PODC 2004

The PODC Steering Committee is pleased to announce that PODC 2004 will be held in St. John’s,
Newfoundland. This will be the thirteenth PODC to be held in Canada but the first to be held
there since 1995. Many thanks to Krishnamurthy Vidyasankar, Professor at the Memorial
University of Newfoundland, who will serve as Local Arrangements Chair. The General Chair will
Soma Chaudhuri.

PODC 2005

There has been a tentative offer to host PODC 2005 in Europe. Given that PODC has always been
sited in North America, the possibility of holding the conference elsewhere will be discussed at the
Business Meeting of PODC 2002.

Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services

Seth Gilbert and Nancy Lynch
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
sethgOmit.edu,lynch@theory.lcs.mit.edu

Abstract

When ‘designing distributed web services, there are three properties that are commonly
desired: consistency, availability, and partition tolerance. It is impossible to achieve all
three. In this note, we prove this conjecture in the asynchronous network model, and
then discuss solutions to this dilemma in the partially synchronous model.

1 Introduction

At PODC 2000, Brewer!, in an invited talk {2}, made the following conjecture: it is impossible for
a web service to provide the following three guarantees:

e Consistency
o Availability
e Partition-tolerance

All three of these properties are desirable — and expected — from real-world web services. In
this note, we will first discuss what Brewer meant by the conjecture; next we will formalize these
concepts and prove the conjecture; finally, we will describe and attempt to formalize some real-world
solutions to this practical difficulty.

"Eric Brewer is a professor at the University of California, Berkeley, and the co-founder and Chief Scientist of
Inktomi.

a1



Most web services today attempt to provide strongly consistent data. There has been significant
research designing ACID? databases, and most of the new frameworks for building distributed web
services depend on these databases. Interactions with web services are expected to behave in
a transactional manner: operations commit or fail in their entirety (atomic), transactions never
observe or result in inconsistent data (consistent), uncommitted transactions are isolated from
each other (isolated), and once a transaction is committed it is permanent (durable). It is clearly
important, for example, that billing information and commercial transaction records be handled
with this type of strong consistency.

Web services are similarly expected to be highly available. Every request should succeed and
receive a response. When a service goes down, it may well create significant real-world problems;
the classic example of this is the potential legal difficulties should the E-Trade web site go down.
This problem is exacerbated by the fact that a web-site is most likely to be unavailable when it is
most needed. The goal of most web services today is to be as available as the network on which
they run: if any service on the network is available, then the web service should be accessible.

Finally, on a highly distributed network, it is desirable to provide some amount of fault-
tolerance. When some nodes crash or some communication links fail, it is important that the
service still perform as expected. One desirable fault tolerance property is the ability to survive
a network partitioning into multiple components. In this note we will not consider stopping fail-
ures, though in some cases a stopping failure can be modeled as a node existing in its own unique
component of a partition.

2 Formal Model

In this section, we will formally define what is meant by the terms consistent, available, and partition
tolerant.

2.1 Atomic Data Objects

The most natural way of formalizing the idea of a consistent service is as an atomic data object.
Atomic [4], or linearizable [3], consistency is the condition expected by most web services today.3
Under this consistency guarantee, there must exist a total order on all operations such that each
operation looks as if it were completed at a single instant. This is equivalent to requiring requests
of the distributed shared memory to act as if they were executing on a single node, responding
to operations one at a time. This is the consistency guarantee that generally provides the easiest
model for users to understand, and is most convenient for those attempting to design a client
application that uses the distributed service. See Chapter 13 of [5] for a more complete definition
of atomic consistency.

2 Atomic, Consistent, Isolated, Durable
3Discussing atomic consistency is somewhat different than talking about an ACID database, as database consis-
tency refers to transactions, while atomic consistency refers only to a property of a single request/response operation

sequence. And it has a different meaning than the Atomic in ACID, as it subsumes the database notions of both
Atomic and Consistent.

52



2.2 Available Data Objects

For a distributed system to be continuously available, every request received by a non-failing node
in the system must result in a response.* That is, any algorithm used by the service must eventually
terminate. In some ways this is a weak definition of availability: it puts no bound on how long the
algorithm may run before terminating, and therefore allows unbounded computation. On the other
hand, when qualified by the need for partition tolerance, this can be seen as a strong definition of
availability: even when severe network failures occur, every request must terminate.

2.3 Partition Tolerance

The above definitions of availability and atomicity are qualified by the need to tolerate partitions.
In order to model partition tolerance, the network will be allowed to lose arbitrarily many messages
sent from one node to another. When a network is partitioned, all messages sent from nodes in one
component of the partition to nodes in another component are lost. (And any pattern of message
loss can be modeled as a temporary partition separating the communicating nodes at the exact
instant the message is lost.) The atomicity requirement (§2.1) therefore implies that every response
will be atomic, even though arbitrary messages sent as part of the algorithm might not be delivered.
The availability requirement (§2.2) implies that every node receiving a request from a client must
respond, even though arbitrary messages that are sent may be lost. Note that this is similar to
wait-free termination in a pure shared-memory system: even if every other node in the network
fails (i.e. the node is in its own unique component of the partition), a valid (atomic) response must
be generated. No set of failures less than total network failure is allowed to cause the system to
respond incorrectly.®

3 Asynchronous Networks

3.1 Impossibility Result

In proving this conjecture, we will use the asynchronous network model, as formalized by Lynch
in Chapter 8 of [5]. In the asynchronous model, there is no clock, and nodes must make decisions
based only on the messages received and local computation.

Theorem 1 [t is impossible in the asynchronous network model to implement a read/write data
object that guarantees the following properties:

o Awatlability
e Atlomic consistency

in all fair executions (including those in which messages are lost).

Proof: We prove this by contradiction. Assume an algorithm A exists that meets the three criteria:
atomicity, availability, and partition tolerance. We construct an execution of A in which there exists
a request that returns an inconsistent response. The methodology is similar to proofs in Attiya

1Brewer originally only required almost all requests to receive a response. As allowing probabilistic availability
does not change the result when arbitrary failures occur, for simplicity we are requiring 100% availability.

5Brewer pointed out in the talk that partitions of one node are irrelevant: they are equivalent to that node failing.
However restricting our attention to partitions containing only components of size greater than one does not change
any of the results in this note.

53



et al. [1] and Lynch [5] (Theorem 17.6). Assume that the network consists of at least two nodes.
Thus it can be divided into two disjoint, non-empty sets: {G1,G2}. The basic idea of the proof is
to assume that all messages between G and G2 are lost. If a write occurs in G, and later a read
occurs in Gs, then the read operation cannot return the results of the earlier write operation.

More formally, let vy be the initial value of the atomic object. Let a; be the prefix of an
execution of A in which a single write of a value not equal to vy occurs in GG, ending with the
termination of the write operation. Assume that no other client requests occur in either G; or
G4. Further, assume that no messages from G are received in G2, and no messages from G, are
received in G;. We know that this write completes, by the availability requirement. Similarly, let
a2 be the prefix of an execution in which a single read occurs in G2, and no other client requests
occur, ending with the termination of the read operation. During o9 no messages from G, are
received in GG1, and no messages from G are received in G2. Again we know that the read returns
a value by the availability requirement. The value returned by this execution must be vy, as no
write operation has occurred in as.

Let a be an execution beginning with «; and continuing with as. To the nodes in Go, « is
indistinguishable from sy, as all the messages from G; to G2 are lost (in both a; and a3, which
together make up «), and «; does not include any client requests to nodes in G3. Therefore in
the a execution, the read request (from o) must still return vg. However the read request does
not begin until after the write request (from «;) has completed. This therefore contradicts the
atomicity property, proving that no such algorithm exists. ®

Corollary 1.1 It is impossible in the asynchronous network model to implement a read/write data
object that guarantees the following properties:

o Awailability, in all fair executions,

e Atomic consistency, in fair executions in which no messages are lost.

Proof: The main idea is that in the asynchronous model an algorithm has no way of determining
whether a message has been lost, or has been arbitrarily delayed in the transmission channel.
Therefore if there existed an algorithm that guaranteed atomic consistency in executions in which
no messages were lost, then there would exist an algorithm that guaranteed atomic consistency in
all executions. This would violate Theorem 1.

More formally, assume for the sake of contradiction that there exists an algorithm A that always
terminates, and guarantees atomic consistency in fair executions in which all messages are delivered.
Further, Theorem 1 implies that A does not guarantee atomic consistency in all fair executions, so
there exists some fair execution « of A in which some response is not atomic.

At some finite point in execution «, the algorithm A returns a response that is not atomic. Let
o be the prefix of o ending with the invalid response. Next, extend o' to a fair execution o”, in
which all messages are delivered. The execution o is now a fair execution in which all messages
are delivered. However this execution is not atomic. Therefore no such algorithm A exists. B

3.2 Solutions in the Asynchronous Model

While it is impossible to provide all three properties: atomicity, availability, and partition tolerance,
any two of these three properties can be achieved.

54



3.2.1 Atomic, Partition Tolerant

If availability is not required, then it is easy to achieve atomic data and partition tolerance. The
trivial system that ignores all requests meets these requirements. However we can provide a stronger
liveness criterion: if all the messages in an execution are delivered, the system is available and all
operations terminate. A simple centralized algorithm meets these requirements: a single designated
node maintains the value of an object. A node receiving a request forwards the request to the
designated node, which sends a response. When an acknowledgment is received, the node sends a
response to the client.

Many distributed databases provide this type of guarantee, especially algorithms based on
distributed locking or quorums: if certain failure patterns occur, then the liveness condition is
weakened and the service no longer returns responses. If there are no failures, then liveness is
guaranteed.

3.2.2 Atomic, Available

If there are no partitions, it is clearly possible to provide atomic, available data. In fact, the
centralized algorithm described in Section 3.2.1 meets these requirements. Systems that run on
intranets and LANs are an example of these types of algorithms.

3.2.3 Awvailable, Partition Tolerant

It is possible to provide high availability and partition tolerance, if atomic consistency is not
required. If there are no consistency requirements, the service can trivially return vy, the initial
value, in response to every request. However it is possible to provide weakened consistency in an
available, partition tolerant setting. Web caches are one example of a weakly consistent network.
In Section 4.4 we consider one of the possible weaker consistency conditions.

4 Partially Synchronous Networks

4.1 Partially Synchronous Model

The most obvious way to try to circumvent the impossibility result of Theorem 1 is to realize that
in the real world, most networks are not purely asynchronous. If you allow each node in the network
to have a clock, it is possible to build a more powerful service.

For the rest of this paper, we will assume a partially synchronous model in which every node
has a clock, and all clocks increase at the same rate. However, the clocks themselves are not
synchronized, in that they may display different values at the same real time. In effect, the clocks
act as timers: local state variables that the processes can observe to measure how much time has
passed. A local timer can be used to schedule an action to occur a certain interval of time after
some other event. Furthermore, assume that every message is either delivered within a given, known
time: 54, Or it is lost. Also, every node processes a received message within a given, known time:
tiocal, and local processing takes zero time. This can be formalized as a special case of the General
Timed Automata model described by Lynch in Chapter 23 of [5].

4.2 Impossibility Result

It is still impossible to have an always available, atomic data object when arbitrary messages may
be lost, even in the partially synchronous model. That is, the following analogue of Theorem 1

55



holds:

Theorem 2 It is impossible in the partially synchronous network model to implement o read/write
data object that guarantees the following properties:

o Awvailability
o Atomic consistency

in all executions (even those in which messages are lost).

Proof: This proof is rather similar to the proof of Theorem 1. We will follow the same methodology:
divide the network into two components, {G1, G2}, and construct an admissable execution in which
a write happens in one component, followed by a read operation in the other component. This read
operation can be shown to return inconsistent data.

More formally, construct execution c as before in Theorem 1: a single write request and
acknowledgment occur in G, and all messages between the two components, {G1,G2}, are lost.
We will construct the second execution, o}, slightly differently. Let o), be an execution that begins
with a long interval of time during which no client requests occur. This interval must be at least
as long as the entire duration of a;. Then append to of the events of a, as defined above in
Theorem 1: a single read request and response in G3, again assuming all messages between the two
components are lost. Finally, construct a by superimposing the two executions «; and oh. The
long interval of time in g ensures that the write request completes before the read request begins.
However, as in Theorem 1, the read request returns the initial value, rather than the new value
written by the write request, violating atomic consistency. B

4.3 Solutions in the Partially Synchronous Model

In the partially synchronous model, however, the analogue of Corollary 1.1 does not hold. The
proof of this corollary does in fact depend on nodes being unaware of when a message is lost. There
are partially synchronous algorithms that will return atomic data when all messages in an execution
are delivered (i.e., there are no partitions), and will only return inconsistent (and, in particular,
stale) data when messages are lost. One example of such an algorithm is the centralized protocol
described in Section 3.2.1, modified to time-out lost messages. On a read (or write) request, a
message is sent to the central node. If a response from the central node is received, then the node
delivers the requested data (or an acknowledgment). If no response is received within 2*%,,54 +%iocal,
then the node concludes that the message was lost. The client is then sent a response: either the
best known value of the local node (for a read operation), or an acknowledgment (for a write
operation). In this case, atomic consistency may be violated.

4.4 Weaker Consistency Conditions

While it is useful to guarantee that atomic data will be returned in executions in which all mes-
sages are delivered (within some time bound), it is equally important to specify what happens in
executions in which some of the messages are lost. In this section, we will discuss one possible
weaker consistency condition that allows stale data to be returned when there are partitions, yet
still place formal requirements on the quality of the stale data returned. This consistency guarantee
will require availability and atomic consistency in executions in which no messages are lost, and is
therefore impossible to guarantee in the asynchronous model as a result of Corollary 1.1.

o6



In the partially synchronous model it often makes sense to base guarantees on how long an
algorithm has had to rectify a situation. This consistency model ensures that if messages are
delivered, then eventually some notion of atomicity is restored.

In an atomic execution, we would define a partial order of the read and write operations, and
then require that if one operation begins after another one ends, the former does not precede
the latter in the partial order. We will define a weaker guarantee, t-Connected Consistency, which
defines a partial order in a similar manner, but only requires that one operation not precede another
if there is an interval between the operations in which all messages are delivered.

Definition 3 A timed ezecution, a, of a read-write object is t-Connected Consistent if two criteria
hold. First, in ezecutions in which no messages are lost, the execution is atomic. Second, in
executions in which messages are lost, there ezists a partial order P on the operations in « such
that:

1. P orders all write operations, and orders all read operations with respect to the write opera-
tions.

2. The value returned by every read operation is ezactly the one written by the previous write
operation in P, or the initial value, if there is no such previous write in P.

3. The order in P is consistent with the order of read and write requests submitted at each node.

4. Assume there exists an interval of time longer than t in which no messages are lost. Further,
assume an operation, 6, completes before the interval begins, and another operation, ¢, begins
after the interval ends. Then ¢ does not precede 8 in the partial order P.

This guarantee allows for some stale data when messages are lost, but provides a time limit on
how long it takes for consistency to return, once the partition heals. This definition can of course be
generalized to provide consistency guarantees when only some of the nodes are connected, and when
connections are available only some of the time. These generalizations will be further examined in
future work.

A variant of the centralized algorithm described in Section 4.3 is t-Connected Consistent. As-
sume node C' is the centralized node. The algorithm behaves as follows:

e read at node A:
A sends a request to C for the most recent value. If A receives a response from C within time
2 - tmsg + tiocal, it saves the value and returns it to the client. Otherwise, A concludes that
a message was lost and it returns the value with the highest sequence number that has ever
been received from C, or the initial value if no value has yet been received from C. (When a
client read request occurs at C, it acts like any other node, sending messages to itself.)

o write at A:

A sends a message to C' with the new value. A waits 2 - tmsg + tiocal, Or until it receives an
acknowledgment from C, and then sends an acknowledgment to the client. At this point,
either C has learned of the new value, or a message was lost, or both events occurred. If 4
concludes that a message was lost, it periodically retransmits the value to C {along with all
values lost during earlier write operations) until it receives an acknowledgment from C. (As
in the case of read operations, when a client write request occurs at C, it acts like any other
node, sending messages to itself.)

57



e New value is received at C:
C serializes the write requests that it hears about by assigning them consecutive integer tags.
Periodically C broadcasts the latest value and sequence number to all other nodes.

Theorem 4 The modified centralized algorithm is t-Connected consistent.

Proof: First, it is clear that in executions in which no messages are lost, the operations are atomic.
An execution is atomic if every operation acts as if it is executed at a single instant; in this case,
that single instant occurs when C processes the operation. C serializes the operations, ensuring
atomic consistency in executions in which all messages are delivered.

Next, we examine executions in which messages are lost. The partial order, P is constructed
as follows. Write operations are ordered by the sequence number assigned by the central node.
Each read operation is sequenced after the write operation whose value it returns. It is clear by
the construction that the partial order P satisfies criteria 1 and 2 of the definition of {-Connected
consistency. As the algorithm handles requests in the order received, criterion 3 is also clearly true.

In showing that the partial order respects criterion 4, there are four cases: write followed by
read, write followed by write, read followed by read, and read followed by write. Let time t be
long enough for a write operation to complete (and for C to assign a sequence number to the new
value), and for one of the periodic broadcasts from C to occur.

1. write followed by read

Assume a write occurs at A,,, after which an interval of time longer than { passes in which
all messages are delivered. After this, a read is requested at some node. By the end of the
interval, two things have happened. First, 4, has notified the central node of the new value,
and the write operation has been assigned a sequence number. Second, the central node has
rebroadcast that value (or a later value in the partial order) to all other nodes during one of
the periodic broadcasts. As a result, the read operation does not return an earlier value, and
therefore it must come after the write in the partial order P.

2. write followed by write
Assume a write occurs at A,,, after which an interval of time longer than ¢ passes in which
all messages are delivered. After this, a write is requested at some node. As in the previous
case, by the end of the interval in which messages are delivered, the central node has assigned
a sequence number to the write operation at A,. As a result, the later write operation is
sequenced by the central node after the first write operation. Therefore the second write
comes after the first write in the partial order P.

3. read followed by read

Assume a read operation occurs at B,, after which an interval of time longer than ¢ passes in
which all messages are delivered. After this, a read is requested at some node. Let ¢ be the
write operation whose value the first read operation at B, returns. By the end of the interval
in which messages are delivered, the central node has assigned a sequence number to ¥, and
has broadcast the value of ¥ (or a later value in the partial order) to all other nodes. As a
result, the second read operation does not return a value earlier in the partial order than .
Therefore the second read operation does not precede the first in the partial order P.

4. read followed by write
Assume a read operation occurs at B,, after which an interval of time longer than ¢ passes in
which all messages are delivered. After this, a write is requested at some node. Let 1 be the

58



write operation whose value the first read operation at B, returns. By the end of the interval
in which messages are delivered, the central node has assigned a sequence number to v, and
as a result all write operations beginning after the interval are serialized after 9. Therefore
the write operation does not precede the read operation in the partial order P.

Therefore, P satisfies criterion 4 of the definition, and this algorithm is ¢-Connected Consistent.
|

5 Conclusion

In this note, we have shown that it is impossible to reliably provide atomic, consistent data when
there are partitions in the network. It is feasible, however, to achieve any two of the three properties:
consistency, availability, and partition tolerance. In an asynchronous model, when no clocks are
available, the impossibility result is fairly strong: it is impossible to provide consistent data, even
allowing stale data to be returned when messages are lost. However in partially synchronous models
it is possible to achieve a practical compromise between consistency and availability. In particular,
most real-world systems today are forced to settle with returning “most of the data, most of the
time.” Formalizing this idea and studying algorithms for achieving it is an interesting subject for
future theoretical research.

Acknowledgments

We thank Eric Brewer for his interesting PODC talk, for providing us with his talk slides and notes,
and for encouraging us in writing this note. We also thank Charles Leiserson for suggesting this
problem and for interesting and helpful discussions.

References

[1] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Peleg, and Riidiger Reischuk. Achiev-
able cases in an asynchronous environment. In 28th Annual Symposium on Foundations of Computer
Science, pages 337-346, Los Angeles, California, October 1987.

(2] Eric A. Brewer. Towards robust distributed systems. (Invited Talk) Principles of Distributed Computing,
Portland, Oregon, July 2000.

(3] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492, July 1990.

[4] Leslie Lamport. On interprocess communication — parts I and II. Distributed Computing, 1(2):77-101,
April 1986.

[5] Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

59



