ(N) (which can be guessed in any
attempt to discover φ(N)).

4. Alice sets da
4= d(α + y′)/ee and Bob sets db

4= b(−y′ + 1)/ec (these cal-
culations are over the integers). Hence, either da + db = (ζφ(N) + 1)/e or
da + db = (ζφ(N) + 1)/e+ φ(N).

7 Improvements

In this section we suggest some efficiency improvements.
Off-line preprocessing: The performance of the protocol based on Be-

naloh’s encryption can be significantly improved by some off-line preparation.
Obviously, for any t used as a modulus in the protocol a suitable encryption
system has to be constructed (i.e a suitable m = pq has to be found, a table of
all values TM = yMφ(m)/t mod m has to be computed etc.).

Further improvement of the online communication and computational com-
plexity can be attained at the cost of some space and off-line computation.
Instead of constructing a separate encryption system for t1 and t2, Alice con-
structs a single system for t = t1t2. The lookup table needed for decryption is
formed as follows. Alice computes TM = yMφ(m)/t mod m for M = 0, . . . , t1 − 1
and TM̄ = yM̄ t1φ(m)/t mod m for M̄ = 0, . . . , t2 − 1. The entries of the table are



Two Party RSA Key Generation 127

obtained by calculating TMTM̄ mod m for every pair M, M̄ . Constructing this
table takes more time than constructing the two separate tables for t1, t2. The
additional time is bounded by the time required to compute t2(t1 + log t1 log t2)
modular multiplications over Zm (computing TM̄ involves log t1 log t2 multipli-
cations in comparison with log t2 multiplications in the original table).

The size of the table is t logm (slightly more than tσ). This figure which
might be prohibitive for large t can be significantly reduced. After computing
every entry in the table it is possible by using perfect hashing [14] to efficiently
generate a 1-to-1 function h from the entries of the table to 0, . . . , 3t − 1. A
new table is now constructed in which instead of original entry TM an entry
(h(TM ),M) is stored. Decryption of z is performed by finding the entry holding
h(zφ(m)/t) mod m and reading the corresponding M . The size of the stored table
is 2t log t. As an example of the reduction in space complexity consider the case
t = 3 · 751 = 2253. The original table requires more than 221 bits while the
hashing table requires less than 216 bits.

It is straightforward to use t = t1t2 instead of t1 and t2 separately in sub-
sections 4.3 and 5.2. The protocols in both subsections remain almost without
change apart from omitting the sub-protocols for t1 and t2 and adding a sub-
protocol for t. In subsection 5.2 it is not enough to check whether N ≡ 0 mod t.
It is necessary to retain the two tests of N mod t1 and N mod t2.

Note that here we need the stronger higher residuosity intractability assump-
tion replaces the prime residuosity assumption.

Alternative computation of d: The last part of generating RSA keys
is constructing the private key. Using Benaloh’s encryption we can sometimes
improve the computation and communication complexity of the construction in
comparison with the results of section 6. The improvement is possible if the
parameter t of a Benaloh encryption can be set to e (that is, the homomorphism
is modulo e) so that efficient decryption is possible. Therefore, e has to be a
product of “small” primes, see [3]. The protocol for generating and sharing d
is a combination of the protocols of subsection 4.3 and section 6. We leave the
details to the full version of the paper.

8 Performance

The most resource consuming part of our protocol, in terms of computation and
communication, is the computation of N together with trial divisions. We use
trial divisions because of the following result by DeBruijn [10]. If a random σ/2
bit integer passes the trial divisions for all primes less than B then asymptoti-
cally:

Pr[p prime | p 6≡ 0 mod pi, ∀pi ≤ B] = 5.14
lnB
σ

(1 + o(
2
σ

)).

We focus on the performance of the more efficient version of our protocol,
using homomorphic encryption. We also assume that the off-line preprocessing
suggested in section 7 is used. Let j′, j be defined as in section 4.3. We pair off
the first j′ primes and prepare encryption systems for products of such pairs (as
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in section 7.) The number of exponentiations (decryptions) needed to obtain one
N is on average about j + 3 − j′/2. The probability that this N is a product of
two primes is approximately (5.14 lnpj′/σ)2.

Another obvious optimization is to divide the decryptions between the two
parties evenly. In other words for half the primes the first party plays Alice and
for the other half they switch.

If σ = 1024 and we pair off the first j′ = 76 primes the running time of
our protocol is (by a rough estimate) less than 10 times the running time of the
Boneh-Franklin protocol. The communication complexity is (again very roughly)
42MB. If the participants are willing to improve the online communication com-
plexity in return for space and pair off the other j− j′ needed to compute N the
communication complexity is reduced to about 29MB.

Open problem: Boneh and Franklin show in [4] how to test whether N is
a product of two primes, where both parties hold N . It would be interesting to
devise a distributed test to check whether N is a product of two primes if Alice
holds N, Pa, Qa and Bob only has his private shares Pb, Qb. The motivation is
that in the oblivious transfer and oblivious polynomial evaluation protocols we
presented Pa, Qa will have to be selected only once. Thus the number of oblivious
transfers in the whole protocol is reduced to the number required for computing
a single candidate N .

Acknowledgments: I’d like to thank the anonymous referees for several en-
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