
Math. Struct. in Comp. Science (2009), vol. 19, pp. 687–736. c© 2009 Cambridge University Press

doi:10.1017/S0960129509007646 First published online 2 July 2009 Printed in the United Kingdom

Two-dimensional models of type theory

RICHARD GARNER†

Department of Pure Mathematics and Mathematical Statistics,

Wilberforce Road, Cambridge CB3 0WB, United Kingdom

Email: rhgg2@cam.ac.uk

Received 11 September 2008; revised 21 January 2009

We describe a non-extensional variant of Martin-Löf type theory, which we call

two-dimensional type theory, and equip it with a sound and complete semantics valued in

2-categories.

1. Introduction

This is the second in a series of papers detailing the author’s investigations into the

intensional type theory of Martin-Löf, as described in Nordström et al. (1990). The first

of these papers, Garner (2009), investigated syntactic issues relating to its dependent

product types. The present paper is a contribution to its categorical semantics.

Seely (1984) proposed that the correct categorical models for extensional Martin-Löf

type theory should be locally cartesian closed categories: these being categories C with

finite limits in which each of the functors f∗ : C/X → C/Y induced by pulling back along

a morphism f : Y → X has a right adjoint. The idea is to think of each object X of

a locally cartesian closed category C as a closed type, each morphism as a term and

each object of the slice category C/X as a type dependent upon X. Now substitution

of terms in types may be interpreted by pullback between the slices of C, dependent

sum and product types by left and right adjoints to pullback and the equality type on

X by the diagonal morphism Δ: X → X × X in C/X × X. It was later pointed out in

Hofmann (1995b) that this picture, whilst very appealing, is not wholly accurate, since

in the syntax, the operation that assigns to each morphism of types f : Y → X the

corresponding substitution operation Type(X) → Type(Y) is strictly functorial in f; whilst

in the semantics, the corresponding assignation (f : Y → X) �→ (f∗ : C/X → C/Y) is

rarely so. Thus, this notion of model is not sound for the syntax, and we are forced to

refine it slightly: essentially by equipping our locally cartesian closed category with a split

fibration T → C equivalent to its codomain fibration C2 → C. Types over X are now

interpreted as objects of the fibre category T(X); and since T → C is a split fibration,

the interpretation is sound for substitution.

The question of how the above should generalise from extensional to intensional

Martin-Löf type theory is a delicate one. It is possible to paraphrase the syntax of

intensional type theory in categorical language and so arrive at a notion of model – as

† Supported by a Research Fellowship of St John’s College, Cambridge and a Marie Curie Intra-European

Fellowship, Project No. 040802.

R. Garner 688

done, for example, in Dybjer (1996) or Hofmann (1995a) – but then we lose sight of

a key aspect of the extensional semantics, namely that dependent sums and products

may be characterised universally, as left and right adjoints to substitution. To obtain

a similar result for the intensional theory requires a more refined sort of semantics.

More specifically, we are thinking of a semantics valued in higher-dimensional categories,

motivated by works such as Awodey and Warren (2009), Gambino and Garner (2008) and

Hofmann and Streicher (1998), which identify in intensional type theory certain higher-

dimensional features. The idea is that, in such a semantics, we should be able to characterise

dependent sums and products universally in terms of weak, higher-dimensional adjoints

to substitution.

Eventually, we expect to be able to construct a sound and complete semantics for

intensional type theory valued in weak ω-categories. At the moment the theory of weak

ω-categories is insufficiently well developed for us to describe this semantics, though we

can at least take steps towards it by describing semantics valued in simpler kinds of higher-

dimensional category. In this paper, we describe such a semantics valued in 2-categories,

which, as well as objects representing types and morphisms f : X → Y representing terms,

has 2-cells α : f ⇒ g representing witnesses for the propositional equality of terms f and

g. Intuitively, the 2-categorical models we consider provide a notion of two-dimensional

locally cartesian closed category, though, bearing in mind the above concerns regarding

the functoriality of substitution, it is in fact a ‘split’ notion of two-dimensional model that

we will describe here. Relating this to a notion of two-dimensional local cartesian closed

category will require a 2-categorical coherence result along the lines of Hofmann (1995b),

but we defer this to a subsequent paper.

Our 2-categorical semantics is sound and complete neither for intensional nor exten-

sional type theory, but rather for an intermediate theory, which we call two-dimensional

type theory. Recall that extensional type theory distinguishes itself from intensional type

theory by its admission of an equality reflection rule, which states that any two terms of

type A that are propositionally equal are also definitionally equal. The two-dimensional

type theory that we will consider admits instances of the equality reflection rule at just

those types that are themselves identity types. The effect of this is to collapse the higher-

dimensional aspects of the intensional theory, but only above dimension two, and it is

this that allows a complete semantics in 2-categories. The leading example of a model for

our semantics is the groupoid model of Hofmann and Streicher (1998); indeed, it plays

the same fundamental role for two-dimensional type theory as the Set-based model does

for extensional type theory. However, we expect there to be many more examples: on the

categorical side, prestack and stack models, which will provide two-dimensional analogues

of the presheaf and sheaf models of extensional type theory; and on the type-theoretic

side, an E-groupoid model (Aczel 1994), which extends to two dimensions the setoid

model of extensional type theory (Hofmann 1994). Once again, the task of describing

these models will be deferred to a subsequent paper.

Our hope is that the semantics we describe in this paper will provide a useful guide

in setting up more elaborate semantics for intensional type theory: both of the ω-

categorical kind outlined above, and of the homotopy-theoretic kind espoused in Awodey

and Warren (2009). Indeed, most of the problematic features of these higher-dimensional

semantics are fully alive in the two-dimensional case – in particular, the rather subtle

Two-dimensional models of type theory 689

issues regarding stability of structure under substitution – and the analysis we give of

them here should prove useful in understanding these more general situations.

The paper is set out as follows. In Section 2, we review the syntax of intensional

and extensional Martin-Löf type theory and describe our intermediate two-dimensional

theory, ML2. In Sections 3 and 4, we describe a 2-categorical structure built from the

syntax of ML2. Section 3 makes use of the non-logical rules of ML2 together with

the rules for identity types in order to construct: a 2-category C of contexts; a two-

dimensional fibration T → C of types over contexts; and a comprehension 2-functor

E : T → C2, sending each type-in-context Γ � A type to the corresponding dependent

projection map (Γ, x : A) → Γ. So far we have given nothing more than a simple-minded

extension of the one-dimensional semantics; the twist is that each dependent projection

in our 2-categorical model carries the structure of a normal isofibration. This can be

seen as the semantic correlate of the Leibniz rule in dependent type theory. Section 4

considers the extra structure imposed on this basic framework by the logical rules of ML2.

The identity types are characterised as arrow objects in the slices of the 2-category of

contexts; whilst the unit type, dependent sums and dependent products admit description

in terms of a notion of weak 2-categorical adjointness, which we call retract biadjunction.

Where a plain adjunction concerns itself with isomorphisms of hom-sets �(FX, Y) ∼=
�(X,GY), a retract biadjunction instead requires retract equivalences of hom-categories

C(FX, Y) 	 D(X,GY). In particular, dependent sums and products are characterised

as left and right retract biadjoints to weakening. These syntactic investigations lead us

to define a notion of model for two-dimensional type theory, this being an arbitrary 2-

fibration T → C equipped with the structure outlined above, and the results of Sections 3

and 4 can be summarised as saying that to each type theory S extending ML2, we may

assign a classifying two-dimensional model �(S). In Section 5, we provide a converse

to this result by showing that we can assign to each two-dimensional model � a two-

dimensional type theory S(�) that represents the model faithfully. We call this type

theory the internal language of �. Finally, we show that these two constructions –

classifying model and internal language – give rise to a functorial semantics in the sense of

Lawvere (1968), which is to say that they induce an equivalence between suitably defined

categories of two-dimensional type theories, and of two-dimensional models.

2. Intensional, extensional and two-dimensional type theory

2.1. Intensional type theory

When we refer to intensional Martin-Löf type theory, we mean the logical calculus set out

in Part II of Nordström et al. (1990). In this paper we consider only the core calculus

MLI , with type-formers for dependent sums, dependent products, identity types and the

unit type. We will now summarise this calculus, partly to fix notation and partly because

there are a few peculiarities worth commenting on. The calculus has four basic forms of

judgement: A type (‘A is a type’); a : A (‘a is an element of the type A’); A = B type

(‘A and B are definitionally equal types’); and a = b : A (‘a and b are definitionally equal

elements of the type A’). These judgements may be made either absolutely or relative to

R. Garner 690

a context Γ of assumptions, and in the latter case we write them as

Γ � A type, Γ � a : A, Γ � A = B type and Γ � a = b : A,

respectively. Here, a context is a list Γ = (x1 : A1, x2 : A2, . . . , xn : An), where each Ai is a

type relative to the context (x1 : A1, . . . , xi−1 : Ai−1). There are now some rather natural

requirements for well-formed judgements: in order to assert that a : A, we must first know

that A type; to assert that A = B type, we must first know that A type and B type; and

so on. We specify intensional Martin-Löf type theory as a collection of inference rules

over these forms of judgement. First, we have the equality rules, which assert that the two

judgement forms A = B type and a = b : A are congruences with respect to all the other

operations of the theory. Then we have the structural rules, which deal with weakening,

contraction, exchange and substitution†. Finally, we have the logical rules, which we list in

Table 1. Note that we commit the usual abuse of notation in leaving implicit an ambient

context Γ common to the premisses and conclusions of each rule. We also omit the rules

expressing stability under substitution in this ambient context. We will find it convenient

to use the following extended forms of the identity elimination and computation rules:

x, y : A, p : IdA(x, y), Δ � C(x, y, p) type

x : A, Δ[x, x, r(x)/x, y, p] � d(x) : C(x, x, r(x))

x, y : A, p : IdA(x, y), Δ � Jd(x, y, p) : C(x, y, p)

x, y : A, p : IdA(x, y), Δ � C(x, y, p) type

x : A, Δ[x, x, r(x)/x, y, p] � d(x) : C(x, x, r(x))

x : A, Δ[x, x, r(x)/x, y, p] � Jd(x, x, r(x)) = d(x) : C(x, x, r(x))

(1)

These rules may be derived from the elimination and computation rules in Table 1 by

using the Π-types to shift the additional contextual parameter Δ onto the right-hand side

of the turnstile.

Notation 2.1.1. We may omit from the premisses of a rule or deduction any hypothesis

that may be inferred from later hypotheses of that rule. Where it improves clarity, we may

omit brackets in function applications, writing hgfx in place of h(g(f(x))), for example.

We may drop the subscript A in an identity type IdA(a, b) where no confusion seems likely

to occur. We may write a sum type Σx : A.B(x) as Σ(A,B), a product type Πx : A.B(x) as

Π(A,B), and a λ-abstraction λx. f(x) as λ(f) (or using our applicative convention, simply

λf). It will occasionally be useful to perform lambda-abstraction at the meta-theoretic

level, for instance writing [x] f(x) to denote a term f of the form x : A � f(x) : B(x). We

may write Γ � a ≈ b : A to indicate that the type Γ � IdA(a, b) is inhabited, and say that

a and b are propositionally equal. We will also make use of vector notation in the style of

de Bruijn (1991). Given a context Γ = (x1 : A1, . . . , xn : An), we may abbreviate a series of

judgements

� a1 : A1, � a2 : A2(a1), . . . � an : An(a1, . . . , an−1)

as � a : Γ, where a := (a1, . . . , an), and say that a is a global element of Γ. We may

also use this notation to abbreviate sequences of hypothetical elements on the left-hand

† Note, in particular, that we take substitution to be a primitive rather than a derived operation as done in

Jacobs (1999), for instance.

Two-dimensional models of type theory 691

Dependent sum types

A type x : A � B(x) type

Σx : A.B(x) type
Σ-form

a : A b : B(a)

〈a, b〉 : Σx : A.B(x)
Σ-intro

z : Σx : A.B(x) � C(z) type x : A, y : B(x) � d(x, y) : C(〈x, y〉)
z : Σx : A.B(x) � Ed(z) : C(z)

Σ-elim

z : Σx : A.B(x) � C(z) type x : A, y : B(x) � d(x, y) : C(〈x, y〉)
x : A, y : B(x) � Ed(〈x, y〉) = d(x, y) : C(〈x, y〉)

Σ-comp

Unit type

1 type
1-form

� : 1
1-intro

z : 1 � C(z) type d : C(�)

z : 1 � Ud(z) : C(z)
1-elim

z : 1 � C(z) type d : C(�)

Ud(�) = d : C(�)
1-comp

Identity types
A type a, b : A

IdA(a, b) type
Id-form

A type a : A

r(a) : IdA(a, a)
Id-intro

x, y : A, p : IdA(x, y) � C(x, y, p) type x : A � d(x) : C(x, x, r(x))

x, y : A, p : IdA(x, y) � Jd(x, y, p) : C(x, y, p)
Id-elim

x, y : A, p : IdA(x, y) � C(x, y, p) type x : A � d(x) : C(x, x, r(x))

x : A � Jd(x, x, r(x)) = d(x) : C(x, x, r(x))
Id-comp

Dependent product types

A type x : A � B(x) type

Πx : A.B(x) type
Π-form

x : A � f(x) : B(x)

λx. f(x) : Πx : A.B(x)
Π-abs

m : Πx : A.B(x)

y : A � m · y : B(y)
Π-app

x : A � f(x) : B(x)

y : A �
(
λx. f(x)

)
· y = f(y) : B(y)

Π-β

Table 1. Logical rules of intensional Martin-Löf type theory (MLI)

side of the turnstile: so, for example, we may specify a dependent type in context Γ as

x : Γ � A(x) type. We will also make use of the telescope notion of de Bruijn (1991).

Given a context Γ as before, this allows us to abbreviate the series of judgements

x : Γ � B1(x) type

x : Γ, y1 : B1 � B2(x, y1) type
...

x : Γ, y1 : B1, . . . , ym−1 : Bm−1 � Bm(x, y1, . . . ym−1) type

as x : Γ � Δ(x) ctxt, where Δ(x) := (y1 : B1(x), y2 : B2(x, y1), . . .). We say that Δ is

a context in context Γ, or a context dependent upon Γ, and refer to contexts like Δ as

R. Garner 692

dependent contexts, and to those like Γ as closed contexts. Given a dependent context

x : Γ � Δ(x) ctxt, we may abbreviate the series of judgements

x : Γ � f1(x) : B1(x)
...

x : Γ � fm(x) : Bm(x, f1(x), . . . , fm−1(x))

as x : Γ � f(x) : Δ(x), and say that f is a dependent element of Δ. We can similarly assign

a meaning to the judgements x : Γ � Δ(x) = Θ(x) ctxt and x : Γ � f(x) = g(x) : Δ(x)

expressing the definitional equality of two dependent contexts and the definitional equality

of two dependent elements of a dependent context, respectively.

2.2. Extensional type theory

We obtain extensional Martin-Löf type theory MLE by augmenting the intensional theory

with the two equality reflection rules

a, b : A α : Id(a, b)

a = b : A

a, b : A α : Id(a, b)

α = r(a) : Id(a, b)

together with the rule of function extensionality

m, n : Π(A,B) x : A � m · x = n · x
m = n : Π(A,B)

.

The addition of these three rules yields a type theory that is intuitively simpler, and more

natural from the perspective of categorical models, but is proof-theoretically unpleasant:

we lose the decidability of definitional equality and the decidability of type-checking.

Note that if one develops Martin-Löf type theory in a framework admitting higher-order

inference rules (such as the Logical Framework of Nordström et al. (1990)), then the

above three rules are equipotent with the definitional η-rule.

2.3. Two-dimensional type theory

The type theory we investigate in this paper lies between the intensional theory of

Section 2.1 and the extensional theory of Section 2.2. We denote it by ML2, and call it

two-dimensional type theory, because as we will see, it has a natural semantics in two-

dimensional categories. It is obtained by augmenting intensional type theory with the

rules of Tables 2 and 3. These provide restricted versions of the equality reflection rules

(Table 2) and the function extensionality rules (Table 3). To motivate the rules in Table 2,

we introduce the notion of a discrete type. We say that Γ � A type is discrete if the

judgements

Γ � a, b : A Γ � p : Id(a, b)

Γ � a = b : A
Id-refl1-A

Γ � a, b : A Γ � p : Id(a, b)

Γ � p = r(a) : Id(a, b)
Id-refl2-A

Two-dimensional models of type theory 693

a, b : A p, q : Id(a, b) α : Id(p, q)

p = q : Id(a, b)
Id-disc1

a, b : A p, q : Id(a, b) α : Id(p, q)

α = r(p) : Id(p, q)
Id-disc2

Table 2. Rules for discrete identity types

m, n : Π(A,B) x : A � p(x) : Id(m · x, n · x)
ext(m, n, p) : Id(m, n)

Π-ext

m : Π(A,B)

ext(m,m, [x] r(m · x)) = r(m) : Id(m,m)
Π-ext-comp

m, n : Π(A,B) x : A � p(x) : Id(m · x, n · x)
x : A � ext(m, n, p) ∗ x = p(x) : Id(m · x, n · x)

Π-ext-app

Table 3. Rules for function extensionality

are derivable. Thus the intensional theory says that no types need be discrete; the

extensional theory says that all types are discrete; and the two-dimensional theory says

that all identity types are discrete. Note that although two-dimensional type theory suffers

from the same proof-theoretic deficiencies as the extensional theory, it does so in a less

severe manner: indeed, only those types of ML2 in whose construction the identity types

have been used will have undecidable definitional equality. As we ascend to higher-

dimensional variants of type theory, this undecidability will be pushed further and further

up the hierarchy of iterated identity types, but it is only in the limit – which is intensional

type theory – that we regain complete decidability.

The necessity for the rules in Table 3 will become clear when we reach Section 4.5.

We require them in order to obtain a satisfactory notion of two-dimensional categorical

model, in which dependent product formation is right adjoint to substitution (in a suitably

weak 2-categorical sense). The first of the rules in Table 3 is a propositional version of

the function extensionality principle of Section 2.2, whilst the second and third express

coherence properties of the first. To understand the third rule, we must first explain

the symbol ∗ appearing in it. It is a definable constant expressing the fact that two

propositionally equal elements of a Π-type are pointwise propositionally equal. Explicitly,

it satisfies the following introduction and computation rules

m, n : Π(A,B) p : Id(m, n) a : A

p ∗ a : Id(m · a, n · a)
∗-intro

m : Π(A,B) a : A

r(m) ∗ a = r(m · a) : Id(m · a, m · a)
∗-comp

and we may define it by Id-elimination, taking p ∗ a := J[x]r(x·a)(m, n, p).

R. Garner 694

3. Categorical models for ML2: structural aspects

The remainder of this paper will describe a notion of categorical semantics for ML2.

In this section and the next, we define a syntactic category and enumerate its structure,

whilst in Section 5, we consider an arbitrary category endowed with this same structure,

and derive from it a type theory incorporating the rules of ML2. This yields a semantics

that is both complete and sound. In this section, we define the basic syntactic category

and look at the structure induced on it by the non-logical rules of ML2; in the next

section, we consider the logical rules. As mentioned in the Introduction, the syntactic

category we define will in fact be a 2-category whose objects will be (vectors of) types,

whose morphisms will be (vectors) of terms between those types and whose 2-cells

will be (vectors of) identity proofs between these terms. The various forms of 2-cell

composition will be obtained using the identity elimination rules; whilst the rules for

discrete identity types given in Table 2 ensure that these compositions satisfy the 2-category

axioms. For basic terminology and notation relating to 2-categories, see Kelly and Street

(1974).

3.1. One-dimensional semantics of type dependency

We begin by recalling the construction of a one-dimensional categorical structure from

the syntax of a dependent type theory. The presentation we will give follows Jacobs (1993)

in its use of (full) comprehension categories. There are various other, essentially equivalent,

presentations that we could have used: see, for example, Cartmell (1986), Dybjer (1996),

Ehrhard (1988), Hyland and Pitts (1989) and Taylor (1999). We use comprehension

categories because they afford a straightforward passage to a two-dimensional structure.

So we assume an arbitrary dependently typed calculus S admitting the same four basic

judgement types and the same structural rules as the calculus MLI . We define its category

of contexts CS to have as objects, contexts Γ, Δ, . . . , in S, considered modulo α-conversion

and definitional equality (so we identify Γ and Δ whenever � Γ = Δ ctxt is derivable),

and as morphisms, Γ → Δ, judgements x : Γ � f(x) : Δ, considered modulo α-conversion

and definitional equality (so we identity f, g : Γ → Δ whenever x : Γ � f(x) = g(x)

is derivable). To avoid further repetition, we introduce the convention that any further

categorical structures we define should also be interpreted modulo α-equivalence and

definitional equality. The identity map on Γ is given by x : Γ � x : Γ; whilst composition

is given by substitution of terms. Note that CS has a terminal object, which is given by

the empty context ().

For each context Γ, we now define the category TS(Γ) of types-in-context-Γ, whose

objects A are judgements x : Γ � A(x) type and whose morphisms A → B are judgements

x : Γ, y : A(x) � f(x, y) : B(x). Each morphism f : Γ → Δ of CS induces a functor

TS(f) : TS(Δ) → TS(Γ) that sends a type A in context Δ to the type f∗A in context Γ

given by x : Γ � A(f(x)) type. The assignation f �→ TS(f) is itself functorial in f, so we

obtain an indexed category TS(–) : Cop
S → Cat, which, via the Grothendieck construction,

we may equally well view as a split fibration p : TS → CS. We refer to this as the fibration

of types over contexts.

Two-dimensional models of type theory 695

Explicitly, objects of TS are pairs (Γ, A) of a context and a type in that context, and

morphisms (Γ, A) → (Δ, B) are pairs (f, g) of a context morphism f : Γ → Δ together with

a judgement x : Γ, y : A(x) � g(x, y) : B(f(x)). The chosen cartesian lifting of a morphism

f : Γ → Δ at an object (Δ, B) is given by (f, ι) : (Γ, f∗B) → (Δ, B), where ι denotes the

judgement x : Γ, y : B(fx) � y : B(fx). Now, for each object (Γ, A) of TS, we have the

extended context
(
x : Γ, y : A(x)

)
, which we denote by Γ.A. We also have the judgement

x : Γ, y : A(x) � x : Γ, corresponding to a context morphism πA : Γ.A → Γ, which we

call the dependent projection associated to A. In fact, the assignation (Γ, A) �→ πA provides

the action on objects of a functor E : TS → C2
S (where 2 denotes the arrow category

0 → 1), whose action on maps sends the morphism (f, g) : (Γ, A) → (Δ, B) of TS to the

morphism

Γ.A

πA

��

f.g
�� Δ.B

πB

��

Γ
f

�� Δ

(2)

of C2
S, where f.g denotes the judgement x : Γ, y : A � (f(x), g(x, y)) : Δ.B.

We can make two observations about this functor E. First, it is fully faithful, which says

that every morphism h : Γ.A → Δ.B fitting into a square like (2) is of the form f.g for a

unique (f, g) : (Γ, A) → (Δ, B). Second, for a cartesian morphism (f, ι) : (Γ, f∗B) → (Δ, B),

the corresponding square (2) is a pullback square. Indeed, given an arbitrary commutative

square

Λ

h

��

k �� Δ.B

πΔ

��

Γ
f

�� Δ

commutativity forces k to be of the form z : Λ � (fhz, k′z) : Δ.B for some judgement

z : Λ � k′(z) : B(fhz), so the required factorisation Λ → Γ.f∗B is given by the judgement

z : Λ � (hz, k′z) : Γ.f∗B. We may abstract away from the above situation as follows. We

define a full split comprehension category (cf. Jacobs (1993)) to be given by a category C
with a specified terminal object, together with a split fibration p : T → C and a full and

faithful functor E : T → C2 rendering the triangle

T

p
���

��
��

��
�

E �� C2

cod
����

��
��

��

C

commutative, and sending cartesian morphisms in T to pullback squares in C2. The

preceding discussion shows that we may associate to any suitable dependent type theory

S a full split comprehension category �(S), which we will refer to as the classifying

comprehension category of S.

R. Garner 696

Notation 3.1.1. We will make use of the notation developed above in arbitrary compre-

hension categories (p : T → C, E : T → C2). Thus we write chosen cartesian liftings as

(f, ι) : (Γ, f∗B) → (Δ, B), and write the image of (Γ, A) ∈ T under E as πA : Γ.A → Γ.

We will find it convenient to develop a little more notation. Given Γ ∈ C and A ∈ T(Γ),

we call a map a : Γ → Γ.A satisfying πAa = idΓ a global section of A, and denote it by

a ∈Γ A. Given also a morphism f : Δ → Γ of C, we write f∗a ∈Δ f
∗A for the section of

πf∗A induced by the universal property of pullback in the following diagram:

Δ af

��

id

��

��

Δ.f∗A
f.ι

��

πf∗A

��

Γ.A

πA

��

Δ
f

�� Γ

(3)

3.2. A 2-category of types

We will now extend the classifying comprehension category �(S) defined above to

a classifying comprehension 2-category. We will not need the full strength of two-

dimensional type theory, ML2, for this. Rather, for the rest of this section we fix an

arbitrary dependently typed theory S that admits the structural rules required in the

previous subsection together with the identity type rules from Table 1 and the discrete

identity rules of Table 2. Our first task will be to construct a 2-category of closed types

in S. We will do this by enriching the category TS() of closed types with 2-cells derived

from the 2-category of strict internal groupoids in S. A strict internal groupoid in S is

given by a closed type A0, a family A1(x, y) of types over x, y : A0 and operations of unit,

composition and inverse:

x : A0 � idx : A1(x, x)

x, y, z : A0, p : A1(x, y), q : A1(y, z) � q ◦ p : A1(x, z)

x, y : A0, p : A1(x, y) � p−1 : A1(y, x)

that obey the usual five groupoid axioms up to definitional equality. For instance, the left

unit axiom requires that

x, y : A0, p : A1(x, y) � idy ◦ p = p : A1(x, y)

should hold. We will generally write that (A0, A1) is an internal groupoid in S, leaving the

remaining structure understood. Now, an internal functor F : (A0, A1) → (B0, B1) between

internal groupoids is given by judgements

x : A0 � F0(x) : B0

x, y : A0, p : A1(x, y) � F1(p) : B1(F0x, F0y)

Two-dimensional models of type theory 697

subject to the usual two functoriality axioms (up to definitional equality again); whilst an

internal natural transformation α : F ⇒ G is given by specifying a family of components

x : A0 � α(x) : B1(F0x, G0x) subject to the (definitional) naturality axiom.

Proposition 3.2.1. The strict groupoids, functors and natural transformations internal to

S form a 2-category Gpd(S) that is locally groupoidal, in the sense that every 2-cell is

invertible.

Proof. Recall that for any category E, we can define a 2-category Gpd(E) of groupoids

internal to that category†. In particular, we have the 2-category Gpd(CS) of groupoids

internal to the category of contexts of S. Now, each strict internal groupoid A in S gives

rise to such an internal groupoid A′ in CS whose object of objects is the context (x : A0)

and whose object of morphisms is the context (x : A0, y : A0, p : A1(x, y)). We can check

that internal functors A → B in S correspond bijectively with internal functors A′ → B′

in CS, and that this correspondence extends to the natural transformations between them.

Thus, we may take Gpd(S) to be the 2-category whose objects are strict internal groupoids

in S, whose hom-categories are given by Gpd(S)(A,B) := Gpd(CS)(A′,B′) and whose

remaining structure is inherited from Gpd(CS). Note that every 2-cell of Gpd(CS) is

invertible, so the same obtains for Gpd(S)

Our method for obtaining the 2-category of closed types will be to construct a functor

TS() → Gpd(S), and to lift the 2-cell structure of Gpd(S) along it.

Proposition 3.2.2. We may assign to each closed type A in S a strict internal groupoid

(A, IdA), and the assignation A �→ (A, IdA) underlies a functor TS() → Gpd(S).

Proof. The proof of this result is essentially due to Hofmann and Streicher (1998). We

repeat it because we will need the details. We first show that (A, IdA) has the structure

of a strict internal groupoid. For identities, we take x : A � idx := r(x) : Id(x, x). For

composition, we require a judgement

x, y, z : A, p : Id(x, y), q : Id(y, z) � q ◦ p : Id(x, z),

and by Id-elimination on p – in the extended form given in equation (1) – it suffices to

define this when y = z and q = r(y), for which we take r(y) ◦ p := p. Similarly, to give the

judgement

x, y : A, p : Id(x, y) � p−1 : Id(y, x)

providing inverses, it suffices to consider the case x = y and p = r(x), for which we take

r(x)−1 = r(x). We must now check the five groupoid axioms. The first unitality axiom

idy ◦ p = p follows from the Id-computation rule. For the other unitality axiom, it suffices,

by discrete identity types, to show that

x, y : A, p : Id(x, y) � p ◦ r(x) ≈ p : Id(x, y)

† One commonly requires the category E to have pullbacks, but this is inessential.

R. Garner 698

holds, and by Id-elimination, it suffices to do this in the case x = y and p = r(x), for

which we have that r(x) ◦ r(x) = r(x), as required. Likewise, for the associativity axiom, it

suffices to show that

w, x, y, z : A, p : Id(w, x), q : Id(x, y), s : Id(y, z) � s ◦ (q ◦ p) ≈ (s ◦ q) ◦ p : Id(w, z),

and again by Id-elimination, it suffices to do this when y = z and s = r(y), when we

have that r(y) ◦ (q ◦ p) = q ◦ p = (r(y) ◦ q) ◦ p, as required. Note that again we require the

extended form of Id-elimination of equation (1), and in future we will use this without

further comment. The invertibility axioms are similar. Suppose now that in addition to A

we are given another type B together with a judgement x : A � f(x) : B between them.

We will extend this to an internal functor (f, f•) : (A, IdA) → (B, IdB). We define the action

on hom-types

x, y : A, p : Id(x, y) � f•(p) : Id(fx, fy)

by Id-elimination on p, since when x = y and p = r(x), we may take f•(r(x)) := r(f(x)). We

must now check the functoriality axioms. The fact that (f, f•) preserves identities follows

from the Id-computation rule. To show that it preserves binary composition, it is enough,

by discrete identity types, to show that

x, y, z : A, p : Id(x, y), q : Id(y, z) � f•(q ◦ p) ≈ f•(q) ◦ f•(p) : Id(fx, fz)

holds. But this follows by Id-elimination on q, since when y = z and q = r(y), we have

that f•(r(y) ◦ p) = f•(p) = r(f(y)) ◦ f•(p) = f•(r(y)) ◦ f•(p), as required. We must now check

that the assignation f �→ (f, f•) is itself functorial. To show that it preserves identities, we

must show that for any closed type A,

x, y : A, p : Id(x, y) � (idA)
•(p) = p : Id(x, y)

holds. By discrete identity types, it suffices to show this up to mere propositional equality,

and by Id-elimination, we need only do so in the case when x = y and p = r(x), when

we have that (idA)
•(r(x)) = r(idA(x)) = r(x), as required. To show that f �→ (f, f•) respects

composition, we must show that for maps of closed types f : A → B and g : B → C , the

judgement

x, y : A, p : Id(x, y) � (gf)•(p) = g•(f•(p)) : Id(gfx, gfy)

holds. Again, it suffices to do this only up to propositional equality, and this only in the

case where x = y and p = r(x), so we have that (gf)•(r(x)) = r(g(f(x))) = g•(r(f(x)) =

g•(f•(r(x)), as required.

Corollary 3.2.3. The category TS() of closed types in S may be extended to a locally

groupoidal 2-category TS() whose 2-cells α : f ⇒ g : A → B are given by judgements

x : A � α(x) : IdB(fx, gx).

Proof. If we view TS() as a 2-category with only identity 2-cells, the functor of the

previous proposition may be seen as a 2-functor TS() → Gpd(S). We can factorise this

2-functor as a composite

TS() → TS() → Gpd(S)

Two-dimensional models of type theory 699

whose first part is bijective on objects and 1-cells and whose second part is fully faithful

on 2-cells. We now define TS() to be the intermediate 2-category in this factorisation. We

must check that this definition agrees with the description of TS() given above. Clearly,

this is so for the objects and morphisms, whilst for the 2-cells, we must show that for any

f, g : A → B, each judgement x : A � α(x) : IdB(fx, gx) satisfies the axiom for an internal

natural transformation α : (f, f•) ⇒ (g, g•). By discrete identity types, this amounts to

validating the judgement

x, y : A, p : IdA(x, y) � g•(p) ◦ α(x) ≈ α(y) ◦ f•(p) : IdB(fx, gy),

and by Id-elimination on p, it suffices to do this in the case where x = y and p = r(x), for

which we have that g•(r(x)) ◦ α(x) = r(g(x)) ◦ α(x) = α(x) = α(x) ◦ r(f(x)) = α(x) ◦ f•(r(x)),

as required.

Corollary 3.2.4. For any context Γ in S, the category TS(Γ) of types-in-context-Γ may

be extended to a locally groupoidal 2-category TS(Γ) in which 2-cells α : f ⇒ g are

judgements x : Γ, y : A � α(x, y) : IdB(f(x, y), g(x, y)).

Proof. We consider the slice theory S/Γ, whose closed types are the types of S in context

Γ. It is easy to see that S/Γ admits the same inference rules as S – and, in particular, has

discrete identity types – so that the result follows upon identifying TS(Γ) with TS/Γ().

3.3. A 2-category of contexts

In this section, we generalise the construction of the 2-category of closed types in order

to construct a 2-category of contexts. The method will be a direct transcription of the

one used in the previous section, but in order for it to make sense, we need to extend the

identity type constructor to a ‘meta-constructor’, which operates on entire contexts rather

than single types.

Proposition 3.3.1. The following inference rules are definable in S:

Φ ctxt a, b : Φ

IdΦ(a, b) ctxt
Id-form

′
Φ ctxt a : Φ

r(a) : IdΦ(a, a)
Id-intro

′

x, y : Φ, p : IdΦ(x, y), Δ � Θ(x, y, p) ctxt

x : Φ, Δ[x, x, r(x)/x, y, p] � d(x) : Θ(x, x, r(x))

x, y : Φ, p : IdΦ(x, y), Δ � Jd(x, y, p) : Θ(x, y, p)
Id-elim

′

x, y : Φ, p : IdΦ(x, y), Δ � Θ(x, y, p) ctxt

x : Φ, Δ[x, x, r(x)/x, y, p] � d(x) : Θ(x, x, r(x))

x : Φ, Δ[x, x, r(x)/x, y, p] � Jd(x, x, r(x)) = d(x) : Θ(x, x, r(x))
Id-comp

′

In order to prove this result, we will make use of the following well-known consequence

of the identity type rules.

R. Garner 700

Proposition 3.3.2 (The Leibniz rule). Given A type and x : A � B(x) type in S, the

following rules are derivable:

a1, a2 : A p : Id(a1, a2) b2 : B(a2)

p∗(b2) : B(a1)
Id-subst

a : A b : B(a)

r(a)∗(b) = b : B(a)
Id-subst-comp

Proof. By Id-elimination on p, it suffices to derive the first rule in the case where a1 = a2

and p = r(a1), in which case we can take r(a1)
∗(b) := b. The second rule now follows from

the Id-computation rule.

The key idea behind the proof of Proposition 3.3.1 can be illustrated by considering a

context Φ = (x : A, y : B(x)) of length 2. The corresponding identity context IdΦ will be

given by

IdΦ

(
(x, y), (x′, y′)

)
:=

(
p : IdA(x, x

′), q : IdB(x)(y, p
∗y′)

)
.

We use substitution along the first component p to make the second component q type-

check. This can be seen as a type-theoretic analogue of the Grothendieck construction

for fibrations. Indeed, it is possible to show that there is a propositional isomorphism

between this identity context IdΦ and the identity type IdΣ(A,B). Thus, in principle, there is

no need to introduce identity contexts. However, we prefer to do so in order to obtain a

cleaner separation between the identity rules and the Σ-type rules.

Proof of Proposition 3.3.1 The proof has two stages: first, we define the generalised

Id-inference rules in the special case where the context Φ has length 1; then we use these

to define them in the general case. We will reduce syntactic clutter by proving our results

only in the case where the postcontext Δ is empty: the reader may readily supply the

annotations for the general case. For the first part of the proof, we suppose we are given a

context Φ = (x : A) of length 1. The inference rules Id-form
′ and Id-intro

′ for Φ are just

the usual Id-formation and Id-introduction rules for A. However, Id-elim
′ corresponds to

the following generalised elimination rule:

x, y : A, p : Id(x, y) � Θ(x, y, p) ctxt x : A � d(x) : Θ(x, x, r(x))

x, y : A, p : Id(x, y) � Jd(x, y, p) : Θ(x, y, p)
(4)

with Id-comp
′ stating that Jd(a, a, r(a)) = d(a). We will define the elimination rule by

induction on the length n of the context Θ. When n = 0, this is trivial, and when n = 1,

we use the usual identity elimination rule. So suppose now that we have defined the rule

for all contexts Θ of length n, and consider a context x, y : A, p : Id(x, y) � Θ(x, y, p) ctxt

of length n+ 1. Thus Θ is of the form

Θ(x, y, p) = (u : Λ(x, y, p), v : D(x, y, p, u))

Two-dimensional models of type theory 701

for some context Λ of length n and type D. It follows that to make a judgement

x : A � d(x) : Θ(x, x, r(x)) is equally well to make a pair of judgements

x : A � d1(x) : Λ(x, x, r(x))

x : A � d2(x) : D
(
x, x, r(x), d1(x)

)
.

(5)

By the induction hypothesis, we may apply the elimination rule (4) for the context Λ with

eliminating family d1 to deduce the existence of a term

x, y : A, p : Id(x, y) � Jd1
(x, y, p) : Λ(x, y, p) (6)

satisfying Jd1
(x, x, r(x)) = d1(x). Now we consider the dependent type

x, y : A, p : Id(x, y) � C(x, y, p) := D(x, y, p, Jd1
(x, y, p)

)
type. (7)

We have that C(x, x, r(x)) = D
(
x, x, r(x), Jd1

(x, x, r(x))
)

= D
(
x, x, r(x), d1(x)

)
and hence

from (5) we can derive the judgement

x : A � d2(x) : C
(
x, x, r(x)

)
. (8)

Now applying the standard Id-elimination rule to (7) and (8) yields a judgement

x, y : A, p : Id(x, y) � Jd2
(x, y, p) : D

(
x, y, p, Jd1

(x, y, p)
)

(9)

satisfying Jd2
(x, x, r(x)) = d2(x). But to give (6) and (9) is equally well to give a dependent

element x, y : A, p : Id(x, y) � Jd(x, y, p) : Θ(x, y, p), and the respective computation rules

for Jd1
and Jd2

now imply the computation rule for Jd. This completes the first part of the

proof.

We now construct the generalised inference rules for an arbitrary context Φ. Once again

the proof will be by induction, this time on the length of Φ. For the base case, the only

context of length 0 is (), the empty context. For this, we take the identity context Id()

to be the empty context also. The introduction rule is vacuous, whilst the elimination

rule requires us to provide, for each closed context Θ and global element d : Θ, a global

element Jd : Θ satisfying the computation rule Jd = d : Θ. Thus we simply take Jd := d

and are done. Suppose now that we have defined identity contexts for all contexts of

length n, and consider a context Φ =
(
x1 : Λ, x2 : D(x1)

)
of length n + 1. In order to

define IdΦ, we first apply the induction hypothesis to Λ in order to define its Leibniz rule.

Thus, given x : Λ � Υ(x) ctxt, we may define a judgement

x, y : Λ, p : IdΛ(x, y), z : Υ(y) � p∗(z) : Υ(x)

satisfying r(x)∗(z) = z : Υ(x). The proof is as in Proposition 3.3.2. Now, to give the

formation rule for IdΦ is equally well to give a judgement

x1 : Λ, y1 : D(x1), x2 : Λ, y2 : D(x2) � IdΦ(x1, y1, x2, y2) ctxt,

which we do by setting

IdΦ(x1, y1, x2, y2) :=
(
p : IdΛ(x1, x2), q : IdD(x1)(y1, p

∗y2)
)
.

R. Garner 702

Next, in order to define the introduction rule for IdΦ, is equally well to give judgements

x : Λ, y : D(x) � r1(x, y) : IdΛ(x, x)

x : Λ, y : D(x) � r2(x, y) : IdD(x)

(
y, r1(x, y)

∗(y)
)
,

which we do by setting r1(x, y) := r(x) and r2(x, y) := r(y), where for the second of

these we make use of the fact that IdD(x)

(
y, r(x)∗(y)

)
= IdD(x)(y, y). In order to define the

elimination rule for IdΦ, we first define a context dependent on x1, x2 : Λ and p : IdΛ(x1, x2)

by

Δ(x1, x2, p) :=
(
y1 : D(x1), y2 : D(x2), q : IdD(x1)(y1, p

∗y2)
)
.

We may then write the premisses of the elimination rule for IdΦ as

x1, x2 : Λ, p : IdΛ(x1, x2), z : Δ(x1, x2, p) � Θ(x1, x2, p, z) ctxt (10)

and

x : Λ, y : D(x) � d(x, y) : Θ(x, x, r(x), y, y, r(y)). (11)

We would like to apply the elimination rule for IdΛ (with postcontext Δ) to equation (10).

In order to do this, we need to exhibit a generating family

x : Λ, z : Δ(x, x, r(x)) � d′(x, z) : Θ(x, x, r(x), z), (12)

which is equivalently a family

x : Λ, y1, y2 : D(x), q : IdD(x)(y1, y2) � d′(x, y1, y2, q) : Θ(x, x, r(x), y1, y2, q)

since we have that r(x)∗(y2) = y2. But we may obtain such a family by applying the

generalised elimination rule (4) for IdD(x) to the dependent context

x : Λ, y1, y2 : D(x), q : IdD(x)(y1, y2) � Θ(x, x, r(x), y1, y2, q) ctxt

with eliminating family (11). This yields a judgement (12) as required, whilst the

computation rule says that d′(x, y, y, r(y)) = d(x, y). Now applying the elimination rule for

IdΛ to (10) and (12) yields a judgement

x1, x2 : Λ, p : IdΛ(x1, x2), z : Δ(x1, x2, p) � Jd′ (x1, x2, p, z) : Θ(x1, x2, p, z)

of the correct form to provide the conclusion of the elimination rule for IdΦ. From the

computation rule for IdΛ, this will satisfy Jd′ (x, x, r(x), z) = d′(x, z), and thus, in particular,

we get

Jd′ (x, x, r(x), y, y, r(y)) = d′(x, y, y, r(y)) = d(x, y),

which gives us the computation rule for IdΦ.

Using Proposition 3.3.1, we can now construct the 2-category of contexts in S by

mimicking the developments of Section 3.2. We first define a strict groupoid context in S

to be given by a context Γ0 together with a dependent family x, y : Γ0 � Γ1(x, y) ctxt

of hom-contexts, and operations of unit, composition and inverse satisfying the groupoid

axioms as before. It is still the case that any groupoid context induces an internal groupoid

object in the category of contexts CS, so, with the obvious definition of functor and natural

transformation, we obtain a 2-category GpdCtxt(S) of groupoid contexts in S. Following

Proposition 3.2.2, we now define a functor CS → GpdCtxt(S) sending Γ to (Γ, IdΓ). A small

Two-dimensional models of type theory 703

subtlety we must check in order for this to go through is that S does not just have discrete

identity types, but also discrete identity contexts. But this follows by a straightforward

induction on the length of a context. Thereafter, the argument of Proposition 3.2.3 carries

over to give the following corollary.

Corollary 3.3.3. The category CS of contexts in S may be extended to a locally groupoidal

2-category CS whose 2-cells α : f ⇒ g : Γ → Δ are judgements x : Γ � α(x) : IdΔ(fx, gx).

We conclude this section with a simple observation.

Proposition 3.3.4. The 2-category CS has a 2-terminal object given by the empty

context ().

Proof. It is clear that every context Γ admits a unique morphism !: Γ → (), which

makes () a terminal object. For it to be 2-terminal, we must also show that for any 2-cell

α : ! ⇒! : Γ → () we have α = id!. But this follows because we defined Id() := () in the

proof of Proposition 3.3.1.

3.4. A 2-fibration of types over contexts

The next stage in our development will be to extend the fibration of types over

contexts to a 2-fibration of types over contexts. In Section 3.1, we built the one-

dimensional fibration by first defining an indexed category of types over contexts, and

then applying the Grothendieck construction. It turns out that in the two-dimensional case

the indexed 2-category of types over contexts has a structure so elaborate (it is given by

a trihomomorphism TS(–) : C
coop
S → Gray, where Gray is the tricategory of 2-categories,

2-functors, pseudo-natural transformations, and modifications – see Gordon et al. (1995))

that it is significantly less work to construct the associated 2-fibration directly. We begin

by recalling the definition of a 2-fibration from Hermida (1999). Of the several equivalent

formulations given there, the most convenient for our purposes is given by the following

definition.

Definition 3.4.1 (cf. Hermida (1999, Theorem 2.8)). Let E and B be 2-categories. We say

that a 2-functor p : E → B is a cloven 2-fibration if the following four conditions are

satisfied:

(i) The underlying ordinary functor of p is a cloven fibration of categories.

(ii) Each cartesian 1-cell f : y → z of E has the following two-dimensional universal

property: whenever we are given a 2-cell α : g ⇒ h : x → z of E together with a

factorisation

p(α) = p(x)

k
��

l

		
γ�� p(y)

p(f)
�� p(z),

R. Garner 704

we may lift this to a unique factorisation

α = x

k′

��

l′

γ′
�� y

f
�� z

satisfying p(γ′) = γ.

(iii) For each x, y ∈ E, the induced functor px,y : E(x, y) → B(px, py) is a cloven fibration

of categories.

(iv) For each x, y, z ∈ E and f : x → y, the functor (–) · f : E(y, z) → E(x, z) preserves

cartesian liftings of 2-cells.

We say further that a cloven 2-fibration is globally split if its underlying fibration of

categories in (i) is a split fibration.

We will now show that the split fibration p : TS → CS of types over contexts extends

to a globally split 2-fibration p : TS → CS. The first step will be to construct the total

2-category TS. Before doing this we prove a useful lemma.

Lemma 3.4.2. For a dependent projection πA : Γ.A → Γ of CS, its lifting to an internal

functor (πA, πA
•), as defined in Proposition 3.2.2, satisfies

(x, y), (x′, y′) : Γ.A, (p, q) : IdΓ.A

(
(x, y), (x′, y′)

)
� πA

•(p, q) = p : IdΓ(x, x′).

Proof. By discrete identity types, it suffices to show that πA
•(p, q) ≈ p, and by Id-

elimination on Γ.A, we need only consider the case where x = x′, y = y′, p = r(x) and

q = r(y). But here, by definition of πA
•, we have πA

•(r(x), r(y)) = r(πA(x, y)) = r(x), as

required.

Proposition 3.4.3. The category TS defined in Section 3.1 extends to a locally groupoidal

2-category TS whose 2-cells (α, β) : (f, g) ⇒ (f′, g′) : (Γ, A) → (Δ, B) are given by pairs of

judgements

x : Γ � α(x) : IdΔ(fx, f′x)

x : Γ, y : A(x) � β(x, y) : IdB(fx)

(
g(x, y), α(x)∗(g′(x, y))

)
.

(13)

Proof. If we view TS as a 2-category with only identity 2-cells, the functor E : TS → C2
S

defined in Section 3.1 may be viewed as a 2-functor TS → C2
S. We can factorise this

2-functor as a composite

TS → TS → C2
S (14)

whose first part is bijective on objects and 1-cells and whose second part is bijective on

2-cells. We claim that the intermediate 2-category is the TS of the Proposition. Clearly, it

has the correct objects and 1-cells, whilst for the 2-cells, we must show that given maps

(f, g), (f′, g′) : (Λ, A) → (Δ, B) of TS, pairs of judgements as in (13) are in bijection with

Two-dimensional models of type theory 705

diagrams

Γ.A

πA

��

f.g
��

f′ .g′

		
γ�� Δ.B

πB

��

Γ

f

��

f′

��α�� Δ

(15)

in CS satisfying πBγ = απA. For a diagram like (15), the 2-cell γ : f.g ⇒ f′.g′ corresponds,

by the definition of IdΔ.B given in Proposition 3.3.1, to a pair of judgements

x : Γ, y : A(x) � γ1(x, y) : IdΔ(fx, f′x)

x : Γ, y : A(x) � γ2(x, y) : IdB(fx)

(
g(x, y), γ1(x, y)

∗(g′(x, y))
)
,

(16)

whilst the equality πBγ = απA corresponds to the validity of the judgement

x : Γ, y : A(x) � α(x) = πB
•(γ(x, y)) : IdΔ(fx, f′x).

But by Lemma 3.4.2, we have πB
•(γ(x, y)) = γ1(x, y), so α(x) = γ1(x, y), and we may

identify (16) with (13) upon taking β := γ2.

Corollary 3.4.4. The fully faithful functor E : TS → C2
S of Section 3.1 extends to a 2-fully

faithful (that is, bijective on 1- and 2-cells) 2-functor E : TS → C2
S.

Proof. We take E to be the second half of the factorisation in (14).

We now define p : TS → CS to be the composite of the 2-functor E of the previous

Proposition with the codomain 2-functor C2
S → CS. Explicitly, p is the 2-functor sending

(Γ, A) to Γ, (f, g) to f and (α, β) to α. We intend to show that p is a (globally split)

2-fibration, and will do so by making using of two further properties of the 2-functor

E : TS → C2
S. The first of these generalises directly the one-dimensional situation described

in Section 3.1. Its proof is less straightforward than one might think.

Proposition 3.4.5. For each (Δ, B) ∈ TS and f : Γ → Δ in CS, the following pullback square

in CS is also a 2-pullback:

Γ.f∗B

πf∗B

��

f.ι
�� Δ.B

πB

��

Γ
f

�� Δ.

(17)

Proof. We begin by introducing a piece of local notation: for the duration of this proof,

we will write applications of the Leibniz rule as

a1, a2 : A p : Id(a1, a2) b2 : B(a2)

substB(p, b2) : B(a1)
Id-subst

We do this in order to make explicit the family B in which substitution is occurring. Now,

to say that (17) is not just a pullback but also a 2-pullback is to say that whenever we

R. Garner 706

are given maps h, k : Λ → Γ.f∗B and 2-cells

Λ

πf∗Bh

α �� πf∗Bk

��

(f.ι)h

��
β��

(f.ι)k

�� Δ.B

πB

��

Γ
f

�� Δ

(18)

in CS satisfying fα = πBβ, we can find a unique 2-cell γ : h ⇒ k : Λ → Γ.f∗B satisfying

πf∗B ◦ γ = α and f.ι ◦ γ = β. In order to show this, we will first need to understand how

f.ι lifts to an internal functor

(f.ι, (f.ι)•) : (Γ.f∗B, IdΓ.f∗B) → (Δ.B, IdΔ.B).

So suppose we are given elements (x1, y1) and (x2, y2) : Γ.f∗B. Now, a typical element

(p, q) : IdΓ.f∗B

(
(x1, x2), (y1, y2)

)
is given by a pair of judgements

p : IdΓ(x1, y1) and q : IdB(fx1)

(
x2, substf∗B(p, y2)

)
. (19)

This is sent by (f.ι)• to some element (u, v) : IdΔ.B

(
(fx1, y1), (fy1, y2)

)
, or, equally well, a

pair of judgements

u : IdΓ(fx1, fy1) and v : IdB(fx1)

(
x2, substB(u, y2)

)
. (20)

Since we have πB ◦ f.ι = f ◦ πf∗B , we have by Lemma 3.4.2 that

u = πB
•(u, v) = (πB ◦ f.ι)•(p, q) = (f ◦ πf∗B)•(p, q) = f•(p).

So it only remains to describe v. We will do this by reduction to a special case. Suppose

we have x2 = substf∗B(p, y2) and q = r(substf∗B(p, y2)). We denote the corresponding v by

θ(p, y2) : IdB(fx1)

(
substf∗B(p, y2), substB(f•(p), y2)

)
. (21)

Note that in the case where x1 = y1 and p = r(x1), we have by Id-computation that

θ(r(x1), y2) = r(y2). We now use (21) to describe the general case. We claim that given p

and q as in (19), the corresponding v as in (20) satisfies

v = θ(p, y2) ◦ q : IdB(fx1)

(
x2, substB(f•(p), y2)

)
.

Now, by discrete Id-types, it suffices to show this up to propositional equality, and by

Id-elimination on Γ.f∗B, this only in the case where x1 = y1, p = r(x1), x2 = y2 and

q = r(x2). Here, by definition of (f.ι)• and Id-computation, we have on the one hand that

v = r(x2), but on the other that θ(r(x1), x2) ◦ r(x2) = r(x2) ◦ r(x2) = r(x2), as required. This

completes the proof of the claim.

We are now ready to show that (17) is a 2-pullback. So suppose we are given maps

h, k : Λ → Γ.f∗B and 2-cells α, β as in (18). To give h is to give judgements x : Λ � h1(x) : Γ

and x : Λ � h2(x) : B(fh1x), and correspondingly for k, whilst to give α and β as in (18)

Two-dimensional models of type theory 707

satisfying fα = πBβ is to give judgements

x : Λ � α(x) : IdΓ(h1x, k1x)

x : Λ � β1(x) : IdΔ(fh1x, fk1x)

x : Λ � β2(x) : IdB(fh1x)(h2x, substB(β1x, k2x))

satisfying

x : Λ � f•(αx) = πB
•(β1x, β2x) : IdΔ(fh1x, fk1x).

By Lemma 3.4.2, we have that πB
•(β1x, β2x) = β1(x), so to give (18) satisfying fα = πBβ,

is equally well to give a pair of judgements

x : Λ � α(x) : IdΓ(h1x, k1x)

x : Λ � β2(x) : IdB(fh1x)(h2x, substB(f•αx, k2x)).

From this we are required to find a unique 2-cell γ : h ⇒ k : Λ → Γ.f∗B satisfying

πf∗B ◦ γ = α and (f.ι) ◦ γ = β, or, equally well, a pair of judgements

x : Λ � γ1(x) : IdΓ(h1x, k1x)

x : Λ � γ2(x) : IdB(fh1x)(h2x, substf∗B(γ1x, k2x))

satisfying (πf∗B)•(γ1x, γ2x) = α(x) and (f.ι)•(γ1x, γ2x) = (f•αx, β2x).

Now, by Lemma 3.4.2, we have (πf∗B)•(γ1x, γ2x) = γ1(x), so we must take γ1 := α. But

from our investigations above, we have

(f.ι)•(γ1x, γ2x) = (f.ι)•(αx, γ2x) =
(
f•(αx), θ(αx, k2x) ◦ γ2(x)

)
,

which tells us that we must have γ2(x) := θ(αx, k2x)
−1 ◦ β2(x). Uniqueness of γ then follows

easily.

The second property of E we will consider has no one-dimensional analogue as it

involves the inherently 2-categorical notion of an isofibration.

Definition 3.4.6. Let K be a 2-category. A morphism p : X → Y in K is said to be a cloven

isofibration if for every invertible 2-cell

W
g

��

f
���

��
��

��
�

α ��

X

p
����

��
��

��

Y

(22)

we are given a choice of 1-cell sα : W → X and 2-cell σα : sα ⇒ g satisfying p ◦ sα = f

and p ◦ σα = α; and these choices are natural in W , in the sense that if we are also given

k : W ′ → W , we have sαk = sα ◦ k and σαk = σα ◦ k. A cloven isofibration is said to be

normal if for any g : W → X, we have sidpg = g and σidpg = idg .

Proposition 3.4.7. Every dependent projection πB : Δ.B → Δ in CS may be equipped with

the structure of a normal isofibration.

R. Garner 708

Proof. Suppose we are given an invertible 2-cell

Γ
g

��

f
���

��
��

��
��

α ��

Δ.B

πB
����

��
��

��
�

Δ

(23)

of CS. We must find a 1-cell sα : Γ → Δ.B and 2-cell σα : sα ⇒ g satisfying πB ◦ sα = f and

πB ◦ σα = α. Now, to give a 2-cell as in (23) is equally well to give judgements

x : Γ � f(x) : Δ x : Γ � g1(x) : Δ

x : Γ � g2(x) : B(g1x) x : Γ � α(x) : Id(fx, g1x).

So we may take sα : Γ → Δ.B to be given by the pair of judgements

x : Γ � f(x) : Δ and x : Γ � (αx)∗(g2x) : B(fx), (24)

and take σα : sα ⇒ g to be given by the pair of judgements

x : Γ � α(x) : Id(fx, g1x)

x : Γ, y : A(x) � r
(
(αx)∗(g2x)

)
: Id

(
(αx)∗(g2x), (αx)∗(g2x)

)
.

(25)

Given further k : Λ → Γ, the equalities sαk = sα ◦ k and σαk = σα ◦ k correspond precisely to

the stability of (24) and (25) under substitution in x. Thus πB is a cloven isofibration, and

it just remains to check normality. But when α is an identity 2-cell, we have f(x) = g1(x)

and α(x) = r(g1(x)); so by the Leibniz computation rule, (24) reduces to g and (25) to idg ,

as required.

We will refer to the isofibration structure described in Proposition 3.4.7 as the canonical

isofibration structure on a dependent projection.

Remark 3.4.8. Proposition 3.4.7 provides a link between the 2-categorical semantics of this

paper and the homotopy-theoretic semantics espoused in Awodey and Warren (2009). The

key idea of that paper is that a suitable environment for modelling intensional type theory

should be a category equipped with a weak factorisation system (L,R) in the sense of

Bousfield (1977), whose right-hand class of maps R is used to model dependent projections.

Now, any finitely complete 2-category carries a weak factorisation system (L,R) where R
is the class of normal isofibrations: it forms one half of what Gambino (2008, Section 4)

calls the ‘dual of the natural model structure on a 2-category’. Thus our two-dimensional

semantics fits naturally into the framework outlined in Awodey and Warren (2009).

This result can also be seen as a special case of a result obtained in Gambino and

Garner (2008). The main result of that paper is that the classifying category of any

intensional type theory may be equipped with a weak factorisation system whose right

class of maps is generated by the dependent projections, and it is shown (Lemma 13) that

the maps in this right class are ‘type-theoretic normal isofibrations’. Our Proposition 3.4.7

can be seen as a two-dimensional collapse of this result.

Using Propositions 3.4.5 and 3.4.7, we may now show the following proposition.

Proposition 3.4.9. The 2-functor p : TS → CS is a globally split 2-fibration.

Two-dimensional models of type theory 709

Proof. We check the four clauses in Definition 3.4.1:

(i) This is immediate, since the underlying ordinary functor of p : TS → CS is the split

fibration p : TS → CS.

(ii) It suffices to consider a chosen cartesian lifting (f, ι) : (Γ, f∗B) → (Δ, B) of TS. Taking

advantage of the 2-fully faithfulness of E : TS → C2
S, we may express the property we

are to verify as follows: for each diagram

Λ.A

πA

��

h1

��

h2

��β�� Δ.B

πB

��

Λ

g1

��

g2

��α�� Γ
f

�� Δ

in CS with πBβ = fαπA, there is a unique factorisation

β = Λ.A

h′
1

��

h′
2

��
β′

�� Γ.f∗B
f.ι

�� Δ.B

with πf∗Bβ
′ = βπA. But this follows without difficulty from the fact that diagram (17)

is a 2-pullback.

(iii) Assuming we are given (Γ, A) and (Δ, B) in TS, we are required to show that the functor

TS

(
(Γ, A), (Δ, B)

)
→ CS(Γ,Δ) is a fibration. Using once more the 2-fully faithfulness

of E, it suffices to show that for each commutative square

Γ.A

πA

��

g.h
�� Δ.B

πB

��

Γ g
�� Δ

in CS and 2-cell α : f ⇒ g, we can find a 1-cell k : Γ.A → Δ.B and a 2-cell β : k ⇒ g.h

satisfying πBk = fπA and πBβ = απA. This follows using the canonical isofibration

structure of πB .

(iv) We must show that each (–) · f : TS(y, z) → TS(x, z) preserves cartesian liftings of

2-cells. As every 2-cell of TS is invertible, and hence cartesian, this is automatic.

We conclude this section by considering the pullback stability of the canonical isofibra-

tion structures of Proposition 3.4.7. To this end, consider a square like (17). Both vertical

arrows πB and πf∗B have their canonical isofibration structures. But we also have a second

isofibration structure on πf∗B , which is obtained by pulling back the canonical structure of

πB along f. A careful examination of the proof of Proposition 3.4.7 reveals that these two

structures on πf∗B need not coincide. In other words, the canonical isofibration structures

of Proposition 3.4.7 are not necessarily stable by pullbacks. At first glance, this may

R. Garner 710

appear surprising, since stability by pullbacks tends to be an automatic consequence of

stability under substitution. However, a more careful analysis shows that in this case,

stability under substitution corresponds to a more restricted form of pullback stability,

which we now describe.

Suppose we are given Δ ∈ CS, A ∈ TS(Δ) and B ∈ TS(Δ.A). We can view the dependent

projection πB : Δ.A.B → Δ.A not only as a map of CS, but also as a map

Δ.A.B

πAπB
���

��
��

��
πB �� Δ.A

πA
����

��
��

�

Δ

(26)

of CS/Δ. It is easy to see that the forgetful 2-functor CS/Δ → CS creates normal

isofibrations, so (26) is canonically a normal isofibration in CS/Δ. Suppose we are now

given a morphism f : Γ → Δ of CS. By pulling back (26) along f, we obtain the map

Γ.f∗A.f∗B

πf∗Aπf∗B
����

��
��

��
�

πf∗B
�� Γ.f∗A

πf∗A
��		

		
		

		
	

Γ

(27)

of CS/Γ (note that we are abusing notation slightly: we should really write the left-hand

vertex as Γ.f∗A.(f.ι)∗B), and this now has two isofibration structures on it: the one

induced by the canonical isofibration structure on πf∗B and the one obtained by pulling

back the isofibration structure of (26). The following Proposition now tells us that these

two isofibration structures on (27) do coincide.

Proposition 3.4.10. Suppose we are given Δ ∈ CS, A ∈ TS(Δ) and B ∈ TS(Δ.A) and

f : Γ → Δ as above. With reference to the 2-pullback square

Γ.f∗A.f∗B

πf∗B

��

f.ι.ι
�� Δ.A.B

πB

��
Γ.f∗A

f.ι
�� Δ.A

(28)

the canonical isofibration structure on πf∗B qua map of CS/Γ agrees with the pullback

along f of the canonical isofibration structure on πB qua map of CS/Δ.

Proof. As in the proof of Proposition 3.4.5, we will use subst notation in applications

of the Leibniz rule in order to make clear the dependent family in which the substitution

is taking place. Now, to prove the Proposition, it suffices to show the following. Suppose

we are given an invertible 2-cell

Λ
k ��

h
��

α ��

Γ.f∗A.f∗B

πf∗B
����

��
��

��
�

Γ.f∗A

(29)

Two-dimensional models of type theory 711

of CS/Γ (that is, one satisfying πf∗Aα = idπf∗Ah). Writing α′ := f.ι ◦ α and k′ := f.ι.ι ◦ k, we

must show that

sα′ = f.ι.ι ◦ sα : Λ → Δ.A.B and σα′ = f.ι.ι ◦ σα : sα′ ⇒ k′, (30)

where we obtain (sα, σα) from the canonical isofibration structure on πf∗B and (sα′ , σα′)

from that on πB . So suppose we are given a 2-cell as in (29), with h, k and α given as

follows:

x : Λ � h(x) := (h1x, h2x) : Γ.f∗A

x : Λ � k(x) := (h1x, k2x, k3x) : Γ.f∗A.f∗B

x : Λ � α(x) := (rh1x, α2x) : IdΓ.f∗A

(
(h1x, h2x), (h1x, k2x)

)
.

We first compute the pair (sα, σα). The map sα : Λ → Γ.f∗A.f∗B is given by

x : Λ �
(
h1x, h2x, subst[u,v]B(fu,v)((rh1x, α2x), k3x)

)
: Γ.f∗A.f∗B,

which, by unfolding the inductive description of the Id-elimination rule given in the proof

of Proposition 3.3.1, is equal to

x : Λ �
(
h1x, h2x, subst[v]B(fh1x,v)(α2x, k3x)

)
: Γ.f∗A.f∗B. (31)

The corresponding 2-cell σα : sα ⇒ k is now given by

x : Λ �
(
rh1x, α2x, r(subst[v]B(fh1x,v)(α2x, k3x))

)
: Id(sαx, kx). (32)

Next we compute the pair (sα′ , σα′). By the proof of Proposition 3.4.5, we have

α′(x) := (f.ι)•(rh1x, α2x)

= (f•rh1x, θ(rh1x, k2x) ◦ α2x)

= (rfh1x, r(k2x) ◦ α2x) = (rfh1x, α2x).

Thus the morphism sα′ : Γ → Δ.A.B is given by

x : Λ �
(
fh1x, h2x, subst[u,v]B(u,v)((rfh1x, α2x), k3x)

)
: Δ.A.B,

which, by unfolding the description of Id-elimination, is definitionally equal to

x : Λ �
(
fh1x, h2x, subst[v]B(fh1x,v)(α2x, k3x)

)
: Δ.A.B. (33)

The corresponding 2-cell σα′ : sα′ ⇒ k′ is now given by

x : Λ �
(
rfh1x, α2x, r(subst[v]B(fh1x,v)(α2x, k3x))

)
: Id(sα′x, k′x). (34)

It remains to verify the equalities in (30). The first equality follows immediately from

inspection of (31) and (33). For the second, we will need a calculation. Suppose we

are given (x, y, s) and (x, z, t) : Λ.f∗A.f∗B together with identity proofs p : Id(y, z) and

q : Id(s, subst[v]B(fx,v)(p, t)). We claim that

(f.ι.ι)•(r(x), p, q) = (r(fx), p, q) : IdΔ.A.B

(
(fx, y, s), (fx, z, t)

)
. (35)

R. Garner 712

By discrete identity types, it suffices to prove this up to propositional equality, and by

applying Id-elimination twice, first on p and then on q, it suffices for this to show that,

given (x, y, s) : Γ.f∗A.f∗B, we have

(f.ι.ι)•(rx, ry, rk) ≈ (rfx, ry, rk) : IdΔ.A.B

(
(fx, y, s), (fx, y, s)

)
.

But this follows by the Id-computation rule and the definition of (f.ι.ι)•. Thus we have (35)

as claimed. We now use this to affirm the second equality in (30). Given x : Λ, we

have

(f.ι.ι ◦ σα)(x) = (f.ι.ι)•
(
rh1x, α2x, r(subst[v]B(fh1x,v)(α2x, k3x))

)

=
(
rfh1x, α2x, r(subst[v]B(fh1x,v)(α2x, k3x))

)

= σf.ι ◦ α(x)

= σα′ (x).

Remark 3.4.11. Although it may seem somewhat technical, the result we have just proved

is absolutely crucial for obtaining a sound notion of two-dimensional model. Without

it, our models would not necessarily be sound for the rules expressing stability of the

elimination rules under change of ambient context. It is not just the identity type rules

that would be afflicted either: we will see in Sections 5.2–5.5 below that Proposition 3.4.10

is used in verifying the stability under substitution of all the type-theoretic elimination

rules. One of the key issues in giving higher-dimensional and homotopy-theoretic se-

mantics for intensional type theory will be finding an appropriate counterpart of this

Proposition.

3.5. Comprehension 2-categories

We may abstract away from the syntactic investigations of the preceding sections as

follows. We define a full split comprehension 2-category � to be given by the following

data: a locally groupoidal 2-category C with a specified 2-terminal object; a globally split

2-fibration p : T → C, with T also locally groupoidal; and a 2-fully faithful 2-functor

E : T → C2 rendering the triangle

T

p
���

��
��

��
�

E ��
C2

cod
��

C.

commutative. Moreover, the 2-functor E should:

— send cartesian morphisms in T to 2-pullback squares in C;

— send each object of T to a normal isofibration in C; and

— satisfy the stability conditions of Proposition 3.4.10.

The preceding development shows that we may associate a full split comprehension

2-category to each dependent type theory S satisfying the rules for identity types in

Two-dimensional models of type theory 713

Table 1 and the discreteness rules of Table 2. We denote this comprehension 2-category

by �(S), and call it the classifying comprehension 2-category of S.

4. Categorical models for ML2: logical aspects

4.1. Identity types

In this section, we will examine the structure induced on the syntactic comprehension

2-category of the previous section by the logical rules of two-dimensional type theory.

Once again we consider a fixed dependently typed calculus S, which we now suppose to

admit all of the rules in Tables 1, 2 and 3. We begin by investigating the identity types.

Given how deeply intertwined these have been with the construction of the syntactic

comprehension 2-category, it is perhaps unsurprising that their characterisation is rather

intrinsic. It will be given in terms of the 2-categorical notion of arrow object. Given

a 2-category K, an arrow object for X ∈ K is given by an object Y ∈ K such that

1-cells into Y correspond naturally to 2-cells into X. That is, we have an isomorphism of

categories

K(A, Y) ∼= K(A,X)2 (36)

2-natural in A. In particular, under the bijection (36), the identity map idY : Y → Y

corresponds to a 2-cell

Y

s

��

t

		κ�� X

and 2-naturality of (36) says that any other such 2-cell into X factors uniquely

through κ. In the language of enriched category theory (Kelly 1982), an arrow

object is a certain kind of (weighted) limit, namely a power (or sometimes a cotensor)

with the category 2. For a full treatment of 2-categorical limits, see Kelly (1989).

We now introduce a small abuse of notation. Given Γ ∈ CS and A ∈ TS(Γ), we write

Γ.A.A for the context
(
x : Γ, y : A(x), z : A(x)

)
, rather than the more correct Γ.A.π∗

AA,

and write π1 and π2 for the context morphisms Γ.A.A → Γ.A projecting onto the first or

second copy of A.

Proposition 4.1.1. For every context Γ and type Γ � A type in S, the context Γ.A.A.IdA,

together with the projections π1πIdA , π2πIdA : Γ.A.A.IdA → Γ.A, can be made into an arrow

object for Γ.A in the slice 2-category CS/Γ.

Proof. We write s := π1πIdA and t := π2πIdA . We are to find a 2-cell

Γ.A.A.IdA

π

��
��

��
��

��
�

s

��

t

��κ�� Γ.A

πA

����
��

��
��

��

Γ

(37)

R. Garner 714

in CS that is over Γ in the sense that πAs = πAt = π and πAκ = idπ , and such that any

other 2-cell

Λ

h
���

��
��

��

f

��

g

��α�� Γ.A

πA
����

��
��

�

Γ

(38)

over Γ factors through κ via a unique morphism ᾱ : Λ → Γ.A.A.IdA. The universal property

of κ also has a two-dimensional aspect. Suppose we are given a commutative diagram

f
β ��

α

��

f′

α′

��
g

γ
�� g′

(39)

of 1- and 2-cells Λ → Γ.A over Γ. Then we should be able to find a unique 2-cell

δ : ᾱ ⇒ ᾱ′ : Λ → Γ.A.A.IdA with β = sδ and γ = tδ. We begin by defining κ as in (37). For

this we are required to give a judgement

x : Γ, y, z : A(x), p : Id(y, z) � κ(x, y, z, p) : Id(y, z),

which we do by taking κ(x, y, z, p) := p. We now verify the universal property of κ.

Suppose we are given an α as in (38). Then the commutativity conditions πAf = πAg = h

mean that f and g correspond to judgements

x : Λ � f(x) : A(hx) and x : Λ � g(x) : A(hx),

and thus, by Lemma 3.4.2, the condition πAα = idh allows us to view α as a judgement

x : Λ � α(x) : Id(fx, gx). We now define the morphism ᾱ : Λ → Γ.A.A.IdA to be given by

the term x : Λ � (hx, fx, gx, αx) : Γ.A.A.IdA. It is immediate from the definition of κ that

κᾱ = α, and, moreover, that if κm = α for some m : Λ → Γ.A.A.IdA, we have ᾱ = m. We

still need to verify the two-dimensional universal property of κ. So suppose we are given

1- and 2-cells as in (39). We are required to define a 2-cell δ : ᾱ ⇒ ᾱ′ : Λ → Γ.A.A.IdA
satisfying sδ = β and tδ = γ. In order to satisfy these last two requirements, δ, if it exists,

must be given by a judgement

x : Λ � (rhx, βx, γx, δ4x) : IdΓ.A.A.IdA

(
(hx, fx, gx, αx), (hx, f′x, g′x, α′x)

)

for some x : Λ � δ4(x) : IdId(fx,gx)

(
αx, (βx, γx)∗(α′x)

)
. By discrete identity types, this is

only possible if in fact α(x) = (βx, γx)∗(α′x), whereupon we can take δ4(x) = r(αx). We

claim that in fact (βx, γx)∗(α′x) = (γx)−1 ◦ (α′x ◦ βx), so we will be done if we can show

that α(x) = (γx)−1 ◦ (α′x ◦ βx), and this follows from the equation γα = α′β using the

groupoid laws for IdA. Thus it remains only to prove the claim, which will follow from

the more general result that

x : Γ, y, z, y′, z′ : A(x), p : Id(y, y′), q : Id(z, z′), s : Id(y′, z′)

� (p, q)∗(s) = q−1 ◦ (s ◦ p) : Id(y, z).

Two-dimensional models of type theory 715

By discrete identity types, it suffices to prove this up to propositional equality, and by

Id-elimination on p and q, it suffices to consider the case where y = y′, z = z′, p = r(y)

and q = r(z), where we have that (r(y), r(z))∗(s) = s = r(z)−1 ◦ (s ◦ r(y)), as required.

Proposition 4.1.2 (Stability for identity types). Let Γ, Δ be contexts in S, let f : Γ → Δ be

a context morphism, and let x : Δ � B(x) type. Then the comparison morphism

Γ.f∗B.f∗B.(f.ι.ι)∗(IdB) → Γ.f∗B.f∗B.Idf∗B

induced by the universal property of Idf∗B is an identity.

Proof. The claim follows immediately from the stability of identity types under sub-

stitution.

4.2. Digression on 2-categorical adjoints

Our characterisation of the remaining type constructors of ML2 will be given in terms

of weak 2-categorical adjoints. We therefore break off at this point in order to give

a brief summary of the 2-categorical notions necessary for this characterisation. Let K

be a 2-category. By a retract equivalence in K, we mean a pair of objects x, y ∈ K, a

pair of morphisms i : x → y and p : y → x satisfying pi = idx, and an invertible 2-cell

θ : idy ⇒ ip satisfying θi = idi and pθ = idp. In these circumstances, we may call i an

injective equivalence – with the understanding that the extra data (p, θ) is provided as part

of this assertion – or call p a surjective equivalence (with the same understanding). Given

now a 2-functor U : K → L and an object x ∈ L, we define a retract bireflection of x

along U to be an object Fx ∈ K and morphism ηx : x → UFx such that for each y ∈ K,

the functor

K(Fx, y)
UFx,y−−→ L(UFx,Uy)

(–) ◦ ηx−−−→ L(x,Uy)

is a surjective equivalence of categories. By a left retract biadjoint F for U, we mean a

choice for every x ∈ L of a retract bireflection Fx of x along U. Note that if F is a

left retract biadjoint for U, then the assignation x �→ Fx will not in general extend to

a 2-functor F : L → K; rather, it gives a pseudo-functor, which preserves identities and

composition only up to invertible 2-cells. Similarly, the maps ηx : x → UFx do not provide

components of a 2-natural transformation η : idL ⇒ UF but merely of a pseudo-natural

transformation, whose naturality squares commute only up to invertible 2-cells. We could

give a definition of left retract biadjoint in terms of a pseudo-functor K → L and unit

and counit transformations η and ε satisfying weakened versions of the triangle laws

(see Street (1974, Section 1) for the details), but the above description is both simpler

and, as we will see, closer to the type theory. In fact, the above definitions admit a

further simplification, using the observation that the surjective equivalences of categories

are precisely those functors F : C → D that are fully faithful and whose object function

obF : ob C → ob D is a split epimorphism.

Proposition 4.2.1. To give a retract bireflection of x ∈ L along U : K → L is to give an

object Fx ∈ K and map ηx : x → UFx, together with, for each f : x → Uy in L, a choice

of map f̄ : Fx → y in K satisfying Uf̄ ◦ ηx = f, all subject to the requirement that, for

R. Garner 716

every h, k : Fx → y in K and every α : Uh ◦ ηx ⇒ Uk ◦ ηx in L, there is a unique ᾱ : h ⇒ k

with Uᾱ ◦ ηx = α.

Given a 2-functor U : K → L and x ∈ L as before, we have the dual notion of retract

bicoreflection of x along U: this being given by an object Gx ∈ K, together with a

morphism εx : UGx → x such that for each y ∈ K, the functor

K(y, Gx)
Uy,Gx−−−→ L(Uy,UGx)

εx ◦ (–)
−−−→ L(Uy, x)

is a surjective (not injective!) equivalence of categories. Now a right retract biadjoint for

U is given by a choice for every x ∈ L of a retract bicoreflection along U. As before, we

have an elementary characterisation of retract bicoreflections.

Proposition 4.2.2. To give a retract bicoreflection of x ∈ L along U : K → L is to give an

object Gx ∈ K and map εx : UGx → x, together with, for each f : Uy → x in L, a choice

of map f̄ : y → Gx in K satisfying εx ◦Uf̄ = f, all subject to the requirement that, for

every h, k : y → Gx in K and every α : εx ◦Uh ⇒ εx ◦Uk in L, there is a unique ᾱ : h ⇒ k

with εx ◦Uᾱ = α.

4.3. Unit types

Our first application of the 2-categorical adjoint notions developed above will be to the

unit types of S – which we recall is an arbitrary dependent type theory admitting all the

rules listed in Tables 1, 2 and 3. In the following result, we use E(Γ): TS(Γ) → CS/Γ to

denote the 2-functor obtained by restricting E : TS → CS to the fibre over Γ ∈ CS.

Proposition 4.3.1. For each context Γ of S, the object 1Γ ∈ TS(Γ) given by Γ � 1 type

provides a retract bireflection of idΓ : Γ → Γ along the 2-functor E(Γ): TS(Γ) → CS/Γ.

Proof. The unit of the bireflection ηΓ : Γ → Γ.1Γ (over Γ) is given by the judgement

x : Γ � � : 1. Now, given a morphism f : Γ → Γ.A over Γ, which is equally well a

judgement x : Γ � f(x) : A(x), we obtain a factorisation f̄ : Γ.1Γ → Γ.A over Γ by

1-elimination, taking f̄ to be the term x : Γ, z : 1 � Uf(x)(z) : A(x). That this satisies

f̄ηΓ = f is now precisely the computation rule x : Γ � Uf(x)(�) = f(x). We still need to

check that for maps h, k : Γ.1 → Γ.A over Γ, every 2-cell α : hηΓ ⇒ kηΓ over Γ is of the

form ᾱηΓ for a unique ᾱ : h ⇒ k. Now, to give h, k and α is to give judgements

x : Γ, z : 1 � h(x, z) : A(x)

x : Γ, z : 1 � k(x, z) : A(x)

x : Γ � α(x) : Id
(
h(x, �), k(x, �)

)
,

from which we must determine x : Γ, z : 1 � ᾱ(x, z) : Id
(
h(x, z), k(x, z)

)
. We do this

by 1-elimination, taking ᾱ(x, z) := Uα(x)(z). The equality ᾱηΓ = α now follows from the

1-computation rule. We still need to check uniqueness of ᾱ. So suppose we are given

x : Γ, z : 1 � β(x, z) : Id
(
h(x, z), k(x, z)

)
satisfying β(x, �) = α(x). We must show that

β(x, z) = ᾱ(x, z). By discrete identity types, it suffices to show this up to propositional

equality, and by 1-elimination, this only in the case where z = �, for which we have that

β(x, �) = α(x) = ᾱ(x, �), as required.

Two-dimensional models of type theory 717

Proposition 4.3.2 (Stability for unit types). For each k : Γ → Δ in C, we have k∗(1Δ) = 1Γ

and ηΓ = k∗(ηΔ) : Γ → Γ.1Γ, and for each f : Δ → Δ.B over Δ, we have k∗(f̄) =

k∗(f) : Γ.1Γ → Γ.k∗B.

Proof. The claim follows from the stability of unit types under substitution.

Remark 4.3.3. Note carefully what the previous result does not say: it does not say that

for a context morphism k : Γ → Δ, the comparison map 1Γ → k∗1Δ of TS(Γ) is an identity.

Indeed, this map will in general only be isomorphic to the identity, since it corresponds to

the judgement x : Γ, z : 1 � U�(z) : 1.

4.4. Dependent sum types

We next consider the dependent sum types.

Proposition 4.4.1. For each context Γ and type Γ � A type of S, the 2-functor ΔA :=

TS(πA) : TS(Γ) → TS(Γ.A) has a left retract biadjoint ΣA.

Proof. We must provide, for each B ∈ TS(Γ.A), a retract bireflection ΣA(B) of B

along ΔA. So we take ΣA(B) ∈ TS(Γ) to be given by the judgement Γ � Σ(A,B) type

(where for readability we suppress explicit mention of dependencies on the variables

in Γ), and the unit map η : B → ΔAΣA(B) of TS(Γ.A) to be given by the judgement

Γ, y : A, z : B(y) � 〈y, z〉 : Σ(A,B). Now given a type C ∈ TS(Γ) and a map f : B → ΔAC

of TS(Γ.A), we must provide a morphism f̄ : ΣA(B) → C of TS(Γ) satisfying ΔA(f̄) ◦ η = f.

But to give f is to give a judgement Γ, y : A, z : B(y) � f(y, z) : C , whilst to give

f̄ is to give a judgement Γ, s : Σ(A,B) � f̄(s) : C . Thus, using Σ-elimination, we may

define f̄(s) := Ef(s). The equality ΔA(f̄) ◦ η = f follows by the Σ-computation rule. We

still need to show, given two morphisms h, k : ΣA(B) → D in TS(Γ), that each 2-cell

α : ΔA(h) ◦ η ⇒ ΔA(k) ◦ η is of the form ΔA(ᾱ) ◦ η for a unique ᾱ : h ⇒ k, but this follows

by an argument analogous to that given in the proof of Proposition 4.3.1.

Whilst Proposition 4.4.1 is very natural from a categorical perspective, it fails to capture

the full strength of the elimination rule for dependent sums (even though it requires the

full strength of that elimination rule in its proof). In order to do this, we need the

following result.

Proposition 4.4.2. Suppose we are given a context Γ in S and types Γ � A type and

Γ, x : A � B(x) type, and consider the morphism

Γ.A.B
i ��

πB

��

Γ.ΣA(B)

πΣA(B)

��

Γ.A πA
�� Γ

(40)

in C2
S corresponding to the unit morphism η : B → ΔAΣA(B) in TS(Γ.A). The map i

appearing in this diagram is an injective equivalence in CS/Γ.

R. Garner 718

Proof. We construct a pseudoinverse retraction for i over Γ as follows. The map

p : Γ.ΣA(B) → Γ.A.B over Γ is given by the projections out of the sum

Γ, s : Σ(A,B) � s.1 : A

Γ, s : Σ(A,B) � s.2 : B(s.1)

(where again, we suppress explicit mention of the dependency on Γ). We define these by

Σ-elimination on s, the first being given by s.1 := E[y,z]y(s) and the second by s.2 :=

E[y,z]z(s). The equality pi = idΓ.A.B follows from the Σ-computation rule. We must now

give a 2-cell θ : idΓ.ΣA(B) ⇒ ip, which is equally well a judgement

Γ, s : Σ(A,B) � θ(s) : Id(s, 〈s.1, s.2〉).

By Σ-elimination on s, it suffices to define θ when s = 〈y, z〉, so we have 〈s.1, s.2〉 =

〈〈y, z〉.1, 〈y, z〉.2〉 = 〈y, z〉, and we can take θ(〈y, z〉) = r(〈y, z〉). The equality θi = idi now

follows by the Σ-computation rule, and it only remains to verify that pθ = idp. Now, pθ

corresponds to the judgement

Γ, s : Σ(A,B) � p•(θ(s)) : IdΓ.A.B

(
(s.1, s.2), (s.1, s.2)

)
,

and we must show that in fact p•(θ(s)) = r(p(s)). By discrete identity types, it suffices to

show this up to propositional equality, and, by Σ-elimination, this only when s = 〈y, z〉.
But we calculate that p•(θ(〈y, z〉)) = p•(r(〈y, z〉)) = r(p(〈y, z〉)), as required.

Proposition 4.4.3 (Stability for dependent sums). Given k : Γ → Λ in CS, A ∈ T(Λ) and

B ∈ T(Λ.A), we have that k∗(ΣA(B)) = Σk∗A(k
∗B) and k∗(ηA,B) = ηk∗A,k∗B , and for each

f : B → ΔAC in TS(Λ.A), that k∗f̄ = k∗f : Σk∗A(k
∗B) → k∗C . Moreover, reindexing along

k sends the injective equivalence structure on iA,B to the injective equivalence structure on

ik∗A,k∗B .

Proof. The claim follows from the stability of dependent sum types under substitution.

4.5. Dependent product types

Finally, we turn to the categorical characterisation of dependent product types in S.

Proposition 4.5.1. For each context Γ and type Γ � A type of S, the weakening 2-functor

ΔA : TS(Γ) → TS(Γ.A) has a right retract biadjoint ΠA.

Proof. Once again, we suppress any explicit mention of dependencies on the vari-

ables in Γ. We must provide, for each B ∈ TS(Γ.A), a retract bicoreflection ΠA(B)

of B along ΔA. For this we take ΠA(B) ∈ TS(Γ) to be given by the judgement

Γ � Π(A,B) type, and the counit map ε : ΔAΠA(B) → B of TS(Γ.A) to be given by

Γ, m : Π(A,B), y : A � m · y : B(y). Now, given a type C ∈ TS(Γ) and a map

f : ΔAC → B of TS(Γ.A), we are required to provide a morphism f̄ : C → ΠA(B) of TS(Γ)

satisfying ε ◦ ΔA(f̄) = f. So if f is the judgement Γ, y : C, z : A � f(y, z) : B(y), we take

f̄ to be the judgement Γ, y : C � λz. f(y, z) : Π(A,B). The equality ε ◦ ΔA(f̄) = f follows

by the β-rule.

Two-dimensional models of type theory 719

It remains to show, given two morphisms h, k : D → ΠA(B) in TS(Γ), that each 2-cell

α : ε ◦ ΔA(h) ⇒ ε ◦ ΔA(k) can be written in the form ε ◦ ΔA(ᾱ) for a unique ᾱ : h ⇒ k. It is

here that we will make crucial use of function extensionality. So, to give h, k and α is to give

judgements Γ, C � h : Π(A,B); Γ, C � k : Π(A,B), and Γ, C, z : A � α(z) : Id(h · z, k · z)
(where we now suppress explicit mention of the dependency on C), so we may define

the 2-cell ᾱ : h ⇒ k by applying the rule Π-ext of Table 3 to obtain the judgement

Γ, C � ext(h, k, α) : Id(h, k). We must now check that ε ◦ ΔA(ᾱ) = α. Recall from Section 2.3

the operation

m, n : Π(A,B) p : Id(m, n) a : A

p ∗ a : Id(m · a, n · a)
given by p ∗ a := J[x]r(x·a)(m, n, p). It is easy to see that ∗ is just the lifting of ε to identity

types, so ε ◦ ΔA(ᾱ) corresponds to the judgement

Γ, C, z : A � ext(h, k, α) ∗ z : Id(h · z, k · z).
But by the rule Π-ext-app of Table 3, we have ext(h, k, α) ∗ z = α(z), as required. We

still need to check uniqueness of ᾱ. So, supposing given Γ, C � β : Id(h, k) satisfying

β ∗ z = α(z), we must show that β = ᾱ. Now, because β ∗ z = α(z) = ᾱ ∗ z, we have

Γ, C, z : A � ext
(
h, k, [z] β ∗ z

)
= ext

(
h, k, [z] ᾱ ∗ z

)
: Id(h, k).

Thus we will be done if we can show that

Γ, C, m, n : Π(A,B), k : Id(m, n) � ext(m, n, [z] k ∗ z) = k : Id(m, n)

holds. By discrete identity types, it suffices to do this up to propositional equality, and by

Id-elimination, this only in the case where m = n and k = r(m). So we will be done if we

can show that

Γ, C, m : Π(A,B) � ext(m,m, [z] r(m · z)) ≈ r(m) : Id(m,m)

holds. But this follows immediately from the rule Π-ext-comp.

Proposition 4.5.2 (Stability for dependent products). Given k : Γ → Λ in CS, A ∈ T(Λ)

and B ∈ T(Λ.A), we have k∗(ΠA(B)) = Πk∗A(k
∗B) and k∗(εA,B) = εk∗A,k∗B; and for each

f : ΔAC → B in TS(Λ.A), we have k∗f̄ = k∗f : k∗C → Πk∗A(k
∗B).

Proof. The claim follows from the stability of dependent product types under sub-

stitution.

4.6. Models of two-dimensional type theory

We abstract away from the preceding results as follows.

Definition 4.6.1. Let � = (p : T → C, E : C → T2) be a full split comprehension 2-category

in the sense of Section 3.5. Then:

— We say that � has equality if, for every Γ ∈ C and A ∈ T(Γ), there is an object

IdA ∈ T(Γ.A.A) such that Γ.A.A.IdA, together with its two projections onto Γ.A,

R. Garner 720

underlies an arrow object for Γ.A in C/Γ, and these arrow objects satisfy the stability

properties of Proposition 4.1.2.

— We say that � has units if, for every Γ ∈ C, the map idΓ : Γ → Γ admits a retract

bireflection 1Γ along E(Γ): T(Γ) → CS/Γ, and these bireflections satisfy the stability

properties of Proposition 4.3.2.

— We say that � has sums if, for every Γ ∈ C and A ∈ T(Γ), the 2-functor ΔA :=

T(πA) : T(Γ) → T(Γ.A) admits a retract left biadjoint ΣA, and these biadjoints satisfy

the conditions of Proposition 4.4.2 and the stability properties of Proposition 4.4.3.

— We say that � has products if, for every Γ ∈ C and A ∈ T(Γ), the 2-functor ΔA : T(Γ) →
T(Γ.A) admits a retract right biadjoint ΠA, and these biadjoints satisfy the stability

properties of Proposition 4.5.2.

— We say that � is a model of two-dimensional type theory if it has equality, units, sums

and products.

Thus, the results of this section can be summarised by saying that, for any dependent type

theory S satisfying the rules of Tables 1, 2 and 3, the classifying comprehension 2-category

�(S) is a model of two-dimensional type theory. With an eye to future applications, we

conclude this section by gathering together in one place a list of the structures required

for a two-dimensional model of type theory.

Definition 4.6.2. A two-dimensional model of type theory � is given by:

— A locally groupoidal 2-category C of contexts, with a specified 2-terminal object.

— A locally groupoidal 2-category T of types-in-context.

— A globally split 2-fibration p : T → C in the sense of Definition 3.4.1. Spelling this out,

this means that p is a 2-functor such that:

(i) The underlying ordinary functor of p is a split fibration of categories.

(ii) For every cartesian 1-cell f : y → z of C and every 2-cell α : g ⇒ h : x → z of T,

any factorisation of p(α) through p(f) may be lifted uniquely to a factorisation of

α through f.

(iii) For each x, y ∈ T, the induced functor px,y : T(x, y) → C(px, py) is a fibration of

groupoids.

(Note that condition (iv) of Definition 3.4.1 is automatically satisfied since every fibre

category is a groupoid).

— A comprehension 2-functor E : T → C2, equipped with

– For each object A ∈ T, a normal isofibration structure on E(A) in the sense of

Definition 3.4.6.

and satisfying the following properties:

(i) cod ◦E = p.

(ii) E is 2-fully faithful (that is, an isomorphism on hom-groupoids).

(iii) E sends cartesian morphisms of T to 2-pullback squares in C.

(iv) The normal isofibration structures picked out by E have the stability properties of

Proposition 3.4.10.

Two-dimensional models of type theory 721

In describing the remaining, logical, structure, we make free use of the conventions of

Notation 3.1.1:

— For every Γ ∈ C and A ∈ T(Γ), there is given an object IdA ∈ T(Γ.A.A) and a 2-cell

κ : π1 ⇒ π2 : Γ.A.A.IdA → Γ.A over Γ that together provide an arrow object (in the

sense of Section 4.1) for Γ.A in C/Γ.

— For every Γ ∈ C, there is given a retract bireflection (in the sense of Proposition 4.2.1)

1A of the object idΓ : Γ → Γ along E(Γ): T(Γ) → CS/Γ.

— For every Γ ∈ C and A ∈ T(Γ), there are given both left and right retract biadjoints

(in the sense of Section 4.2) ΣA and ΠA for T(πA) : T(Γ) → T(Γ.A).

— For every Γ ∈ C, A ∈ T(Γ) and B ∈ T(Γ.A), there is given a choice of injective

equivalence structure on the canonical morphism i : Γ.A.B → Γ.ΣAB defined as in (40).

— The above structures satisfy the stability properties listed in Propositions 4.1.2, 4.3.2,

4.4.3 and 4.5.2.

5. The internal language of a two-dimensional model

5.1. 2-categorical lifting properties

In this section we prove a converse to the results of the previous two sections. Given

a model � of two-dimensional type theory, we will construct from it a dependent type

theory S(�) admitting the rules of Tables 1, 2 and 3. We call this type theory the internal

language of �. The key to doing this will be to give semantic analogues in � of each of the

logical rules of ML2. In giving analogues of the elimination rules, we will make use of the

2-categorical lifting property described in Proposition 5.1.1 below. This is again very much

in the spirit of Awodey and Warren (2009), since this is fundamentally a result about

the weak factorisation system (injective equivalences, normal isofibrations) described in

Remark 3.4.8, or, rather, about an algebraic presentation of this weak factorisation system

in the style of Grandis and Tholen (2006).

Proposition 5.1.1. Suppose we are given a 2-category K and a square

A
f

��

i

��

C

p

��

B g
�� D

(41)

where i carries the structure of an injective equivalence (cf. Section 4.2) and p that of a

normal isofibration (cf. Definition 3.4.6). From this data we can determine a canonical

diagonal filler j : B → C satisfying pj = g and ji = f.

Proof. The injective equivalence structure on i is given by a morphism k : B → A

satisfying ki = idA and an invertible 2-cell θ : idB ⇒ ik satisfying θi = idi and kθ = idk .

R. Garner 722

Thus we have an invertible 2-cell

B
fk

��

g
���

��
��

��
gθ ��

C

p
����

��
��

�

D

and thus, from the isofibration structure on p, we obtain a map j := sgθ : B → C satisfying

pj = g. It remains to show that ji = f. By the definition of isofibration, we have

ji = sgθ ◦ i = sgθi, and since sgθi = sg(idi) = sidgi = sidpf , we deduce by normality that

ji = sidpf = f, as required.

We now show that the liftings of the previous Proposition are stable under pullback in a

suitable sense. Note that in order for this to make sense, it is crucial that Proposition 5.1.1

gives us a choice of filler for each diagram like (41).

Proposition 5.1.2. Suppose we are given a morphism h : X → Y in a 2-category K together

with a diagram like (41) in the slice K/Y . Suppose we are able to form the 2-pullback of

this diagram along h yielding a diagram

h∗A
h∗f

��

h∗i

��

h∗C

h∗p

��

h∗B
h∗g

�� h∗D

(42)

in K/X. Then the pullback of the canonical filler for (41) along h is equal to the canonical

filler for (42), where the injective equivalence structure on h∗i and the isofibration structure

on h∗p are those induced by pullback.

Proof. We will first make clear what the induced structures on h∗i and h∗p look like. The

injective equivalence data for h∗i is simply given by applying h∗ to the corresponding data

for i. The normal isofibration structure on h∗p is given as follows, writing h! : K/X → K/Y

for the 2-functor given by postcomposition with h. For any V ∈ K/Y whose 2-pullback

h∗V along h exists, we have 2-natural bijections of categories

K/Y (h!U,V) ∼= K/X(U, h∗V). (43)

In particular, we have bijections between diagrams of the following two forms:

W
g

��

f
��

��
��

��
�

α ��

h∗C

h∗p
����

��
��

�

h∗D

↔
h!W

ḡ
��

f̄
���

��
��

��
ᾱ ��

C

p
����

��
��

�

D

(44)

So, given an α as on the left of (44), we obtain a lifting for it by:

(i) transposing to obtain a 2-cell ᾱ as on the right of (44);

(ii) applying the isofibration structure of p to obtain sᾱ : h!W → C and σᾱ : sᾱ ⇒ ḡ;

(iii) transposing back using (43) to obtain sα : W → h∗C and σα : sα ⇒ g.

Two-dimensional models of type theory 723

Now consider the case where α in (44) is itself of the form h∗β for some β : u ⇒ pv : W → D

in K/Y . When this is the case, the corresponding ᾱ is, by naturality, equal to β ◦ εW ,

where εW : h!h
∗W → W is the transpose of idh∗W under the bijection (43). It follows from

the definition of isofibration that sᾱ = sβ ◦ εW = sβ ◦ εW , and, similarly, σᾱ = σβ ◦ εW , so,

transposing under (43) and using naturality, we have sh∗β = h∗(sβ) and σh∗β = h∗(σβ). Now,

according to Proposition 5.1.1, the canonical filler for (42) is given by s(h∗g)(h∗θ) = sh∗(gθ),

and, by the above argument, this is equal to h∗(sgθ), which is precisely the pullback along

h of the canonical filler for (41), as required.

5.2. Identity types

For the rest of the section we fix a model of two-dimensional type theory �. We are going

to give semantic analogues of each of the logical constructors of ML2 in �. We start with

the identity types.

5.2.1. Formation rule. Given Γ ∈ C and A ∈ T(Γ), we define the semantic identity type on

A to be the object IdA ∈ T(Γ.A.A) whose existence is assured by Definition 4.6.1.

5.2.2. Introduction rule. We recall that the object Γ.A.A.IdA ∈ C, together with the maps

s := π1πIdA and t := π2πIdA : Γ.A.A.IdA → Γ.A, is an arrow object for Γ.A in C/Γ. As in

Proposition 4.1.1, we write κ : s ⇒ t for the corresponding universal 2-cell. Applying

universality of κ to the 2-cell

Γ.A

πA
���

��
��

��

id
��

id

��id�� Γ.A

πA
����

��
��

�

Γ

in C/Γ, we obtain a morphism rA : Γ.A → Γ.A.A.IdA that factorises the diagonal: we have

πIdArA = δA : Γ.A → Γ.A.A. We call this rA the semantic introduction rule for IdA.

5.2.3. Elimination and computation rules. With reference to Table 1, we require semantic

analogues of the premisses C and d of the rule Id-elim. These are given by an object

C ∈ T(Γ.A.A.IdA) and a map d : Γ.A → Γ.A.A.IdA.C of C making the following diagram

commute:

Γ.A
d ��

rA

��

Γ.A.A.IdA.C

πC

��

Γ.A.A.IdA
id

�� Γ.A.A.IdA

(45)

To give a semantic analogue of the conclusion Jd satisfying the analogue of the com-

putation rule amounts to giving a filler Jd : Γ.A.A.IdA → Γ.A.A.IdA.C making both sides

of (45) commute. Now, by Proposition 3.4.7, πC is a normal isofibration in C/Γ, so if we

can show that rA is an injective equivalence in C/Γ, we can obtain the required filler Jd by

an application of Proposition 5.1.1. To show that rA is an injective equivalence in C/Γ, we

R. Garner 724

must first give a retraction of rA over Γ. We take this to be t : Γ.A.A.IdA → Γ.A (though

we could equally well have chosen s), and we have that trA = idΓ.A as required. Next we

need a 2-cell θ : id ⇒ rAt over Γ satisfying θrA = idrA and tθ = idt. For this we consider

the following diagram of 1- and 2-cells Γ.A.A.IdA → Γ.A:

s
κ ��

κ

��

srAt

idt

��
t

idt

�� trAt

Because trA = srA = idΓ.A, this diagram is commutative, and thus, by the two-dimensional

aspect of the universal property of Γ.A.A.IdA, it is induced by a 2-cell θ : id ⇒ rAt over

Γ satisfying sθ = κ and tθ = idt. It remains to verify that θrA = idrA . By the uniqueness

part of the universal property of Γ.A.A.IdA, it suffices to show that κ ◦ θrA = κ ◦ idrA . But

here we have κθ = κ(rAt) ◦ sθ = idt ◦ κ = κ, so that κ ◦ θrA = κrA = κ ◦ idrA , as required.

5.2.4. Stability rules. We now verify that the semantic identity rules given above are

stable under semantic substitution. So suppose we are given f : Δ → Γ in C together with

A ∈ T(Γ). We must verify three things:

(i) We must show that reindexing Γ.A.A.IdA along f yields Δ.f∗A.f∗A.Idf∗A. This follows

immediately from the stability requirements of Proposition 4.1.2.

(ii) We must show that the semantic introduction rule rf∗A is the reindexing along f of

rA. This follows from the fact that arrow object structure on Idf∗A is the reindexing

of that on IdA along f.

(iii) We must show that applications of the semantic elimination rule are stable under

substitution. So suppose we are given a diagram like (45). If we view this as a diagram

in C/Γ, we can reindex it along f to yield a diagram

Δ.f∗A
f∗d

��

rf∗A

��

Δ.f∗A.f∗A.Idf∗A.Cf

πCf

��

Δ.f∗A.f∗A.Idf∗A
id

�� Δ.f∗A.f∗A.Idf∗A

(46)

in C/Δ. We must show that pulling back the assigned filler for (45) along f yields

the assigned filler for (46). Now, by the stability properties of Proposition 3.4.10, we

know that the isofibration structure on πCf qua map of C/Δ is the one induced by

pulling back along f the isofibration structure of πC qua map of C/Γ. Moreover, by

the stability of the arrow object structure of IdA, the injective equivalence structure

on rf∗A is the one induced by pulling back that of rA along f. The result now follows

by applying Proposition 5.1.2.

5.2.5. Remark. Because Γ.A.A.IdA is an arrow object in C/Γ.A, in what follows we will

pass back and forth without comment between morphisms h : Λ → Γ.A.A.IdA and 2-cells

γ : sh ⇒ th : Λ → Γ.A over Γ.

Two-dimensional models of type theory 725

5.2.6. Discrete identity rules. We now show that the semantic identity rules given above

satisfy the semantic equivalents of the rules in Table 2. So suppose we are given Γ ∈ C

and A ∈ T(Γ) as before. The semantic analogues of the premisses of the rules in Table 2

are a pair of morphisms a, b : Γ → Γ.A of C over Γ, together with a 2-cell

Γ

p

��

q

��α�� Γ.A.A.IdA

satisfying sp = sq = a, sα = ida, tp = tq = b and tα = idb. We must show that under these

circumstances we have p = q and α = idp. So consider the following diagram of 1- and

2-cells Γ → Γ.A:

sp sα ��

κp

��

sq

κq

��
tp

tα
�� tq

It is commutative with both sides equal to κα : sp ⇒ tq, but since sα = ida and tα = idb,

we deduce that κα = κp = κq : a ⇒ b. By the uniqueness part of the universal property of

κ, this entails that p = q : Γ → Γ.A.A.IdA. Moreover, we have κα = κp = κidp, so, again

by the uniqueness part of the universal property of κ, we deduce that α = idp, as required.

5.3. Unit types

5.3.1. Formation rule. Given Γ ∈ C, we define the semantic unit type at Γ to be the object

1Γ ∈ T(Γ), whose existence is assured by Definition 4.6.1.

5.3.2. Introduction rule. Recall that 1Γ is a retract bireflection of idΓ : Γ → Γ along the

2-functor E(Γ): T(Γ) → C/Γ. So, in particular, we have a unit map uΓ : Γ → Γ.1Γ over

Γ, and we call this the semantic introduction rule for 1Γ.

5.3.3. Elimination and computation rules. Suppose we are given C ∈ T(Γ.1Γ) and a map

d : Γ → Γ.1Γ.C of C fitting into a commutative diagram

Γ
d ��

u

��

Γ.1Γ.C

πC

��

Γ.1Γ
id

�� Γ.1Γ

The semantic elimination rule should assign to this data a filler U : Γ.1Γ → Γ.1Γ.C

making both triangles commute. Because πC is an isofibration in C/Γ, all we need to

do is show that uΓ is an injective equivalence in C/Γ, since then we obtain the desired

filler by Proposition 5.1.1. First we must give a retraction for uΓ over Γ. We take this

to be k := π1Γ
: Γ.1Γ → Γ, which satisfies kuΓ = idΓ as required. We now give a 2-cell

θ : idΓ.1Γ
⇒ uΓk satisfying θuΓ = iduΓ

and kθ = idk . By the two-dimensional aspect of the

universal property of 1Γ, every 2-cell α : idΓ.1Γ
◦ uΓ ⇒ uΓk ◦ uΓ is of the form ᾱ ◦ uΓ for a

R. Garner 726

unique 2-cell ᾱ : idΓ.1Γ
⇒ uΓk. But because idΓ.1Γ

◦ uΓ = iduΓ
= uΓ ◦ idΓ = uΓkuΓ, we have,

in particular, the 2-cell θ := iduΓ
: idΓ.1Γ

⇒ uΓk, which satisfies θuΓ = iduΓ
by definition.

That it also satisfies kθ = idk follows from the fact that θ is a 2-cell of C/Γ.

5.3.4. Stability rules. We must show that the semantic unit rules are stable under semantic

substitution. This follows by an argument entirely analogous to that of Section 5.2.4, but

using the stability properties of Proposition 4.3.2 rather than Proposition 4.1.2.

5.4. Sum types

5.4.1. Formation rule. Given Γ ∈ C, A ∈ T(Γ) and B ∈ T(Γ.A), we define the semantic

sum type of A and B to be the object ΣA(B) ∈ T(Γ) whose existence is assured by

Definition 4.6.1.

5.4.2. Introduction rule. ΣA(B) is a retract bireflection of B ∈ T(Γ.A) along the 2-functor

T(πA) : T(Γ) → T(Γ.A), and thus, as in Proposition 4.4.2, we obtain from the unit of this

bireflection a map i : Γ.A.B → Γ.ΣA(B) of C/Γ. We declare this map to be the semantic

introduction rule for ΣA(B).

5.4.3. Elimination and computation rules. We consider C ∈ T(Γ.ΣA(B)) and a morphism

d : Γ.A.B → Γ.ΣA(B).C of C fitting into a commutative diagram

Γ.A.B
d ��

i

��

Γ.ΣA(B).C

πC

��

Γ.ΣA(B)
id

�� Γ.ΣA(B)

To give the semantic elimination rule satisfying the semantic computation rule, we now

have to give a filler E : Γ.ΣA(B) → Γ.ΣA(B).C making both triangles commute. We know

that πC is an isofibration in C/Γ, whilst Definition 4.6.1 assures us that i is an injective

equivalence in C/Γ, so we obtain the desired filler by applying Proposition 5.1.1.

5.4.4. Stability rules. We must show that the semantic rules for dependent sums are

stable under semantic substitution. Again, this follows by an argument analogous to that

of Section 5.2.4, but this time using the stability properties of Proposition 4.4.3.

5.5. Product types

Finally, we give semantic analogues in � of the rules for the product types. As in the one-

dimensional case, there is a slight mismatch here between the syntax and the semantics.

This means that, in addition to the right biadjoints to weakening, we will also need to

make use of the semantic unit types of Section 5.3 – see Jacobs (1993, Sections 5.1–5.3)

for a fuller discussion of this point.

Two-dimensional models of type theory 727

5.5.1. Formation rule. For Γ ∈ C, A ∈ T(Γ) and B ∈ T(Γ.A), we define the semantic

product type of A and B to be the object ΠA(B) ∈ T(Γ) whose existence is assured by

Definition 4.6.1.

5.5.2. Application rule. ΠA(B) is a retract bicoreflection of B ∈ T(Γ.A) along ΔA :=

T(πA) : T(Γ) → T(Γ.A). The counit of this bicoreflection is a morphism ε : ΔAΠA(B) → B

of T(Γ.A). We define the semantic application rule for ΠA(B) to be the corresponding

morphism ε : Γ.A.ΠA(B) → Γ.A.B of C/Γ.A.

5.5.3. Abstraction and β-rules. For these, we suppose given, as in the premiss of the

abstraction rule, a morphism f : Γ.A → Γ.A.B over Γ.A. We are required to produce from

this a map λ(f) : Γ → Γ.ΠA(B) over Γ, which, in order for the β-rule to hold, should

satisfy ε ◦ ΔA(λ(f)) = f. So, consider the unit type 1Γ.A ∈ T(Γ.A). Applying its universal

property to f : Γ.A → Γ.A.B yields a morphism f : Γ.A.1Γ.A → Γ.A.B over Γ.A satisfying

f ◦ uΓ.A = f. We can view f as a morphism 1Γ.A → B of T(Γ.A), which by the stability

of unit types under substitution is equally well a morphism f : ΔA1Γ → B of T(Γ.A).

Applying the universal property of ΠA(B) to this, we obtain a morphism f : 1Γ → ΠA(B)

of T(Γ) satisfying ε ◦ ΔA(f) = f. This is equally well a morphism Γ.1Γ → Γ.ΠA(B) over Γ,

so that we can define the map λ(f) : Γ → Γ.ΠA(B) over Γ to be λ(f) := f ◦ uΓ. It remains

to show that we have ε ◦ ΔA(λ(f)) = f, for which we calculate that

ε ◦ ΔA(λ(f)) = ε ◦
(
ΔA(f) ◦ ΔA(uΓ)

)
= f ◦ uΓ.A = f,

as required. Here we have used the fact that, by the stability of unit types under

substitution, we have ΔA(uΓ) = uΓ.A.

5.5.4. Function extensionality rules. We now give semantic analogues of the rules of

Table 3. For the first rule, Π-ext, we suppose given morphisms m, n : Γ → Γ.ΠA(B) over

Γ, together with a 2-cell

p : ε ◦ ΔA(m) ⇒ ε ◦ ΔA(n) : Γ.A → Γ.A.B

over Γ.A. We must produce from this a 2-cell ext(p) : m ⇒ n. First we apply the universal

property of the unit type 1Γ to m and n to obtain morphisms m, n : Γ.1Γ → Γ.ΠA(B) over

Γ. These satisfy m = m ◦ uΓ and n = n ◦ uΓ, and thus we can view p as a 2-cell

p : ε ◦ ΔA(m) ◦ uΓ.A ⇒ ε ◦ ΔA(n) ◦ uΓ.A : Γ.A → Γ.A.B,

where again we use stability of unit types under pullback to derive that ΔA(uΓ) = uΓ.A.

By the two-dimensional aspect of the universal property of 1Γ.A, we have p = p ◦ uΓ.A for

a unique 2-cell

p : ε ◦ ΔA(m) ⇒ ε ◦ ΔA(n) : Γ.A.1Γ.A → Γ.A.B.

Now, by the two-dimensional aspect of the universal property of ΠA(B), we have that

p = ε ◦ ΔA(p) for a unique p : m ⇒ n. We now define the 2-cell ext(p) to be given by

p ◦ uΓ : m ⇒ n.

In order for ext to satisfy the analogue of the rule Π-ext-comp, we must show that

when m = n and p = idε ◦ ΔA(m), we have ext(p) = idm. It is enough for this to show

R. Garner 728

that (with the above notation) p = idm : m ⇒ m, which, by applying the universal

properties of ΠA(B) and 1Γ.A successively, follows from the fact that ε ◦ ΔA(p) ◦ uΓ.A = p

is an identity 2-cell. Finally, we must verify that ext satisfies the analogue of the rule

Π-ext-app. Recall from Section 4.5 that the operation ∗ appearing in Π-ext-app is

simply the lifting of ε : Γ.A.ΠA(B) → Γ.A.B to identity types. From this it follows

that we must verify that ε ◦ ΔA(ext(p)) = p : ε ◦ ΔA(m) ⇒ ε ◦ ΔA(n). We calculate that

ε ◦ ΔA(ext(p)) = ε ◦
(
ΔA(p) ◦ ΔA(uΓ)

)
= p ◦ uΓ.A = p, as required.

5.5.5. Stability rules. We must now show that the semantic rules for dependent products

are stable under semantic substitution. This follows by an argument analogous to that

of Section 5.2.4, though this time we do not need the stability properties of isofibrations

(Proposition 3.4.10) at all; instead, we need those for products (Proposition 4.5.2) and also

those for units (Proposition 4.3.2).

5.6. The internal language

We now define the type theory S(�) associated to our two-dimensional model �. It is

obtained by recursively extending ML2 with additional inference rules. These inference

rules are ‘axiom’ rules with no premisses, so they may be specified by giving only their

conclusion. First we have rules introducing new types:

— For each A ∈ T(1) we add a judgement � A type.

— For each A ∈ T(1), B ∈ T(1.A), we add a judgement x : A � B(x) type.

— And so on.

Then we have rules introducing new terms:

— For each A ∈ T(1), a ∈1 A, we add a judgement � a : A.

— For each A ∈ T(1), B ∈ T(1.A), b ∈1.A B, we add a judgement x : A � b(x) : B(x).

— And so on.

Here, we use the convention for global sections developed in Notation 3.1.1. Next we

have rules identifying the syntactic notions of substitution, weakening, contraction and

exchange with their semantic counterparts in �. We give the case of substitution as a

representative sample. First we deal with substitution in types:

— For each A ∈ T(1), B ∈ T(1.A), a ∈1 1.A, we add a judgement � B(a) = a∗B type.

— For each A ∈ T(1), B ∈ T(1.A), C ∈ T(1.A.B), b ∈1.A B, we add a judgement

x : A � C(x, b(x)) = b∗C type.

— For each A ∈ T(1), B ∈ T(1.A), C ∈ T(1.A.B) and a ∈1 A, we add a judgement

y : B(a) � C(a, y) = (a.ι)∗C type.

— And so on.

We now consider substitution in terms:

— For each A ∈ T(1), B ∈ T(1.A), a ∈1 A, b ∈1.A B, we add � b(a) = a∗b : B(a).

— For each A ∈ T(1), B ∈ T(1.A), C ∈ T(1.A.B), b ∈1.A B, c ∈1.A.B C , we add

x : A � c(x, b(x)) = b∗c : C(x, c(x)).

Two-dimensional models of type theory 729

— For each A ∈ T(1), B ∈ T(1.A), C ∈ T(1.A.B), a ∈1 A, c ∈1.A.B C , we add

y : B(a) � c(a, y) = (a.ι)∗c : C(a, y).

— And so on.

Finally, we have rules identifying each of the logical rules of ML2 with its semantic

counterpart in �. We only give the case of the identity types; the remainder follow the

same pattern. First we have the formation rules:

— For each A ∈ T(1), we add x, y : A � IdA(x, y) = IdA(x, y) type.

— For each A ∈ T(1), B ∈ T(1.A), we add

x : A, y, z : B(x) � IdB(x)(y, z) = IdB(x, y, z) type.

— And so on.

Next we have the introduction rule. Note that for A ∈ T(Γ), the semantic introduction

rule rA : Γ → Γ.A.A.IdA over Γ can be viewed as a global section rA ∈Γ δ
∗
A(IdA), where

δA : Γ.A → Γ.A.A is the diagonal morphism. Thus we may add the following rules:

— For each A ∈ T(1), we add x : A � r(x) = rA(x) : IdA(x, x).

— For each A ∈ T(1), B ∈ T(1.A), we add

x : A, y : B(x) � r(y) = rB(x, y) : IdB(x)(y, y).

— And so on.

Finally, we come to the identity elimination rule:

— For each A ∈ T(1), C ∈ T(1.A.A.IdA) and d : 1.A → 1.A.A.IdA.C as in (45) (which is

equally well a global section d ∈1.A r
∗
AC), we add

x, y : A, p : IdA(x, y) � Jd(x, y, p) = Jd(x, y, p) : C(x, y, p).

— And so on.

Now, in order for the internal language we have set up to be of any use, we require its

types and terms to denote unique elements of the model �. The next Proposition tells us

that this is the case.

Proposition 5.6.1 (Soundness). For any B,C ∈ T(1.A1.A2 . . . An), if the judgement

x : A1.A2 . . . An � B(x) = C(x) type

is derivable, then B = C . Likewise, for global sections b, c ∈1.A1 ...An B, if the judgement

x : A1.A2 . . . An � b(x) = c(x) : B(x)

is derivable, then b = c.

Proof. By induction on the derivation of the judgement in question, it suffices to

show that the semantic counterpart of each syntactic equality rules is satisfied. For the

non-logical equality rules, this is standard (though delicate), and we refer the reader to

Hofmann (1995a) or Pitts (2000) for the details (note that we make essential use of the fact

that the underlying 1-fibration of T → C is split). The other cases we must consider are

the computation rules of Tables 1, 2 or 3, and the rules expressing stability of the logical

R. Garner 730

operations under substitution, and each of these has been dealt with in the preceding

sections.

Remark 5.6.2. Observe that the internal language S(�) does not give us access to all of

the model �: it only allows us to talk about objects of the base 2-category C that have the

form 1.A0 . . . An (where 1 is the given 2-terminal object). There are two ways around this.

We can modify the syntax of our type theory so that contexts and context morphisms are

primitive, rather than derived, notions. Then each object or morphism of C corresponds

directly to a context or context morphism of S(�). Alternatively, we can keep our type

theory the same, and instead work with relative internal languages. Given Γ ∈ C, the

relative internal language SΓ(�) is the type theory whose closed types are objects of T(Γ),

with dependent types being objects of T(Γ.A), T(Γ.A.B) and so on. Moreover, because

each morphism Γ → Δ of C induces an interpretation (in the sense of Section 5.7 below)

SΔ(�) → SΓ(�), we obtain what is in an obvious sense a ‘C-indexed type theory’†.

5.7. Functorial aspects

In Sections 3 and 4, we constructed from each type theory S incorporating ML2 a two-

dimensional model �(S), whilst in the preceding parts of the present section, we have

constructed from each two-dimensional model � a type theory S(�) incorporating ML2.

It is natural to ask whether these assignations give rise to a functorial semantics in the

spirit of Lawvere (1968). That is, can we define a syntactic category of type theories and

a semantic category of models for which the above assignations underlie an equivalence

of categories? We conclude the paper by sketching a positive answer to this question.

We first define a syntactic category Th. Its objects are the generalised algebraic theories

(Cartmell 1986) over ML2. These are defined inductively by the following three clauses:

(i) Each object of Th is a sequent calculus.

(ii) ML2 ∈ Th.

(iii) If S ∈ Th, then so is any extension of S.

Here, an extension of S is given by adjoining a set of inference rules, each of which has

no premisses, and a conclusion J that obeys the following requirements:

— If J is of the form Γ � A type, then A must be fresh for S and Γ must be a well-formed

context of S.

— If J is of the form Γ � a : A, then a must be fresh for S and Γ � A type must be

derivable in S.

— If J is of the form Γ � A = B type, then Γ � A type and Γ � B type must be derivable

in S

— If J is of the form Γ � a = b : A, then Γ � a : A and Γ � b : A must be derivable in S.

Note that the assignation � �→ S(�) sends each two-dimensional model to a GAT over

ML2.

† A finer analysis shows that this is really a two-dimensional indexing. That is, we have a trihomomorphism

Ccoop → Th, where Th is a suitably defined tricategory of two-dimensional theories.

Two-dimensional models of type theory 731

The morphisms of Th are equivalence classes of interpretations. Given S,T ∈ Th, an

interpretation F : S → T is a function F taking derivable judgements of S to derivable

judgements of T, subject to the following requirements:

— Each F(A type) should have the form FA type.

— Each F(a : A) should have the form Fa : FA.

— Each F(A = B type) should have the form FA = FB type.

— Each F(a = b : A) should have the form Fa = Fb : FA.

Moreover, if we suppose F(Γ � A type) has the form FΓ � FA type, then:

— Each F(Γ, x : A � B(x) type) should have the form FΓ, x : FA � FB(x) type.

— Each F(Γ, x : A � b(x) : B(x)) should have the form FΓ, x : FA � Fb(x) : FB(x).

— And similarly for the two equality judgement forms.

Finally, we require that F should commute with all the inference rules of ML2. We give

the case of the rule of Id-formation for illustration. Suppose we are given a derivable

judgement Γ � A type in S. We write its image under F as FΓ � FA type, and the image

of Γ, x, y : A � IdA(x, y) type as FΓ, x, y : FA � FIdA(x, y) type. Now the following

judgement should be derivable in T:

FΓ, x, y : FA � IdFA(x, y) = FIdA(x, y) type.

The equivalence relation we impose on interpretations identifies F,G : S → T if they differ

only up to definitional equality in the obvious sense. It is now straightforward to show

that GATs and equivalence classes of interpretations form a category Th.

Remark 5.7.1. Using the above notion of interpretation, we can now say what it means

to give an interpretation of a GAT T in a two-dimensional model �, namely, to give an

interpretation (in the above sense) T → S(�). It is easy to check that this accords with

the intuitive syntactic notion we would give.

We now define a semantic category Mod. Its objects are models of two-dimensional

type theory as in Definition 4.6.1. A morphism F : � → �′ is given by a pair of 2-functors

F1 : C → C′ and F2 : T → T′ rendering the squares

T
F2 ��

p

��

T′

p′

��

C
F1

�� C′

and

T
F2 ��

E

��

T′

E ′

��

C2

F1
2

�� (C′)2

commutative and preserving all the additional structure on the nose.

Proposition 5.7.2. The assignations S �→ �(S) and � �→ S(�) underlie functors �(–) : Th →
Mod and S(–) : Mod → Th.

Proof. Given an interpretation F : S → T, we define functors G0 : C(S) → C(T) and

G1 : T(S) → T(T) by an obvious structural induction over the objects and morphisms

of the domain categories. In order to extend these functors to 2-functors, we first show

by induction that every object Γ ∈ C(S) has an accompanying arrow object given by

R. Garner 732

the identity context IdΓ. But now, since F preserves the identity type structure, the

corresponding G0 will preserve these arrow objects, so we may extend G0 to a 2-functor

by regarding each 2-cell of C(S) as a 1-cell into an arrow object, mapping this 1-cell over

and then turning the resulting 1-cell back into a 2-cell of C(T). Because the comprehension

2-functors of �(S) and �(T) are 2-fully faithful, this in turn determines the extension of

G1 to a 2-functor. Finally, the fact that F strictly preserves the remaining structure implies

that the same is true of (G0, G1), so we obtain a morphism of models �(S) → �(T) as

required.

Conversely, given a morphism of models F : � → �′, we may define an interpretation

S(�) → S(�′) as follows. By structural induction, every closed type A of S(�) is

definitionally equal to one of the form X for some X ∈ T(1), and by Proposition 5.6.1,

this X is unique. Thus we may define the image of A under the interpretation to be the

type G1(X) of S(�′). Similarly, every closed term a : A of S(�) is definitionally equal to

one of the form x : X for a unique map x : 1 → 1.X of C, so we may define F(a) to be the

term G0(x) : G1(X). This definition extends to types and terms in non-empty contexts in

an obvious way. Finally, the fact that our morphism of models preserves all the remaining

structure on the nose implies the same for the interpretation just described.

However, the functors defined in this Proposition do not give rise to an equivalence of

categories. There are two reasons for this. The first is the issue raised in Remark 5.6.2.

Observe that any two-dimensional model in the image of �(–) has the property that each

object Γ ∈ C is of the form 1.A1 . . . An for a unique (possibly empty) sequence of objects

A1 ∈ T(1), . . . , An ∈ T(1.A1 . . . An−1). This is the ‘tree condition’ of Cartmell (1986). Clearly,

not every two-dimensional model has this property, so if we are to obtain an equivalence,

we must first cut down to the full sub-2-category Modtr ⊂ Mod on those that do. The

second reason we do not obtain an equivalence is more subtle. In order for Th 	 Modtr
to hold, we must certainly have for each S ∈ Th that S(�(S)) ∼= S. However, this turns

out not to be the case: we run into problems with the terms witnessing the elimination

rules. As an illustration, we will show that ML2 � S(�(ML2)). Because the object ML2

is initial in Th, there is a unique morphism F : ML2 → S(�(ML2)), so it suffices to show

that F is not surjective. First observe that by 1-elimination we can derive a judgement

z : 1 � U�(z) : 1 (47)

in ML2. Next note that the judgements of S(�(ML2)) are simply equivalence classes of

judgements of ML2 with respect to definitional equality, so, by passing to the quotient,

we obtain from (47) a judgement

z : [1] � [U�](z) : [1] (48)

of S(�(ML2)). The crucial point is that (48) does not coincide with the value of F

at the judgement (47). This latter can be described as follows. First we derive a term

z : 1 � φ(z) : Id1(z, �) in ML2 by 1-elimination, taking φ(z) := Ur(�)(z). Now, by the

description of the semantic unit types given in Section 5.3, we see that applying F to (47)

yields (up to definitional equality) the following judgement in S(�(ML2)):

z : [1] � [φ(z)∗(�)] : [1]. (49)

Two-dimensional models of type theory 733

Now, if (49) were definitionally equal to (48), we would also have that z : 1 � U�(z) =

φ(z)∗(�) : 1 in ML2, and this is not the case. Hence F applied to (47) does not yield (48),

from which it follows by induction over derivable judgements of ML2 that (48) cannot lie

in the image of F : ML2 → S(�(ML2)).

We can resolve this issue in several ways. The first is to change our notion of model so

that it accords more closely with the type theory. This is unsatisfactory as we have then

reverted to a categorical paraphrasing of type theoretic syntax. A second alternative is

to change our notion of type theory so that it accords more closely with the categorical

model. This involves removing the elimination rules altogether, and instead taking the

Leibniz rule, together with the injective equivalence structures on the introduction terms,

as primitives. This is unsatisfactory for a more subtle reason. Whilst it may be reasonably

straightforward to give this alternative presentation for two-dimensional type theory,

we would find as we moved towards full intensional type theory that it would require

more and more intricate sets of rules expressing appropriate coherence properties of

our new primitives. The elegant simplicity of intensional type theory would be lost

completely.

A third solution, and our preferred one, is to equip our categories of theories and of

models with more generous notions of morphism, ones that preserve some of the structure

only up to propositional, rather than definitional equality. There is a great deal of scope

in how far we go with this. In the present paper, we make only the minimal modifications

necessary to obtain the desired equivalence. A fuller treatment would take account of

the fact that our models and theories are themselves two-dimensional structures, so that

their respective totalities should give rise not merely to equivalent categories, but also

to triequivalent Gray-categories (=semi-strict 3-categories) in the sense of Gordon et al.

(1995). Adopting this more comprehensive approach would be necessary if, for instance,

we wished to study the 2-category of interpretations of some generalised algebraic theory

inside a particular two-dimensional model. However, for our present purposes, we do not

need to go this far, so, in the interests of brevity, we do not.

The minimal modification that we will consider is given as follows. On the syntactic

side, we define a category Thψ with as objects GATs over ML2 and as maps F : S → T

pseudo-interpretations, whose definition generalises that of an interpretation by dropping

the requirement that F should preserve each of the following rules up to definitional

equality: 1-elim, Id-elim, Σ-elim, and Π-abs. One may now think that, in order to justify

the name pseudo-interpretation, we should ask for F to preserve these rules at least up to

propositional equality, but it turns out that this is unnecessary because this weaker form

of preservation is a consequence of the type-theoretic elimination rules.

On the semantic side, we define a category Modψ whose objects are two-dimensional

models and whose maps F : � → �′ are pseudo-morphisms. These are obtained by relaxing

in the definition of morphism of models the requirement that the following structures

should be preserved:

— the normal isofibration structures on dependent projections πA;

— the injective equivalence structures on the maps i : Γ.A.B → Γ.ΣA(B) associated to

dependent sums;

R. Garner 734

— the assignations f �→ f on 1-cells associated to the unit types, dependent sums, and

dependent products.

Once again, we do not need to add conditions requiring these pieces of structure to be

preserved up to isomorphism, since this will be an automatic consequence of the remaining

structure. As before, we write (Modψ)tr for the full subcategory of Modψ on those models

satisfying the tree condition.

Proposition 5.7.3. The functors �(–) and S(–) extend to functors Thψ → (Modψ)tr and

(Modψ)tr → Thψ , respectively.

Proof. The argument of Proposition 5.7.2 carries over almost entirely unmodified.

The only subtlety arises in defining the pseudo-morphism of models �(S) → �(T)

corresponding to a pseudo-interpretation F : S → T. As before, we define functors G0 and

G1 by induction on the objects and morphisms of �(S), but when it comes to extending

these to 2-functors, we encounter the problem that the interpretation F , since it no longer

preserves the rule Id-elim, may not send identity contexts to identity contexts. However,

using the fact that Id-elim is preserved at least up to propositional equality, we may show

by induction that F will send an identity context to something isomorphic to an identity

context. From this, it follows that G0 will still preserve arrow objects, so we may continue

the argument as before.

But now we have the following proposition.

Proposition 5.7.4. The functors �(–) and S(–) induce an equivalence of categories

(Modψ)tr 	 Thψ .

Proof. First observe that if � is a model satisfying the tree condition, then the contexts

and context morphisms of S(�) are, up to definitional equality, just the objects and

morphisms of C, whilst the types-in-context of S(�) are just the objects of T. From this it

follows that S(–) is fully faithful. Indeed, given a pseudo-interpretation F : S(�) → S(�′),

our observation allows us to define functors G0 : C → C′ and G1 : T → T′. As in the last

proof, the pseudo-interpretation F must send an identity context to something isomorphic

to an identity context, from which it follows that G0 preserves arrow objects, allowing us

to extend G0 and G1 to 2-functors as before. It is now easy to verify that the resultant pair

(G0, G1) is a pseudo-morphism, and by examining the proof of Proposition 5.7.2, we see

that it is sent by S(–) to F and that it is the unique pseudo-morphism with this property.

It remains to show that for each S ∈ Thψ we have an isomorphism S ∼= S(�(S)) in

Thψ , and that these are natural in S. Now, up to definitional equality, the judgements of

S(�(S)) are the same as those of S, so we obtain mutually inverse assignations between

the judgements of the former and those of the latter. Moreover, by following through

the constructions of �(–) and S(–), we see that all of the logical structure of S(�(S)) is

given as in S, with the possible exception of the rules 1-elim, Id-elim, Σ-elim and Π-abs

(as seen in the discussion following Proposition 5.7.2). But this says precisely that these

mutually inverse assignations are pseudo-interpretations, and thus give rise to a natural

isomorphism S ∼= S(�(S)) in Thψ , as required.

Two-dimensional models of type theory 735

Acknowledgements

The author thanks the anonymous referees for their helpful suggestions.

References

Aczel, P. (1994) Notes towards a formalisation of constructive Galois theory. Manuscript, University

of Manchester.

Awodey, S. and Warren, M. (2009) Homotopy theoretic models of identity types. Mathematical

Proceedings of the Cambridge Philosophical Society 146 (1) 45–55.

Bousfield, A.K. (1977) Constructions of factorization systems in categories. Journal of Pure and

Applied Algebra 9 (2-3) 207–220.

Cartmell, J. (1986) Generalised algebraic theories and contextual categories. Annals of Pure and

Applied Logic 32 209–243.

de Bruijn, N. (1991) Telescopic mappings in typed lambda calculus. Information and Computation

91 (2) 189–204.

Dybjer, P. (1996) Internal type theory. In: Types for proofs and programs (Torino, 1995). Springer-

Verlag Lecture Notes in Computer Science 1158 120–134.

Ehrhard, T. (1988) Une sémantique catégorique des type dépendents. Application au Calcul des

Constructions, Ph.D. thesis, Université Paris VII.

Gambino, N. (2008) Homotopy limits for 2-categories. Mathematical Proceedings of the Cambridge

Philosophical Society 145 (1) 43–63.

Gambino, N. and Garner, R. (2008) The identity type weak factorisation system. Theoretical

Computer Science 409 94–109.

Garner, R. (2009) On the strength of dependent products in the type theory of Martin-Löf. Annals

of Pure and Applied Logic 160 1–12.

Gordon, R., Power, J. and Street, R. (1995) Coherence for tricategories. Memoirs of the American

Mathematical Society 117 (558).

Grandis, M. and Tholen, W. (2006) Natural weak factorization systems. Archivum Mathematicum 42

(4) 397–408.

Hermida, C. (1999) Some properties of Fib as a fibred 2-category. Journal of Pure and Applied

Algebra 134 (1) 83–109.

Hofmann, M. (1994) Elimination of extensionality in martin-löf type theory. In: Types for proofs

and programs (Nijmegen, 1993). Springer-Verlag Lecture Notes in Computer Science 806 166–190.

Hofmann, M. (1995a) Extensional concepts in intensional type theory, Ph.D. thesis, University of

Edinburgh.

Hofmann, M. (1995b) On the interpretation of type theory in locally cartesian closed categories.

In: Computer science logic (Kazimierz, 1994). Springer-Verlag Lecture Notes in Computer Science

933 427–441.

Hofmann, M. and Streicher, T. (1998) The groupoid interpretation of type theory. In: Twenty-five

years of constructive type theory (Venice, 1995). Oxford Logic Guides 36 83–111.

Hyland, J.M. and Pitts, A. (1989) The theory of constructions: categorical semantics and topos-

theoretic models. In: Categories in computer science and logic (Boulder, CO, 1987). Contemporary

Mathematics 92 137–199.

Jacobs, B. (1993) Comprehension categories and the semantics of type dependency. Theoretical

Computer Science 107 (2) 169–207.

Jacobs, B. (1999) Categorical logic and type theory, Studies in Logic and the Foundations of

Mathematics 141, North-Holland.

R. Garner 736

Kelly, G.M. (1982) Basic concepts of enriched category theory, London Mathematical Society Lecture

Note Series 64, Cambridge University Press.

Kelly, G.M. (1989) Elementary observations on 2-categorical limits. Bulletin of the Australian

Mathematical Society 39 (2) 301–317.

Kelly, G.M. and Street, R. (1974) Review of the elements of 2-categories. In: Category Seminar

(Proc. Sem., Sydney, 1972/1973). Springer-Verlag Lecture Notes in Mathematics 420 75–103.

Lawvere, F.W. (1968) Some algebraic problems in the context of functorial semantics of algebraic

theories. In: Reports of the Midwest Category Seminar II. Springer-Verlag Lecture Notes in

Mathematics 61 41–61.

Nordström, B., Petersson, K. and Smith, J.M. (1990) Programming in Martin-Löf ’s Type Theory,

International Series of Monographs on Computer Science 7, Oxford University Press.

Pitts, A.M. (2000) Categorical logic. In: Abramsky, S., Gabbay, D.M. and Maibaum, T. S. E. (eds.)

Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical Structures, Oxford

University Press 39–128.

Seely, R. (1984) Locally cartesian closed categories and type theory. Mathematical Proceedings of

the Cambridge Philosophical Society 95 (1) 33–48.

Street, R. (1974) Fibrations and Yoneda’s lemma in a 2-category. In: Category Seminar (Proc. Sem.,

Sydney, 1972/1973). Springer-Verlag Lecture Notes in Mathematics 420 104–133.

Taylor, P. (1999) Practical foundations of mathematics, Cambridge Studies in Advanced Mathematics

59, Cambridge University Press.

