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Binomial options pricing has no closed-form
solution
Evangelos Georgiadis
M.I.T. Cambridge, MA 02139 USA
E-mail: egeorg@mit.edu

Abstract. We set a lower bound on the complexity of options pricing formulae in the lattice metric by proving that no general
explicit or closed form (hypergeometric) expression for pricing vanilla European call and put options exists when employing the
binomial lattice approach. Our proof follows from Gosper’s algorithm.

The binomial model as heralded by Cox et al.
(1979), has become a well-known approach to
pricing options due to its simplicity as well as
flexibility. Recently, Dai et al. (2008) demonstrated
how combinatorial techniques can be applied to
address the slow convergence issue in pricing options
via the CRR approach. In particular, they provided
a pricing algorithm that runs in linear time for a
variety of options. Combinatorially, pricing options
via this binomial lattice or binomial tree method
can be viewed as an extended problem in lattice
path counting. Costabile (2002) and Lyuu (1998)1

demonstrated beautifully, successful applications of
lattice path counting techniques in valuing options.
In practice, enumerating lattice paths often leads
to summation formulae involving binomial coeffi-
cients, factorials and rational functions. These types
of summation formulae give rise to a large class of
sums, namely, hypergeometric ones2. Hypergeometric
sums, in turn, have been extensively studied in the

1Both authors incorrectly attribute the reflection principle to
the French mathematician Désiré André. André’s (1887) original
solution to the famous ballot problem is based on a purely explicit
counting argument without geometric insight. As a result, employing
André’s original argument for the development of the combinatorial
identities at stake should be left as an exercise for the interested
reader. Note that Renault (2008) provides an English translation of
André’s work.

2See section 4.4 of Petkovšek et al. (1996) for a precise definition
of hypergeometric term.

mathematics literature and as we will see, some
powerful tools have been developed for them. One
such tool involves an algorithm that solves the problem
of whether or not a given hypergeometric sum has
a closed form. It turns out that our binomial options
pricing formula can be expressed as such a sum and
thereby analyzed in this setting. Thus, addressing
the question of whether an explicit expression exists
for our summation becomes natural not only from
a computationally theoretic perspective that explores
inherent limitations of the discrete metric but also
from a practical point of view that strives for efficient
computation.

To this end, Petkovšek et al. (1996)3 developed
a completely algorithmic solution. Practitioners can
harness the power of PWZ’s work, through a software
implementation as proposed by Paule and Schorn
(1994) or Zeilberger (1991).

Without loss of generality, our definition of closed-
form or explicit expression is that of Petkovšek et al.
(1996). A function f(n) is said to be of (hypergeomet-
ric) closed form, if it is expressible as a linear com-
bination of a fixed number, z, say, of hypergeometric
terms in n. For instance,

∑n
i=1

n+1
i(n−i+1)

(
2i−2
i−1

)(
2n−2i
n−i

)
(where n ≥ 1) is not a closed form expression, but its

3The interested reader should consult Chapter 5 in particular.
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closed form exists, and can be derived with the use of
Gosper’s algorithm to be

(
2n
n

)
.4

Note that there seems to be no references in the
finance literature that address the problem of formula
complexity stemming from an inherently discrete
approach. This paper helps to fill this gap.

In order to settle the question of whether a closed
form expression exists for the vanilla European
options when priced on the discrete binomial lattice,
we first set the scene by establishing the formula
in question. For simplicity, we consider options on
stocks. A vanilla option gives the holder the right to
buy or sell the underlying stock for price X defined in
the option contract at the maturity date. A call option
permits the owner of the option to buy the underlying
stock for X dollars at time T , whereas a put options
allows the owner of the option to sell the underlying
stock for X at time T . The payoff functions as well as
their pricing formulae are folklore. For convenience,
we state the payoff function of a vanilla option as
follows.

max(δS(T )− δX, 0)

{
for call option, we have δ = 1,

for put option, we have δ = −1.

The theoretical option value is the expected value
of the the payoffs discounted with the risk-free rate r,
namely,

exp (−rT )E(payoff).

Thus, the theoretical price of a vanilla option on an
n-time step binomial lattice is,

exp (−rT )
n∑

i=0

(
n

i

)
pn−i(1− p)i

×max (δS0u
n−idi − δX, 0), (1)

where u and d denote the upward and downard
multiplicative factors for the stock price, respectively.
Correspondingly, p denotes the branching probability
for an upward step whereas (1 − p) denotes the
branching probability for a downward step. The
numbers

(
n
i

)
denote the binomial coefficients and are

4Alternatively, we could also establish this combinatorial identity
in a less algorithmic manner, namely, with help of a (somewhat
involved) lattice path argument.

defined as follows(
n

i

)
=
{ n!

i!(n−i)! if 0 ≤ i ≤ n,
0 if i > n or i < 0,

for any i, n ∈ Z with n ≥ 0.
Now, we are left to show that

∑n
i=0

(
n
i

)
pn−i(1 −

p)i max (δS0u
n−idi − δX, 0) for δ ∈ {−1, 1} cannot

yield a closed form. To do so, we consider the case
when δ = 1 (similar reasoning applies for δ =
−1) and employ Gosper’s algorithm (1978). At this
point, we should keep in mind that our sum for
the European call option is expressible in terms of
the complementary binomial distribution function, i.e.
Φ[a;n, p], as presented by Cox et al. (1979). This
notation induced formula however, does not constitute
a closed form expression. In other words, the Φ[·]
notation merely disguises the underlying machinery
involving explicit summation and dependency on n
and thus does not help us to shortcut our computation.
Gosper’s algorithm deals with sums of the following
type

sn =
n−1∑
k=0

tk, (2)

where tk is a hypergeometric term which does not
depend on n. In other words, the consecutive term ratio

r(k) =
tk+1

tk

is a rational function of k. Further note that,

sn+1 − sn = tn.

Gosper’s algorithm provides an answer to the follow-
ing question: Given a hypergeometric term tn, is there
a hypergeometric term zn satisfying

zn+1 − zn = tn. (3)

We quietly observe that any solution zn of (3) will
be of the form

zn = zn−1 + tn−1 = zn−2 + tn−2 + tn−1

= . . . = z0 +
n−1∑
k=0

tk = sn + c,

where c = z0 is a constant.
Thus if the algorithm generates an affirmative

answer, then sn can be expressed as a hypergeometric
term plus a constant, and the algorithm outputs such a
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term. On the other hand, if Gosper’s algorithm returns
a negative answer, then that proves that (3) has no
hypergeometric solution.

Let us return to our sum,

sn =
n∑

j=0

(
n

j

)
pn−j(1−p)j max{Sun−jdj−X, 0}.

(4)

We note that our sum, sn, is not of hypergeometric
form since it contains a max function. We can easily
remedy this deficiency by re-expressing sn as follows.
Assume that S, u, d,X > 0, d > u and 0 < p < 1
(for other cases, an analogous argument can be made)5.
Since

max{Sun−jdj −X, 0}

=
{
Sun−jdj −X, if Sun−jdj ≥ X,

0, otherwise,

and Sun−jdj ≥ X is equivalent to j ≥ j0 where

j0 =

⌈
log X

Sun

log d
u

⌉
,

we are able to re-write our sum, sn, as follows.

sn =
n∑

j=j0

(
n

j

)
pn−j(1− p)j(Sun−jdj −X)

= S

n∑
j=j0

(
n

j

)
pn−j(1− p)jun−jdj

−X
n∑

j=j0

(
n

j

)
pn−j(1− p)j

= S(pu)n
n∑

j=j0

(
n

j

)(
(1− p)d
pu

)j

−Xpn
n∑

j=j0

(
n

j

)(
1− p
p

)j

= Aσn(α)−Bσn(β),

5We will ignore the uncompelling special case where p is zero or
one and u = d.

where A = S(pu)n, B = Xpn, α = (1−p)d
pu , β = 1−p

p

are constants and

σn(x) =
n∑

j=j0

(
n

j

)
xj = (1+x)n−

j0−1∑
j=0

(
n

j

)
xj (5)

is a partial sum of the binomial series (1 + x)n. Our
initial question is about the well-known sum (5). Our
investigation concludes at the prospect of input t(j) =∑j0−1

j=0

(
n
j

)
xj for which Gosper’s algorithm fails. This

part of the proof is computer assisted. This means there
does not exist a solution over the field Q(n) for which
zj+1 − zj =

(
n
j

)
xj . Put differently, the sum t(j) is

not expressible as a hypergeometric term over Q(n),
plus a constant.6 Thus, σn(x) cannot be expressed as
a hypergeometric term. As a result, our original sum,
sn, cannot yield a closed form expression.7
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