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Chapter 1

Introduction

The concept of polycategory, as introduced in [Sza75], has for a long time been
something of a poor relation in the family of generalised categorical structures.
Intuitively, a polycategory is a category in which maps can have many ‘inputs’
and many ‘outputs’; composition proceeds by plugging precisely one output of one
map into precisely one input of another.

Despite this seemingly simple description, the concept of polycategory has for
a long time lacked an urbane mathematical formulation: indeed, there has been
little development on Szabo’s original hands-on definition, whose slew of data and
axioms make it very hard to develop a coherent ‘theory of polycategories’.

The polycategory has a simpler cousin, the multicategory, whose maps can have
many inputs but only one output. The multicategory admits an elegant formal-
ism, originally developed by Burroni [Bur71] (under the name ‘T-categories’), and
later independently rediscovered and popularised by Leinster [Lei04b] and Her-
mida [Her00] under the name ‘T-multicategories’. However, this approach does
not generalise easily to the case of polycategories; indeed, the paper [Kos03] is,
to date, the only such attempt. Though it does yield a more abstract framework
within which to consider polycategories, there is still a sense that this framework
is being bent somewhat in order to obtain the desired results.

There is another approach to multicategories in terms of the free strict monoidal
category pseudomonad S on Mod, the bicategory of categories, profunctors and
transformations. We can form the ‘Kleisli bicategory” K l(g ) of this pseudomonad —

which is a higher-dimensional analogue of an ordinary Kleisli category — and re-



CHAPTER 1. INTRODUCTION

cover multicategories as monads in this bicategory.

This is the approach adopted by [BD98] and [CT03], and has certain advantages
not possessed by the “T-multicategory’ approach: it generalises straightforwardly
to what one might term ‘V-enriched multicategories’ upon replacing Mod with
V-Mod; and it allows one to consider symmetric multicategories, whose inputs
and outputs may be freely re-ordered, upon replacing the strict monoidal category
pseudomonad with the symmetric strict monoidal category pseudomonad.

Furthermore, this approach has an extension from the case of multicategories to
that of polycategories, an extension which is the primary concern of this thesis. In
it, we consider the free symmetric strict monoidal category as a pseudocomonad T
as well as a pseudomonad S on Mod, and look for a pseudo-distributive law of T
over S. Pseudo-distributive laws generalise distributive laws in the sense of Beck
[Bec69], and have been studied by [Mar99] and more comprehensively by [Tan04].

Now, given an honest distributive law 6: T'S = ST of a comonad T over a
monad S on a category C, we can form the ‘two-sided Kleisli category’ KI(J) of
0, whose objects are those of C, whose maps from X to Y are maps T X — SY of

C, and whose composition proceeds using the distributive law:

(TY L S2)o(TX L sY) =7X 25 17X L 18y 2% STV 2% §S7 42, 7.
Similarly, given a pseudo-distributive law 6 of a pseudocomonad over a pseu-
domonad, we can produce the higher-dimensional analogue of the above, namely
the ‘two-sided Kleisli bicategory’ K1(d); we would like to view polycategories as
monads in a suitable such KI(9).

This is our theoretical framework; however, its practical implementation is po-
tentially somewhat wrought. In order to give a pseudo-distributive law, we must
specify five pieces of bicategorical data, each itself consisting of non-trivial data
and axioms, and check ten equalities of pastings. Clearly, a brute force approach
is hopeless, and therefore we seek a subtler way to derive this data.

For this, we turn to the theory of clubs, introduced and later reformulated ab-
stractly by Kelly [Kel72a, Kel72b, Kel74b, Kel92]. Clubs capture the intuition of

adding structure to categories in a ‘generic way’: given a description of this added



structure at the terminal category 1, we should be able to derive it at an arbitrary
category C by ‘labelling with objects and maps of C’.

We should like to use this theory to reduce the problem of giving our pseudo-
distributive law on Mod to that of giving a pseudo-distributive law ‘at the terminal
category 1’, a statement that we will make precise in the course of this thesis. If
we can perform this reduction, then much of the coherence and data which should
be obvious comes for free, data which we would otherwise be required to provide.
This frees us to concentrate on providing the (non-trivial) combinatorial core of
the pseudo-distributive law.

However, the theory of clubs as it stands is inadequate; it deals with categories
with pullbacks, and we need to work with Mod, which neither is a category nor
has pullbacks. Therefore we must first look for a suitable generalisation of the
theory of clubs which is amenable to application in Mod. Now, taking pullbacks
is fundamental to the theory of clubs, so we are led to question whether or not Mod
is the correct place to work; ideally, we should like to replace it with something
where we can take lots of pullbacks.

Now, observe that Mod has certain peculiar properties: it has all lax colimits,
but these lax colimits have a universal property up to isomorphism rather than
up to equivalence; unfortunately, the language of bicategories cannot express what
this universal property is. Similarly, the operation given on objects by cartesian
product of categories induces a structure of monoidal bicategory on Mod; again,
this structure ought to be associative up to isomorphism rather than equivalence,
and again, the language of bicategories is simply unable to express this.

Inspired by this, we are led to consider the pseudo double categories of [GP99]
and [GP04] (and also considered briefly by [Lei04a]). These are a weakening of
Ehresmann’s notion of double category [Ehr63, Ehr65], and have two directions,
one ‘category-like’ and the other ‘bicategory-like’. The presence of a ‘category-like’
direction allows us to express ‘up-to-isomorphism’ as well as ‘up-to-equivalence’
notions, and more saliently, to take lots of pullbacks. Indeed, in our case, we
can generalise Mod to the pseudo double category Cat of ‘categories, functors,
profunctors and transformations’ which in an appropriate sense, has all pullbacks.

Thus our first task is to develop a suitable generalisation of the theory of clubs

3



CHAPTER 1. INTRODUCTION

from plain categories to pseudo double categories; our second is to exhibit a suitable
such ‘double club’ on the pseudo double category Cat, and our third is to apply
this theory to the construction of the pseudo-distributive law for polycategories
on Mod. Corresponding to these three tasks are the three Parts of this thesis.

A subsidiary theme running throughout is the relationship between higher-
dimensional monoidal structures, such as monoidal bicategories and the monoidal
double categories of Chapter 4, and corresponding higher-dimensional structures
equipped with a notion of left and right ‘whiskerings’. A structure equipped with
the latter structure always possesses the former, and the converse is almost true.
Likewise, a map which preserves whiskerings will preserve monoidal structure as
well, and again, the converse is almost true. Although many of the results of this
thesis are phrased in terms of monoidal structures, it is the whiskerings which we
shall be more concerned with in practice.

Part I begins by summarising some of the basic concepts and definitions of
pseudo double categories (Chapter 1), before recapping the theory of plain clubs
(Chapter 2). We then explore some further aspects of the theory of pseudo double
categories which will be necessary in order to generalise the theory of clubs: we
consider comma double categories, equivalences of double categories and cartesian
maps in double categories (Chapter 3), and aspects of the theory of ‘monoidal
double categories’ (Chapter 4). With this in place, we are ready to give our
definition of ‘double club’, and to prove important results mirroring those for the
theory of plain clubs (Chapter 5).

Part II moves from the general to the specific by examining the pseudo double
category Cat and some of its more pertinent properties (Chapter 6) and showing
that we can extend the club S for symmetric strict monoidal categories on Cat to
a double club on Cat (Chapter 7).

Part IIT then applies the preceding theory to the description of polycategories.
We start by laying out in more detail the theoretical framework for polycategories
outlined above (Chapter 8); the remainder of the thesis we devote to its practical
implementation, namely the establishment of a suitable pseudo-distributive law on
Mod. After a few necessary technical results about dual monads and pseudomon-

ads (Chapter 9), we use the theory of double clubs to reduce the construction

4



of a pseudo-distributive law on Mod to that of a pseudo-distributive law ‘at 1’

(Chapter 10), a construction which we then carry out (Chapter 11).






Part 1

Clubs and double clubs






Chapter 2

Pseudo double categories 1

In this chapter, we provide definitions of the notion of pseudo double category,
together with the apposite notions of functor, transformation and modification.
Pseudo double categories are a weakening of the well-known notion of (plain) dou-
ble category, as introduced by Ehresmann [Ehr65, Ehr63], and have been studied
by Grandis and Paré [GP99, GP04] and Leinster [Lei04a] (under the name ‘weak
double category’).

This chapter summarises material from [GP99], though the definitions given here
emphasise more strongly the fact that a pseudo double category is something like
a cross between a bicategory and a monoidal category. One may complain that
this statement is nonsensical, that a monoidal category is just a special case of
bicategory: but there is more to it than that. For example, monoidal categories
naturally form a 2-category whilst bicategories do not; and indeed, we shall see
that pseudo double categories, despite their bicategory-like aspects, also naturally

form a 2-category.

2.1 Pseudo double categories

Let K be a category, and consider the strict slice 2-category Cat /(K x Ky). The

underlying ordinary category of this 2-category has a monoidal structure given by

9



CHAPTER 2. PSEUDO DOUBLE CATEGORIES I

pullback; that is

K, K, K, K, RN
Ky K K
and
Ko
1= N
K K

Now, by Section 3 of [Kel89], these pullbacks are in fact Cat-pullbacks, and so
this enriches to make Cat/(Kj x Kj) into a monoidal Cat-category; in particular,

it is a monoidal bicategory [GPS95], and hence we can consider pseudomonoids
[DS97, McC99] in it.

Definition 1. A pseudo double category K consists of:
e A category Ko;
e A pseudomonoid KléKo in Cat/(Ky x Kp).

We now give an elementary description of this structure. First we need a little
notation: let us write a typical object of K; as X, and write X, and X; for s(X)
and t(X); similarly, let us write a typical map of K; as f and write f; and f; for
s(f) and t(f). We may also write X as X: X, —— X, and f as

X, XX,

f{ e lft

Now let us expand the above definition; a pseudo double category consists of the

following data:

(DD1) A category K of ‘objects and vertical maps’;
(DD2) A category K of ‘horizontal maps and cells’;
(DD3) ‘Source’ and ‘target’ functors s,t: K; — Ko;

10



2.1. PSEUDO DOUBLE CATEGORIES

(DD4) A ‘horizontal units’ functor I: Ky — Ki;
(DD5) A ‘horizontal composition’ functor ®: K ¢x; K1 — Kj;

(DD6) Special natural isomorphisms

K, [1t,id] K, o, K [id, Is] K,

with components

[XI X — IXt X X
and Tx: X — X®IXS
in Kl;
(DD7) A special natural isomorphism

ids X+ ®
KlthKlthKl KlthKl

®s><tidl Uu l@

K sx¢ K K

with components
ixyz: X®(YRZ)—- XeY)R7Z
in K.
Here, special means the following:

Definition 2. Given a diagram K1$K0 of categories, we say that a natural

transformation
F

T
J UOZ K1
A
G

11



CHAPTER 2. PSEUDO DOUBLE CATEGORIES I

is special if sF' = sG, tF = tG, sa = idyg and ta = idyg. In particular, setting
J =1, we say that a map f: X — Y in K, is special if X, = Y,, X; =Y,
fs =idx, and f; = idy,. Clearly, a natural transformation is special if and only if

all its components are special maps.
Now, this data is required to satisfy the following axioms:

(DA1) The following diagram commutes:

Ko

2

KOﬁKlﬁKO;

(DA2) The following diagram commutes:

Ky sx¢ K

SOTY tomy
®

K

Ko — Ko;

(DA3) For all (X,Y) in K 4% K3, the following diagram commutes:

X® [Y

X®Y Xe(I,®Y)
tX®YJ J/ax,lyt,Y
XRIx) Y ————(X®I,)®Y;

(DA4) For all (W,X,Y,Z) in K; ¢x; Ki ¢x¢ Ki ¢x¢ K1, the following diagram

commutes:
We (Xe(Yez) % (WeX) e (Y o2
W®ax,Y,zl
W ® ((X RY)® Z) YWEX),Y,Z

aW,(X@Y),ZJ/

WeoXeY)Z— (WeX)®Y)®Z

aw, X, Y ®Z

12



2.2. MORPHISMS OF PSEUDO DOUBLE CATEGORIES

Now, given a bicategory K, we can form a pseudo double category DI from it,
by taking (DK)y to be the set of objects of K (viewed as a discrete category), and
(DK); to be the disjoint union of the hom-categories of K; horizontal composition,
identities, associativity and unitality are now derived from those of K in the evident
way.

Conversely, any pseudo double category K contains a bicategory BK, with ob-
jects the objects of Ky, 1-cells the objects of Ky and 2-cells the special maps in
K. In light of this, the following notation will be useful: given X: A — B and
Y: B—+ Cin K;, wedraw Y ® X as

Y ® X: A-X.p Y .C.

Since horizontal composition is not associative, we cannot extend this notation
unambiguously to chains of three or more such composites; any such chain will
need a choice of ‘bracketing’ in order to specify a composite horizontal arrow of K.

We can extend this notation by using bicategorical pasting diagrams to specify
composites of special maps in K;. It follows from the pasting theorem for bicate-
gories (see [Pow90, Ver92|) that such pasting diagrams uniquely specify a special

map in K; once a bracketing for the start and end edge has been chosen.

2.2 Morphisms of pseudo double categories
Note that given a functor Fy: Kq — Lg, we induce a 2-functor
(F())*S Cat/(Lo X Lo) — Cat/(KO X K())

by pulling back along Fy x Fy. Moreover, with respect to the monoidal structure
outlined above, this 2-functor becomes a monoidal 2-functor, and so in particular,

sends pseudomonoids to pseudomonoids. Thus we have:

Definition 3. A morphism of pseudo double categories (or double mor-

phism for short) F': K — L consists of
e A functor Fy: Ky — Lo;
e A (lax) pseudomonoid morphism F: Ky — (Fy).(L;y) in Cat/(Ky x Kj).

13



CHAPTER 2. PSEUDO DOUBLE CATEGORIES I

Again, let us spell this out more explicitly. A double morphism consists of data:

(DMD1) A functor Fy: Ky — Lo;
(DMD2) A functor Fy: Ky — Ly;

(DMD3) A special natural transformation

Ko—" Iy

Il Jer ll

Ky —— Ly;

n
(DMD4) A special natural transformation
Ky sx¢ K i Ly sx¢ Ly

®J Jmr J@
K F1 L.

In order to keep the notation under control, we shall usually write ‘F” for both ‘F{’
and ‘Fy’, and write ‘¢’ and ‘m’ for ‘e’ and ‘mp’. Thus we write the components

of our coherence natural transformations in L; as

mxy: FX®FY - F(X®Y)

and ex . IFX — FIX
This data is required to satisfy the following axioms:

(DMA1) The following squares commute:

14



2.2. MORPHISMS OF PSEUDO DOUBLE CATEGORIES

(DMA2) For all X € Kj, the following diagrams commute:

FX —* FX®Ipyx,

thJ J/FX(X)QXS

Ixg

and

FX[F%IFXt@FX

F[xl lext®FX

(DMA3) For all (X,Y,Z) € K; sx¢ Ky sx; Kj, the following diagram commutes:

FX® (FY @ FZ) 222 (pX @ FY) @ FZ
FX@mY"ZJ J/mx’y(@FZ
FX® F(Y®Z) FX®Y)® FZ

mx,(Y@Z)l lm(xeav),z

FX®(Y®Z)——F(X®Y)®Z).

Foax v,z

Now, pseudo double categories and the morphisms between them form themselves

into a category DblCat, whose identity maps and composition are given as follows:

e Identity at K is given by (idkx)o = idg,, (idx)1 = idg,, Mg, = idg and

eidy = idr;

e Composition of F': K — L and G: L — M is given by GF with (GF)y =
GoFy, (GF); = G1F; and comparison transformations given by the pastings

Fisx: 1 Glsxtcl

Ky ox¢ K Ly sx¢ Ly My ¢x My
®l Jmr @i Jme l@
K, o Ly o M,

15



CHAPTER 2. PSEUDO DOUBLE CATEGORIES I

and
Ko Ly—"— M,
Il Jer Il Jec JI
K, A Ly a M.

Likewise, we may define categories DblCat, and DblCat,, whose maps are respec-
tively double opmorphisms and double homomorphisms; a double opmorphism F
has mp and ep oriented the other way, whilst a double homomorphism F' has mp
and er invertible.

The data given above is very reminiscent of that for a (homo, op)morphism of
bicategories, and in fact, given a (homo, op)morphism of pseudo double categories
F: K — L, we induce a (homo, op)morphism of bicategories BF: BK — BL.
Indeed, since the components of mp and ep are special cells of L, they lie in
BILL and hence provide the required coherence data for a (homo, op)morphism of
bicategories.

In fact, we see that B becomes a functor DblCat — Bicat where Bicat is the
category of bicategories and morphisms between them. We have evident ‘op” and

‘homo’ variants for this last statement.

2.3 Vertical transformations

There are two types of transformation we may consider between double morphisms.
The simpler is the vertical transformation, which is akin to a monoidal natural

transformation between monoidal functors.

Definition 4. Given morphisms F,G: K — L of pseudo double categories, a

vertical transformation «: F' = G consists of data:

(VTD1) A natural transformation ag: Fy = Gy;

(VTD2) A natural transformation aq: Fy = Gy,

(and again, we shall use ‘a’ indifferently for ay and «1), subject to the following

axioms:

16



2.3. VERTICAL TRANSFORMATIONS

(VTA1) The following pasting equalities hold:

Fy Fy Fy Fy
Y N Y N
Kl \Ual L1 K1 L1 Kl \Ual L1 K1 Ll

" A"
{ G1 ls = u{ Fy ls and fi G1 Jt = tl Fy Jt
N Y
Ky Ly Ky | Lg Ky Ly Ko oo Ly;
A" N A" N
Go Go Go Go

(VTA2) For all X € K, the following diagram commutes in L:

IFXQ—X>FIX

Iaxl lalx

IGX T> GIX;
(VTA3) For all (X,Y) € K; sx; Kj, the following diagram commutes in L;:

FX@FY 2, F(X®Y)

ax®01y‘/ ‘/QX®Y

GX@GYWG(X@Y).

Now, given pseudo double categories K and L, the double morphisms K — L and

vertical transformations between them form a category [K,L],:
e The identity at F' has (idp)o = idg, and (idp); = idpg;
e The composition Sa has (fa)y = focyy and (fa); = fray,

and it’s straightforward to check that these satisfy (VTA1)-(VTA3) as required.
In fact, these categories [K, L], provide us with hom-categories enriching the cat-
egory DblCat above to a 2-category. Horizontal composition of 2-cells is given by
the usual horizontal composition in Cat of the underlying natural transformations,
and it’s easy to check that such composites satisfy (VTA1)-(VTA3).
We can single out the full subcategory [K,L],, of [K,L| given by the double

homomorphisms and vertical transformations. Further, as the horizontal compos-

17



CHAPTER 2. PSEUDO DOUBLE CATEGORIES I

ite of two homomorphisms is another homomorphism, we can form a locally full
sub-2-category DblCat, of DblCat, consisting of the pseudo double categories,

double homomorphisms and vertical transformations.

2.4 Horizontal transformations

The second, and slightly more involved type of transformation is the horizon-
tal transformation. This acts more like a pseudo-natural transformation between

morphisms of bicategories:

Definition 5. Given double morphisms A;, A;: K — L, a horizontal transfor-

mation A: A, == A; consists of the following data:

(HTD1) A ‘components functor’ A.: Ky — L;. To simplify notation, we shall
write AX for A.X and Af for A.f;

(HTD2) A ‘pseudonaturality’ special invertible transformation

K —>[(At)17ACS] Ly sxy Ly

[Actv(As)l}J/ \U/A J/@

Ly sx¢ Ly —>® Ly,

(with components
Ax: AXRAX, - AX, ® A, X
in Ly, or, in pasting notation

AX, X4 X,
AX% 1 Ax }AXt )

A X, —ax A X,

subject to the following axioms:

18



2.4. HORIZONTAL TRANSFORMATIONS

(HTA1) The following triangles commute:

Ky
(As)o lAc (At)o
Ly —— 1L 7 Lo;
(HTA2) Given X € K, the following pastings agree:
/Aix\
A X A X
i
 Ax AX
AiIx
’ﬂeAtX
A X —T A X A X —+— AKX,
A X IAtX

(HTA3) Given (Y,X) € K; sx; K3, the following pastings agree:

As(Y®X) As(YRX)
AX 22X oAy A Az A X Myex  AZ
- A(Y®X)
AX 14x  +Aay fAy +taz AX AZ
ﬂmy,x
AtX T AtY 4A£Y—> AtZ AtX At}X AtY AiY AtZ,

Although we have asked for the ‘pseudonaturality’ special transformation A to be
invertible, we could just as easily have dropped this requirement, thereby arriving
at a notion of lax horizontal transformation. However, we shall only need the
‘pseudo’ version in this thesis, and hence shall use ‘horizontal transformation’ to
refer to this notion without further comment.

Again, the above data is rather reminiscent of that for a pseudo-natural transfor-

mation between morphisms of bicategories; and indeed, given a horizontal trans-

19



CHAPTER 2. PSEUDO DOUBLE CATEGORIES I

formation A: A, == A;, we induce a pseudo-natural transformation BA between

the morphisms of bicategories BA, and BA;.

2.5 Modifications

There are evident candidates for ‘identity’ and ‘composition’ of horizontal trans-
formations, but this structure will be neither unital nor associative on the nose.
To specify what it is unital and associative ‘up to’, we shall need the notion of a

modification.

Definition 6. Given horizontal transformations A: A, == A; and B: B, == B;,
a modification v: A = B consists of the following data:

(MD1) A pair of vertical transformations vs: As = B; (the ‘vertical source’) and
vi: Ay = By (the ‘vertical target’);

(MD2) A natural transformation v.: A. = B, (the ‘central natural transforma-
tion’). To simplify notation, we shall refer to the components of -, as ‘the

components of v4’; and write a typical such component as -y,
subject to the following axioms:

(MA1) The following pastings agree:

Ac (AS)O
T s T
K, Ye 4 —— L = K (vs)o L
Bc (BS)O
and

Ae (A¢)o
T T
Be (Bt)o
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(MA2) For all X € K7, the following diagram commutes:

AX®AX, X L AX, ® AX

(’Yt)x@"/xsl l‘YXt@(“/s)x

BtX ® BXS T BXt ® BSX

We shall notate such a modification as:

A, =2 A,

VSM (> M%

BS:tB:>Bt.

We observe that given a special modification, a: A = B, i.e., a modification «
for which a4 and a4 are identity vertical transformations, we induce a modification

between pseudo-natural transformations Ba: BA = BB.

2.6 Functor pseudo double categories

Given two weak double categories K and L, the horizontal transformations and

modifications between them form a category [K, L]:

e Identity at A: A, == A, is given by (ida)s = ida,, (ida); = ida, and
(idA)C = idAc;

e Composition §v is given by (§7)s = 0s7s, (07): = 0y, and (07)e = deYe-

It’s easy to check that this data satisfies axioms (MA1) and (MA2) as required.

Further, there are two evident projections
[K, Ll ==[K, L],
which provide data for a double category [K, L], as follows:
e The horizontal composite

(C: C, == C) ® (A: A, = C,)
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has components functor C.(-) ® A.(-), with pseudonaturality maps
(CRA)x: CX®(CX,® AX;) — (CX; ® AX;) ® A, X

given by the pasting

AX, 25 AX,
AX + Mx  +Ax,
C.X, % 0.X,
CX,+ fex  +ex,
Cth 4Ct’X—> OtXt-
Given modifications
A, =2 0, O, =%=C,
%ﬂ (r Més and &H s Héz
Bs :? Ds Ds :D‘:> Dt7

the composite modification d®-y has (6®7)s = 7s, (I®7); = d; and component
at X given by
Ox ®vx: CX®AX - DX ®BX.

e The horizontal unit Irp: I’ == F' at F has components functor Ir ), and

pseudonaturality maps (Ir)x given by
(Ir)x = FX ® Lpx, % FX 7% 1oy, © FX.

Given a vertical transformation a: F' = G, the modification I, has (I,)s =

a = (1,):, and component at X given by

IaX: IFX — ng.
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It remains to give the unit and associativity constraints for [K,L]. The special

unit modifications [4 and tp have components

([A)X = (AX: AX — IAtX ®AX
and (tA)X =TAXx: AX — AX ®IASX7

and similarly, the special associativity modification aa g,c has components
(aA,B,C)X = 0AX BX,CX - AX (%9 (BX (%9 CX) — (AX X BX) (%9 CX.

This completes the definition of the pseudo double category [K,L]. We note that
there is a sub-pseudo double category [K,L]|,, given by restricting to homomor-
phisms as objects, and taking all vertical transformations, horizontal transforma-

tions and modifications between them.

2.7 Whiskering of homomorphisms

In the theory of bicategories, given a strong transformation 3: H; = Hy: M — N
and a morphism of bicategories G: L — M, we can form a strong transformation
BG: HG = H,G: L — N.

Similarly, given a strong transformation a: F; = Fy: K — L and a homo-
morphism of bicategories G: L — M, we can form a strong transformation
Ga: GFy = GFy,: K — M. However, we cannot in general weaken this to al-
low G to be a mere morphism.

This much is well known (see [Bén67, Gra74|); the goal of the following two
sections is to given an extension of this ‘whiskering’ operation to pseudo double
categories, and to show that it is very well-behaved with respect to the 2-categorical
structure of DblCat.

Now, given a double morphism G: . — M, we know by virtue of the 2-category
structure of DblCat that we can whisker by G on either side; that is, given vertical

transformations

a: Fi=F,:K—L and (: HH = Hy: M — N
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we can form vertical transformations
Ga: GFy = GF,: K—M and pG: HiG = H,G: L — N.

What we shall do in this section is produce a similar whiskering operation on hori-

zontal transformations, and show that it is compatible with the vertical whiskering:

Proposition 7. Let G: L. — M be a double morphism. Then ‘precomposition with

G’ extends to a strict double homomorphism
(_)G: [MaN] - [L7 N]

Proof. We give ()G as follows:

. ((f)G)O: M,N], — [L,N], is given by the whiskering operation in the 2-
category DblCat. Thus we take the double morphism H: Ml — N to the
double morphism HG: . — N and the vertical transformation «: H = H’
to the vertical transformation aG: HG = H'G.

° ((f)G)l: M, N], — [L,N], is given as follows. Given a horizontal transfor-
mation A: A, == A;, the horizontal transformation AG: A,G == A;G has

components functor A.Gy (and therefore component at X
AGX: AGX —— AGX)

and pseudonaturality transformation Ag, (). Explicitly, the components of

this pseudonaturality transformation are given by
AGX @ AGX, 2% AGX, ® A,GX

in N;. The axiom (HTA1) follows from (HTA1) for A and (DMA1) for G,
whilst (HTA2) and (HTA3) follow from (HTA2) and (HTA3) for A evaluated
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2.7. WHISKERING OF HOMOMORPHISMS

at G(-). Next, given a modification

A, =2 A,

VSM ([ M%

BS:tB:>Bt,

the modification vG has (vG)s = 7sG, (vG): = %G, and (vG). = 7.Gop, and

therefore component at X given by:
(YG)x =vax: AGX — BGX.

Now (MA1) follows from (MA1) for v and (DMA1) for G, whilst (MA2)
follows from (MAZ2) for « evaluated at G(-).

Visibly, ((-)G), and ((f)G)O satisfy (DMA1), and we observe that (A ® B)G =
AG®BG and IyG = Iy, and thus (DMD3) and (DMD4) are trivial, and (DMA?2)
and (DMA3) are trivially satisfied. O

We now move on to whiskerings on the left. As for bicategories, we cannot in
general whisker morphisms with horizontal transformations on the left; we must

instead restrict to homomorphisms.

Proposition 8. Let G: L. — M be a double homomorphism. Then ‘postcomposi-

tion with G’ induces a double homomorphism
G(i): [Ku ]L‘] - [K7 M]
Proof. We give G(-) as follows:

e (G(H) ¢ K L], — [K,M], is given by the whiskering operation in the 2-
category DblCat. Thus we take the double morphism F: K — L to the
double morphism GF: K — M and the vertical transformation «: F' = F’
to the vertical transformation Ga: GF = GF’.

e (G(),: KL}, — [K,M]j, is given as follows. Given a horizontal transfor-
mation A: Ay, == A;, the horizontal transformation GA: GA, == G A; has
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components functor Gy A, (and therefore component at X given by
GAX: GAX — GAX)

and pseudonaturality transformation

K, —>[(At)17ACS] Ly sx¢ Ly

G1sx:G
[Act,(As)1] A ® e

L1s><tL1—>L1 Um My sx¢ My

-1
Glgx\ \

M, s X¢ M, M,

where we observe that the composite along the top edge is [G1(A;)1, G1Acs],
and that along the left edge [G1A.t, G1(As)1] as required. Explicitly, the
components of this pseudonaturality transformation are given by

—1
MAX,AXs GAx MAX,,AsX
_— _

GAX ® GAX, G(AX® AX,) 25 GAX, ® A,X) GAX, ® GA.X

in M;. The axioms (HTA1)-(HTAS3) follow from (HTA1)-(HTA3) for A and
(DMA1)-(DMA3) for G. Finally, given a modification

A, =2 A,

%ﬂ > ﬂ%

BS:tB:>Bt,

the modification G has (Gv)s = Gvs, (G7v): = Gy and (G7). = G17., and

therefore components
(Gy)x = Gyy: GAX — GBX.

The axiom (MA1) follows from (MA1) for o and (DMAT1) for G, whilst (MA2)
follows from (MA2) for +, naturality of mg and functoriality of G;.

Again, it’s clear that these definitions satisfy (DMA1); it remains to give the data
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(DMD3) and (DMD4). So, the special invertible modification e4: Iga = GI4 has

components
(ea)x = eax: Igax — Glax.
whilst the special invertible modification ma g: GA ® GB = G(A ® B) has com-

ponents
(ma,B)x = Maxpx: GAX ® GBX — G(AX ® BX).

That these are modifications, satisfying (MA1) and (MA2), follows easily from
(MA1) and (MA2) for A and B and (DMA1)-(DMA3) for G. It remains to check
that this data m and e satisfies (DMA2) and (DMA3), but this follows immediately
from (DMA2) and (DMAS3) for G. O

We note before continuing that G(-) and (-)G restrict to respective homomor-
phisms
(7)G: [MvN]’lZJ - []LUN]’LZJ and G(i): [K7 ]L’L/J - [K7M]I/’

2.8 Whiskering of vertical transformations

The above section gives us an ‘action’ of homomorphisms on functor pseudo double
categories (we shall see below the precise sense in which this is an action). We can
extend this action from homomorphisms to the maps between them. As before,

we begin with whiskerings on the right:

Proposition 9. Let G and G': . — M be double morphisms, and let a: G =
G’ be a vertical transformation. Then precomposition with « induces a vertical

transformation
(Ha: ()G = ()G M,N] — [L,N].

Proof. We give (—)a as follows:

° ((f)a)o has component at H € [M, N], given by the map Ha: HG — HG'
in [, N],. The naturality of these components in H is the equality

Hee g P o = na28 o groy

in DblCat;
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e ((-)a), is given as follows. Its component at A € [M, NJ, is the modification
Aa: AG = AG with

(Aa)s; = Asa, (Aa)y = Ay and  (Aa). = Acyp.

(MA1) follows from (VTA1) for o and (HTA1) for A, whilst (MA2) follows
from the naturality of A(). The naturality of the components of ((-)a), in

A follows from the equality

Ac BeG -G Al
AGo 228 A GLEEL AL G = A Gyl A1 G222 AL G

in Cat.

It’s again visibly the case that this data satisfies (VTA1); thus it only remains to
check (VTA2). We need diagrams of the following form to commute in [M, N]:

AG @ BG—— (A ® B)G Iyo —— 154G
Aa®Bo¢l J(A@B)a and IH{ lIHa
AG @ BG'—— (A & B)G/ Iy —— IHG/.

But this is immediate since both (A ® B)a and Aa ® Ba have component at X
given by
Aax @ Bax: AGX @ BGX — AG'X ® BG'X;;

and similarly, both Iy, and Iya have component at X given by

Ivay: Inex — Inex. U

Proposition 10. Let G and G': . — M be double homomorphisms, and let
a: G = G be a vertical transformation. Then postcomposition with « induces

a vertical transformation
a(-): G(-) = G'(5): [K, L] — [K, M].
Proof. We give the vertical transformation «(-) as follows:

o (oz(—))o has component at F' € [K, L], given by the map aF': GF — G'F in
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[K, M],. The naturality of these components in F' is the equality
€] Qi N NG o) = Ne] R iNe ol
in DblCat.

o (04(7))1 is given as follows. Its component at A € [K, L], is the modification
aA: GA = G'A with

(@A)s = aA;, (@A) =aA; and (aA).= ajA..

(MAT1) follows from (HTA1) for A and (VTA1) for «, whilst (MA2) follows
from the naturality of Ay and mg and the functoriality of G. The naturality

of the components of («(-)), in A follows from the equality

a1 A Gllﬁc

GiA 2 A, G

a1

GAL = AL a2 e g

in Cat.

As above this data straightforwardly satisfies (VTA1), whilst for (VTA2), the

following diagrams must commute:

GA ® GB 22, G(A ® B) Toy —" GIy
aA®aBl la(A@B) and IQI{ J/aIH
G'A®GB 4 G(A®B). Lo — Gy

But they do, since taking components at X, we reduce to instances of (VTA2) for
«. This completes the definition of a(-). O

Again, a(—) and ()« restrict to respective vertical transformations
(Ha: ()G = ()G [M,N]y, — [L, NJ,

and
o(): G) = G'(): [K, Ll — [K, M,
We make one final remark; suppose we are given a vertical transformation a: G =
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G’ in [L,M], and a modification

in [M, N], then the two modifications

AG =25 A,G AG=2= A,G

%GM e ﬂ%G ASQM Jaa HAW

B,G == B,G and AG == AG

BG BG
BSOLM LUBa ﬂBta %G/M LU—yG’ ﬂ'th’
/ 1 / !
BSG ?G‘iﬁ BtG BSG ?G‘:ﬁ BtG

in [M,N] are the same by naturality of ((~)a),; and hence we write this common
value as ya. Similarly, if we have v: A = B now in [K,L] we write oy for the
modification aB o Gy = G’y o oA in [K, M].

2.9 The hom 2-functor on DblCat,

Now, it’s not hard to see that the operations of the previous section are functo-
rial with respect to vertical transformations. To be more precise, given double

categories K, I, M and N, the above operations induce functors

[K,-]: [L, M,y — [[K,L],[K,M]]w
and [_7 N]: [LaM]vw - [[M7 N]’ [L’ N] L;zp’

along with their ‘pseudo’ restrictions

[Kaf]d): [L,M]w, - “K7 L]d’? [K7 M]w}mﬂ

and [77 N]¢: [L7M]U¢ - “M’N]@ZH [L7N]¢']mp'
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Moreover, it’s straightforward to check that the following equalities hold:

()G1)G2 = (- )(G1G2) (Dar)as = (-)(araz),
Gy (GQ )) (G1G2)(~ Qq (OZQ(*)) = (ag)(-),
(G1() G2 = Gl((f)GQ), and  (a1(-)) oo = o ((-)aw).

which can be more succinctly stated as follows:

Proposition 11. The functors [K, -] and [, N| defined above provide data for

2-functors
[K, -]: DblCat; — DblCat, and [-,N]: DblCat,’ — DblCat,
which are compatible in the sense that they provide data for a 2-functor
[-7]: DblCatZ)p x DblCat,, — DblCat,.
Similarly, the functors [K, -], and [, N],, defined above provide data for 2-functors
[K, -] : DblCat, — DblCat,, and [-,N],: DblCat;’ — DblCat,
which are compatible in the sense that they provide data for a 2-functor
[ 7]y: DblCa’cZ}p x DblCat,; — DblCat,.

Now, what are these 2-functors? Does either of the bivariant 2-functors provide
an ‘internal hom’ for DblCat,? Let us make this question precise: observe that
DblCat,, has all finite products, and thus can be viewed as a monoidal bicategory,
with the tensor product given by cartesian product. Then by an ‘internal hom’ for

DblCat,, we mean a homomorphism of bicategories
(—7): DblCatfbp x DblCat,, — DblCat,
such that for all pseudo double categories K, we have a biadjunction

(-) x K4 ({K,-).

31



CHAPTER 2. PSEUDO DOUBLE CATEGORIES I

In other words, (—,7), if it exists, exhibits DblCat,, as a biclosed monoidal bicat-
egory in the sense of [DS97]. Though we do not intend to pursue this avenue in
any detail in this thesis, it is worth making a few remarks.

Firstly, there is no good biadjunction for the ‘lax hom’ 2-functor [, 7], for the
same reason as there is no good whiskering on the left by morphisms: at some
point, we have to produce pseudo-naturality data for a horizontal transformation,
and, due to the laxity of the morphisms involved, no choice of such data exists.

Secondly, the ‘pseudo hom’ 2-functor [—, 7], does provide an internal hom in
the above described sense. We don’t intend to work through the rather messy
details here, but we do note that although both () x K and [K, -] are 2-functors,
the adjunction between them is still only a bzadjunction rather than an honest
2-adjunction. We shall note further ramifications of this more conceptual view of

the ‘pseudo hom’ 2-functor as we progress through the thesis.
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Chapter 3

Clubs 1

In this chapter, we gather together a collection of background material, recalling
some concepts and elementary results of the theory of clubs. This theory has
its genesis in work of Kelly’s in the 1970’s [Kel72a, Kel72b, Kel74b], work which
he later revisited, leading to the more abstract formulation of [Kel92]. Another
treatment of this material can be found in [Web05], whilst the related subject of
‘cartesian monads’ is treated in some detail by [Lei04al, for example.

We begin by recalling the concept of a cartesian natural transformation and an
important proposition saying that such transformations are ‘determined by their
component at 1’. We then give the definition of an (abstract) club, together with a
straightforward concrete characterisation of such gadgets. We finish by giving an
important example of a club (indeed, the motivating example), the club for sym-
metric strict monoidal categories. For further details and a different perspective

on the material of this chapter, we refer the reader to [Kel92] or [Web05].

3.1 Cartesian natural transformations

Definition 12. A natural transformation a: F' = G: C — D is called a carte-

sian natural transformation if all its naturality squares are pullbacks.

Proposition 13. Suppose that C has a terminal object 1. Then a natural trans-

formation a: F = G: C — D is cartesian if and only if every naturality square
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of the form
FX-"5F1

axl lal

GX T G1
s a pullback.

Proof. The ‘only if’ direction is trivial. For the ‘if” direction, suppose we are given

amap f: X — Y in C. We observe that in the diagram

rx L py B

QXJ. lay lal

GX 7 GY —5 Gl

the outer edge and the right-hand square are pullbacks, and thus that the left-hand

square is a pullback as required. O

3.2 The category of collections

Given an functor S: C — D, we can form the slice category [C, D]/S, which we

notate as follows:

e Objects are pairs (A4, a), where A: C — D is a functor and a: A = S is a
natural transformation;
e Maps 7: (A,a) — (B, ) are natural transformations v: A = B satsifying
pry = a.
We may consider the full subcategory of this given by the objects (A, «) where «
is a cartesian natural transformations into S. We write Coll(S) for this subcat-

egory and call it the category of collections over S. Now, we have a functor
F: Coll(S) — D/S1 which evaluates at 1:

F: Coll(S) — D/S1
(A, o) — (Al, o)

Y= 7,

34



3.2. THE CATEGORY OF COLLECTIONS

and the following proposition tells us that (for D sufficiently complete) we lose no

real information in applying F":

Proposition 14. Suppose D has enough pullbacks; then evaluation at 1 induces

an equivalence of categories Coll(S) ~ D/S1.

Proof. We construct a functor G: D/S1 — Coll(S) which is pseudoinverse to F.
Given an object (a,0) of D/S1, we give G(a,0) = (A, «) as follows. AX and ax
are given by the indicated object and arrow in the following (chosen) pullback

diagram:
AX ——a

o

SXTSL

whilst the value of A onamap f: X — Y of C is given by the unique map induced
by the universal property of pullback in the following diagram

AX%A

Y—>Sl

whose front and rear faces are pullbacks. Functoriality of A follows from the
universal property of pullback and the functoriality of S, whilst the left face of the
above diagram provides us with the naturality square for o at f. It remains to
check that « is cartesian: but the front face is a pullback, as is the outer edge of
the front and left-hand face together (since it is equal to the rear face), and thus
the left-hand face is also pullback as required.

On maps, given ¢: (a,d) — (b, ¢) in D/S1, we must give amap Gip = v: (4, a) —
(B, ) of Coll(S). We give the component of v at X as the unique map induced
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by the universal property of pullback in the diagram

AX—>a

SX%SW

whose front and rear faces are pullbacks. Visibly, we have 7 = «; it remains
only to check naturality of v. So let f: X — Y be a map in D and consider the

following diagram:
AX _— a

SY — S 1
whose front and rear faces are pullbacks. Then both 7y 0 Af and B f oyx make the
diagram commute when placed along the dotted arrow and hence by the universal
property of pullback, they must coincide.
It remains to show that F' and G are pseudo-inverse to each other. If we choose
pullbacks such that the pullback of an identity is an identity, then we have FG =

idp/s1. Conversely, suppose we are given (A, a) in Coll(S); let us write (A, &) for

GF(A,a). Then we have an invertible transformation

77(A )

\/

36



3.3. COMMA CATEGORIES AND MONOIDAL COMMA CATEGORIES

whose components are the unique (invertible) maps induced in the diagram

Al
AX Al
y }»(T](A,a))X Y‘
. )
ax AX A Al
g
SX l S1 a1
\d/‘

i
id

SX ———5—— 51

whose front and rear faces are pullbacks. Clearly aon4 o) = «, and by the universal
property of pullback, we see that 74 4) is natural in X. For the naturality of n
in (A, «), suppose we are given a map v: (4,«a) — (B, ) in Coll(S), and let us
write 4 for GF(y). Then considering the diagram

AX : Al

Nl

SX ———5— 51

whose front and rear faces are pullbacks, we see that both (1 g))x o vx and
Ax © ((a,a))x make it commute when inserted for the dotted arrow, and hence

must coincide. Thus we have 7 g) 07 = ¥ 01 4,4) as required. U

3.3 Comma categories and monoidal comma categories

Given categories C, D and E, together with functors F': C — E and G: D — E,

we can form the comma category (F' | G), which we notate as follows:

e Objects are triples (U, X, f) where U € C, X € D and f: FU — GX;
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e Maps (U, X, f) — (V,Y, g) are pairs (j, k) where j: U — V and k: X — Y

such that
FU s ax
Fjl lG‘k
FV — GY
commutes.

Now, there is a natural ‘monoidal enrichment’ of the notion of comma categories,

as follows:

Proposition 15. Given monoidal categories C, D and E, together with an op-
monoidal functor F: C — E and a monoidal functor G: D — E, the comma

category (F' | G) acquires a canonical monoidal structure.

Proof. Suppose that F' and G have (op)monoidal structure (F,ep, mp) and (G, eq, ma)
respectively; then we equip (F' | G) with monoidal structure as follows. The unit
is given by the object

FI 2155 @1,

whilst the tensor product is given as follows:
e On objects, (U, X, )@ (V,Y,q)is (URV,XQ®Y, f®g). where f ® g is the

composite

FUV) ™ FUe FV 125 GX @ GY 29 G(X ®Y).

e On maps, (j,k) ® (m,n) is simply (j ® m, k ® n); that the required square
commutes follows from the functoriality of ® and the naturality of mpr and

mg.
Unitality and associativity constraints are inherited in the evident way from C
and D:
Avx.p = (Av, Ax)
pwx.p = (v, px)

and o x.f),(v.v.g).w.zh) = (Quvw, 0xy,z)- O
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The canonicity of the monoidal structure given amounts to the fact that it has a
‘comma object’-like universal property in a certain double category. We shall not
go into the details here, but instead refer the reader to [GP04].

We shall be interested in a special case of the above, namely ‘slicing over a
monoid’: we take F to be idc: C — C and we take G to be a monoidal functor
G:1 — C. Now, giving such a G amounts to giving a monoid in the monoidal

category C, and so the above result reduces to the following:

Corollary 16. Let C be a monoidal category, and let X be a monoid in it. Then

the slice category C/X acquires a canonical structure of monoidal category.

3.4 Clubs

Suppose now that we are given a category C with all finite limits, together with a
monad (5,7, 1) on C. We can view S as a monoid in the strict monoidal category
[C, C], and so, applying the previous Corollary, we can equip the slice category

[C, C]/S with a strict monoidal structure, namely:
I=(id=2=S) and (4,a)® (B,f) = (AB=2-55-"-3).
Now, we may naturally ask whether the subcategory Coll(S) of [C, C]/S is closed

under this monoidal structure. Explicitly:

Definition 17. We say that a subcategory D of C is a monoidal subcategory
if D can be made into a monoidal category such that the inclusion D — C is a

strict monoidal functor.

Definition 18. We say that (S,7n,u) is a club on C if Coll(S) is a monoidal
subcategory of [C, C]/S.

Proposition 19. (5,7, 1) is a club on C if and only if:

1. n is a cartesian natural transformation;
2. p is a cartesian natural transformation;

3. S preserves cartesian natural transformations into S: that is, given A=="=5

. . S . .
a cartesian natural transformation, SA=2>SS is also cartesian.

39



CHAPTER 3. CrLuBs I

Proof. We begin with th ‘if’ direction. Since Coll(S) is a full subcategory of
[C, C]/S, it suffices to check that the set of objects of C'oll(S) is closed under the

nullary and binary tensor products. Now,

I=(id=59)
is cartesian by (1), and hence lies in Coll(S) as required, whilst given (A, a) and
(B, 3) cartesian, we have

58

(A,0) ® (B,3) = (AB=E-5B SS—L-9):;

the first of the arrows in this composite is cartesian since « is, the second by (3)
and the third by (2); thus the composite is itself cartesian. Thus (.S, 7, u) is a club.
For the ‘only if” direction, suppose that (5,7, i) is a club. Then we have that

I=(id=5)
and (S,id) ® (S,id) = (§5—455-+L-3)

lie in Coll(S), so that n and p are cartesian natural transformations as required.

Further, if a: A = S is a cartesian natural transformation, then
(S,id) ® (4, a) = (§5=22%55-+L=9)

is also cartesian; and since p is cartesian, we conclude that S« is also cartesian as

required. [

We observe in passing that condition (3) of the above Proposition follows a fortiori
if S happens to preserve pullbacks. Now, suppose we have a club S on a category

C; by Proposition 14, we have an equivalence of categories
Coll(S) ~ C/S1;

and thus the monoidal structure of the left-hand side transfers under this equiv-

alence to give a monoidal structure on C/S1. Let us examine more closely what

40



3.4. CLuBS
this monoidal structure is. The unit is given by
1591

whilst given objects (a, ) and (b, ¢), their tensor product is given by the left-hand

composite in the following diagram:

aQb——a

0
Sb—— 51
S¢
51
B
S1

where the upper square is a (chosen) pullback. Finally, given maps g: (a,0) —
(a’,0") and h: (b,¢) — (b,¢') in C/S1, the map g ® h is given by the dotted arrow

n
a®b a
o
a a’
0
Sb & S1 0’
id
S k \
SS1 SY = S1
M1 \ S¢’
S1 SS1
\ H1
id
S1

induced by the universal property of pullback; as evidenced by the left-hand face,
this map is indeed a map of C/S1.
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CHAPTER 3. CLUBS I
3.5 The club for symmetric strict monoidal categories

We shall now give an example of a club on Cat, namely that for symmetric strict
monoidal categories. This is the structure for which the concept of club was first
brought into being (see [Kel72a, Kel72b]), and has been considered by many au-
thors since — see [Lei04al, or [BD98] for an application very much in the spirit of

this thesis.

Definition 20. We write S1 for the category of ‘finite cardinals and bijections’,
with:

e Objects the natural numbers 0,1,2,...;
e Maps o: n — m bijections of {1,...,n} with {1,... ,m},
and with composition and identities given in the evident way.

Definition 21. The free symmetric strict monoidal category 2-functor S: Cat —

Cat is given as follows:
e On objects: Given a small category C, we give SC as follows:
— Objects of SC are pairs (n, (¢;)), where n € S1 and ¢y, ..., ¢, € obC;
— Arrows of SC are
(0, (g:)) : (n, (ci)) — (m, {ds)),
where o € S1(n,m) and g;: ¢; — do(;) (note that necessarily n = m).
Composition and identities in SC are given in the evident way; namely,

and (7, (g:)) o (0, {fi)) = (T © 0, {go(s) © fi)).

e On maps: Given a functor F': C — D, we give SF': SC — SD by

SF(n,{c;))
SF(o,(9:))

(n, (Fei))
(0, (Fgi))-
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3.5. THE CLUB FOR SYMMETRIC STRICT MONOIDAL CATEGORIES

e On 2-cells: Given a natural transformation a: F' = G: C — D, we give

Sa: SF = SG: SC — SD by

(Sa) ey = (idn, (ae;))-

Now, although the above description suffices to describe the iterated functor
S2?: Cat — Cat, it will be much more pleasant to work with the following al-

ternative presentation. We first describe S?1 as follows:

e Objects are order-preserving maps ¢: ny — mg, where ng, my, € N. We
write such an object simply as ¢, with the convention that ¢ has domain and

codomain ng and my respectively.

e Maps f: ¢ — 1 are pairs of bijections f,,: ng — ny and f,,: my — my, such

that the following diagram commutes:

ng % my

o v

m¢ ? md,.

It may not be immediately obvious that this s a presentation of S?1. The picture
is as follows: an object ¢ of S?1 is to be thought of as a collection of n, points
partitioned into mgy parts in accordance with ¢. Given such an object, one can
permute internally any of its my parts, or can in fact permute the set of m parts

itself; and a typical map describes such a permutation. For example, the objects

¢:5—4 Vv:bh—4
1,2,3,4,5—1,1,3,4,4 1,2,3,4,5—2,2,3,4,4

should be visualised as

[[e,e],[],[e],[e,e]] —and [[],[ee] ,[e] [0 e]]
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respectively, whilst a typical map ¢ — 1 is given by

fn:H5—5 fm:4d—4
1,2,3,4,5—5,4,3,1,2 1,2,3,4+—4,1,3,2

and should be visualised as

So now, given a category C, we can present S2C as follows:

e Objects of S*C are pairs (¢, (¢;)), where ¢ = ny — mg € S*land ¢4, ..., ¢,
ob C;

e Arrows of S2C are

(f:{9:)): (9, (ci)) — (¢, (d)),

where f = (fn, fm) € S?1(¢, %) and g;: ¢; — dy, (); composition and identities

are given analogously to before.

We can extend the above in the obvious way to 1- and 2-cells of Cat to give a
presentation of the 2-functor S2. Using this alternate presentation of S?, we may

describe the rest of the 2-monad structure of S:

Definition 22. The 2-natural transformation 7: idcat = S has component at C

given by

nc: C — SC
z = (1,(x))
[ (idi, (),
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whilst the 2-natural transformation p: S? = S has component at C given by

ng: SSC — SC
(@, {ci)) = (ng, (ci))
(f(9i)) = (fns {9:)).

Proposition 23. (5,7, 1) is a club on Cat.

Proof. 1t’s a straightforward calculation to check that all the naturality diagrams
for n and p are pullbacks, and that S preserves all pullbacks. Hence, by Proposition
19, S is a club. O

Before moving on, let us note that we can give a presentation of S* in a similar

style to above, which will come in useful later. We give S®1 as follows:

e Objects are diagrams ¢ = ngy o, Mg o, T4 in the category of finite ordinals

and order preserving maps;

e Maps f: ¢ — 1) are triples (f,, fm, fr) of bijections making

ng Ly

¢1l ld)l
fm

Mg =—— My

ol e

Ty — Ty
¢ 7 P
commute.

And then present S®C as follows:

e Objects of S*C are pairs (¢, (c;)), where ¢ = ny — my — ry € S*1 and
Cly- -5 Cn, €0DC;

e Arrows of S2C are
(f(9:)): (9, {ci)) — (¥, (di)),

where f = (fu, fm, f+) € S3l(¢,¢) and g;: ¢; — dy, i)
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As before, we can now straightforwardly extend this definition to 1- and 2-cells of

Cat.
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We wish to extend the theory of the previous chapter to pseudo double categories,
but before we can do so, we shall need to establish double category analogues of

the following notions:
e ‘slice category’;
e ‘cartesian natural transformation’;
e ‘category of collections’;
e ‘equivalence of categories’;
e ‘monoidal category’;
e ‘monoidal functor’;
e ‘monoidal structure of the endohom category’; and
e ‘monoidal slice category’.

In this chapter we shall tackle the first four of these. The details of ‘slice double
categories’ and the more general ‘comma double category’ are already known, and
can be found in [GP04], whilst the generalisation of ‘cartesian natural transforma-
tion” is completely natural. Some care is needed for the concept of ‘category of
collections’; whilst the characterisation of ‘equivalent pseudo double categories’ is
almost self-evident, but does not appear to have been given explicitly before.
Henceforth, we shall assume without further mention that K and L. are pseudo

double categories such that:
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CHAPTER 4. PSEUDO DOUBLE CATEGORIES II

e K has a double terminal object; that is, an object 1 € K such that 1 is

terminal in Ky and I; is terminal in K7;

e [, and L have all pullbacks and are equipped with a choice of such; and

furthermore, that s and t preserve these choices of pullbacks strictly.

This strict preservation condition might appear rather strong at first, but as we

shall see later, in all cases of interest to us, it is perfectly natural.

4.1 Comma double categories

We begin by extending the notion of comma category from plain categories to dou-
ble categories. Like the notion of monoidal comma category, the notion of ‘comma
double category’ enjoys a comma object-like universal property, which again is
fully explored in [GP04]. We shall merely recap the details of the construction.
Given pseudo double categories K, I and M, together with a double opmorphism
F: K — M and a double morphism G: . — M, we may form the comma double

category (F' | G) as follows:
o (FlG)=(F|G);
o (F | Go=(Fo | Go);

e s and t are given by
s(U, X, f) = (Us, X5, [), s(J, k) = (s, ko),
t(U, X, f) = (U, Xy, fr), and t(j, k) = (ji, k).
e I is given as follows:
— On objects, Iiy,x,5) = (I, Lx, L), where I, is the composite

Fly 25 Ty I, Iox ~ Gly;

— On maps, I = (I;,11); the required square commutes by functoriality

of T and naturality of e.
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e ® is given as follows:

— On objects, (U, X, f)®(V,Y,g)isgiven by (UV,X®Y,f®g), where
f ® g is the map

FUeV) ™Y, FU® FV 25 X 9 GY 25 G(X @ Y);

— On maps, (j,k) ® (m,n) is given by (j ® m, k ® n); the required square

commutes by the functoriality of ® and the naturality of m.

e The natural transformations [, v and a providing (DD6)—(DD7) are specified
by

lux,s = (lu, x)
Ywuxf = ('CU, ‘Cx)

and QU,X,f),(V,Y,g),(W,Zh) = (ClU,V,W, ClX,Y,z)

That the required squares commute for these to be maps follows straightfor-
wardly using (DMA2) and (DMA3) for F' and G and the functoriality of I
and ® for M.

It’s immediate that this data satisfies (DA1) and (DA2), whilst (DA3) and (DA4)
follows from (DA3) and (DA4) for K and L together with the functoriality of I’
and G.

Again, we shall be interested in a special case of the above, this time where F
is the identity homomorphism idg: K — K and G is a double morphism 1 — K
(for 1 is the terminal double category). Now, such a functor G amounts to giving

a monad in the double category K. Explicitly:

Definition 24. A monad in the pseudo double category K consists of:
e An object X in Ky;
e An object X: X —+ X in Kj;

e Special maps

m XX —->X and e:Ix — X
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subject to the commutativity of the usual unitality and associativity dia-

grams:
X X Iy 0X XXX @Iy
idxl Je@idx , idxl Jidx(@e
X7 XX X7 XX
X®XoX)—XX (XeX)eX.
idx®ml Jm@idx
and  x o X X ® X

S

(Note that this is the same as giving a monad in the bicategory BK.) It follows
from the previous section that we can form the comma double category (id | X),
which we shall notate as the slice double category K/X. Let us now describe the
monad we shall need for the theory of double clubs. We begin with the following

straightforward result:

Proposition 25. Given a pseudo double category K and an object X € K, the

functor "X : 1 — Kq extends to a double homomorphism TIx7: 1 — K.

Proof. To give TIx7 is to give an ‘iso-monad’ in K whose multiplication and unit
are invertible; for this we take Iy: X —— X, with multiplication and unit given
by

m:[f;:tf;IIx®Ix—>1X and ezidlinX%Ix. L]

In particular, given a double homomorphism S: K — 1L, we can consider the object

idg € [K, K]y, and therefore form the double homomorphism
o ~
1 —% K, Ky 2 [K, L.

This gives us a monad ST in [K, L],, and so we can form the slice double category
[K,L],/SI. Similarly, we can form the double monad SI; corresponding to the
homomorphism

1 Uk S
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and therefore the slice double category IL/ST;. Now, since we shall be using the
double category [K, L], /ST extensively in the next chapter, it’s probably worth

giving an elementary description of it here. It has:

e Objects (A, a) given by a double homomorphism A: K — L together with

a vertical transformation a: A = S,

e Vertical maps v: (A, «) — (B, ) given by vertical transformations v: A =
B such that the diagram

A=———28B
N\ /4
S
commutes;
e Horizontal maps (A, a): (As, as) —— (Ay, oy) given by pairs (A, a) where

A is a horizontal transformation and a a modification as follows:

A, =2 A,

asu e ﬂat

=5

o Cells
Ao
(Ae 00) 2% (4, 00)

v{ | J%

( s;ﬁs) (B,8) (Bbﬁt)

are transformations «v: A = B such that the diagram

AEB

WA

commutes;

o1



CHAPTER 4. PSEUDO DOUBLE CATEGORIES 11
e Horizontal identities given on objects (A, a) by
1,
I(A@) = IAEIséSI

(where e is the unit of the monad ST, with components ey : Isx — SIx), and
on maps 7: (4,a) — (B, 8) by

IAEB

Ecx %ﬁ

e Horizontal composition given on objects by
(A, ) @ (A, o) = (A ® A/=22255T @ ST=—="=5T)
(where m is the multiplication of the monad SI, with components

-1
mpy 1y Sl

my = STy ® STy —5 Iy ® Iy) —% SIy ),

and on maps by

AR A/ % B B
mo(a®a’ mo(BRA)
ST.

4.2 The double category of collections

We should now like to restrict from the full slice category [K, L], /ST to something
aping the category of collections. However, before we can do this, we need to know
what we should be restricting to: in other words, we need an analogue of cartesian

natural transformation:
Definition 26.

o A vertical transformation «: F' = G: K — L is called a cartesian vertical
transformation if the natural transformations «;: F; = G, and ag: Fy =

Gy are cartesian;
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e A modification v: A = B is called a cartesian modification if v, and ; are
cartesian vertical transformations and the natural transformation ~.: A. =

B, is cartesian.
So, the double category of collections Coll(S) should have:

e Coll(S)p being the full subcategory of ([K,]L]w/SI)O whose objects are the

cartesian vertical transformations into S

e Coll(S); being the full subcategory of ([K,L],/SI), whose objects are the

cartesian modifications into ST,

with the remaining data inherited from the double category [K,L],/SI. In order
for this to make sense, we need Coll(S) to be closed under the horizontal units
and composition of [K, L], /ST, and this is not automatic. In fact, it requires S to

have the following property:

Definition 27. Let S: K — L be a double homomorphism; we say that S has
property (hps) (horizontal pullback stability) if it satisfies:

e Property (hpsl): given horizontally composable pullbacks

/

A L B A/ b1 B’
Py f and p, £
SC——45— ST, sc’ — STy,

in Ly, the diagram

AoA—" pop

PLOP, f'of

is a pullback in Lq; and
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e Property (hps2): given a pullback

A B
pQB hf
SC——5—+ 51

P1
_—

in Ly, the diagram

is a pullback in L;.

Proposition 28. Given a homomorphism S: K — L with property (hps), the
categories Coll(S)o and Coll(S); provide data for a pseudo double category whose
remaining data is inherited from [K, L], /ST.

Proof. We must check that the horizontal units of [K, L], /ST are cartesian mod-
ifications, and that the horizontal composition of two cartesian modifications is
another cartesian modification. For the first of these, given (A, ) € Coll(S), we

have I 4,4) given by the modification
Taa = Ii==Ts=55T;

so consider the diagram

Lay
Iix —— 1

I

S!
Isx —— 151

S1 5'e T S Il.
It follows from property (hps2) and the cartesianness of « that the top square is a
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pullback; and the lower square commutes, and so is a pullback since both vertical
arrows are isomorphisms. Thus the outer edge is again a pullback, and so I, is
cartesian as required.

For the second, suppose we are given horizontally composable objects (A, o)
and (B, 3) of Coll(S);; we must show that the modification

A @ B=222. 5T @ ST=—"- 51

is also cartesian. So consider the diagram:

AX @ BX 222, A1 @ B1
ax®Bx a1®B4

mx my

The upper square is a pullback by property (hps2) and the cartesianness of o and
(; the lower square commutes and has isomorphisms down the sides, and hence is

a pullback. So the outer edge is also a pullback as required. O

4.3 Adjunctions and equivalences

Now, we aim to imitate the equivalence of categories Coll(S) ~ D/S1 at the
pseudo double category level, and to do this, we need a suitable notion of ‘equiva-
lence of double categories’. There is an obvious candidate for this, namely equiv-
alence in the 2-category DblCat,; so in this section, we give an elementary char-
acterisation of such equivalences.

In fact, for very little extra effort, we can garner significant extra generality by
giving a characterisation of adjunctions in DblCat. A well-known result in the
theory of monoidal categories [Kel74a] says that to give an adjunction in MonCat,
the 2-category of monoidal categories, lax monoidal functors and monoidal trans-

formations, is to give an adjunction between the underlying ordinary categories in
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Cat for which the left adjoint is strong monoidal.
We shall produce a direct generalisation of this to pseudo double categories, for
which we need an analogue of ‘underlying ordinary category’; more precisely, we

need an appropriate analogue of the 2-category Cat:
Definition 29. We write DblGph for the 2-category [e——=e, Cat].
Explicitly, DblGph has:

e Objects being ‘double graphs’ K, that is, diagrams of the form Kl%[(o

in Cat, subject to no further conditions;

e Maps F': K — L being ‘maps of double graphs’, that is, pairs of functors
Fy: Ky — Lg and Fy: K; — L compatible with source and target:

sFy = Fys and tF) = Fyt;

e 2-cells a: F = G being ‘transformations of double graphs’, that is, pairs
of natural transformations aq: Fy = Gy and «y: F; = G, compatible with
source and target:

sa; = aps  and  tag = agt.

There is an evident 2-functor U: DblCat — DblGph which ‘forgets horizontal

structure’.

Proposition 30. Giving an adjunction F' 4 G: L. — K in DblCat is equivalent
to giving an adjunction F 4 G: UL — UK in DblGph together with the structure

of a double homomorphism on F.
Let us spell out explicitly what the right hand side of the above amounts to:
e A double homomorphism F': K — L;

e A map of double graphs G: L — K,

e Adjunctions Fy 4 Gy and F; - G; with unit and counit (79, €y) and (n1,€;)

respectively,
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such that
F1Gy FoGo
~ s s ~
Ly o Li—=2Ly = Li—=Ly | Lo
~__ t t ~__
id id
and
id id
PR s s ~
Ky |mKi—=K, = K —ZK; {mwK,.
~__ "7 t t ~_ 7
G Fy GoFo

Proof. On an abstract level, this proof runs as follows: the 2-functor U: DblCat —
DblGph has a left 2-adjoint F', which gives the ‘free double category’ on a given
double graph. Now, the 2-category of strict algebras and strict algebra maps for
the induced monad UF on DblGph is precisely the 2-category of strict double
categories, whilst the 2-category of pseudo-algebras and lax algebra maps is al-
most the 2-category DblCat; more precisely, it is the 2-category of ‘unbiased’ (in
the sense of [Lei04a]) pseudo double categories, which come equipped with n-ary
horizontal composition functors for all n. As in the bicategorical case, it is not
too hard to show that this notion is essentially equivalent to the ‘biased’ notion of
pseudo double category that we have adopted.

Now, the 2-category DblGph is complete and cocomplete as a 2-category, and
hence by Section 6.4 of [BKP89], there is a 2-monad 7" on DblGph whose strict
algebras are precisely the pseudo algebras for the composite monad 7" = UF'.
Thus, we have a 2-monad 7" on DblGph whose category of strict algebras and
lax algebra maps can be identified with DblCat.

But now we are in a position to apply Kelly’s ‘doctrinal adjunction’; by Theorem
1.5 of [Kel74a], to give an adjunction in DblCat is precisely to give an adjunction
between the underlying objects of DblGph for which the left adjoint is a pseudo
map of T"-algebras; and to give such a map is essentially the same thing as giving
a homomorphism of pseudo double categories.

Now, there are many details missing from the above, and rather than attempt to
fill them in, it will be easier to give a direct proof following [Kel74a]. So, suppose
first we are given an adjunction UF 4 UG in DblGph for which the left adjoint
is a double homomorphism; then it suffices to equip G with data (DMD3) and
(DMD4), satisfying (DMA2) and (DMAS3), and to show that n = (n,7:) and
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e = (€o, €1) satisfy (VTA2) with respect to it. So, suppose that F' has comparison

transformations
Ky sx¢ K o Ly sx4 Ly KOLLO
®l fm l@ and Il e ll
Kl 2 Ll Kl T Ll

Then we give the comparison transformations for G as the mates

G1sx:G1 Go
T,

Ly ¢x¢ Ly Ky ox¢ Ky Ly—— K,
®l Jm—T l@ and Il Ve ll
L1 IR Kl L1 TKl

of m™! and e~! under the adjunctions Fyy 4 Gy, Fy 4 Gy and Fy %, F} 4 G %, G.
Explicitly, the components of these transformations at (X,Y) and X respectively

are given as follows:-

GX®GY Iox
NGXeGY Mgy
GF(GX® GY) GF(Igx)
Gmex ey and Gey!
G(FGX ® FGY) GFGIx
G(ex®ey) Gery
GX®Y) GIx.

That this data satisfies (DMA2) and (DMA3) follows automatically from (DMAZ2)
and (DMA3) for F' and the functoriality of mates, and it’s now a straightforward
exercise in the calculus of mates, following [Kel74al, to show that n = (19, 7;) and
€ = (e, €1) satisfy (VTA2) with respect to this data. Thus G becomes a double
morphism and 7 and € become vertical transformations, and so we can conclude
that we have an adjunction in DblCat as required.

Conversely, any adjunction (F,G,n,¢€) in DblCat gives rise to the data speci-

fied above; we need only check that F' is a homomorphism, i.e., that its special
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comparison maps are invertible. Suppose that the comparison maps for G are m'’
and ¢’; then it’s easy to check that their mates m’ and ¢ furnish us with inverses

for m" and ¢’ (explicitly, these inverses are given by

FX®Y) FlIy
F(nx®my) Flyx
F(GFX® GFY) Flarx
Fulpy py  and Fey
FG(FX ® FY) FGIpx
EFXRFY Ipx
FX®FY Lpx.)

The only thing remaining to check is that these two processes are mutually inverse.
Suppose we are given an adjunction (F, G, 7, €) in DblCat; then we must show that
we can reconstruct this adjunction from the underlying adjunction in DblGph
together with the data for F'.

This amounts to checking that the special comparison maps we produce for G
are the ones we started with; but this is immediate, since we take them to be m—1
O

and e, which are m =m' and ¢ = ¢ as required.

Corollary 31. Suppose we are given double categories K and L, and:
o A double homomorphism F: K — L;
e A map of double graphs G: L — K

together with natural isomorphisms n;: idg, = G;F; and €;: F;G; = idg, (i =0,1),
such that

F1G1 FOGO

~ s s R
Ly o Li—=2Ly = Li— 2Ly | Lo
t t ~__
id id
and

id id

FR s s ~
K |mKi—2Ky, = K 2Ky |nK,.

~__ t t ~_
G1Fy GoFo

Then K and IL. are equivalent in DblCat,.
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Proof. To give this data is to give an equivalence in DblGph, so by replacing
€, and €y, we can make this into an adjoint equivalence in DblGph. Now, ap-
plying the previous result, we get an (adjoint) equivalence in DblCat; but now
we note that the comparison special maps for G will be invertible, since they are
constructed from a composite of invertible maps, and hence that our equivalence

is an equivalence in DblCat,, as well. O
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We now move on to give double category analogues of the remaining notions listed
in the previous chapter We begin by defining ‘monoidal double category’ and
‘monoidal double morphism’. From an abstract viewpoint, we can view these as
being derived from the theory of bicategories enriched in a monoidal bicategory
as developed by [Car95] and [Lac95]: indeed, a monoidal double category can be
seen as a one-object bicategory enriched in the (cartesian) monoidal bicategory
DblCat,, and a monoidal double morphism as a suitable map between such.

Next, we show that the ‘endohom’ double category [K, K], is a canonical exam-
ple of a monoidal double category. Again, there is a more abstract view available:
recalling the remarks following Proposition 11, the monoidal bicategory DblCat,,
is in fact a biclosed monoidal bicategory, and thus becomes a monoidal bicate-
gory ‘enriched over itself’” (see [Lac95]). From this viewpoint, the double category
K, K], automatically acquires a monoidal structure, since it is the hom-object
from K to K in the DblCat,-enriched bicategory DblCat,. However, we shall
not pursue this more abstract level here, partly for reasons of brevity, and partly
because the extra abstraction would be more of a hindrance than a help later on,
when we will need to utilise these constructions in a hands-on manner.

Lastly in this chapter, we deal with the notion of ‘monoidal slice double category’
and its more general relative, the ‘monoidal comma double category’. In particular,
we shall see that, given a ‘monad on a pseudo double category K’, by which we
mean a monad (5,7, 1) on K in the 2-category DblCat,, the slice double category

[K, K], /ST acquires a natural structure of monoidal double category.
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5.1 Monoidal double categories

Recall that the 2-category DblCat,, has finite products, given in the obvious way,

and hence is a (cartesian) monoidal bicategory. Thus we can define:
Definition 32. A monoidal double category is a pseudomonoid in DblCat,.

Proposition 33. Giving a monoidal double category K is equivalent to giving a

double category K such that
o Ky is a (not necessarily strict) monoidal category, with data (eg,"e7, g, Ao, po);

e K is a (not necessarily strict) monoidal category, with data (e1,7€7, v, A1, p1);

The functors s and t: Ky — Ky are strict monoidal;

The functors 1. Ky — K; and ®: K 4x; K1 — K;i are strong monoidal
(where we observe that Ky ¢x; Ky acquires a monoidal structure via pullback

along the strict monoidal functors s and t);

The associativity and unitality natural transformations a, [ and v for K are

monotidal natural transformations.

Proof. Giving a pseudomonoid in DblCat,, is equivalent to giving a double cate-

gory K equipped with homomorphisms
o KxK—-K and e:1—-K

and vertical transformations

K&KXK&K KxKxK—>idX® K x K
A p
— lo ~ and ®><idl on lo
id id
K KxK——K

satisfying pseudomonoid coherence laws. Let us work through the data and axioms

that this involves:

e The data (DMD1) and (DMD2) for e and e and the data (VTD1) and (VTD2)

for o, p and A together with the pseudomonoid coherence laws are equivalent
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to giving data
(K(]a.()yl—e—l?ao;)\o;p()) and (Kla.bre—lJO‘hAhpl)

for two monoidal categories;

e The axiom (DMAL1) for e and e and the axiom (VTA1) for a, p and A amount

to the following equalities:

s(X o1 Y) = X, Y, HX oY) = X, 0 Y,
s(Fe G) = F. e G, H(F e G) = F oG,
s(e)=¢e tle)=e
s((a)x.v.z) = (@0)x, v, 2 t((a)xyz) = (a0)x. vz
s((M)x) = (Mo)x, t(AM)x) = (No)x,
s((p1)x) = (po)x, t((p1)x) = (po)x,

which say that s and ¢ are strict monoidal functors;

e The data (DMD3) and (DMD4) for e and e amount to giving invertible special
maps
kW,X,Y,Z: (W.X) & (Y.Z) — (W@Y) L (X@Z)

in K7, natural in (W, X,Y,Z) € (K; X K}) sxsXixt (K1 X Kj), invertible
special maps

Uxy - Ivex — Iy o Ix

in Ky, natural in (X,Y) € K x Ky, and invertible special maps
ke:e®e —e and wu.:I. — e,

whilst the axioms (VTA2) and (VTA3) for a, p and A amount to the com-

mutativity of the following diagrams:
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ax’yyz®0éx/yyl‘zl

(Xe(YeZ)® (X o (Y 0Z')) (XeY)eZ)® ((X'oY')eZ)

kx. (Yez) X! (Y'eZ!) k(xeY),z,(X'eY"),Z’

(X®@X')e((YoZ)® (Y eZ')) (XeY)® (X' oY) e (Z®Z)

(X®X')oky 7 v/ 77 kx v, x/ v/ *(Z®Z')

(X@X')e((Y®Y')e(Z®Z)) XX )e(YRY'))e(Z®Z))

XXX (YRY'),(ZRZ') ((

IO’X,Y.,Z
Ixe(vez) — > I(xev)ez
UX YeZ UXeY,Z
Ixelyes Ixey oIz
Ixeuy 7 “X,Y‘IZ

Ixo(Iyolz)%(Ix OIy)OIZ

Mx Ty Iz
XY XY L (ceX)® (esY) XY XY (Xee)®(Yee)
AX®Y ‘/ke.x,e,\’ PXRY ‘/kx,e,Y,e
eo(X@Y)W)(e@e)o(X@Y) (X®Y)oem(X®Y)o(e®e)
Ix IA%}(Ieox Ix I,J%XIX.@
My Ue,x Ly ux,e
eoIXTIeon IxoeTIXoIe.

Taken together, this data is equivalent to saying that I and ® are strong
monoidal functors with respect to the monoidal structures on Ky and Kj.
(To be precise, the information presented above says that I and ® are strong

opmonoidal functors; but this is an equivalent notion, since we may pass from
k and u to k="' and u™!.)

e The axioms (DMA2) and (DMA3) for e and e amount to the commutativity
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of the following diagrams:

IXey

XeY Ix,ev; ® (X oY)

[xoly ux,, v, ®(XeY)

(IXt ® X) ° (IYt ®Y) S (IXt d IYL) ® (X .Y)

kIXt,IYt,X,Y

TXeY

XeY (XeY)RIx, ey,

tx ety (XeY)Qux, v,

X@Ix,)e(YRILy)t——— (XeoY)® (Ix, oIy,)

kX, v 1x, 1y,

OXeX’',YeoY/ ZoZ'

(XeX)® ((Y oY) )R (Ze Z/))
(XoX")®ky v/ 7 7/
XeX)®((Y®Z)e (Y ®Z))

kx %!, (Y®z),(Y' @2")

(X®(Y®Z)e(X' ® (Y ®Z))

le
e——I.®e

ide

e#e@e

AX,\Y,ze4x/ v/ z/

(XeX)®(YoY'))®(ZeZ)
kx x/, v,y ®(ZeZ')
((X RY)e(X'® Y/)) ®(ZeZ")

kxeY),(x'@Y’),z,2!

(X®Y)®Z)e (X' @Y )®Z)

e— < sexl,

eQue

e#e@e
e

e®(e®e) (e®e)®e
eQke ke®e
ex®e e®e
ke ke

e
which taken together say that a, [ and v are strong monoidal transformations
with respect to the data given above. (Again, more precisely this data says

that they are strong opmonoidal transformations; but as before these are

65



CHAPTER 5. PSEUDO DOUBLE CATEGORIES III

equivalent notions, since we may pass from k and u to k= and u™1.) O

5.2 Monoidal double morphisms

We now consider the most appropriate notion of map between monoidal double
categories. Such a map need not be a homomorphism of pseudo double categories,
and therefore it will not do to ask for a map of pseudomonoids in DblCat,,.

However, we observe that the 2-category DblCat also has finite products, and
that the inclusion DblCat, — DblCat preserves them. Hence we can view a
monoidal double category a fortiori as a pseudomonoid in DblCat, and thus
define:

Definition 34. A monoidal double morphism between monoidal double cat-

egories K and LL is a (lax) map of pseudomonoids K — L in DblCat.

Proposition 35. Giving a monoidal double morphism F: K — 1L is equivalent to

giving a double morphism F: K — 1L such that
e Fy and Fy are lax monoidal functors;

o The equalities sFy = Fys and tFy, = Fot hold as equalities of lax monoidal

functors;

e The natural transformations
m: F1(7)®F1(?) —>F1(*®?) and e: IFO(,) —>F1(I(,))

are laxz monoidal natural transformations (where we observe that all the func-
tors in question are indeed lax monoidal functors; for instance, Fi(-) ® Fi(?)
18 the composite

Fisx¢Fy
—

Ky sx¢ K LlthngLl

which is the composite of a lax monoidal and a strong monoidal functor as

required).

Proof. Giving a lax map of pseudomonoids K — L in DblCat is equivalent to

giving a morphism of double categories F': K — IL equipped with vertical trans-
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formations:
| =——1 KxK—" 5L xL
l {me l J [ l
K——F—L K———L,

satisfying pseudomonoid map coherence axioms. Let us work through this data

and see what it amounts to:

e The data (DMD1) and (DMD2) for F, the data (VITD1) and (VTD2) for m,
and m, and the pseudomonoid map coherence laws are together equivalent to

giving coherent data
(F07m67m0) and (F17me7m1)

for lax monoidal functors Fy: Ky — Lo and F}: K; — Lq respectively;

e The axiom (VTA1) for m, and m corresponds to the equalities

s((m1)x,y) = (mo)x..v. t((m1)x,y) = (Mmo)x..v,

s(me) = M t(me) = me

which say that the equalities sF} = Fys and tF} = Fyt hold as equalities of

lax monoidal functors.

e The axioms (VTA2) and (VTA3) for m. and m correspond to the commuta-

tivity of the following diagrams:

kFW,FX,FY,FZ
) ————

(FW e FX) ® (FY o FZ FW ® FY) e (FX ® FZ)

mw,x®mY,zJ me Yomx z
F(W eX)® F(Y ¢ Z) FIW®Y)e F(X®Z)
mWoX,YoZJ JmW(@Y XRZ

F(WeX)® (Y eZ)) F(W®Y)e(X®1Z))

Fkw x,v,z
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UFX,FY

Irxery —— Irx ® Ipy e®eLe P
ImX,Y J J/eX oey Me ®meJ/ I J/
IF(X.Y) Flx e Fly Fe® Fe Me Ir. Me
QXQYJ JmIX,Iy me,eJ/ eeJ/
FIX.ymF(IXOIy) F(e®e)?keFe FIeﬁFe

which say precisely that m and e are lax monoidal transformations (again,

once we have first passed from k and u to k=% and u™?). O

We can define in the evident way notions of monoidal double homomorphism,
opmonoidal double morphism, opmonoidal double opmorphism, and so on. Let us
also note the correct notion of vertical transformation between monoidal double

morphisms:

Definition 36. A monoidal vertical transformation between monoidal double

morphisms F', G: K — L is a pseudomonoid transformation /' — G in DblCat.

Proposition 37. Giving a monoidal vertical transformation o: F' = G is equiva-
lent to giving a vertical transformation . F' = G such that oy and aq are monoidal

transformations.

Proof. The equalities of pastings required for a to be a pseudomonoid transforma-
tion are easily seen to be equivalent to the equalities of pastings required for «y

and «; to be monoidal transformations. O

Straightforwardly, monoidal double categories, monoidal double morphisms and
monoidal vertical transformations form a 2-category MonDblCat; and we have

obvious variant 2-categories MonDblCat,,, OpMonDblCat, etc.

5.3 The monoidal double category [K, K],

Given a small category C, the endofunctor category [C, C]| acquires a structure
of monoidal category. We shall see in this section that a similar result holds for
pseudo double categories, namely, that the endohom double category [K, K], is

naturally a monoidal double category.
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As we noted above, if we were to prove that the 2-functor [, 7]y: DblCat?pp X
DblCat, — DblCat, was indeed an ‘internal hom’ for the monoidal bicategory
DblCat,, then this result would follow from general principles (see [DS97]). How-
ever, since we have not proved this, and since it will be useful to see an explicit
description of the monoidal structure on [K,K],, we proceed by a ‘bare hands’
approach. Analogous with the bicategorical case, there are two canonical choices

for the composite of two horizontal transformations
A: A, = A;: K—K and B: B, == B;: K — K,

namely

AtB ® ABS and ABS ® AtB

And, as for bicategories, it makes no material difference which of these we choose:

Proposition 38. There are canonical invertible special modifications
ia: AAB® AB; = AB, ® A,B,

natural in A and B.

Proof. We take i5 g to have central natural transformation Ap, ); so the compo-

nent of i g at X is given by
Apx: AABBX ® AB, X —- AB, X ® A\BX.

Visibly this satisfies (MA1), whilst (MAZ2) is a long diagram chase using the axioms
(HTA2) and (HTA3) for A and B. For the naturality of these maps in A and B,
suppose we are given modifications a: A = C and 8: B = D. Then we require

the following diagrams to commute for all X € Kj:

ABx ®A(Bs (at)Dx®apg
—

ABX ® AB, X ) ADX ® AD,X % CDX ® CD,X

ABX‘/ ‘/ADX ‘/CDX

ABSX X AtBX W ADSX (059 AtDX m CDSX X CtDX
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But the left-hand square is a naturality square for Ay whilst the right-hand square

is axiom (MA2) for «; and hence we are done. O

These transformations are canonical in the sense that they satisfy pasting equali-
ties formally similar to those for the ‘middle-4 interchanger’ in a Gray-category.
Though we shall not spell out these pasting equalities in their full generality, we
shall be using them implicitly in what follows to assert the commutativity of cer-

tain diagrams.
Proposition 39. The double category [K, K]y is a monoidal double category.
Proof.

e Monoidal structure on [K,K],;: Observe that this is the hom-category
DblCat, (K, K) in the 2-category DblCat,, and hence is equipped with a

strict monoidal structure.
e Monoidal structure on [K, K],,: We take for the tensor unit e, the object
e =1I,:1id == id.
The tensor product is given as follows:
— On objects: given A: A, == A; and B: B, == B;, we take
AeB=AB, ® AB: A,B, == A.B;.

Explicitly, this has components

AsBX AB: X

(A L B)(X) = ASBSX AthX%AtBtX.

— On maps: Given a: A = C and 8: B = D, we take
a.ﬁ: aﬁt@)asﬁ: ABt®ASB 3 CDt®CSD

The functoriality of e is immediate from the functoriality of ® and of the

whiskering operations. We must now exhibit the unitality and associativity
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coherence constraints in [K, K],,. For unitality, we have that

eOA:IidAt(XJA
AQGZA@ASIid

and hence we give pa and Ap by the special invertible modifications

A A

A 2

Iy, ®A and A ® 14,

Mid MA(@eA

LaAd; ® A A ® Adq

respectively. The naturality of these in A follows from the naturality of [, ¢
and e. For the associativity modifications, suppose we are given A: A, == A,
B: B, == B; and C: (' == ;. Now we have

Ae (B ® C) = A(BtC't) &® AS(BCt ® BSC)
(AeB)eC = (AB, ® A,B)C; ® (4,B,)C

Hence we take aa B c to be the special modification

A(B,Cy) ® A{(BC, ® B,C)
A(B:Co®mMRE, 5 o
A(BtCt) & (AS(BCt) ® AS(BSC)>
id

(AB,)C, ® ((A,B)C, ® (A,B,)C)

O(AB¢)Ct,(AsB)Cyt,(AsBs)C

((ABt)Ct & (ASB)Ct) ® (AsB;)C

id

(AB; ® AB)C, ® (AsB;)C.

The naturality of these components in A, B and C follows from the naturality
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of m and a; and a routine diagram chase using the coherence axioms for [, ¢,
a, m and ¢ shows that «, p and A satisfy the associativity pentagon and the

unit triangles.

e s and ¢: K, K],y — [K,K],, are strict monoidal: this is immediate from

above.

o I: [K K],;, — [K, K],y is strong monoidal: We observe that I. = e, so that

I is strict monoidal with respect to the unit. For the binary tensor e, we have
IFOIG :IFG®FIG
and hence we take up ¢ : Irg = Irels to be the special invertible modification

Irc

m e

Irc ® Irc

m id®ea

I:G® Flg
Again, naturality in F' and G follows from naturality of e, and it’s easy to

check that the three diagrams making I strong monoidal do commute.

o ®: [K,K]py s ¥t [K,K]py — [K, K]y, is strong monoidal: Since I, = e, we
can take

ke:e®e — e

to be the canonical map vy 1 = (5. !. Now, suppose we are given horizontal

transformations
AIA1fF>A2, AIZAQfF)’Ag,
B: BleBQ, and B': By == DBs.
Then

(A/ [ J BI> ® (A [ ] B) = (A/Bg ® AQBI) ® (AB2 ® AlB)
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whilst

(AA2A)e (B ®B)=(A'® A)B;® A;(B' ® B).
Therefore we take for ka'pap: (A'eB)@ (AeB)= (A'® A)e (B'®B)
the special invertible modification

(A'By ® A;B') @ (ABy ® A;B)

a
(A'B; ® (A:B' ® AB,)) @ A/B
(A/Bg®iAYB/)®A1B
(A,Bg ® (ABg ® AlB/)) ® AlBS
(A'B; ® AB3) ® (A1B' ® A1B)
id®mB’,B

(A'® A)B; ® A; (B’ ® B)

where the maps labelled a are appropriate composites of associativity maps.
The naturality of the displayed map in all variables follows from the naturality
of a, i and m. It’s now a diagram chase to check that the required coherence

laws hold to make ® strong monoidal;

e The natural transformations a, [ and t are strong monoidal trans-

formations: This is another routine diagram chase. 0

5.4 Monoidal comma double categories

The following result extends the notion of comma double category to a notion
of ‘monoidal comma double category’. Again, this construction has a universal
property in a suitable double category, namely the double category which looks like
MonDblCat in the vertical direction and like OpMonDblCat, in the horizontal
(following [GP04]); but we content ourselves with simply giving the construction

here.
Proposition 40. Let K, I and M be monoidal double categories, let F' be an
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opmonoidal double opmorphism, and let G be a monoidal double morphism. Then

the comma double category (F' | G) becomes a monoidal double category.

Proof. We know by Proposition 35 that we can view F{ and F} as opmonoidal
functors, and GGy and G, as monoidal functors. Therefore, applying Proposition
15, we see that (F; | G1) and (Fy | Go) can be equipped with the structure of
monoidal categories. It is straightforward to check that s and ¢ are strict monoidal
with respect to this; for example, given (U, X, f) and (U, X', f') in (F} | Gy), we
have (U, X, f) e (U, X', f') given by

FUeU)—2YSFU o FU—I GX ¢ GX'—X*,G(X 0 X)),

whose image under s is the object

my x4

F(U, o U ,pU, o FU'— " X, 0 GX! % L G(X, 0 X!)

which is (Us, X, fs) @ (UL, XL, f!) as required. It remains to specify the invertible

s

transformations k and u and the invertible maps k. and u,., which we do as follows:

kU x 6,00 X, 6),(v.Y ),V Y ) = (kuu vy, kxx yy), ke = (ke, ke),

Ww.x, 1), (v.y.e) = (Uuyv,uxy), and ue = (Ue, Ue).

That the required squares commute for these to be maps follows straightforwardly
using the coherence diagrams for F' and G. Their naturality follows from the
naturality of £ and u for F' and G; and finally the coherence diagrams that they

are required to satisfy follow using the coherence diagrams for F', G, K and L. [

Once more, we specialise to the case where F' = idg: K — K and G: 1 —
K, where 1 is the terminal double category, viewed as a strict monoidal double
category in the evident way. Now, such a functor G amounts to giving a monoidal

monad in the double category K. Explicitly:

Definition 41. A monoidal monad in the monoidal double category K consists
of:

e A monad (X: X =+ X ,m,¢) in K;
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e Maps
p:XeX—-X n:e—X

p: XeX —- X, and n:e— X
such that:
o s(p) =t(n) = pand s(n) = t(n) = n;
e (X, p,m) is a monoid in the monoidal category Ki;
e (X, u,n) is a monoid in the monoidal category Ky;

e The following diagrams commute:

(XeX)® (X oX) XXX (X 5 X)e(X®X)
u®/~{ lm.m
X®X XeX
ml J"’

X — X
Txex — o+ Ix eIy e®eLe I ——e

. e )
Iy XeX X®X n Iy
A |
X———X X———X X——X

Thus, given a monoidal monad X in a double category K, we can apply Proposition

40 to see that the slice double category K/X becomes a monoidal double category.

5.5 Monads on a pseudo double category

Definition 42. Let K be a double category. A double monad on K is a monad
on the object K in the 2-category DblCat,.

Proposition 43. Let K be a double category, and let (S, u,n) be a double monad
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on K. Then the monad SI in the monoidal double category [K,K], becomes a

monoidal monad.

Proof. S is a monad in DblCat,, and thus a monoid in DblCat,(K,K) =
K, K],;. We equip the object ST € [K, K], with monoid structure as follows.
Recall that ST is in fact the monad STiq,; then the unit n: Ly, = ST is given by
the modification

. Liag .
ld]K _— 1dK

77“ LUﬂIidK “77

_
S ST S.

For the multiplication, observe first that we have
ST e ST = (SIidK)S &® S(SIidK) = SIS &® S(SIidK)-

Therefore we take for p: ST e ST = ST the modification

SIg ® S(SIidK)

Mg, STiq,

S(IS X SIidK)

Sigh
STiqy

SSTLy

K

pliag

ST, .

It’s straightforward to work through the definitions and see that this does indeed
make ST into a monoid in [K,K],,. Further, s and ¢t send this monoid to the
monoid S in [K, K], as required, whilst it’s another diagram chase to check that
the diagrams expressing the compatibility of the monoid and monad structure on
S are satisfied. O

Thus assembling all of the above, we have:

Proposition 44. Given a double monad (S, n, 1) on a double category K, the slice
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double category [K, K], /ST has a natural structure of monoidal double category.

7






Chapter 6

Clubs 11

We are now ready to extend the concept of club, as given in Chapter 3 to a
concept of ‘double club’. As we now have all the necessary theory at our disposal,
this is a straightforward step. However, the definition of (plain) club loses its force
without the important Proposition 14, which gives us an equivalence of categories
Coll(S) ~ C/S1. Our first task, therefore, is to establish an analogue of this result.
We then give our definition of double club; however, this definition is rather hard

to work with in practice, and so we give a useful equivalent definition.

6.1 Evaluation at 1 in the double category of collections

Let S: K — L be a double homomorphism and consider the double category
of collections Coll(S). We have a homomorphism F': Coll(S) — L/SI; which

‘evaluates at 17:

F()Z (CO”(S)O — LQ/S]. Fll (CO”(S)l — Ll/SIl
(A, a) — (A1, ay) and (A, a) — (Al, o)
TN RAESRST
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And in fact, this is a strict homomorphism, since we have

Fliga = F(Li==1s==5I)

— (IAlLXEIIAglEeSIl )
= Lia1,a1)

=Ira,0

and

F((A, @) ® (B, 8)) = F(A ® B==22 51 © ST="- 1)

= (Al ® BI==22L 51, @ ST, === 5T,)

= (Al, o) ® (B1,3,)
= F(A, a) ® F(B, ).

Now, just as in the plain category case, we have the following proposition which

tells us that we essentially lose no information in applying F"

Proposition 45. Let S be a homomorphism K — L satisfying property (hps).

Then evaluation at 1 induces an equivalence of double categories
Coll(S) ~L/ST.

Proof. We seek to apply Corollary 31, and thus we must gather all the data required
for this. We have the strict homomorphism F': Coll(S) — L/SI; as above; in
the opposite direction, we must exhibit a map of double graphs G: L/ST; —
Coll(S). Now, we can form categories of collections Coll(Sy) and Coll(S;), and

by Proposition 14 we have equivalences of categories
Coll(Sy) ~ Ly/S1 and Coll(Sy) ~ L/ST,

where the rightward direction of these equivalences is given by evaluation at 1 and

I, respectively. We are now ready to give Gy:

e On objects: given an object (a,0) € Ly/S1, under the first equivalence
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we produce an object (Ag,ap) € Coll(Sy). We can also form the object
Iug € Li/SI;, and under the second equivalence this produces an object
(A1, 1) € Coll(Sy). Explicitly, Ag, o, A; and oy are given by the labelled

objects and arrows in the following pullback diagrams:

A X ——a A X—1,
(CVO)Xl 19 and (al)xl lelole
S)(“7ﬁ“>81 S)(“fﬁ“*SIl

We aim to equip A = (Ay, A;) with the structure of a double homomorphism,
and to show that o = («g, 1) becomes a cartesian vertical transformation
with respect to this structure. To do this, we must produce the data (DMD3)
and (DMD4); that is, special natural isomorphisms

mxy: AX®AY - AX®Y) and ex: I y — Aly.

So consider the diagram:

AlRA!

AX @ AY I,.®1,
\
ax®ay AX®Y) A I,
(ecIg)®(eoly)
SX ® SY Slest ST, ® ST, eoly
aAXRY
my
S(X®Y) S ST,

The front face is a pullback by definition; the back face by property (hpsl).
All the diagonal maps are isomorphisms, and the bottom and right faces
commute by the coherence axioms for S and L. Thus we induce a unique

isomorphism AX ® AY — A(X ® Y) along the missing diagonal. Arguing
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identically with the diagram

Ta
IAX Ia
\
Al
Lo, Al I,
Iy
Is)
Isx = Is: eroly
ary o
ex
STy — ST,.

we induce a unique isomorphism I4x — Aly. It’s straightforward, using the
naturality of ¢ and m together with the universal property of pullback, to see

that these isomorphisms are natural in (X,Y) and X respectively.

It remains to check that A satisfies (DMA1)-(DMA3) and that « satisfies
(VTA1)-(VTA3). For (DMA1) and (VTA1), we need that

sAy = Ags, tA; = Ait, sa; = aps and  tag = agt,
but this is straightforward. Indeed

AX Mg

lla A X, Aol g
S| (o)x | P = (Oco)x{ Je
}1 SXs —g 51

by (DMA1) for S and the fact that s strictly preserves the chosen pullbacks;
and the same argument works for ¢. (VTA2) and (VTA3) are also easy, since
we observe that the required diagrams are the left hand faces of the two
commutative cubes above; further, ay and a; are cartesian natural transfor-

mations, and hence « is a cartesian vertical transformation as required. It
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remains to show that A satisfies (DMA2) and (DMA3), and this follows from

the coherence axioms for S and K, and the universal property of pullback.

On maps: suppose we have amap ¢: (a,6) — (b, ¢) in Lo/S1, with Gy(a,0) =
(A, ) and Gy(b,¢) = (B,3). Then we must produce a map v: (A,a) —
(B, 3); that is, a vertical transformation v: A = B making the diagram

A=———"—=p

NS

S

commute. Now, using the equivalences Ly/S1 ~ Coll(Sy) and L;/ST; ~

Coll(Sy) as before, we produce natural transformations vy and y; making

A():BO AIZBl

N AN A

commute. We aim to show that v = (79,71) becomes a vertical transfor-
mation. (VTAL) follows as before; so it remains only to check (VTA2) and
(VTA3), and these follow from the naturality of t=! and the universal property
of pullback.

We now move on to GG;. Suppose we have an object

a
Qs —F— Qy

e{ e let

51451’?31

of L1/STy, with Gy(as, 0s) = (As, as) and Go(ay, 0;) = (Ay, o), say. Then we must
produce an object (A, a) € Coll(S); as follows:

A, =2 A,

asﬂ v Uat
S=i=3.

ST
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Under the equivalence L, /STy ~ Coll(S;), we take (a,0) to a functor A: Ky — L,
and a cartesian natural transformation a: A = S;. Thus we specify the horizontal

transformation A to have source A,, target A; and components functor
Ac = Al: KO — Ll-

Similarly, we take the modification a to have source ay, target a; and central

natural transformation
a.=al: Al= ST: Ky — L.

Explicitly, AX and ax will be the indicated arrows in the following pullback
diagram:

AX -2 a

N

SIX T SIl

We must now specify the pseudonaturality data (HTD2) for A. So consider the

diagram
AX ® AX, AloA I, ®a
kl/‘
(o) x®eex, AX, @ AX A4 aol,,
(e10ly, )®6
ax, ®(as)x
| |
SX ® Sy, Sies: ST, ® ST, 06 (er0l, )
id
(SDx
SIy, ® SX — SI, ® SI,.

The front and back faces are pullbacks by property (hpsl) and the diagonal maps
are all isomorphisms. It’s easy to check that the bottom and right faces commute,
and thus we induce a unique isomorphism along the missing diagonal, which will

be the component Ax of the pseudonaturality natural transformation. That these
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components are natural in X follows from the naturality of (SI)) and the universal
property of pullback.

We must now check (HTA1)-(HTA3) and (MA1)-(MA2). For (HTA1l) and
(MA1), we observe that

AX -2 a AX 2 ay
S aXl lG = (as)xl lﬁs
STy = STy SX —5— 51
and
AX M a AX 2 a
()
Slxy —= STy SX —— 51

since s and t strictly preserve chosen pullbacks; thus sA. = (As)o, tA. = (A¢)o,
sa. = (as)o and ta, = (ay)p as required. For (MA2), we observe that the required
diagram at X is just the left-hand face of the above cube; further, a, = al is
a cartesian natural transformation, and hence a is a cartesian modification as
required. Finally, (HTA2) and (HTA3) follow from the coherence axioms for S
and IL and the universal property of pullback.

We now give G; on maps. Given a map ¥: (a,0) — (b,¢) in K;/ST;, we
must produce a map v: (A,a) — (B,3) of Coll(S);, and thus a modification
~: A = B fitting into the diagram

AEB

N A

For its source and target, we take the vertical transformations
= GO(ws): AS = BS and Yt = Go(wt): At = Bt'

For the central natural transformation, we apply once more the equivalence L, /ST; =
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Coll(S}) to get a commuting diagram

NA

Sh

in the functor category [L1, L;]. We need a natural transformation v.: A, = B,
and from above we have A. = Al and B, = BI; so we take 7, = vI. It remains
to show that this data satisfies (MA1) and (MAZ2), which we do by an argument

similar to above. Finally, we note that we have

ac=0al=(foy)I=ployI=p. 07

as required. This completes the definition of G.

By construction, it is immediate that G = (G, G1) becomes a map of double
graphs; so next we show that (Fp, Go) and (F;, G1) provide data for equivalences
of categories. First note that if we choose pullbacks in Ly and Ly such that the

pullback of identity arrows are identity arrows then we have
F()G() S idLo/Sl and FlGl = idLl/Sll-

In the other direction, we construct a natural isomorphism idcey(s)y, = GoFo as
follows. Given (A, ) in Coll(S)o, let us write (A, &) for GoFy(A, a): then we seek

an invertible vertical transformation 74 ) making the diagram

TI(A,«

A L}

N
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commute. So consider the diagrams:

AX A Al AX £ AL
. » K \1_:
“ . - " ~
ox Ax —2 Al ox Ax —2 I
a1 o1y
A and A l
X g X g
SX S1 o1 SX ST, erola
id id
id id
SX — S1 SX S ST,.

In these diagrams, the rear face is a pullback by cartesianness of «, the front face
is a pullback by definition, and the diagonal maps are all isomorphisms. Hence
we induce unique isomorphisms along the dotted diagonals which we take as the
components of 7(4,q). Clearly we have & o744 = @, and as before these compo-
nents are natural in X and X respectively, by the universal property of pullback.
It remains to check (VTA1)—-(VTA3), but these follow from the universal property
of pullback and coherence axioms for A.

For the naturality of  in (A, ), suppose we are given a map v: (A, ) — (B, 5)
in Coll(S)o, and let us write 4 for GoFy(y). Then considering the diagrams

AX Al Al AX 4 AT,
- ‘ Xl/‘ 21_10711
O B! a B!
ax BX B1 ax BX Ip
R “ and R l "
Bx St Bx S
SX - S1 B SX - ST, erolg)
id id
id id
SX T S1 SX 3 ST,

whose front and rear faces are pullbacks, we see that:

e For the left-hand diagram, both (9 g)x © vx and gx o (7,a))x make it

commute when inserted for the dotted arrow, and hence must coincide;
e For the right-hand diagram, both (nz,)x © 7x and 9x o (94,.))x make it
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commute when inserted for the dotted arrow, and hence must coincide.

Thus we conclude that 7 g 0y = Y074,q), and so we have a natural isomorphism
o idcou(s), = GolFp as required.

Next, we exhibit a natural isomorphism idcey sy, = G1F1. So suppose we are
given an object (A, a) € Coll(S)y; let us write (A, &) for GoFy(A, a). Then we

have an invertible modification

with source 74, q,), target 14, q,), and with component at X given by the dotted

arrow
AX = Al
ax AX A l Al
STy SORRENYS) a1
bax id
id \

STy ———— ST,

induced by the universal property of pullback. By definition and the fact that s
and ¢ strictly preserve pullbacks, we have (MA1) satisfied; and we argue as before
using the universal property of pullback to see that these components are natural
in X and satisfy (MA2), and similarly to see that the maps 1, o) are natural in
(A, ). Thus we have a natural isomorphism 7, : idcoucs), = G1F1 as required.

The final requirement is that ng and n; are compatible with the source and target
maps:

s =mngs and tn =t

and this follows from the definitions and the fact that s and ¢ strictly preserve
pullbacks. Thus we have all the requirements for Corollary 31, and so have an
equivalence of double categories Coll(S) ~ K/ST;. O
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6.2 Double clubs

Definition 46. Let K and L be double categories.

e We say that K is a vertically full sub-double category of L if there is a
strict homomorphism F': K — L such that Fj, and F; exhibit Ky and K; as

full subcategories of Ly and L.

e [f K and L are monoidal double categories, we say that K is a sub-monoidal
double category of IL if there is a strict monoidal strict homomorphism

F: K — L exhibiting Ky and K as subcategories of Ly and L.

In particular, if K is a vertically full sub-double category of a monoidal double
category LL, then K can be made into a sub-monoidal double category of L if and
only the object sets of Ky and K are closed under the binary and nullary tensors

on Ly and L; respectively.

Definition 47. Let (S,n, 1) be a double monad on a double category K. We say
that S is a double club if:

e S has property (hps);
e Coll(S) is a sub-monoidal double category of [K, K], /ST.

Note that this is simply the natural generalisation of Definition 18: the extra
requirement that condition (hps) be satisfied is necessary to ensure that Coll(S)
exists in the first place; in the plain category case, the existence of the ‘category
of collections’ is automatic.

Now, by the results above, there is an equivalence of double categories Coll(S) ~
K/STy; therefore if S is a double club, then the monoidal structure on Coll(S)
transfers under the equivalence to a monoidal structure on K/ST;, such that the
equivalence becomes a monoidal equivalence (i.e., an equivalence in MonDblCat.

Let us spell out what this monoidal structure is. On K;/S1, we have tensor unit

(1—2551), and the tensor product

(a—"551) e (b—2-51)
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is given by the composite down the left-hand side in the diagram

aeb——a

o
SbT S1
S¢
SS1
w1
S1

where the upper square is a (chosen) pullback. On K;/SI;, we have tensor unit

(I,—4ST,) and the tensor product

asg?%at bs—l?—>bt
6{ e Jet o ¢{ | lqst
ST ST Sl S

is given by horizontally composing the left-hand arrows from the two diagrams

ab,——a asb —— 1,
Je o
STy, — STy Sb——5— STy
STy, and S¢
SIgy SSTy
pur, 0Ser pry
STy STy,

where the top squares are again pullbacks. However, we can do better; indeed, we

90



6.2. DOUBLE CLUBS

claim that we can take the binary tensor product to be given by the pullback

aeb——a

o
Sb——— ST
S¢
SST,
M1y
ST,.

To see this, consider the following diagram:

aeb a
Ta
A
abt ® asb a ® Ias
2]
Sb & STy 0®(e10ly,)
m{l{lloS[Il
mI_bi’boS[b
ST, ® Sb = ST, ® STy,

whose rear face is a chosen pullback and whose front face is obtained from hori-
zontally composing the above two pullbacks. By property (hpsl), the front face is
again a pullback, and it’s easy to check that the bottom and right faces commute.
Since the diagonal maps are isomorphisms, we induce an isomorphism along the
dotted arrow.

It’s now a matter of diagram chasing to see that this isomorphism is compatible
with the maps into ST;, and that it is compatible with the associativity and uni-
tality constraints for the two monoidal structures just described. In other words,

the identity functor on K;/SI; can be extended to a monoidal equivalence

(Kl/Sll,o,e) x>~ (Kl/SIl, o’,e).
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Thus we may legitimately take the tensor product to be given by ¢’ on K;/ST,
and still be left with a monoidal equivalence K/ST; ~ Coll(S). We shall not spell
out all the details in full here, since we shall not explicitly need to use the tensor
product on K/ST; in what shall follow.

6.3 An alternative description

The above definition of a double club, though compact, is not very easy to work
with; the following alternate description will make it much easier to prove that a
double monad on a double category has the structure of a double club.

We begin by observing that if (5,7, i) is a double monad on K, then (Sy, 10, £0)
is a monad on Ky and (S, 71, ¢1) a monad on K. Therefore it makes sense to ask
whether or not Sy and S; are clubs in the sense of Chapter 3 on their respective
categories, and once we have asked this, we may naturally ask whether this is
sufficient to make S into a double club. In fact, as long as S has property (hps),

the answer is yes:
Proposition 48. If (S,n, u) is a double monad on K such that:
e S has property (hps);
e Sy and Sy are clubs on the categories Ky and K; respectively,
then S is a double club.

Proof. We must check that Coll(.S) is a sub-monoidal double category of [K, K], /ST.
Since Coll(S) is a vertically full sub-double category of [K, K], /ST, it suffices to
check that:

e Coll(S)o is closed under the monoidal structure on [K,K],,/S;

e Coll(S); is closed under the monoidal structure on [K, K], /ST.

We begin with Coll(S)o. Now, we have evident forgetful functors
e [K, K]W/S — [K’HK’L]/S’L (fOI' 1= 0,1)

which are strict monoidal. Since Sy and Sy are clubs, Coll(.S;) is closed under the
monoidal structure on [Kj;, K;]/S;. But an object A of [K, K], lies in Coll(S)o
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just when its projections m;(A) lie in Coll(S;); and hence we see that Coll(.S), is
closed under the monoidal structure on [K, K], as required.
Moving on to Coll(S);, we first show that the unit object

. Lay .
idg == 1dg

nﬂ U ﬂn

§=4=5

of [K, K]y lies in Coll(S);. By Proposition 19 and the fact that Sy and Sy are clubs,
we have that 7y and 7, are cartesian natural transformations; hence n: idg = S
is a cartesian vertical transformation. It remains to show that the central natural
transformation of 7 is cartesian, i.e., that diagrams of the following form are

pullbacks:

STx TS’IM

which is just the cartesianness of 79. We now show that Coll(S); is closed under

the binary tensor product on [K,K],,. So suppose we are given

L= A, B, == B,
QSM Ma ﬂat and ﬁﬂ Mﬁ Bt
S = S S = S

cartesian modifications; then their tensor product is the composite modification

AeB

A,B, =—+—= A, B,
asBs ma.ﬁ ot
gg SISl gg
p (e p

S =5,
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so it suffices to show that v @ 3 and p are cartesian modifications. We begin
with a e 3; the cartesianness of a0 and ay0; follows from the fact that S; and
Sp are clubs on K; and Ky, and so it suffices to check that the central natural
transformation of o e 3 is cartesian. This central natural transformation has

components

ap, x®(as)B SLpy) x ®SBx

AB,X ® A,BX 581,y ® SBX STsx ® SSTx.

So, consider the following diagram:

ABX 2P AB1

ap x aBy1
SIBtX —_— SIBtl

Slp,

SeX 521

SBtIX W SBtll

STy | S(B1y S(Be)1y

SSIx 55

—1 -1
Sey Se;]

ST(g,),

SISX Ts' SISl.

The top square is a pullback by cartesianness of «, the second and fourth are pull-
backs since their vertical sides are isomorphisms, and the third square is a pullback
by cartesianness of 3, and because S preserves cartesian natural transformations
into S7. Therefore the outside edge of this diagram is a pullback. Similarly, con-
sidering the diagram

ABX 2B, 4 B1

(as)BXl J/(as)Bl

SBX —— SB1

SB!
| |

the top square is a pullback by cartesianness of ay, whilst the bottom square is
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a pullback by cartesianness of § and the fact that S; preserves cartesian trans-
formations into S;. Thus, forming the tensor product of these two diagrams and
applying condition (hpsl), we see therefore that the naturality squares for o @ 8
are pullbacks as required.

Finally, we check that p is a cartesian modification. By Proposition 19 and
the fact that Sy and Sy are clubs, we have that po and p; are cartesian natural
transformations; hence p: SS = S is a cartesian vertical transformation. So we
need only check that the central natural transformation of p is cartesian, for which

we must check that the outer edge of the following diagram is a pullback:

SIsx ® SSLy — %%, 614 @ SST,
Mgy, STx MIg1,5Ty
S(I51®S!

S(Lsx ® SLy) %%, (14, @ ST,)
Slory Sig
SSIx skl SS1,

PIx K1y

SIX 51 SIl

Now, the bottom square is a pullback by cartesianness of u, whilst all other squares
are pullbacks since they have isomorphisms along their vertical edges; hence the

outer edge is a pullback as required. O
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Part 11

The double club for symmetric

monoidal categories
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Chapter 7

The pseudo double category Cat

Having developed a theory of double clubs, we should now like to give an example
of such. Above, we gave an example of a plain club on Cat, that for symmetric
strict monoidal categories. What we shall do over the next two chapters is illustrate
how we may extend this club to a double club. The first step in this process is to
define the pseudo double category Cat which this is to be a double club on.

Cat, the double category of ‘categories, functors, profunctors and modifications’,
is one of the better-known pseudo double categories, explored in [GP99] and (in the
guise of a ‘fc-multicategory’) [Lei04al. It can be viewed as a generalisation of the
bicategory Mod of ‘categories, profunctors and modifications’. This bicategory,
of course, dates back to the earliest days of category theory; for a concise modern

reference, see [Bor94]. We begin, therefore, by describing this bicategory.

7.1 The bicategory Mod

We fix a presentation of the bicategory Mod, as follows:
e Objects are small categories C,D, ...;

e Maps F': C - D are functors F': D°? x C — Set. We write a typical value
of this functor as F'(d;c), and given maps h: ¢ — ¢ in C and f: d — d in
D, write the action of F' on maps as

he(-): F(d;c) — F(d;)
and (—) e f: F(d;c) — F(d’;c).
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Sometimes it will be useful to use ‘arrow’ notation; we write a typical element
g of F(d;c) as g: d = ¢, and given such an element, write the elements h e g

and ge f as
d—4 et ¢
and d'——d—1 ¢

respectively. Analogously with categorical composition, we’ll tend to drop
the ‘e’ symbol where convenient, and denote these actions simply by juxta-

position;

e 2-cells a: F = @ are natural transformations F' = G: D x C — Set; we

write the components of this transformation as
agc: F(d;e) — G(d;c).

In practice, we drop the suffixes and use « indifferently for all these compo-

nents; so given g € F'(d;c), we write its image under a4, as a(g).

Recall that we have homomorphisms
(<)«: Cat - Mod and (-)": Cat — Mod™®

which are the identity on objects, take a functor F': C — D to the respective

profunctors
F..C—+—D F':D—+—C
F.(d;¢c) =D(d; Fc) and F*(c¢;d) = D(Fc¢;d)
Fi(g; f) = D(g; F'f) F*(f;9) = D(Ff;9),

and take a natural transformation a: F' = G to transformations «,: F, = G, and

o G* = F* with respective components

(a)ae: Fi(d;c) = Gi(d;c) = ae 0 (-): D(d; Fe) — D(d; Ge)
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and

(a")ge: G*(d;c) = F*(d;c) = (-) o a.: D(Ge;d) — D(F¢;d).

7.2 The pseudo double category Cat

We are now ready for:
Definition 49. The pseudo double category Cat is given as follows:

e Caty = Cat, the category of small categories;
e Cat, is the category with

— Objects X = (X, X;, X) made up of a pair of small categories X, and
X, together with a profunctor X : X, —— X;

— Maps f = (f, f;, f): X — Y made up of a pair of functors f: X, — Y
and f;: X; — Y, together with a 2-cell

X, X,

(fS)*f \U/f f(ft)*

Y ——Y:

of Mod. Equivalently, we can give a 2-cell

o X Js

X;P x X, Y, x Y,

R

Set

in Cat, and therefore natural families of maps
fzt,l”s : X(xta l’s) - Y(ftxh fsxs);

— Identity maps idx: X — X given by (idy,,idy,,idy) where idx is the
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2-cell given by the pasting

X, X,

(idxs»»g% %&(idm

ij(—>Xt

— Composition g o f given by (gsfs, g:.fi, g © f), where g o f is the pasting

X, — T X,

Gt U 00

(gs fs )« }/TS 4Y’—> }/;, (gt ft)«
@)t o .

ZS—FZt.

e We have evident functors s,t: Cat; — Catg;

e The horizontal composition functor
®: Caty ¢x; Caty — Caty

is given as follows:

— On objects: given X = X: A - Band Y =Y: B — (C, we take

their composite in Mod:

Y®X=A—FB—1C;

— On maps: given f: X — X' and g: Y — Y’ as follows:

A—X B B—Y ¢
m% % ffB» and <f3>% llg f(fc»
A/ X/ 5 B/ B/ Y/ 5 C/
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we giveg®f: Y ®X — Y ® X’ by the pasting

A—FY—p—F—cC
(fA)% Jf ffg)* J9 f(fc)*
Al )iv/ Bl v Cl

in Mod;
e The units functor I: Caty — Cat; is given by:

— On objects: given X € Caty, we take for Iy the identity profunctor
Iy: X — X;

— On maps: given f: X — Y € Caty, we take I;: Ix — Iy to be given by

X
Y

This data clearly satisfies (DA1) and (DA2). The data (DD6) and (DD7) making

composition pseudo-associative and pseudo-unital is given by the associativity and

I
—F

X
Y
Y

—_—
I

unitality 2-cells from Mod. That these components are natural in maps of Cat; is
a straightforward application of the pasting theorem for bicategories, and that they
satisfy (DA3) and (DA4) follows immediately from the coherence of the bicategory
Mod.

Since we want to apply the theory of double clubs in Cat, we should check that
Catg and Cat; are sufficiently complete for our purposes. Evidently Cat is finitely
complete, whilst for Cat;, we observe that it is isomorphic to the category Cat/2,
where 2 is the arrow category 0 — 1, and hence finitely complete.

Indeed, we can give an explicit description of finite limits in Cat;: the terminal
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object is I, where 1 is the terminal category, whilst the pullback

J

D—C
K

B—A

g

[

is given as follows: Dy, Dy, js, Ji, ks and k; arise from the pullbacks:

DS L OS Dt L> Ct
ks lfs and k{ lft
Bs Js As Bt gt ? At

in Cat; whilst given d; = (¢, b;) € Dy and ds = (cs,bs) € Ds, we have D(dy; dy),
Jay.a. and kg, 4. given by the pullback

Jdy,ds

D(dy; ds) —— C(cy; ¢s)

kdt,dsJ/ lfot,Cs

B(by; by) o Alay; ay)

(where as = fscs = gsbs and a; = fiep = g;by). Evidently, given a choice of
pullbacks in Caty, we can choose pullbacks in Cat; such that s and t strictly
preserve them. Thus Cat satisfies the completeness properties we required in
Chapter 3.

Now, Cat also has the following property, of which we shall make use later:
Proposition 50. The functor [s,t]: Cat; — Caty x Caty is a fibration.

Proof. Suppose we are given Y =Y : Y, —+ Y; in Cat; and functors f,: X, — Y,
and f;: X; — Y; in Caty; then we must construct a map (fs, fr): (fs, fr).(Y) =Y
in Cat; as follows:-

(fs:fe), (V) X,

X
(fs)*J[ Ui Fsofe) +(fe)=
Y,
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So we take for (fs, f),(Y) the profunctor given by

op X
X x x, 1 yor oy Y Get,

and for the 2-cell (fs, f;), we take the identity natural transformation:

"% [s

XP x X, VP <Y,

id
=
Yo m /
Set.

To see that (fs, f;) is a cartesian arrow, suppose we have an arrow g: W — Y:-

w, s w,

(gs)% Yo l(g»*

Yo —— Y
of Cat, together with factorisations g, = fshs and g; = fihs; then we must exhibit
a factorisation g = (fs, fi) o h in Caty; so we give h by

W, —Y W,

(hs)s {n (ht)«

Xs (fof) (Y) Xy

where h is simply the 2-cell g:-

h{P xhs

WP x XP x X,

Wi
g9
=
R /{ftoprS)
Set.

Easily we have g = (fs, f;) oh as required; and furthermore, any such factorisation

is necessarily unique. U
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Chapter 8

The double club S

We wish to show that the symmetric strict monoidal category 2-monad S, as
described Chapter 3, extends from a club on Cat to a double club on Cat, and
for this we shall use the fact that we can lift it from a 2-monad on Cat to a
pseudomonad (see Appendix B) on Mod.

This is a very special example of the theory of pseudo-distributive laws, as de-
veloped by [Mar99], [ECP] and [Tan04], a theory that we shall not venture into
at present; instead we shall simply describe what is necessary in order for a pseu-
domonad on Mod to be a ‘lifting’ of a 2-monad on Cat. Although this latter
information is implicit in the work of [Tan04], the details have not been worked
out before.

Then, using the fact that such a lifting is possible for the symmetric strict
monoidal category 2-monad S, we can show that S can be extended from a 2-
monad on Cat to a double monad on Cat. The final step is to show that this
double monad is in fact a double club, for which we use the characterisation of

double clubs given in Proposition 48.

8.1 Lifting monads from Cat to Mod

Suppose we are given any 2-monad S on Cat and a pseudomonad S on Mod (see
Appendix B for the notation used for pseudomonads). We should like to know
what it means for S to be a ‘lifting’ of S. The work of [Tan04] tells us what this
involves at an abstract level: namely, the existence of a ‘pseudo-distributive law’

between S and the free small cocompletion ‘2-monad’ on Cat (for size reasons, this
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fails to be a genuine 2-monad, but we shall not worry about this here). However,

we are rather more interested in what this amounts to at a concrete level:

Definition 51. Given a 2-monad (S, 7, 1) on Cat and a pseudomonad (S, 7, fi, A, p, 7)
on Mod, we say that Sisa lifting of S if:

e SC = SC on objects;

e Sand S are compatible on 1- and 2-cells in the following sense: observe that,
as in Chapter 1, we may view Cat and Mod as pseudo double categories
with only identity vertical arrows, and that further, we may view .S, S and
(-)« as homomorphisms between these double categories. Then we demand

that there is an invertible vertical transformation

Cat & Mod

SJ Yo ls
Cat T Mod.

Explicitly, we have for all C and D, natural isomorphisms
0: S((-).) = (S(-)),: Cat(C,D) — Mod(SC, SD)
such that the diagrams

$(G,) ® S(F) —<2 4 (SG).,  (SF).

mG*,F‘*l J/mSG,SF

~

S(G, ® F,) (SG o SF),

SmG’F\L J/id

S((GoF),) —5——(S(GoF)),

eGoF
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8.1. LIFTING MONADS FROM Cat TO Mod

and .
s . Isc
QCJ/ J/QSC
S(Ic) (idsc)«
SQCJ Jid
g((idc)*) T (S(idc))*
commute.

e The pseudo-natural transformations 7 and & have components given by

ic = (ne)y: C = SC
fic = (c)«: SSC = SC;

e The transformation # is compatible with the pseudo-naturality 2-cells for 7
and /1 in the sense that, given a functor F': C — D, the following diagrams

commute:

~ 0r®id MSF,nc

S(F.) @ (nc)- (SF). ® (nc) ———— (SF onc)s

| Jo

(D)« ® Fi (Mo F).

MSFuc

(5F). @ (pe)s ———— (SF o pc)-

| |

(p)s ® (SSF)y —————— (up 0 SSF),.

—
1d®(95FOSGF) m’qD,SSF

e The invertible modifications A, p and 7 have component 2-cells given by:
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Ae = (ue)e ® S((ne)s),  pc = (ne)s ® (nsc)y, and 7o = () ® (psc)s -

1d®0nq Mucinsc MuG,usc
(/“LC)* ® (S,'?C)* (MC o nSC)* ('LLC ) ,LLSC)*
Mye,Sne id id
(e 0 Snc)s (idsc)« (e o Spe)«
-1
id esc MG Sue
(idsc)- Isc (1c)« ® (Spc)s
esc 1d®0,,&
Isc (ﬂC)* ® S(ﬂc)*

In the sequel, we shall often need to produce pasting diagrams involving the
coherence 2-cells for (), and S, or some of the 2-cells 6 as exhibited above; for
the sake of a clearer presentation we shall leave such 2-cells unlabelled where it is
clear how they should be filled in.

8.2 The pseudomonad S on Mod

Now, in the case of interest to us, it happens that the 2-monad (.S, 1, 1) of Chapter 3
can be lifted to a pseudomonad (S, 7, i, A, p, 7) on Mod, in the sense of Definition
51. A more thorough look at this particular lifting may be found in [Tan04];
therefore we shall not check the details here, but merely describe those parts of
the pseudomonad S which will be of use to us later.

In particular, we shall omit describing the ‘coherence’ data for S, namely the
comparison isomorphisms Sidg 2 idge and S (G®F) = SG @ SF for 5', the
pseudo-naturality isomorphisms for n and fi, and the invertible modifications A, p

and 7. However, we shall describe the remaining data:
Definition 52. The homomorphism S: Mod — Mod is given as follows:
e On objects: Given a small category C, we take SC = SC;

e On maps: Given a map F: C —— D, the map SF: SC —— SD is the
following profunctor: an element of SF ((n, (ds)); (m, (c;))) is given by

(0, {g:)): (n, (di)) == (m, {ci)),
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8.3. LirTiING S TO Cat

where o € S1(n,m) and g; € F(d;; ¢,(;)), whilst the action of maps (7, (h;)): (m, (¢;)) —
(m', (¢;)) and (v, (fi)): (', (d})) — (n, {d;)) is given by

—
Q
—~
L
~
~—
[ ]

(v, {fi)) = (00 v, {guip) ® fi))
(0,(9:)) = (T 00, <ha(i) L 9¢>);

—~
N
—~
S
~
~—
[ ]

e On 2-cells: Given a transformation a: F' = G: C =+ D, we give Sa: SF =
SG: SC — SD by

(Sa)(o, (i) = (o, (a(g:)))-

Further, the pseudo-natural transformations

7:id = S: Mod — Mod
and fi: 52 = S: Mod — Mod

have respective components

Nx = (nx)* and fix = (MX)*.

8.3 Lifting S to Cat

We are now ready to show that the symmetric monoidal category 2-monad (S, n, 1)
on Cat extends to a double monad on Cat. For this section only, let us change
our notation slightly, and write (Sp, 7o, t10) for the free symmetric strict monoidal

category monad on Cat = Cat,.

Proposition 53. We can extend Sy to a homomorphism of double categories
S: Cat — Cat.

Proof. We use S as the data (DMD1) for S; for (DMD2), we need to give a functor

S1: Cat; — Caty, which we do as follows:
e On objects: Sl(XS—)O(—LXt) = SOXSHSX—>SOX,¢;

e On maps: given f: X — Y, we let Sif be given by (Sofs, Sof:, Sf), where
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CHAPTER 8. THE DOUBLE CLUB S

where Sf is the 2-cell

SQXS JL SoXt

(Sofs)«t S((f))  USF S((f)«) F(Sofe)s

SoYs 455’/—> SoYs

(note that we are abusively treating S as a 2-functor here, omitting the canon-
ical 2-cells such as S((f;). ® X) = S(f,), ® SX; that we may do so is a

consequence of the coherence theorem for bicategories).

It is straightforward to check that S; thus defined is a functor. Now the diagram
(DMA1):
(Catl

VN

(CCLtO (Cat1 (CCLtO

N

Cato (Cato

commutes as required, and thus we write S interchangeably for Sy and S;. We now
need to give the data (DMD3) and (DMD4), that is, special natural isomorphisms

ex: ISX — SIX

and my x: SY ® SX — S(Y ® X).

But this is straightforward; we simply take the respective isomorphisms

SX 5 o x A% s s
(idsx)*f f(idsx)* (idSA)*‘iv‘ f(idSB)* f(idsc)*
Sx 5 gx and 5455 535 50

g A
STy S(Y®X)

That these are natural and satisfy (DMA2) and (DMA3) follows from the natu-
rality and coherence of the mediating 2-cells of S: Mod — Mod from which they
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8.3. LirTiING S TO Cat

are derived. O

Proposition 54. We can extend the natural transformations 1ng: idcay = So and

to: SoSo = Sy to vertical transformations n: idcey = S and p: SS = S.

Proof. We must produce the data (VTD2), that is, natural transformations 7; : idca, =
Sy and py: 5151 = S1. Now, we know that 7 lifts to a pseudo-natural transfor-
mation

7t idmoa = S: Mod — Mod

with components 7y = (7x).; thus we take (71)x = (nx.,7x,,Nx), where ny is the

pseudo-naturality 2-cell

X, — X X,

(TIXS)*ﬂ Jix ﬂ(ﬁxt)*
SX,——— SX,.
SX

To check that 7; is natural in X, we need to show that the two pastings

X X

Xg—+—— X, X, —+—— X,
(fo)« IS (ft‘)* (TIX‘S)* Jix (U)I)*
(Mysofs)« Y, — Y, (my;oft)«  and  (Sfsonxg)« SX, T SX; (Sfronx, )«
(ny‘s)* Iy (ny‘t)* (SJ‘%)* |ss (s,‘ft)*
SY, —+—5Y, SYs —— 5V,
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agree; but observe that

e b

X, Unx SX; U’?(m Y;

(nxs )*ﬂ (fs) /Y i(’m)* = (nxs )*ﬂ /SX ((ft& ﬂ(m@)*

SX, U'n(f&)* Ys Uy SY; SY,
K / >\ /

by the pseudo-naturality of 7, whence the result follows easily. We argue entirely
analogously to define p. It remains to check (VTA1) and (VTA2). For (VTAL),
it’s evident that we have ngs = sny, ot = 1, pos = sp1 and pet = tuy as required.
For (VTA2) for n, we must show that the diagram

YoX—9 vyeX
Ny @Nx TY®X

commutes; but this is to say that the following 2-cells are equal:

X Y

A : B ‘ C
A—F—pB—Y—cC
(na)« Vix mm) Ay (nc)

l and (M)« Uﬁw@x (ne)«

SA— SB— SC
~Z 2 SA — SC,
S(YeX)
S(Y®X)

which indeed they are by the axioms making 7 into a pseudo-natural transforma-
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tion. Similarly, for (VTA2) for u, we need to check that the 2-cells

SSA—3 95— ¢ SSA—3 95— 5s5C
(ra)« Jax  (up) Jay (ko)« (1a)« 38(vex) (ko)
l and
SA——+——SB—— SC SA lavex e
W
S(Y®X) S(Y®X)
agree, which they do by the axioms for /. O

Proposition 55. (S,n, 1) is a double monad on Cat.
Proof. We need to check that the monad laws

po S =posSu
o Sn=idg
MonS:idg

hold in DblCat,(Cat, Cat). Since we already know that (Sp, 1o, fto) is a monad
on Caty, it suffices to check that the monad laws hold for (S1,n;, 11) on Caty. So

let us demonstrate that pq o S17m; = idcat,; we need that the two pastings

SX, — 5% L 5X,

. SX, % 5x
(SU)‘(S)* I8ix (Sﬂ)‘(t)* !
(xsSNxs)* SSX, W SSX; (bx,Snx,)+ and (idsx,)« idgx, idsx, (idsx, )«
(ux‘s)* lix (uit)* l
SXS f’—> SXt
SX

SX,—+———SX,
Sx
are the same. For this, we consider the invertible modification

A jioSh=idg: S = S: Mod — Mod
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which is part of the pseudomonad structure of S. This satisfies

SX,— X Lg5x, Sx, 55X,

Stnx)«  Sax Stix,)- S(nx, )«
Ssxswssxtg s, = SSX, X Liag, s,
(k) Uiax  (ux,)s (1x5)

SXSTSX,: SX, —%SXt

But now from the previous section, we know that the 2-cell Ax is given by the

pasting
SX

S("]X)* (Snx )«
SSX

()

SX
and therefore the result follows easily. We proceed similarly for the other unit law

and the associativity law. O

8.4 S is a double club

Now we know that (5,7, u) is a double monad on Cat, we are ready to check that
it is also a double club. Using Proposition 48, it suffices to check two things for
this: firstly, that S has property (hps), and secondly, that Sy and S; are clubs on

their respective categories.

8.4.1 Property (hps)

To show that S satisfies property (hps), we shall use the following two propositions:
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Proposition 56. Suppose that

is a pullback in Caty; then so is

i Caty.

8.4. S 1S A DOUBLE CLUB

Proof. Viewing Cat, as Cat/2, we see that the functor I j: Caty — Cat; sends

D to (D x 2) ™ 2; now it’s easy to see that this functor preserves small limits

and so a fortior: the result.

0

Proposition 57. Let A be a small groupoidal category and suppose we are given

pullback diagrams

Jos
D23 C23

(23) := k23J/ ngs

Bos — 14
fo3

i Caty with

j12
Dy, ——Cy

and (12) := kl{ lgm

Bi;——14
fio

and t(23) = k{ J%
Bg — A
f3
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Suppose further that the arrow fo: By — A is a fibration; then the diagram

Jo3®i12

D23 ® D12 — C23 ® Cl2
(13) = k23®k12l lg23®g12

Bas @ By 23—12>IA ® 14

15 also a pullback.

Proof. First some notation; we shall use b;, ¢; and d; to denote typical elements of
B;, C; and D; (for i =1,...,3), and similarly use a; to denote elements of A, with

the convention that
ki(di) = by, ji(di) = ¢;, and  fi(b) = a; = gi(ci).

So now, let E = (F4, Ey, E') be the pullback

’

E—j>CQ3 ® Cio

k’l lg%@gm

B23 ® B12 f—> IA ® IA.
23®f12
The universal property of pullback induces a canonical arrow
u = (Ul,UQ,U)i D23 X D12 — E

in Caty. It suffices to show that this map is an isomorphism. Observe first that
s(13) = s(12) and ¢(13) = t(23), and thus that these projections are pullback
diagrams in Cat. Thus we may take it that £y = D; and Fy = D3, and that
u; = idp, and ug = idp,. Thus we need only concern ourselves with the 2-cell u;
we shall exhibit an inverse v for this 2-cell. First, let us describe explicitly what u
does. A typical element of Dy3 ® D15(d3; dy) looks like

((a,7) ® (8,0)) = (b3, ¢5) 225 (s, €2)) @ ((ba, e2) 25 (b1, 1))

118



8.4. S 1S A DOUBLE CLUB

where a:: by —— by, 3: by = by, v: c3 =+ ¢o, and : co —+ ¢; satisfy

fa3(a@) 923(7) f12(8) 923(9)

a3 — a9 = Az — a9 and g —— Q1 = aa — Qq,
whilst a typical element of E(ds;d;) looks like
(@® ), (v®8)) = ((bs—3=b) © (b—L5by), (cs—1—¢) ® (c—1 1))

where

as —>f23(a) fz(b) —W a1

. 923(7) 912(9)
a; = a3 —> go(c) —>

in A. Then the 2-cell u has components given by

Ugy,d, © Dag ® Dia(ds; dy) — E(ds; dy)
((0,7) @ (8,6)) = (@@ B,y @ ).

Now let us construct the promised inverse v for this 2-cell. Suppose we are
given an element (a ® 3,7 ® ) € E(ds;d;); we must send this to an element
of Dg3 ® Dy2(ds; dy). So consider the map

s(a)~1 ,
V= fo(b) foste) as 9220) g2(c)

in A. The functor fo: By — A is a fibration and A is a groupoid; thus f; is also a
cofibration, and so we can lift the displayed map to a cocartesian arrow @ b — '

in By; and since ) is invertible, so is ¥. So now we set

o((@® 8,7 ®0)) = ((bsrcx) P2 (7B, 0) ® ((67b, ¢) P (by, ).

For this to be well-defined we need to check firstly that it does indeed map into
Da3;®Di5(ds; dy); and secondly that it is independent of the choice of representative
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for (o« ® 8,7 ® ). For the first of these, we simply observe that

) e a)~1
f23<b3 a bﬂw*b) — (as foz(a@) fz(b) fas(a) as g23(7) gz(C))

(
= (Gs M’ 92(0))
g

and so we map into Dog ® D15(ds; d;) as required. For the second, it suffices to
check that two equalities hold:

v((a® B), (c3——¢) @ (¢ S Cl—?—>01)) =v((a, B), (c3——c5d)® (C/—(?%Cl))

v((bs—3=b) @ (b5 b —oby), (Y@ 6)) = v((bs—F—=b S V) @ ( —=by), (v ® 5)).

We begin with the first of these. Let us write

faz(a)™! (")
w — fg(b) 23 as 9237 92(0)
and ¢:: fg(b) f23(a)_ as 923(7) 92(6) 92(6) 92(6/);

then we have

v ® 8,7 @ be) = (ha,v) @ (B, be),
and v(a ® [, ey ®J) = (qgoz, €y) ® (ﬁqg_l, J).

Now, let us write 7 for gs(€); then we have 7: ¥*b — n*)*b which satisfies

f2(1) = ga(€)
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8.4. S IS A DOUBLE CLUB
so that (7, €) is a map in Ds; further, we have that
(5% b L) = (b5 ¢'b);

and thus we have

as required. Similarly, we must compare

((bs—3—b) @ (b V' —by), (35— ) @ (c—1 1))

and ((bs—3+b 5 V) @ (1 —1by),(c5——0) @ (c—1 ).

Let us write

23(a) ™! 2
@Z) — fg(b) fa3(a) as 923(7) 92(0)

-1 2(a)~1 t
(b — fQ(b/) fa(e) fz(b) faz(a) as g23(7) 92<6)7

then

v((a® e,y @ 6)) = (ba,7) © (Bed ™, 6),
and v((ea ® B,y ®9)) = (decr, ) @ (B, 5)).

Now, we certainly have fz(zﬂ) = 1); but also we have fQ(qu) = ¢fa2(e) = 1. Hence

by cocartesianness of 1&, there is a map # making the following diagram commute:

b—s b

GJ/ 2]

/ *b/
b Téb
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and with fo(0) = idg,(). But now we calculate:

(dea,v) @ (Bd~1,0) = (0va, ) @ (Bo",0)
= (Yo, 7) @ (86716, 0)
= (o, 7) ® (Be)™",0)

as required. Thus the 2-cell v is well-defined; it remains to show that it is inverse
to the 2-cell u. We have u((a,7) ® (8,6)) = (¢ ® 8,7 ® §), and thus

U(U((OZW) ® (575))) = ((53703) M (@0*52702)) ® ((2/1*52762) (m) (51,01))7

where 1 1= go3(7) © foz(a)~!. But by definition of Da3 ® Dy, we have foz(a) =

923(7): az — ag, and thus

vu((a,”y) ® (@5)) = ((04>’Y> ® (8, 5))

as required. Conversely, given (o ® 3,7 ® ¢) in E(ds; d;), we have that

w(a® B,y®0) = ((1&_100 ® (61@77 ® 5)
= (a®B,7®0)

as required. O

Corollary 58. The homomorphism S satisfies property (hps).

Proof. Condition (hps2) follows trivially from Proposition 56. For (hpsl), suppose

we are given horizontally composable pullbacks

!

A p% A/ P1 , B/
Ps f and p, £
SCT)SII SC,TS:[l,
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in Cat;. Then consider the diagram

ANoA- 2" . peB

o3 ®P2l lf'@)f

SC' ® SC W ST, ® ST,

We observe that S1 is a groupoid in Cat, and that the arrow S!: SC; — S1 in
Cat is a fibration. Since we have an isomorphism ST; = Ig;, we can now apply

Proposition 57, thus making this square a pullback as required. O

8.4.2 S; and S; are clubs

We already know from Proposition 23 that (Sy,no, to) is a club, but we need to
check that the same is true of (S, m, p1):
Proposition 59. The monad (S1,m1, p1) is a club on Cat;.

Proof. First we prove that the naturality squares for 7; are pullbacks, for which it

suffices to show that the squares

X%Il

nxl [

SX —+ S,

are pullbacks. Evidently, we have that the squares

X, 1 X, ——1
NXs J lm and  7x; J lm
SX, TSI SX, T,S'l

are pullbacks since (Sg, Mo, o) is a club; thus it suffices to check that

X (x4 xs) SR N 1(x, )
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is a pullback in Set; but this is evident since both the vertical arrows are isomor-
phisms. Proceeding similarly, for the naturality squares of 1; to be pullbacks, it

suffices to check that the squares

SEX (¢, (wes)); (W, (w03))) —25 SS1(0, 1)

o :

SX((n¢v <xti>); (nw, <xsz>)) T Sl(n¢’ nw)

are pullbacks; but this is straightforward merely by working through the definitions
of these sets from above. Finally, we must check that S; preserves cartesian natural
transformations into Sp; we shall in fact show that S preserves all pullbacks from

which the result follows a fortiori. So suppose that

D >C

k

-

is a pullback. Since we have that D; = C; x4, B;, and Sy preserves pullbacks,
we have SoD; = SoC; X g4, SoB; (for i € {s,t}). So it suffices to check that the
squares

N Si A

SD((n, (dw)); (m, (ds;))) —— SC((n, (cs:)); (m, (cs:)))

N g

SB((n, (bui)); (m, (bsi))) —5— SA((n, {aws)); (m, {ass)))

Sg
are pullbacks; and again, this is easy working through from the definitions. O
And thus we can conclude with the main result of this part of the thesis:

Corollary 60. The double monad (S,n, p) is a double club on Cat.

Proof. By Proposition 58, S has property (hps); and by Propositions 23 and 59,
Sp and S are clubs on their respective categories. Therefore, by Proposition 48,
(S,m, p) is a double club on Cat. O
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Chapter 9

Multicategories and polycategories

We now wish to put the double club (5,7, 1) constructed above to useful work.
We shall use it to provide an abstract description of the theory of polycategories.

In this chapter, we recap this theory. We begin by looking at their more straight-
forward cousins, multicategories, as introduced by [Lam69], and developed by,
amongst others, [Bur71], [Her00], [Lei04a] and [BD98]. We also describe our
preferred abstract presentation of the theory of multicategories, the presentation
adopted by [BD98] and [CT03].

We then move on to describe the theory of polycategories, as introduced by
[Sza75] and pursued in [CS97]. We give a novel abstract presentation of the the-
ory of polycategories, generalising that given for multicategories; although some-
thing similar has been attempted by [Kos03], the formalism used here seems to be
somewhat neater.

Finally, we lay out what will be necessary to realise this putative new presenta-
tion: the establishment of a pseudo-distributive law between a pseudomonad and
a pseudocomonad on the bicategory Mod, the construction of which is the work

of the remainder of this thesis.

9.1 Multicategories

We begin by re-examining the theory of multicategories: the material here sum-
marises [BD98], [Hyl02] and [Lei04b], amongst others. Note that throughout, we
shall only be interested in the theory of symmetric multicategories, and, later, of

symmetric polycategories; that is, we allow ourselves to reorder freely the ‘inputs’
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and ‘outputs’ of our maps. The non-symmetric case is considered in more detail
by [Kos03].

First a little notation. We write X* for the free monoid on a set X, and I, A, ¥, A
for typical elements thereof. We will use comma to denote the concatenation
operation on X*, as in “I') A”; and we will tend to conflate elements of X with
their image in X*. Given I' = xy,...,x, € X* we define |[I'| = n, and given

o € Sy, write oI for the element x,(1), ..., 7sn) € X
Definition 61. A symmetric multicategory M consists of:
e A set obM of objects;

e For every I' € (obM)* and y € obM, a set M(I';y) of multimaps from I to
y (we write a typical element of such as f: I' — y); further, for every o € Sy,

an exchange isomorphism

M(T;y) — M(aT;y).

This data satisfies axioms expressing the fact that exchange isomorphisms compose

as expected. Furthermore, we have:
e For every x € obM, an identity map id, € M(z; x);

e For every I', A1, Ay € (obM)* and y, z € obM, a composition map

M(F7y> X M(Ahyv AQ, Z) - M(Ahra A?a Z)v

all subject to axioms expressing that composition is associative, unital, and com-

patible with exchange isomorphisms.

(See [Lam69] for the full details of this definition.) Now, this data expresses
composition as a binary operation performed between two multimaps; however,
there is another view, where we ‘multicompose’ a family of multimaps ¢;: I'; — v;
with a multimap f: yi,...,y, — 2.

The transit from one view to the other is straightforward: we recover the multi-

composition from the binary composition by performing, in any order, the binary
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compositions of the g;’s with f — and the axioms for binary composition ensure
that this gives a uniquely defined composite. Conversely, we can recover binary
composition from multicomposition by setting all but one of the g;’s to be the
identity.

We can express the operation of multicomposition as follows: fix the object set
X = obM, and consider it as a discrete category. As before, we write S for the free
symmetric strict monoidal category monad on Cat; so consider now the functor
category [(SX) x X, Set]. To give an object F of this is to give sets of multimaps
as above, together with coherent exchange isomorphisms. Further, this category

has a ‘substitution’” monoidal structure given by

A1, ALeSX k k
keN i=1 i=1
Y1y Yk €X
and
x} ifl==x
I(T;2) = )
0 otherwise;

and to give a multicategory is precisely to give a monoid with respect to this
monoidal structure. Indeed, suppose we have a monoid F' € [(SX)® x X, Set].
Then the unit map j: I — F picks out for each x € X an element of F(x;z),
which will correspond to the identity multimap id,: * — x. What about the
multiplication map m: F ® F — F? Unpacking the above definition, we see that
(F® F)(I'; 2) can be described as follows. Let Ay, ..., Ag € (obM)* be such that

o [[]=n=2[Ai

e there exists 0 € S,, such that o' = Ay, ..., Ay,

and let fi: A; — y; (fori=1,...,k), and g: y1,...,yr — 2 be multimaps in F.
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Then this gives us a typical element of (F ® F)(I'; z), which we visualise as

r

Ay A
Siyees S
Yty -5 Yk

g

Z.

Now, the map m: FF ® F — F sends this element to an element of F(I';z); in
other words, it specifies the result of this ‘multicomposition’. The associativity
and unitality laws for a monoid ensure that this composition process is associative
and unital as required.

At this point we observe that we can express this more abstractly. Indeed, we
have seen that S lifts to a pseudomonad S on Mod, and thus we can form the
‘Kleisli bicategory’ KI(S) of the pseudomonad S. This gadget makes its only
other published appearance in [ECP]; we leave the phrase ‘Kleisli bicategory’ in
quotes for now, since no-one has yet attempted to work through the details of
the coherence it involves, and we do not intend to do so here. However, we can

describe it very simply:

Definition 62. Let B be a bicategory, let (S,n, u, A, p,7) be a pseudomonad on
B. Then the Kleisli bicategory KI(S) of the pseudomonad S has:

e Objects those of B;
e Hom-categories given by KI(S)(X,Y) = B(X,SY);
e Identity map at X given by the component nx: X — SX;

e Composition

KIU(S)(Y, Z) x KI(S)(X,Y) — KI(S)(X, Z)
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given by
B(Y,SZ) x B(X,SY)

1 xB(Y,SZ) x B(X,SY)

Mz IxSxid
B(SSZ,SZ) x B(SY, SSZ) x B(X, SY)
&

B(X,SZ)

where we use ® to stand for some choice of order of composition for this

threefold composite. Explicitly, on maps, this composition is given by
v S s2)ex Loy)=x 5 sy 25 557 2, 57

for some choice of bracketing for this composite.

The remaining data to make this a bicategory — namely, the associativity and
unitality constraints — can be constructed in an obvious way using the associativ-
ity and unitality constraints for B and the coherence modifications for the pseu-
domonad S. We shall not check the details required to show that this data does
indeed satisfy the required coherence axioms for a bicategory.

Applying this to the pseudomonad S on Mod, we see that the monoidal structure

on [(SX)°Px X, Set| described above is just horizontal composition in K1(S)(X, X).

Hence we arrive at an alternative, but equivalent, definition of multicategory:

Definition 63. A symmetric multicategory is a monad on a discrete object X in

~

the bicategory K1(5S).

This description is well known, though not often stated in precisely this form: it
is the approach of [BD98] and [CT03].

9.2 Polycategories

We recall now the notion of symmetric polycategory:
Definition 64. A symmetric polycategory P consists of
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e A set obP of objects;

e For each pair (I', A) of elements of (obP)*, a set P(I'; A) of polymaps from
I' to A;

e For each I', A € (obP)*, each 0 € Sjrj and 7 € S|, exchange isomor-
phisms
P(T; A) — P(oT; 7A);

e For each x € obP, an identity map id, € P(x; z);

o For I', Ay, Ay, Ay, Ay, 3 € (0bP)*, and = € ob P, composition maps

P(F7 Alax7A2) X IP(AhxaAQ; E) - P<A17F7A2; Ala 27 A2)7

subject to laws expressing the associativity and unitality of composition, expressing
that the exchange isomorphisms compose as expected, and that they are compat-

ible with composition.

For the full details of this, we refer the reader to [Sza75] or [CS97]. We recover
the notion of a multicategory if we assert that P(I'; A) is empty unless A is a
singleton.

Now, as before, we may shift from giving a ‘binary composition’ of two polymaps
to giving a ‘polycomposition’ operation on two families of composable polymaps.

First, we need to say what we mean by composable.

Definition 65. Let £ := {f,,: Ay — Y ticmg and g8 := {gn: I'y — A hicn<

be families of polymaps, such that

D [Sml =D Tl =1

We say that a permutation o € S; is a matching if o(Xq,...,%;) =I4,..., .

Informally, this matching shows ‘which output has been plugged into which
input’, and so we can define a composite map g o, f. However, we would like our
notion of polycomposition to coincide with notion of binary composition; hence,

we should be able to perform polycomposition by repeated binary compositions.
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However, not all matchings have this property. Let us define what the ‘suitable’

matchings are:

Definition 66. Given a matching o for f and g, form the bipartite multigraph
graph G as follows. Its two vertex sets are labelled by fi,..., f, and g1,..., gn,
and we add one edge between f; and g; for every element of ¥; which is paired
with an element of I'; under the matching o. We shall say that the matching o is

suitable just when G is acyclic, connected and has no multiple edges.

Proposition 67. A matching o is suitable if and only if the associated composite

map g o, £ can be formed by repeated binary compositions.

In fact, to prove this we shall need to prove something slightly stronger. A little

more notation: given a list ¥ = x1,..., 2 € X*, by a sublist of ¥ we shall mean
alist ' =z, ... , Ty where 1l <y <29 < -+ < Ti; < k. In our eyes, sublists of
Y are in bijection with subsets of {1,...,|X|}; for example, the list x,z has two

distinct sublists of size 1.

Definition 68. Let f := {f,,: Ay, = X bicomg and g == {gn: I'n = Ay hicn<s
be families of polymaps. Let ¥ be a sublist of 3¢,...,3,, and let " be a sublist of
['y,..., T, such that || = |I'| = [. We say that a permutation o € S; is a partial
matching if o(X) =T.

Now, as before, we can define the notion of the associated graph G for a partial
matching, and thus the notion of a suitable partial matching. Also, we can define
the notion of the associated composite map go, f for a partial matching. Now the

previous proposition follows a fortior: from the following:

Proposition 69. A partial matching o is suitable if and only if the associated

composite map g o, £ can be formed by repeated binary compositions.
Proof. The ‘if” direction is a straightforward induction:

e The empty succession of binary compositions certainly gives rise to a suitable

matching;

e Suppose we have already performed a series of binary compositions whose as-

sociated partial matching is suitable; then performing a further binary com-
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position will add one new edge and one new vertex to the associated graph,

retaining its tree structure.

For the ‘only if’ direction, we observe that if the partial matching o is suitable,
then the associated graph G is a tree, and so in particular will have a vertex of
degree 1. Choose any such vertex: it corresponds to one of our polymaps f; or g;,
without loss of generality to f;, say. We begin by forming the binary composition

of f; with the polymap ¢; which is connected to f; in G. Suppose
fl AZHZl,x,E; and g;: F],LIZ‘,F; —>AJ,

where the two z’s are matched under o. Then the resultant composite map will
be
giofi: Ty, Ay, T — 85, A, X0

Note that f; has no other outputs taking part in the partial matching o. Thus
we can now form a partial matching o’ of £\ {f;} with g\ {g;} U{g; o fi}, which
simply matches elements in the same way as o except for the no-longer present
matching of . Now it’s easy to see that the associated graph of ¢’ will be the
same as that of o, but with the vertex corresponding to f; and the single adjacent
edge removed. We continue by induction on the size of the tree G.

Note that we may at each stage have several possible choices of vertices of degree
1 which we may take as the next binary composition to perform. However, the
associativity laws for a polycategory ensure that the resultant composite will be

independent of the choice we make at each stage. O

Hence our global notion of composition of polymaps is given by composing a
family f with a family g along a suitable matching o. How can we express this
more abstractly? We would like to imitate the previous section; given a set X of
objects, we may view it as a discrete category and consider the functor category
[(SX)P x SX, Set]. To give an element of this is to give sets of polymaps together
with coherent exchange isomorphisms. What we should now like to do is to set

up a monoidal structure on this category such that a monoid in it is precisely a
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polycategory. The unit is straightforward:

{x} fFr=x=A
I(T;A) =
0 otherwise;

and we can describe what a typical element of (F ® F)(I"; A) should look like. Let
\Ifl,...,\pk, A17~~-;Ak; 217~--;El; and (I)la-“;q)l

be elements of (obM)*, such that
o I =n=2 [Vl
o >INl =m = [%;
o > |®j[=p=1T;
e there exists o € S, such that o' = Wy, ... Uy;
e there exists 7 € S, such that 7 is a suitable matching of {A;} with {¥;};
e there exists v € S, such that v(Pq,..., ;) = A;

and let f;: ¥, — A; (for i = 1,...,k), and ¢;: ¥; — &; (for j = 1,...,1) be
polymaps in F. Then this gives us a typical element of (F' ® F')(I'; A), which we

visualise as

r
-
Uy, ..., 0,
fisefr
Ao A
;
SN
g1,---s g1
Oy,...,d
v
A.
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Then as for the multicategory case, the multiplication map m: F® F' — F should
specify a composite map for this ‘formal polycomposite’, and the associativity
and unitality conditions for a monoid should ensure that this polycomposition is
associative and unital.

So our problem is reduced to finding a suitable way of expressing this monoidal
structure; and in fact we skip straight over this stage and view polycategories as
monads in a suitable bicategory. To see what this bicategory is, we shall need the

following fact, to be proven later:

Proposition 70. The 2-monad (S,n, ) on Cat lifts to a pseudocomonad (T, €, A)

as well as a pseudomonad (S’, 0, ft) on Mod, such that we have

T = S, éc = (77(3)* and AC = (,uc)*.

The key idea is to produce a pseudo-distributive law (6,7,€, 1, A) of the pseu-
docomonad T over the pseudomonad S ; that is, there should be a pseudo-natural

transformation

6: TS = ST
along with invertible modifications 7, €, 77 and A, replacing the equalities for a
standard distributive law, all subject to ten coherence laws — for full details, see
Section 10.2. Given such a pseudo-distributive law, polycategories will emerge as

monads in the ‘two-sided Kleisli bicategory’ of this pseudo-distributive law. Since

this construction may not be familiar, we describe it first one dimension down:

Definition 71. Let C be a category, let (S,n, ) be a monad and (T,¢,A) a
comonad on C, and let §: T'S = ST be a distributive law of the comonad over

the monad; so we have the four equalities:

eSS =Seod

nl'=60Tn
SAod=0ToTdoAS
and d o T = pT o S)odS

Then the two-sided Kleisli category KI(J) of the distributive law § has:

136



9.2. POLYCATEGORIES

e Objects those of C;

e Maps A — B in KI() given by maps TA — SB in C,
with
e Identity maps ids: A — A in KI(§) given by the map
TA A 54
in C;
e Composition for maps f: A — B and g: B — C'in KI(§) given by the map
TA 24 774 L 75B 22 STB 24 550 £ SC
in C.
Now, we can emulate such a construction one dimension up:

Definition 72. Let B be a bicategory, let (S,n,u, A, p,7) be a pseudomonad

and (T,e, A, N, p/,7") a pseudocomonad on B, and let (9,7,€, &, A) be a pseudo-
distributive law of the pseudocomonad over the pseudomonad. Then the two-sided
Kleisli bicategory K1(9) of the pseudo-distributive law ¢ has:

e Objects those of B;
e Hom-categories given by KI(§)(X,Y) = B(TX,SY);

e Identity map at X given by the composite

TX &5 X X 89X

e Composition

KUY, Z) x KI(§)(X,Y) — KI(6)(X, Z)
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given by

B(TY,SZ) x B(TX,SY)

1xB(TY,5Z)x1x B(TX,SY) x1

Tz IXSXTéy IXTxTex

B(SSZ,8Z) x B(STY,SSZ) x B(TSY,STY) x B(ITTX,TSY) x B(TX,TTX)

®

B(TX,S7)

where we use ® to stand for some choice of order of composition for the
displayed fivefold composite. Explicitly, on maps, this composition is given
by taking for (7Y G 57 )@ (TX LN SY') (some choice of bracketing for) the

composite

A prx IE oy 2 o1y 26 557 H2 57

TX
Again, we shall not provide the remaining pseudoassociativity and pseudouni-
tality data to make this into a bicategory: they are now constructed from the
pseudomonad structure of S, the pseudocomonad structure of 1" and the pseudo-
distributive structure of . Again, it’s a long and gory diagram chase using the

coherence for S, T" and ¢ to check that this data is coherent as required.

Returning to the case under consideration, we claim there is a pseudo-distributive
law 6: T'S = ST, which should function as follows. Recall that we are taking
T = S', and thus the component dc: TSC —— STC at C is given by a func-
tor (SSC)? x SSC — Set. So, given a discrete category X, we wish to take
Ix({Zm1<ams; {Tn}icngk) to be the set of admissible matchings of {3,,} with
{T",,}. If we unwrap the definition of two-sided Kleisli bicategory above, we now
see that the desired monoidal structure on [(SX)P x SX, Set| is given precisely
by horizontal composition in K1(6)(X, X).

Thus we should like to define a polycategory to be a monad on a discrete object
X in the bicategory K(9); but to do this, we must first establish the existence of
the pseudo-distributive law . It is the task of the remainder of this thesis to do
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this.
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Chapter 10

Deriving the pseudo-distributive law 0

Before we can construct the pseudo-distributive law 9§, we must first prove Propo-
sition 70 of the previous chapter and show that (S, 7, u) lifts to a pseudocomonad
(T, €, A) on Mod. For this, we shall identify the dual 2-monad of a 2-monad on
Cat and the dual pseudocomonad of a pseudomonad on Mod, and then see how
these relate to the ‘liftings’ of Definition 51.

We then begin construction of the pseudo-distributive law § between T and S ,
starting by spelling out explicitly the data and axioms that are required for this.
This is essentially drawn from [Tan04], with some minor modifications to deal with
the fact that we are looking at a pseudo-distributive law of a pseudocomonad over
a pseudomonad rather than of one pseudomonad over another.

Now, this definition involves giving a prodigious amount of data and coherence,
and we therefore devote the remainder of the chapter to a discussion of how we

may use the theory of double clubs to reduce to something much simpler.

10.1 Dual 2-monads and dual pseudocomonads

There is a 2-monad on Cat which freely adds finite products to a category, and
another which freely adds finite coproducts. These two monads should provide an
example of a pair of ‘dual’ 2-monads on Cat, and the following definition gives

substance to this intuition:

Definition 73. Let (S,7n,u) be a 2-monad on Cat. Then the dual 2-monad
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(T,e,A) of S is given as follows. There is a 3-functor
(—): 2-CAT — 2-CAT",

(where 2-CAT”™ is 2-CAT with the 3-cells reversed), and so, given the 2-monad
(S,7n, 1) on Cat, we have a 2-monad (S, 7%, u®) on Cat®. Furthermore, we

have a 2-functor

O = (-)°?: Cat — Cat®.

So we take (7', ¢, A) to be given by

T =0"'M®°0O: Cat — Cat,
e=0"'°0: O HdgateeO = O~ MO
and A = O ' u°0: O"'M*M“°O = O~ M«O.

We must check that (7, ¢, A) so defined really is a 2-monad. Observe that
OilidCatcoO = idCat

and

O715°8°0 = (07'5°0)(0~'8°0) =TT

and therefore that we have €: idcay = T and A: TT = T; and it’s similarly
straightforward to see that the monad laws will hold for (7, ¢, A) — essentially we
are just ‘conjugating by O’.

We now wish to do something similar with pseudomonads on Mod. However,
in this case, the dual structure will not be a pseudomonad but rather a pseudo-

comonad (see Appendix B for the notation used for pseudocomonads).

Definition 74. Let (S,7, /i, A, p,7) be a pseudomonad on Mod. Then we give
the dual pseudocomonad (T €, A N, p',7") on Mod as follows. There is a strict
trihomomorphism

(-)°": BICAT — BICAT®,

and so, given a pseudomonad (S’ 0, i, A, p, 7) on Mod, we have a pseudocomonad
(5P, 7P, 1P, (AP) L, (pP) L, (7°P)

1) on Mod®. Furthermore, we have a strict
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homomorphism

O = (-): Mod — Mod*".

So now proceeding as above, we set
T =0"'5°0: Mod — Mod,
define pseudo-natural transformations

=00 T = idmoa
and A =07\ u®0: T =TT,

and invertible modifications

N =0"'\P)10: Teo A = id;
P =0"Yp")0: T o A = id;
and 7 = O (7")10: AT o A = TA o ji°.

In an analogous manner to above, these will satisfy the coherence laws for a pseu-
docomonad on Mod.

Now, suppose that the pseudomonad (g .1, 4, A\, p, 7) on Mod lifts the 2-monad
(S,m, ) on Cat. Then the dual pseudocomonad (T, ¢ A, N, o/, ') lifts the dual
2-monad (T, ¢,A) in the following sense. Consider the diagram:

Cat“°P SN Mod
()P ()P

Cat® — " Mod®

s| e s
Cat®? T Mod®®

()r ()

Cat®°P T Mod.

The upper and lower squares commute on the nose, and thus we obtain a vertical
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transformation
)"
Cat®®» —— Mod

ro| e s

Cat®°®P W Mod.

Furthermore, the components of ¢ and A are given by

éx = ((nxor):)™ = ((Nxor)??)" = (€x)"

and Ax = ((pxer))” = ((xor)™)" = (Ax)",

and it’s easy to compute that the transformation ¢’ is compatible with the pseudo-
naturality 2-cells for ¢ and A in the sense that, given a functor F: C — D, the

following diagrams commute:

mF,sD

F*® (ep)* (ep o F)*

| }d

(ec)* @ T(F*) (c0)" ® (NF)* — = (NFoeo)”

id®6),
and

~ a (0% poT0r)®id MNNF,Ap

TT(F*) @ (Ap)* ——""5 (NNF)* @ (Ap)* — -2 (Ap o NNF)*

Aml }d

(nc)* @ T(F*) (1c)* ® (NF)* (NF o Ag)*.

id®6% MAG,NF

Finally, the components of the invertible modifications 7/, X and p’ are obtained as
for 7, A and p, but this time using 6" and the coherence data for the homomorphism
().

Now, let us examine in detail the dual 2-monad (T, €, A) of the free symmetric
strict monoidal category 2-monad (5,7, 1) on Cat. The 2-functor T has its action
on objects given by TC = (S(COP))OP, and this category has:

e Objects pairs (n, (¢;)), where n € S1 and z4,...,x, € obC;
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e Arrows
(0,{9:)): (n,{c)) — (m, (i),

where o € S1(n,m) and g;: ¢, — d; in C,

with composition and identities given in the evident way. There is an obvious
isomorphism of categories v¢: SC = T'C, which is the identity on objects and
sends the map (o, (g;)) to (67, (go-1(3))).

In fact, if we go on to describe the action of 7" on 1- and 2-cells, and then
it’s easy to see that the isomorphisms yc become the components of a 2-natural

isomorphism v: S = T'. Furthermore, we have

e=von and A=vyopoy iyl
and so we see that S and T' are isomorphic as 2-monads. Thus, we may, without
loss of generality take it that in fact (S,n, u) = (T,¢€, A).

Arguing similarly, we may apply Proposition 74 to the pseudomonad (S Ty iy Ay, T)
on Mod, to form the dual pseudocomonad (T, &, AN, p', 7). By spelling out the
action of 7 on 1- and 2-cells of Mod, we find that as above, we may take it with-
out loss of generality that T' = S. Clearly, we may not take ¢ = /) or A = ji, but

nonetheless we will have

éx = (nx)" and Ax = (ux)"

10.2 Pseudo-distributive laws

We are now ready to begin constructing our desired pseudo-distributive law; we

begin by spelling out the requirements for such a pseudo-distributive law:

Definition 75. Let (S,n,u, A\, p,7) be a pseudomonad and (T,e, A, N, p',7") a
pseudocomonad on a bicategory B. Then a pseudo-distributive law ¢ of T over
S is given by the following data:

(PDD1) A pseudo-natural transformation 6: T'S = ST
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(PDD2) Invertible modifications

T 7§ > ST;
T €
Tnl Y ! and Egl — .
TS s ST S
(PDD3) Invertible modifications
TS5 —2— 578 —— 55T TS : ST
Tul |z luT and Asl |a lSA
TS ; ST TTS —; = TST —5—STT,
subject to the following axioms
TS 7§ —F g
= 4
= Tn ldB Se (PDAl)

7SS —2 5 978 —52 5 g8T
nS U Tu Uﬁ ul = TnS
Tp
TS —TS——5 ST TS
7SS —22 5 97g—50 59T
TSn ! Tu | pT = TSy
T
TS TS 55T TS
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rs U= "l =
n loT
s ST —— ST
(PDA2)

7SS —22 5 97g—50 59T

Js /
UE STn Sn uT
/ 15Va
5 ST ——q 5T
(PDA3)
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TS — g7 — 9T g TS — S g L gr
_ USP’ _ Up’S . €T
AS |a SA ST = AS e U= Jer SeT
TTS 75 TST 5T STT TTS — s TST 7 STT
(PDA4)
TS —2 e — 9T L gp Ts—5 pg 0 L gr
B lhsw B Jxs / -
AS |a SA STe = AS /ES\UTE TSe | STe
TTS 75 TST 5T STT TTS — 75 TST B STT
(PDA5)

7SSS 2% 51785 2% 5575 2 §SST

PN
AN AR
priem
RN

TS

(PDAG)

147



CHAPTER 10. DERIVING THE PSEUDO-DISTRIBUTIVE LAW ¢

TS - ST
TTS g TTS — TST ——— STT
ATS TAS bra 7sa V¥ _ara

7S — 2 s P porT 2 sTTT

|

TS - ST
St!
TTS ———TST — STT = STT
ATS U% AST UKT SAT STA

178 L rrsr L perr L ST

(PDA7)
TSS 55 SS
eSS
_ SeS TSS SS
59 \U/ES
STS Use /sse e !
Tu R weooo= TS - H
Uﬁ SST U% P €3
e
MT\L ST Se S
TS 5 ST ——8
(PDAS)
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TSS o5 STS 50 SST
LS’ AS
T ASS UZS /STTS USZ SSA
§TS %&)
TS = TTSS =2 TSTS l=  STST—"—— S5TT
% %
AS TTu i[fey TSST |mT T
lT,uT
TTS — TST — STT
TSS o5 STS 50 SST
/ Uﬁ uT SSA
TS - ST < SSTT
R s »
TTS — TST — STT
(PDA10)

10.3 Lifting to Coll(S)

We would like now to apply the theory of double clubs to reduce the above def-
inition to something more tractable. Explicitly, by exploiting the equivalence of
double categories

Coll(S) ~ Cat/ STy,

we shall need only to specify data and coherence for our pseudo-distributive law ‘at
1’. However, as it stands, our pseudo-distributive law is not specified in terms of

data and axioms in Coll(.S), but rather in terms of data and axioms in the bicate-
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gory [Mod, Mod],. Observe, however, that the definitions of pseudomonad, pseu-
docomonad and pseudo-distributive law make sense in any bicategory equipped
with a suitable ‘whiskering’ operations.

Now, we know that S is a double club on Cat, and thus that Coll(S) is a
monoidal double category. Furthermore, it follows from Appendix A that Coll(S)
also comes equipped with a suitable notion of ‘whiskering’, and thus so also does the
bicategory B ((Coll (S )) Thus we may talk about pseudomonads, pseudocomonads
and pseudo-distributive laws in B(Coll(5)).

So we seek to establish a pseudo-distributive law in B(Coll(S)) which lifts the
desired pseudo-distributive law § between S and T in [Mod, Mod],. To see
what we mean by ‘lifts’ in this context, we need to know what we are intend-

ing to lift along; that is, we need to produce a homomorphism of bicategories

V: B(Coll(S)) — [Mod,Mod]. To do this, we recall the following:

e Every pseudo double category K contains a bicategory BK, consisting of the

objects, horizontal maps and special cells of K;

e Any double homomorphism F': K — L induces a homomorphism of bicate-

gories BF': BK — BL;

e Any horizontal transformation A: A, =& A; induces a pseudo-natural trans-
formation BA: BA, = BA;;

e Any special modification ¢p: A = B induces a modification B¢: BA = BB.

Furthermore, this operation B respects all forms of composition strictly, and there-

fore we have:

Proposition 76. Given pseudo double categories K and LL, ‘ignoring vertical ar-

rows’ induces a strict homomorphism of bicategories
B(-): B([K,L]d,) — [BK, BL],.

Now, in the case of interest to us, we have BCat = Mod, and therefore a strict

homomorphism B[Cat, Cat], — [Mod, Mod],. Moreover, we have a strict homo-
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morphism of pseudo double categories
U: Coll(S) — [Cat, Cat]

which forgets the projection onto ST; therefore we induce a strict homomorphism

of bicategories

BU : B(Coll(S)) — B([Cat, Cat],),

and composing this with the previous strict homomorphism, we obtain a strict

homomorphism
V=B BU B()
:= B(Coll(S)) = B([Cat, Cat]y) —> [Mod, Mod],,.
Definition 77. We shall say that a datum in B(Coll(S)) lifts a datum in [Mod, Mod],
if applying V' to the former yields the latter.

So our line of attack will be to first lift S and 7 to Coll(S); once we have done this,
we can give coherent data for a pseudo-distributive law in Coll(S) between these
liftings, and then, applying the homomorphism V', obtain a pseudo-distributive
law between S and 71" as desired. We note that in order for this to work, we use

the fact that the strict homomorphism V' also respects the ‘whiskering’ operations
on B(Coll(S)) and [Mod, Mod];.

10.3.1 Lifting S and T

We now need to lift all the data for S and T. The first stage is straightforward:
for (PMD1) and (PCD1), we take the objects (S,idg) and (7', idg) of Coll(S), and
have V(S,idg) = S and V(T,idg) = T as required.

For the remaining data, we shall perform the lifting in two stages; first we lift to

B([Cat, Cat]y), and thence to B(Coll(S)). We start with (PMD2) and (PCD2):

Proposition 78. We can lift the pseudo-natural transformations

~

ﬁlidModig, [LS’S’#S’, éIS’:}idMod and AS:S(SA’
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to respective horizontal transformations
n:idey == S, p:SS =95, € S =idcyy and A:S = 955.

Proof. We shall illustrate the case for 7 and € only; 4 and A follow in identical

fashion. So, the component functors of  and € are given on objects by
nX =7nx = (Nx)«: X +— SX and eX =éx =(nx)":5SX — X

and on amap f: X — Y by nnf and ef given as follows:

0x

X —F——5X SX ——F—
f- Iz, 180 FSH«  and  (Sh- Ve -
Y ———85Y SY —+——
ny

Easily this data satisfies (HTA1). It remains to give the pseudonaturality data
(HTD2), which we do as follows:

Xs 4)(’—>Xt SX84$X0—>SX15
nx = ﬁx% P! %Xt and ex = éx% fext %Xt
SXSTSX# Xs—)»(—>Xt.

We must check the naturality of these components in maps of Cat;. So, given a

map f: X — Y of Cat;, we need the equality

X, X, SX, n%e X, SX,
| l% o
y, X 8Y, = 2 L 5X,
v f{ |t lft ns: let
Yo —3—Y P SY; Yi—s Y —04 SY;
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to hold. But this follows from the following equality of pastings

X
Il

X, ‘ SXs

—1 S(fs)« SX
U”(m*
Ny, St

Y, ———+—— SY; S(YR(f))T <= T8((ft)«®X) SX¢

L—1
Yf ih's \SY\ /5{
|

Y: + SY;
My,
NX g
X | SXs
SX
L1 N Sf .
Y& (fs) Vb, S¥eu) ot <= $8Wm.ex) SX,
(Sft)«
Y: X SY:
My,
X
X, 1 SX,
SX
f _ )
YO(fs)t <= $(1).0X 7). ex 5((f2)+®X) SX;
(S1)«
Y; x SY:
My,
NX g
X, : SX,
fx Jix! féx
Y®(fs)« éXt — SX¢
X,
fm* Ui, fsm*
Y: 1 SY:.
My,

We argue similarly for é. Finally, this data is required to satisfy (HTA2) and
(HTA3); but these follow immediately from the strong transformation axioms sat-

isfied by 7 and é€. O

And now we lift this data to B(Coll(S)):
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Proposition 79. There are horizontal arrows

idgg === S §9=F=3 T —F=idca T—5=TT
77“ uﬁ] ids M LU[J. Hlds , idsH LUE “77 , 1d5“ MA “M
S===S5 S=g=S9 S=F3S5 S=S

of Coll(S), liftingm, p, € and A.

Proof. We illustrate the case of . Consider the following cartesian lifting:

(nyids‘xhlsx
T

X SX
WX‘/ U(nx,idsx> lidsx
SX ‘ SX.

Isx
From the proof of Proposition 50 that we have (nx,idsx) Isx = (nx)« = nX;
so we shall take the central natural transformation of 77 to have component at X
given by

(nx,idsx)
5

Ny =nX Isy ~5 SIy.

We must check two things: firstly, that this defines a cartesian natural transfor-
mation 7. = SI): Caty — Cat;, and secondly that it satisfies the coherence
condition for a modification.
For the first of these, we must check that diagrams of the following form commute
and are pullbacks:
nX ., ny

|

SIX ?If SIY

Now, we can see that the ‘source’ and ‘target’ squares for this, namely

x—1 oy sx L gy
ﬁxl lm’ and idsxl lidsy
SX T SY SX T SY
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commute and are pullbacks, so it suffices to check that the diagrams

nX ((yi); 2) — nY ((fyi); @)

| J»

SX((yi); ) T SY ((fyi); (fx))

commute and are pullbacks: that they commute follows from unrolling the defini-
tions, and they are pullbacks since both vertical arrows are isomorphisms.

Secondly, we must check that the requisite squares commute making this into a
modification; thus given X: X; —— X; in Cat;, we need the following diagram to
commute:

idsx®7x,

SX ®nX, SX @ Sy,

nx mI_;VXo[Xot;(lomX’IXS
nX,® X —— Sy, ® SX;
Mx, ONx

again, it’s easy to check that the ‘source’ and ‘target’ squares for this commute,

so it suffices to check that the following diagrams commute in Set:

idsx®nx,
— 3

(SX @ nX,)((y:); ©) (SX ® STx,)({yi); (x))

X SX(<y1>,<l‘>)

—1
[X OmXJXS

(Xe © X)((yi); ) — 5, — (SLx, @ SX)({13); ()

Nx, ®Nx
and again, unrolling the definitions shows that they indeed do. We proceed in the

same fashion to construct fi, € and A. O

So it remains to lift (PMD3) and (PCD3). Again, we start by lifting to B([Cat, Cat]y):

Proposition 80. The modifications \, p and T for the pseudomonad S lift to
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special modifications

Mg pSn: S=S5
p:ls=penS: S=+95
and T: p @ uS = p Su: SSS == 5.

Similarly, the modifications X, p' and 7' for the pseudocomonad T lift to special

modifications

NTeR AL T =T
peTRQAS I T=T
and T TAQA=SATQAN: T == TTT.

Proof. For A\, we give special maps

Ax: Isx = (ux)s ® g(ﬁx)*

by taking this to be the component of the modification A at X. We must check
that these maps are natural in X, which amounts to checking that the following

two composites agree:

SX X SX X
SY 1y Y, sox X

v Sfl JSnsf lSSf Ut le
SY —577 SSY o SY SY —5oy SSY — 45— SY,
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but this follows the equality of pastings:

Isx
SX S(f) SX
Isy
ove
SY — SSY 1 SY
S((ny)«) (hy )«
Isx
A JAax
S * *
gx ((7}() ) 99X (MX}) Sx
(St S(f) Vsazt 1830 iy S(f) F(Sh)«
SY —— SSY : SY
S((my)«) (by )«

exhibiting A as a modification idg = fio Sﬁ We proceed identically to construct
p, T, N, p and 7' O

And now we lift to B(Coll(S)):

Proposition 81. The invertible special modifications X, p, T, X, p' and 7' lift
to invertible special cells of Coll(S).

Proof. We must check, for instance, that A lifts to a cell

A (p, 1) @ (S,1ds) (0, 1) = Lsag)-

All that is required for this is to check that A is compatible in Coll(.S); with the
projections of the ‘source’ and ‘target’ objects down to SI. This is a somewhat

long but unenlightening diagram chase which we therefore omit. O
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10.3.2 Lifting 0

We have seen that we can lift S and 7' to B((Coll(S)), and thus it makes sense
to ask for data for a pseudo-distributive law between them. We now wish to see
how we can use the theory of double clubs to reduce this to a collection of data
in B(Cat/SI;). We begin with (PDA1), for which we must produce a horizontal
arrow

(,0): (TS, p1) = (ST )

of Coll(S), i.e., a horizontal transformation and a cartesian modification as follows:

TS =% 5T

o s e

§=—=5.

Now, suppose we have a horizontal arrow

751 —% 5T1

ml la lm

SlﬁglﬁSl

of Cat/ST,. We should like to say that (d,d) is the component at 1 of some
horizontal arrow (8, 8) of Coll(S), which amounts to asking for the double homo-
morphism F': Coll(S) — Cat/SI; to be ‘horizontally full’, in the following sense:

Proposition 82. Let (A, a) and (Ay, o) be objects of Coll(S), and suppose that

we have a horizontal arrow

Asl 4?—> Atl

(as)ll e l(at)l

51T51
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of Cat/SI,. Then there is a horizontal arrow (A, a) of Coll(S):-

s A

A
—
QSH or ﬂat
S==S9

ST

~+

such that F(A, o) = (a,0).
To prove this, we shall need the following result:

Proposition 83. Let K and IL be pseudo double categories, and suppose that the
functor [s,t]: Ly — Lo X Lo admits cartesian liftings of isomorphisms. Then
the functor [s,t]: [K,L]|py — [K, L]y, X [K, L]y also admits cartesian liftings of

isomorphisms.

Proof. Suppose we are given a horizontal transformation B: B, == B;: K — L
and vertical isomorphisms f,: A, = B, and f;: A; = B;; then we must construct
a modification (fs, fi): (fs, ft),(B) = B as follows:-

As
fsM
B,

We start by giving A = (fs, fi),(B). Observe that given X € K, we have the

fsvft * B
_—f

(fs:ft)..(B) A,
W fs fey || £e
B B

following cartesian liftings:

<(f$)X7(ft)X>*(BX)

ASX f AtX
(fs»{ PLF)x () x) l(fox
B, X . B/ X.

Let us write fx for ((fs)x, (ft)x) and (fx)«(BX) for ((fs)x, (ft)x),(BX). Observe

that since (f,)x and (f;)x are invertible maps, so also will fx be, and furthermore,
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we have

fx' = {((f)x" (Ff)x'): BX = ((fo)x, (fi)x).(BX).

So we give the components functor A, on objects by setting AX = (fx).(BX),
and on maps g: X — Y by setting Ag: AX — AY be the map (fx).(Bg) induced

by the universal property of cartesian liftings and satisfying
Bgo fx = fy o Ag.

Observe that this makes the maps fx into the components of a natural transforma-
tion f: A. = B.. To give the pseudonaturality invertible special transformation

for A, we take the component at X to be given by the composite

) Ix,®f)x"

AX @ AX, IXE% px o BX, 2% BX, ® B.X

AX;® AX.

Observe that this is indeed a special map in L4, since its source and target are the

maps

(fs)Xg (fS)Xg

As Xy — B, X, —>BX — A X

and

‘ (fi)x,
AtXt f)Xt BtXt —) BtXt AtXt

The naturality of these maps in X follows from the naturality of B, f, fs and
fi- That the required coherence diagrams commute follows straightforwardly, as
we are just conjugating by f. It remains to give the modification (fs, f;): A = B.
We take its central natural transformation to be f: A = B: Ky — Ly; easily
(MA1) is satisfied, whilst for (MA2) we require diagrams of the following form to

commute:
AX @ AX, — 1 AX, @ AX

(ft)x@fxsl lfxt@)(fs)x

BtX X BXS B—x> BXt X BSX,

which they do by definition of Ax. It remains to check that this lifting is cartesian;

but any lifting of an isomorphism is automatically cartesian, so we are done. [
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Now we are ready to prove Proposition 82:

Proof. Let us write (A, &) for G(a, 0); so we have

=

0 >
i b

Qs

e

O)<:

Furthermore, we have invertible vertical transformations
Ns = TN(As,as) Ay = A, and Nt = N(Ar,ar) - Ay = A

such that é&ns = a, and dun; = «. By Proposition 50, the functor [s,t|: Cat; —
Caty x Caty is a fibration, and so certainly admits cartesian liftings of isomor-
phisms. Thus, by the previous proposition, the functor [s,t]: [Cat, Cat]py —
[Cat, Cat]yy x [Cat,Catl,, also admits cartesian liftings of isomorphisms. Thus

we may form the cartesian lifting

so now we take A = (n,,n;),(A) and
a = (ne,m),(A) 1 A 2 g1

Observe that (n,,n;) is invertible and hence certainly a cartesian modification, so
that « is itself a cartesian modification as required; and since asns = «a, and
My = a4, a has the correct source and target.

It remains to check that F(A,a) = (a,0). Now F(A, «) is given by

~

(1)1, (1), (A1) L0, Ay &, gy
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but by definition, we have that
Al = a, dl = 0, (773)1 = idAsl and (nt)l = idAtl'

Therefore ((ns)1, (m:)1) = id4,; = ida; so the above composite is indeed equal to

a2 ST as required. O

Thus, if we can find a horizontal arrow
(d,d): (TS1,m) — (STL, )
of Cat/SI;, then by Proposition 82, we obtain a horizontal arrow
(6,8): (TS, p1) = (ST )

of Coll(S) as required, whose image under F is precisely (d, d). Once we have this,
deriving the remaining data (PDD2) and (PDD3) is straightforward. For instance,

considering 77, we must find a special invertible cell

7: (6,8) ® (T,ids)(n, 1) = (n,7)(T,ids)

of Coll(S). Considering the double homomorphism F': Coll(S) — Cat/SI;, we
know that both Fy and F form one side of an equivalence of categories. In partic-
ular, the functor Fy: Coll(S); — Caty /ST, is full and faithful, and thus it suffices

to find a special invertible cell

7, (d,d) © ((T,ids)(n,9))1 = ((n,7)(T,ids))1

of Cat/SI;. We proceed similarly for the remaining data.

Finally, we must ensure that (PDA1)-(PDA10) are satisfied, which amounts to
checking certain equalities of pastings in B (Coll(S)), which amounts to check-
ing certain equalities of maps in Coll(S);; but since the functor Fy: Coll(S); —
Caty /ST, is faithful, it suffices to check that these equalities hold in Cat/ST;.
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Chapter 11

Constructing the pseudo-distributive law at 1

In the last chapter, we showed how to reduce the prospect of constructing the
desired pseudo-distributive law in [Mod, Mod], to the prospect of constructing
a pseudo-distributive law ‘at 1’ in the bicategory B((Cat/ SIl). In this chapter we

duly construct such a pseudo-distributive law.

11.1 Spans

Before we begin, we shall need a few preliminaries about acyclic and connected
graphs. We seek to capture their combinatorial essence in a categorical manner,
allowing a smooth presentation of the somewhat involved proof which follows.

The objects of our attention are spans in FinCard, i.e., diagrams n «— k — m
in the category of finite cardinals and all maps. When we write ‘span’ in future,
it should be read as ‘span in FinCard’ unless otherwise stated. We also make
use without comment of the evident inclusions FinOrd — FinCard and S1 —
FinCard.

Now, each span n «— k — m determines a (categorist’s) graph k——2n + m; if
we forget the orientation of the edges of this graph, we get a (combinatorialist’s)
undirected multigraph. We say that a span n < k£ — m is acyclic or connected
if the associated multigraph is so. Note that the acyclic condition includes the

assertion that there are no multiple edges.

. , 0 0
Proposition 84. Given a spann « k — m, the number of connected components

of the graph induced by the span is given by the cardinality of r in the pushout
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diagram
k i> m
HIJ lm
n——r
in FinCard.

Proof. Given the above pushout diagram, set n; = 7; (i) and m; = 7, (i) (for

i=1,...,r). Now we observe that, for i # j, we have
01" (ns) N0y (my) = 07" (ni) N 01 (ny) = 0,

so that induced graph of the span has at least r unconnected parts (with respective
vertex sets n; +m;). On the other hand, if the induced graph G had strictly more
than r connected components, we could find vertex sets vy, ..., v,,1 which partition
v(G), and for which

r € v, y € v (for i # j) implies x is not adjacent to v. (1)

But now define maps 71: n — r+1 and 75: m — r+ 1 by letting 7;(x) be the p for
which # € v,. Then by condition (}), we have 71(61(a)) = 72(02(a)) for all a € k,

and so we have a commuting diagram
02
——m

I
_l’_

01

S——

—r+1

T1

for which the bottom right vertex does not factor through r, contradicting the

assumption that r was a pushout. Hence G has precisely r connected components.
O

Corollary 85. A span n g 2 mis connected iof and only if the diagram

1f

02
—

01

S

—_
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18 a pushout in FinCard.

Proposition 86. A spann A2 acyclic if and only, for every monomor-

phism t: k' — k,

0o , 021
— k!l ——
91 91[,

m m
J a pushout implies l not a pushout.
r r

S——

—_— n———

Proof. Suppose the left hand diagram is a pushout; then the associated graph G
of the span has r connected components.

Suppose first that G is acyclic, and ¢: k' < k. Then the graph G’ associated to
the span n &g 25 1 has the same vertices as G but strictly fewer edges; and
since G is acyclic, G’ must have strictly more than r connected components, and
hence r cannot be a pushout for the right-hand diagram.

Conversely, if G has a cycle, then we can remove some edge of G without changing
the number of connected components; and thus we obtain some monomorphism

t: k' — k making the right-hand diagram a pushout. O

Proposition 87. Suppose we have a commuting diagram

02
—m

P2 (*)

— 7.
1

01

S

Then the spans m¥ «— k@ — n® (fori=1,... r) induced by pulling back along
elements i: 1 — r are all connected if and only if (%) is a pushout.

Proof. Suppose all the induced spans are connected; then each diagram

o0
1) 2y 0 ()

o
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is a pushout; hence the diagram

(%)
5 5 2% 5 )

ziei”l J

Sl 7

is also a pushout, whence it follows that (x) is itself a pushout.
Conversely, if (x) is a pushout, then pulling this back along the map i: 1 — r

yields another pushout in FinCard, so that each induced span is connected. [J

Proposition 88. Let G be a graph with finite edge and vertex sets. Any two of

the following conditions implies the third:
o (G is acyclic;
e (G is connected;
o [0(G)] = [e(G)| + 1.

Proof.
e If G is acyclic and connected, then it is a tree, and so |v(G)| = |e(G)| + 1;

e if G is connected with |v(G)| = |e(G)| + 1, then it is minimally connected,

hence a tree, and so acyclic;

e if G is acyclic with |[v(G)| = |e(G)| + 1, then it is maximally acyclic, hence a

tree, and so connected.
O

Corollary 89. A span n Sk 2 om s acyclic and connected if and only if the

m
1
1

diagram
02
—

01

S

—_—
is a pushout in FinCard, and n+m =k +
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Corollary 90. Suppose we have a commuting diagram

02
—m

@2 (*)

— 7.
1

01

S

then the induced spans m® «— kW — n@ (for i = 1,...,r) are acyclic and

connected if and only if (%) is a pushout and m +n =k +r.

11.2 (PDD1)

We are now ready to give our pseudo-distributive law at 1, and we begin with
(PDD1):

Definition 91. We give the horizontal arrow

751 —% ST1

ml la lm

SlTSl

of Cat/SI; as follows. The profunctor d: 751 — ST1 is the following functor
d: (SS1)°° x SS1 — Set:

e On objects: elements f € d(¢;1) are bijections f, fitting into the diagram

f

Ny =5 Ny
o v
Mg My

such that the span m, L Mg Yoln, my is acyclic and connected.

e On maps: Let g: ¥ — pin T'S1 and let f € d(¢;1). Then we give ge f €
d(¢; p) by

'I’L¢ gnofn np

Q{ J

W1¢ ﬂQp
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This action is evidently functorial, but we still need to check that it really
does yield an element of d(¢; p); that is, we need the associated span to be

acyclic and connected. But this span is the top path of the diagram

X
¢

nw%np

N

My m,ﬁﬁmp,

and therefore also the bottom path, since the right-hand square commutes.

But since g,, is an isomorphism, the graph induced by the span M & Ny —— LELR

m, is isomorphic to the graph induced by the span m,, & N Imln,

m,, and
hence the latter is acyclic and connected since the former is. So we have a well-
defined left action of T'S1 on d; proceeding similarly we give a well-defined

right action of ST'1 on d.

This completes the definition of d; we now give the 2-cell d, for which we must

give natural maps
J¢,,¢,: d(¢;1) — S1(ng, ny).
But this is straightforward: we simply send

In

Ny —— Ny
o
me My,

in d(¢;v) to f, in S1(ng;ny). It’s visibly the case that this satisfies the required

naturality conditions.

Now, consider the pseudo-natural transformation 9: TS = ST induced by this
(d,a); its component at a discrete category X has 0x ({2 }1<m<; {In i<n<k)
given by the set of admissible matchings of {X,,} with {I',}, which is precisely
what we sought in Chapter 9.
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11.3 (PDD2)

For (PDD2) we must produce the component of the invertible special modifications

m and € at 1:

Proposition 92. There is an invertible special cell

T1

(Tn)lJ[ NG
=

TS1—4— ST1

mediating the centre of this diagram in Coll(S) (where we omit the projections to

ST).
Proof. With respect to the descriptions of S1 and S?1 given above, we observe

that that the functors Tn;: T1 — T'S1 and npry: T1 — ST'1 are given by

T771:n|—>(n£>n) nlenH(ngl)

fe= () fe= ()
and hence (nT')1: T'S1°? x T1 — Set and (Tn)1: ST1°° x T'1 — Set are given
by:

id

(MT)1(;n) = (nr)s(d5m) = ST1(é, (n S n))
(Tn)L(¢sn) = T(m)«(¢;n) = (Tm).(é5n) = TS1(¢, (n - 1))

Thus the composite along the upper side of this diagram is given by

! Sl(ng,n) if mg=1;
(nT)1(¢p:n) = ST1(¢, (n — 1)) 1(ng,n) o=1

14

(1)

0 otherwise,

where the isomorphism is natural in ¢ and n; and with respect to this isomorphism,

the projection down to ST is given simply by the inclusion

(nT)1(¢5n) — S1(ng,n).

171



CHAPTER 11. CONSTRUCTING THE PSEUDO-DISTRIBUTIVE LAW AT 1

Now, the lower side is given by
YeTS1 ”
@o o = [ TSI, (0 % ) x diéi),

which is isomorphic to d(¢; (n i, n)), naturally in ¢ and n. Now, any element f

of d(¢; (n LN n)), given by

me
say, must satisfy mg + n = ny + 1; but since n = ng, this can only happen if

me = 1; and in this case, the diagram

is necessarily a pushout. Hence

Sl(ng,n) if my=1;

I

(d@ (Tn)1)(¢;n) (2)

0 otherwise,

naturally in ¢ and n; and once again, the projection down to ST is given simply by
inclusion. So, composing the isomorphisms (1) and (2), we get a special invertible

cell 1 which is compatible with the projections down to SI, as required. O

Proposition 93. There is an isomorphic 2-cell

751 —%— 511

g
(eS)1 (Se)1

S1

mediating the centre of this diagram in Coll(S) (where we omit the projections to

SI).
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Proof. Dual to the above. O

11.4 (PDD3)

For (PDD3) we must produce the component of the invertible special modifications

7t and A at 1:

Proposition 94. There is an isomorphic 2-cell

751 ¢ ST1

(AS){ a1 i(SA)l

TTSlWTSTlWSTTl

mediating the centre of this diagram in Coll(S) (where we omit the projections to

SI).

Proof. Let us describe explicitly the horizontal arrows involved in the above dia-
gram. The functors pgy: TTS1 — T'S1 and Spy: STT1 — ST1 in Cat are given
by

psi: (g = Mg 2, re) = (ng o mg) Spi: (ng kan Mg N re) = (ng b2, r)
(fn;fmafr) — (fnafm) (fmfm;fr) — (fn,fr)

and hence (AS)1: TTS1° x T'S1 — Set and (SA)1: STT1°? x ST1 — Set are
given by:

(AS)L(6:0) = (ns1)* (1) = TS1((ng ™ my). ¥)

(SA)I(G10) = ()" (6:) = (Spu)* (650) = ST1(ns % ), ).
We now wish to describe (67")1 and (7'6)1; let us abbreviate these as dT" and T'd

respectively. It’s a straightforward calculation to see that d7': STT1°° x T'ST1 —

Set is given as follows:

e On objects: elements f € dT(¢;1)) are pairs of bijections f, and f,, fitting
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in the diagram

7’L¢£>TL¢

| |

m¢ ? mw
¢2l }/12
T'¢ Ty

such that the span r Rk M Y20fm, ry 1s acyclic and connected.

e On maps: Let g: ¢ — pin TST1 and let f € dT(¢;). Then we give an
element g o f € dT'(¢; p) by

n¢ gnofn np

b1 P1
meg ——— mp
gmOfm
®2 P2

7“¢ Tp;

and we give in a similar way the right action of STT'1.
Similarly, it’s easy to calculate that T'd: T'ST1°° x TTS1 — Set is given by:

e On objects: elements f € T'd(¢; 1) are pairs of bijections f,,: ngy — n, and
fr: 1y — 1y fitting in the diagram

ng 1% ny

¢1l %«m

me

o[

Ty —sT
¢fTw
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such that for each ¢ = 1,...,ry, the induced spans

are acyclic and connected.

[Let us clarify what the induced spans referred to above actually are. We have the
commuting diagram

ng L2ny Ymy,

¢’1l lw (*)

mey —Tgp —T
A R

and the induced spans are the result of pulling this diagram back along elements
i: 1 — ry. By the results of the first section of this chapter, these spans are all

acyclic and connected if and only if (x) is a pushout and ry + ng = my + my.]

e On maps: Let g: ©p — pin TTS1 and let f € Td(¢;4). Then we give an
element g o f € Td(¢; p) by

n¢ gnofn np

o1 p1
m¢, mp

®2 p2

Ty —— Tp;
grofr

again, we give a right action of 7'ST'1 similarly.

So, returning to the diagram in question, the upper side is given by

vesTl P21
(SA)1®d)(¢;p) = / d(¥; p) x ST1((ng == r4),1)),
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which is isomorphic to d((ng Sz, ry); p), naturally in ¢ and p. With respect to

this isomorphism, the projection onto ST has components
P21
d((ng == 14);p) — SL(ng;n,)

which send
fn

ng — np
¢2¢1l L"
T’d) mp

to f,. The lower side of this diagram, which we denote by K, is given by

K(¢;p) = ((6T)1 ® (Td)1 @ (AS)1)(¢; p)
YETSTI,

¢ETTS1
= [ TS0 £ me).p) x Td(w:6) x T (610,
We may represent a typical element z € K(¢;p) as x = f ® g ® h, where f €
AT(¢;0), g € Td(Y;€), and h € TS1((ng < me), p):

n n hn
ng 2t ny 2 ng My,

al W] e e

me ? My, me ? mp
¢2l ¢2l §2l
7’¢ T‘¢ 7 7“5.

Then the projection onto ST has components

K (;p) = S1(ng,n,)
J®g&hw hyog,o0 fo.

So, we need to set up an isomorphism between K(¢;p) and d((ng S201, T6):P)

which is natural in ¢ and p and compatible with the projection onto SI. In one
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direction, we send the element x € K(¢; p):

nd,gnzﬁg*%ng%np

ml wll 5{ lp

Mg — My mgﬂmp

fm hm
¢2l ¢2l §2l

To Ty —Te

to the element 2 of di ((ne G2, r¢); p) given by

n¢ hngn fn np

ml l

T¢ mp.

Note that this element is independent of the representation of x that we chose,
that this assignation is natural in ¢ and p, and is compatible with the projection
down to ST; but for it to be well-defined, we need still to check that the span

hn nJn . . . .
T 221 ng 22 ! m,, is acyclic and connected. For this, we observe first that in

the following diagram

ng 22 ny 2 ne Sy me o,

al Je

m¢*>mw*>7“¢?’f‘§

LT

Te 1 1 1

each of the smaller squares is a pushout; and hence the outer square is also a

pushout. But the top edge is h,&1 9, frn = phngn fn, so that the square

h
nd)p ndgn fnnp

0

Ty —— 1
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is a pushout as required. Furthermore, the following equalities hold:

r¢+r¢:m¢—|—l

mw+m§=nw+T§

My = Mg
mpy = Mg
Ty =T¢

Ny = Ny,

hn nJn
whence we have m, +ry = ng + 1. So the span 74 0201 N Plngn ]

m, is acyclic
and connected as required.

Conversely, suppose we are given an element k of d;((ng $201, T$); P):

H¢L>np

ml l

T & mp;
then we take the following pushout:

k
n¢L>mp

mey ——r.
i1

Now, the map ¢; in this pushout square need not be order-preserving; but it has
. . . aq o1 . .

a (non-unique) factorisation as mg — r1 — r, where a; is order-preserving and
.o . . . . . 8% (o} . .

o1 a bijection. Similarly, we can factorise iy as m, —> ro —> 7 with ay is order-

preserving and o9 a bijection. [Note that it follows that each of the diagrams

k pkn
ng L my, Ny — MMy
¢1l lal i, and ¢1l lO‘Q
mey —— 11 Mg —1, 2
[e51 0q9 11
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is also a pushout.] Now we send k to the element kof K (¢; p) represented by the

following;:

id id

k
g ng n Ny Ny

o[ o ]

Mg — Mg Mp — Mp.
id id

Al

T T ——=T2
0;101

This is visibly compatible with the projection down onto ST, but we need to check
that it is in fact a valid element of K(¢;p). Clearly all squares commute in the
diagram above, so we need only check the acyclic and connected conditions. We

start with connectedness; for the middle map, the diagram

kn, P pkn,
nNg ——Np —— 1M, ng ——1m,
¢1J loo — ¢1J laz
My ——T1 ——— T2 Mme —— 12
1 oy 01 oy 11

is indeed a pushout, so the induced spans for the middle map are connected. For

the left-hand map, consider the diagram

kn
ng L5 m,

¢1l J/Ulliz

m,
¢T>r1

o

Ty ——1;

the outer square and the upper square are both pushouts, and hence so is the lower
square; so the left-hand span is connected.

And now acyclicity. For the middle map, we need that, given any monomorphism
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L1 My < Ny, the diagram

knt

me —— 12
oy i1

is no longer a pushout. But suppose it were; then in the diagram

knt
7,11;S PRn mp

b1 LJ/ Jollig

m¢>TT1

|

T ——1

the upper and lower squares would be pushouts, hence making the outer edge
a pushout; but this contradicts the acyclicity of the span ry «+ ngs — m,. So
the induced spans for the middle map are acyclic. Thus we now know that the

following equations hold:

m¢+mp:n¢+7’2
Ty +m,=mneg+1

r =T,

and so can deduce that r; +ry = mg + 1, as required for the left-hand span to be
acyclic.
It remains to check that these two assignations are mutually inverse. It is evident,

given k € di((ne LZizN r4); p), that k = k. For the other direction, we send

. . .
n¢ﬂ>n¢%n5%np n¢i>n¢ﬂnpi>np
ml wll sll lp ¢1l ‘f’ll ’Jl l”
xr = md,ﬁmw mgmmp to I = m¢ﬁ>m¢ mpﬁmp
¢2l ¢2l % ‘% "‘{ O‘Ql
r rn — To.
e Ty——Te ? o) on
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We claim that these two diagrams represent the same element of K (¢; p). Indeed,

note that in the diagram

ng L% ny 2 ne £ me nm,

¢1l ¢1l le lgflﬁzhfnl

My — My — Ty ——Teg —— T
¢ 7 g T g T T

each of the smaller squares is a pushout, and hence the outer edge is. But the

upper edge is h,.&19n frn = phngn fn = pkn, so that the diagram

kn
ng 24 m,

¢1l lg:lszh;}

meg —T
Cpnt ¢

is a pushout. Since r; is also a pushout for this diagram, it follows that there is
an isomorphism 3;: ry — ry such that Bia; = 92 f,,; hence the following diagram

commutes:

ng I ny

¢>1l ld’l
fm

Mg — My

o s

r —T
1/311/)

Similarly, we see that

pkn
ng — mp

¢1J J/EQ h7_n1

mey —T
$r¢2fm 6

is a pushout, and so there is an isomorphism J3y: r¢ — r9 such that ﬁgggh;ll = (g,
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i.e., f2&s = ash,,. Hence the following diagram commutes:

nﬁgnp

3 i |7

mfﬂmp

of |-

T To.
52

-1
B1 g B2 o o .
Furthermore, we have r; — 7y == r¢ — 19 = 11 — 7 —— 79, since each of

these objects is a pushout of the same span, and the isomorphisms between them
are isomorphisms of pushouts. Thus, using an evident notation for the internal

actions, we have

n¢ﬁ>n¢g$n£ﬂ>np n¢£n¢ﬁnwﬂ>ngﬂ>np£np
¢1l ¢1l £1l lp ¢1l ¢>1l ldn £1l Pl LO
xr = m¢?mw mgﬁmp = m¢?m¢f$mw m§%mmep
m m 1
N N I
T T Te. T T r T To.
¢ P T 13 ] 1 ? P ? 13 w 2

d k .
n¢;>n¢*">np$np

of W A ]

— Mg —m m,—sm, _ 2
= ¢ a @ L P = .
¢2l all 012l
T¢ 7’1*1>T2.
oy 01

So the assignations z — & and k — k are mutually inverse as required. It now
follows that the assignation d;((ng 1IN r4); p) — K(¢;p) is natural in ¢ and p,

since its inverse is. This completes the proof. O
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Proposition 95. There is an isomorphic 2-cell

TS51 —+— STS1———55T1
(Tu)l{ |r {(MT)l
751 ; ST1

mediating the centre of this diagram in Coll(S) (where we omit the projections to

S1).

Proof. Dual to the above. O

11.5 (PDA1)-(PDA10)

It remains only to show that the data produced above satisfies the ten coherence
axioms (PDA1)—(PDA10). At first this may appear somewhat forbidding, but our

job is made rather simple by the following argument.

Definition 96. We say that a cell

of Cat is locally monomorphic if it is a monomorphism when viewed as a map

of [X;? x X, Set]:

op
XtOP x X, ¢ X fs }/;OP x Y,
\ : /
=
X Y
Set.

In terms of its components, this happens if and only if each of the maps

fﬂct@‘s : X(xt; $5) - Y(ftxt; fszs)

is a monomorphism.
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Now, local monomorphisms admit a limited form of ‘left cancellation’. Indeed,
suppose we are given objects X = X: X, -+ X, and X' = X': X, - X, of
Caty, and special maps g, and g,: X' — X; then given a local monomorphism
f: X =Y, we have that

since to give a special map ¢;: X' — X is equivalently to give a natural trans-
formation g;: X’ = X; therefore the result follows from the fact that f: X =
(Y o f{® x fs) is a monomorphism in [X;* x X, Set].

Also, given a special isomorphism g: X’ — X and a local monomorphism

f: X — Y, we observe that f o g is also a local monomorphism.

Proposition 97. Consider each of the pasting diagrams in the azioms (PDA1)-

(PDA10) as a diagram in Cat/STy. Then the projection map from each ‘source

and ‘target’ face down onto Sy is a local monomorphism.

Proof. Observe that every special cell in the pasting diagrams for (PDA1)-(PDA10)
is invertible, and therefore, for each pasting diagram it suffices to show for any
one path through it that the projection onto ST, is a local monomorphism; it then
follows, by the discussion preceding this proposition, that the same is true for all

other paths. We now work our way through the ten axioms:
e (AX 1): Let us write K for the composite 71 <L id I S1; then we have

xt ifm=n=1;
K(m;n) = e
0 otherwise.

and the projection down onto ST simply sends the unique element of K (1;1)
to the unique element of S1(1;1), and thus is a local monomorphism as re-

quired.

e (AX 2)—-(AX 5): For each of these we look at the path d: T'S1 — ST'1, and

from the definitions, the projection onto ST is visibly a local monomorphism.
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e (AX 6): Let us write K for the composite

(TSp)1 51

175551 L rogr T pey O o,

Then we have an isomorphism
~ Yaaih1
K(¢3) 2= d(d; (ny == sy))

natural in ¢ and v, where we are writing a typical element of T'SSS1 as
P = ny A2 My N o s, sy in the evident way. With respect to this
isomorphism, the projection down onto SI; is given simply by the value of d

there, which is a monomorphism as required.

e (AX 7): Dually to (AX 6).
e (AX 8): Let us write K for the composite 7'SS1 Tl pgy 4, 571

then we have

(Se)l Sl,

K(m;¢) = d((m % m); (ny 225 1))

and again the projection down onto SI; is simply given by the value of d

there, and thus is a local monomorphism.

e (AX 9): Dually to (AX 8).

e (AX 10): Let us write K for the composite T'SS1 Tl gy 4,

STT1; then we have

s71 AN
Paih1 P21
K(;¢) = d((ny == ry); (ng — 14))

and again the projection down onto SI; is simply given by the value of d

there, and thus is a local monomorphism. O

Corollary 98. The pasting equalities (PDA1)-(PDA10), when viewed as diagrams
in Cat/S1y, hold for the data (PDD1)-(PDD5) constructed above.

Proof. Consider (PDA1) for example. The two pasting diagrams under consider-
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ation pick out two arrows f and g of Cat;/ST;:

(€)@ (gl —F 5 (Se)l® (nT)1

\/

(eS)1® (Tm)1 (Se)l ® (nT)1

S <

STy,

and

where both the above diagrams commute. But by the previous proposition, the
projections 71 and 7y are local monomorphisms, and since f and g are special
maps, we have

moof =m =myo0g implying f=g
We argue similarly for the other nine diagrams. O

This completes the definition of our pseudo-distributive law in B(Cat/S1;); so now,
by the arguments of the previous Chapter, we can produce from this a pseudo-

distributive law in B(Coll (S )), and thence, via the strict homomorphism

BO),

V= B(Coll(S)) B([Cat, Cat],) —> [Mod, Mod],

our desired pseudo-distributive law 9: 7S = ST in Mod. So finally, we can

honestly state our preferred definition of polycategory:

Definition 99. A polycategory is a monad on a discrete object X in the bicategory
Kl1(9).
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Chapter 12

Closing Remarks

Let us take stock of what we have achieved. We set out to establish an abstract
formulation of the theory of polycategories, a formulation based on the theory of
pseudo-distributive laws. By setting up a suitable such pseudo-distributive law
§: TS = ST of the free symmetric strict monoidal category pseudocomonad over
itself qua pseudomonad, we are able to view polycategories as monads in the ‘two-
sided Kleisli bicategory’ of this pseudo-distributive law.

In order to set up such a pseudo-distributive law, we first developed the theory
of pseudo double categories and double clubs. In particular, we established the
existence of a monoidal double category Coll(S) and an equivalence of pseudo

double categories

Coll(S) ~ Cat/S1;.

We were then able to ‘lift” the pseudomonad S and pseudocomonad T from
[Mod, Mod], to Coll(S), and, using the above equivalence, to consider them
as data in Cat/ST;. With this in place, we were able to construct our pseudo-
distributive law ¢ by reducing to the construction of a pseudo-distributive law in
Cat/ST;.

Several directions for further research suggest themselves at this point. Most
straightforward is to ascertain the natural higher-dimensional structure into which
polycategories form themselves. This should itself be a pseudo double category, of
‘polycategories, polyfunctors, polymodules and polytransformations’. To explore
this, we would extend the bicategory K1(d) itself to a pseudo double category and

utilise the ‘monad’ construction detailed by Leinster [Lei0O4al.

187



CHAPTER 12. CLOSING REMARKS

Also of interest would be an investigation into the higher dimensional struc-
ture of pseudo double categories themselves. As mentioned in passing above, the
2-category DblCat,, is a monoidal bicategory, and hence a suitable base for en-
riched bicategory theory in the sense of [Car95, Lac95]. A bicategory enriched in
DblCat,, is an interesting structure: it is genuinely three-dimensional, but sig-
nificantly less unwieldy than a tricategory, since we have one less dimension of
coherence to deal with, its associativity and unitality being given up to isomor-
phism rather than equivalence. A leading example of such a structure would be
DblCat,; itself; indeed, as we observed, DblCat,, is a biclosed monoidal bicate-
gory, and hence canonically enriched over itself (see [Lac95]).

One might also hope that the theory of this thesis can be modified to deal with
the ‘multi-bicategories’ and ‘poly-bicategories’ of [CKS03]. Essentially, we can
view these as ‘many-object’ versions of multicategory or polycategory respectively;
therefore to describe a multi-bicategory or poly-bicategory with object set X, we
would replace our base monoidal 2-category Cat with the monoidal 2-category
Cat/X x X and develop the rest of the theory from there.

Leaving higher-dimensional structures aside, several other directions suggest
themselves. Firstly, can we extend this result from Mod to V-Mod, where V
is a suitable base for enriched category theory, thereby giving a description of V-
polycategories? It is not an immediately straightforward task, since in this thesis
we have leaned heavily on cartesian notions which do not translate well to the
enriched setting.

Secondly, are there other pseudo-distributive laws d: 7S = ST which would
yield different flavours of generalised categorical structure? For instance, is there
a pseudo-distributive law for a polycategory-like structure where we may now plug
several outputs of one map into the inputs of another?

Thirdly, are there different choices for pseudomonad and pseudocomonad that
we could take? For example, there is a pseudomonad on Mod which freely adds
products and dually, a pseudocomonad which freely adds coproducts: is there a
natural choice of pseudo-distributive law mediating between these two, yielding a
further different generalised categorical structure?

More interestingly, we may seek motivation from the field of linear logic. Polycat-
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egories provide a model for a certain fragment of the system of linear logic, namely
the multiplicative fragment. Can we find a suitable analogue of the polycategory
which models the larger multiplicative-additive fragment?

For this, we would like to consider the pseudomonad P for the ‘free symmetric
strict monoidal category with products’ on a category; and dual to this, the pseu-
docomonad C' for the ‘free symmetric strict monoidal category with coproducts’
on a category. A suitable distributive law of the latter over the former should give
rise to a generalised categorical structure modelling the multiplicative-additive
fragment of linear logic. At present the technology is not in place to describe the
pseudomonad P, or even show that it exists, so this last direction remains a rather

distant prospect; but an enticing one nonetheless.
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Appendix A

Whiskering and double clubs

We have defined the concept of double club in terms of closure under the structure
of monoidal double category. However, we may also ask about closure under the
‘whiskering’ operations of Chapter 1. Prima facie, this may appear to be a strictly
stronger requirement, but in fact it follows from our definition of double club.
We begin with a preliminary general result on endohom double categories. We
saw how to construct the monoidal structure on [K, K], using the whiskering oper-
ations G(—) and (—)G. We can also to a certain extent go in the other direction, and
derive something like the whiskering homomorphisms from the monoidal structure

on [K, K],. Indeed, given a homomorphism G': K — K, we obtain homomorphisms

id><'_:[G—I

() els: [K, K]y = [K, K]y x 1 K, K]y x [K, K]y > [K, K]y

and

I—IG—|><id

Ige (-): [K K]y =1 x [K K], —5 [K,K], x [K,K], > [K,K],.

And these homomorphisms approximate the operation of whiskering by G in the

following sense:

Proposition 100. There are canonical invertible vertical transformations
le: G(-)=1ge(-) and rg: (-)G=(-)elg

which are natural in G.
Proof. We have (G(—))O = (Ig e (—))0 and ((1)G)o = ((-) ® Is),, so we can take
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(lg)o and (rg)o to be identity natural transformations. For (Ig); and (rg);, observe

that we have

(Iae (), =1a() ® G() = Taey, © G()
and ((-) o Ig), = ()G ® (-).le.

Therefore we take (Ig); to be the natural transformation
o)
(loh = GH)——=la), @ G()
and (r¢); to be the natural transformation
Y- id®e
(reh = (GG @ T.6—5()G @ ()da.

It’s now routine diagram chasing to check that [ and r satisfy all the required
axioms for a vertical transformation, and that they are natural in G as required.
O

Proposition 101. Let S be a double club, and let (A, ) be an object of Coll(S).

Then the whiskering homomorphisms
(DA [K K]y — [K Ky and  A(): [K, K]y — [K K]y,
lift to homomorphisms
()(A,): Coll(S) — Coll(S) and (A, a)(-): Coll(S) — Coll(S).

Proof. We give the details for (A, a)(-), since (-)(A, «) follows similarly. Following
Proposition 100, we have the homomorphism L4y ® (-): Coll(S) — Coll(5);

further we have the invertible special vertical transformation
la: A-) =10 (-): K=K

So we give (A4, a)(-) as follows. Its component ((A,a)(-)) Coll(S)y — Coll(S)g
is simply (I, ® (7))0 = (A, @) o (), whilst ((4, a)(—))lz Coll(S); — Coll(S); is

given as follows:
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e On objects: given (B, 3) in Coll(S)1, we take (A4, «)(B,3) to be the modi-

fication

AB=. 1, e B=22"2 I ¢ ST=25L. qT ¢ §T—" SI.

The first modification above is cartesian since it is invertible, whilst the re-
maining composite is I 4.y ® (B, 3), and hence cartesian since S is a double

club; thus the entire composite is cartesian as required.
e On maps: given 6: (B,8) — (C,~), we take (A, «)(d) to be given by
A48: (4,0)(B, B) — (4,0)(C, 7).

That this map is compatible with the projections down to ST is an easy

diagram chase.

It’s immediate that these definitions are compatible with source and target; it

remains to give the comparison maps m and e, for which we simply take

eBp) = ep: Lup = Alp
and m(B”3)7(B/75/) = mB’B/ . AB & AB/ — A(B X B/>

That these maps are compatible with the projections down to ST is another
straightforward diagram chase, whilst the coherence axioms for m and e follows
from those for A(-) on [K, K],. O

For completeness, we also observe the following:

Proposition 102. Let S be a double club, and let v: (A, ) — (B, 3) be a vertical

arrow of Coll(S). Then the whiskering vertical transformations
()7 (A= ()B and ~(-): A(-) = B()
lift to vertical transformations

()y: (A, 0) = ()(B,6) and ~(-): (A, a)(-) = (B,5)().
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APPENDIX A. WHISKERING AND DOUBLE CLUBS

The proof is straightforward: one must simply show that the components of v(-)

and (—)v are compatible with the projections down to SI.
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Appendix B

Pseudomonads and pseudocomonads

We recall here the definition of a pseudomonad on a bicategory (as found in, for
example, [Mar99, Lac00]). This is a specialisation of the notion of pseudomonad
in a tricategory (see [Lac00]), where the tricategory in question is taken to be the

tricategory of all bicategories.

Definition 103. A pseudomonad on a bicategory B consists of the following
data:

(PMD1) A homomorphism S: B — B;

(PMD2) Pseudonatural transformations 7: idg = S and pu: SS = S

(PMD3) Invertible modifications

S S 585 —1 59
S idg g idg T
oA n 2 and  uS = "
S8 —— 5, 88— 5, S8 ——— 8.

All subject to the following two axioms:
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APPENDIX B. PSEUDOMONADS AND PSEUDOCOMONADS

(PMA1) The following pastings agree:

54—>S3 54%53
53—>52 uSs = S 92
T8 T
= = =
53 WS :T> H SST‘S@ 1%
RN SN
,5'2#5 5’2%5;

(PMA2) The following pastings agree:

g g S?

Vus\ N = e
5

Dually, we have the notion of a pseudocomonad on a bicategory:

Definition 104. A pseudocomonad on a bicategory B consists of the following

data:

(PCD1) A homomorphism 7": B — B;

(PCD2) Pseudonatural transformations e: T'= idg and A: T'= T'T;

(PCD3) Invertible modifications

T A TQ, T A T2 T # T2
N o ,
— lTG = lsT and Al = lAT
idT idT
T T T2 A T3.

Subject to the two axioms:
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(PCA1) The following pastings agree:

T%j’ﬂ

& o XT
=

A 200 3
T A T
T/
=
T2 AT = ATT

NN

3 v4
T TTA T

(PCA2) The following pastings agree:

id 2

NN

T2—>T3
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7_/

ﬁ

= AT T3

T
=

T2—>T3 )

N

78— T
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