
Candidate Indistinguishability Obfuscation

and Functional Encryption for all circuits

Sanjam Garg
UCLA

sanjamg@cs.ucla.edu

Craig Gentry
IBM Research

craigbgentry@gmail.com

Shai Halevi
IBM Research

shaih@alum.mit.edu

Mariana Raykova
IBM Research

mariana@cs.columbia.edu

Amit Sahai
UCLA

sahai@cs.ucla.edu

Brent Waters
University of Texas at Austin

bwaters@cs.utexas.edu

July 21, 2013

Abstract

In this work, we study indistinguishability obfuscation and functional encryption for general circuits:
Indistinguishability obfuscation requires that given any two equivalent circuits C0 and C1 of similar

size, the obfuscations of C0 and C1 should be computationally indistinguishable.
In functional encryption, ciphertexts encrypt inputs x and keys are issued for circuits C. Using the

key SKC to decrypt a ciphertext CTx = Enc(x), yields the value C(x) but does not reveal anything else
about x. Furthermore, no collusion of secret key holders should be able to learn anything more than the
union of what they can each learn individually.

We give constructions for indistinguishability obfuscation and functional encryption that supports all
polynomial-size circuits. We accomplish this goal in three steps:

• We describe a candidate construction for indistinguishability obfuscation for NC1 circuits. The
security of this construction is based on a new algebraic hardness assumption. The candidate and
assumption use a simplified variant of multilinear maps, which we call Multilinear Jigsaw Puzzles.

• We show how to use indistinguishability obfuscation for NC1 together with Fully Homomorphic
Encryption (with decryption in NC1) to achieve indistinguishability obfuscation for all circuits.

• Finally, we show how to use indistinguishability obfuscation for circuits, public-key encryption,
and non-interactive zero knowledge to achieve functional encryption for all circuits. The func-
tional encryption scheme we construct also enjoys succinct ciphertexts, which enables several other
applications.

The first and fifth authors were supported in part from NSF grants 1228984, 1136174, 1118096, 1065276, 0916574 and 0830803,
a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation
Research Grant. The views expressed are those of the author and do not reflect the official policy or position of the National
Science Foundation, or the U.S. Government.

The second and third authors were supported by the Intelligence Advanced Research Projects Activity (IARPA) via
Department of Interior National Business Center (DoI/NBC) contract number D11PC20202. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer:
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

The fourth author is supported by NSF Grant No.1017660.

The sixth author is supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599, DARPA N11AP20006, Google

Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

i

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Multilinear Jigsaw Puzzles . 3
1.3 Indistinguishability Obfuscation for NC1 . 3
1.4 How to Use Indistinguishability Obfuscation . 4
1.5 Indistinguishability Obfuscation for all polynomial-size Circuits 4
1.6 Functional Encryption for all circuits . 5

1.6.1 Ciphertext Succinctness and Applications . 6
1.7 An application to Restricted-Use Software . 6
1.8 Stronger notions of obfuscation . 6
1.9 Future Directions in Obfuscation . 7
1.10 Other Related Work . 8

2 Preliminaries 8
2.1 Indistinguishability Obfuscators . 8
2.2 Multilinear Jigsaw Puzzles . 9
2.3 Branching Programs . 12

3 Intuition: Indistinguishability Obfuscation Candidate for NC1 12

4 Indistinguishability Obfuscation Candidate for NC1 16
4.1 Randomized Branching Programs . 16
4.2 Garbled Branching Programs and Hardness Assumptions . 17

4.2.1 Hardness assumptions . 18
4.3 Our Candidate . 18

5 Amplifying to Poly-sized Circuit Indistinguishability Obfuscation 19
5.1 Our Construction . 19
5.2 Proof of Security . 20

6 Functional Encryption 22
6.1 Functional Encryption from Indistinguishability Obfuscation 23
6.2 Proof of Security . 24

References 27

A Multilinear Jigsaw Puzzle implementation details 30

B Additional Background 33
B.1 Non-Interactive and Perfectly Binding Commitments . 33
B.2 Statistical Simulation-Sound Non-Interactive Zero-Knowledge Proofs 33
B.3 Fully Homomorphic Encryption . 35
B.4 Low Depth Proofs . 36

C Security of our Assumption 37
C.1 Generic Colored Matrix Model . 37
C.2 Equivalent Program Indistinguishability in the Colored Matrix Model 38
C.3 Security Proof . 39

C.3.1 Proof that the simulation works . 40
C.4 Justification for the model . 43

ii

1 Introduction

In this work we study two long-standing open feasibility questions in cryptography: secure program obfus-
cation, and functional encryption.

Obfuscation. Roughly speaking, program obfuscation aims to make a computer program “unintelligible”
while preserving its functionality. The formal study of program obfuscation was initiated by Barak, Goldre-
ich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01, BGI+12]. Unfortunately, they showed that
the most natural simulation-based formulation of program obfuscation (a.k.a. “black-box obfuscation”) is
impossible to achieve for general programs, in a very strong sense: They showed that there exist unobfus-
catable functions – a family of functions {fs} such that given any circuit that implements fs, an efficient
procedure can extract the secret s; however, any efficient adversary given only black-box access to fs cannot
guess even a single bit of s with non-negligible advantage. Indeed, such unobfuscatable function families
exist with very low circuit complexity (i.e. in TC0 under widely believed intractability assumptions), so one
cannot hope for general purpose obfuscators achieving a natural simulation-based definition of obfuscation
even for very low complexity classes.

Faced with this impossibility result, Barak et al. [BGI+01, BGI+12] suggested another notion of program
obfuscation called indistinguishability obfuscation: An indistinguishability obfuscator iO for a class of circuits
C guarantees that given two equivalent circuits C1 and C2 from the class, the two distribution of obfuscations
iO(C1) and iO(C2) should be computationally indistinguishable. We note that if the circuit class C has
efficiently computable canonical forms, then the computation of that canonical form would already be an
indistinguishability obfuscator [BGI+12, GR07]. Since their introduction in 2001, it has been an open
problem to construct indistinguishability obfuscators for any natural circuit class that is not known to admit
efficiently computable canonical forms. In particular, the central open question regarding indistinguishability
obfuscation has been:

Do there exist indistinguishability obfuscators for all polynomial-size circuits?

It is important to note that unlike simulation-based definitions of obfuscation, it is not immediately
clear how useful indistinguishability obfuscators would be. Perhaps the strongest philosophical justification
for indistinguishability obfuscators comes from the work of Goldwasser and Rothblum [GR07], who showed
that (efficiently computable) indistinguishability obfuscators achieve the notion of Best-Possible Obfusca-
tion [GR07]: Informally, a best-possible obfuscator guarantees that its output hides as much about the
input circuit as any circuit of a certain size.

Nevertheless, very few applications of indistinguishability obfuscators were described in the literature,
in fact the only application that we are aware of is to removing software watermarks [BGI+12]. The main
contributions of this work are to (1) construct indistinguishability obfuscators for all circuits, and (2) show
how to use indistinguishability obfuscators to solve the central open problem in the area of Functional
Encryption.

Functional Encryption. In Functional Encryption, ciphertexts encrypt inputs x and keys are issued for
strings y. The striking feature of this system is that using the key SKy to decrypt a ciphertext CTx = Enc(x),
yields the value F (x, y) but does not reveal anything else about x. Furthermore, any arbitrary collusion
of key holders relative to many strings yi does not yield any more information about x beyond what is
“naturally revealed” by the functionality (i.e. F (x, yi) for all i).

Functional Encryption started with the notion of attribute-based encryption (ABE) [SW05, GPSW06]
and evolved over time [BW07, KSW08]. The term functional encryption first appeared in [SW08], and
formal definitions and constructions were subsequently given in [BSW11, O’N10]. Earlier influences include
Identity-Based Encryption (IBE) [Sha85, BF01, Coc01] and searching on encrypted data [SWP00, BCOP04].

The general notion of functional encryption subsumes the notion of ABE: In ABE, encrypted messages
consist of a secret payload m and a public attribute string x, where the secret key SKy permits the recovery
of the payload m if and only if F (x, y) = 1. While both ABE and FE require full collusion resilience, the

1

critical difference between ABE and general FE is that ABE does not ensure the secrecy of the attribute
string x. Recent breakthrough works [GVW13, GGH+13b, GGSW13] show how to achieve ABE for arbitrary
circuits F , however these constructions do not provide any secrecy for the x input.

In contrast to ABE, existing FE schemes prior to our work are much more limited in power, with the state
of the art roughly limited to the inner-product construction of Katz et al. [KSW08] and its adaptation to
lattice-based cryptography by Agrawal et al. [AFV11]. In these systems ciphertexts and keys are associated
with vectors x,y, and on decryption we only learn if the dot product x ·y is zero. While there are interesting
applications of this basic functionality, it is a far cry from the goal of realizing functional encryption for
general functions, or even a large general class of circuits. There are also constructions that achieve only
limited-collusion notions of security (and also several impossibility results for strong simulation-based security
notions). We discuss these in Section 1.10 below. The central open question regarding functional encryption
has been:

Does there exist a functional encryption scheme supporting all polynomial-size circuits?

1.1 Our Results

Our first result is a candidate construction of an indistinguishability obfuscator iO for all polynomial-size,
log-depth circuits (i.e. NC1). The security of our construction relies on a new algebraic hardness assumption.
We provide evidence for the plausibility of our assumption by proving it to be true in a specific generic model
that seems to capture most “natural attacks” on this type of construction.

Our construction and assumption are staged in a framework that we call Multilinear Jigsaw Puzzles. Mul-
tilinear Jigsaw Puzzles are a simplified variant of multilinear maps, in which only the party who generated
the system parameters can “encode elements in the exponent” of the different groups. These Multilinear
Jigsaw Puzzles can be constructed by eliminating some components from the GGH (asymmetric) “approx-
imate multilinear maps” [GGH13a]. Most notably, we eliminate the elements of the GGH setup that give
rise to the most potent cryptanalytic attacks, including the “weak discrete log” attack [GGH13a]. We can
also instantiate Multilinear Jigsaw Puzzles by eliminating some parts from the recent work of [CLT13] over
the integers.

After constructing indistinguishability obfuscators for NC1 from Multilinear Jigsaw Puzzles, we use these
indistinguishability obfuscators in a black-box manner to obtain the following results:

• Using indistinguishability obfuscator for NC1 together with any (leveled) fully homomorphic encryp-
tion (FHE) scheme with decryption in NC1 (e.g. [Gen09b, BV11, BGV12, Bra12, GSW13]), we show
how to obtain an indistinguishability obfuscator for all polynomial-size circuits. The essential new idea
here is to use a “two-key” encryption technique, similar in spirit to Naor-Yung [NY90].

• Using indistinguishability obfuscator for polynomial-size circuits, together with injective one-way func-
tions, public-key encryption, and a novel variant of Sahai’s simulation-sound non-interactive zero knowl-
edge [Sah99] proofs, we show how to obtain functional encryption schemes supporting all polynomial-
size circuits.

Our construction achieves selective indistinguishability security, which can be amplified to full indistin-
guishability security using complexity leveraging. Finally, using the recent transformation of De Caro
et al [CJO+13] one can obtain meaningful simulation-based security for functional encryption for all
circuits.

Our construction furthermore achieves succinct ciphertexts: The size of the ciphertexts in our scheme
does not depend on potential secret key circuit sizes or even depth (nor do they depend on any
parameter sizes needed for Multilinear Jigsaw Puzzles).

We emphasize that these results use our indistinguishability obfuscator for NC1 as a black box, and do not
need to make further use of Multilinear Jigsaw Puzzles. We are able to obtain these results through a novel use
of indistinguishability obfuscators, by making an intuitive connection between the use of indistinguishability
obfuscation and witness indistinguishable proofs. (More on this below.)

2

1.2 Multilinear Jigsaw Puzzles

For our construction we use a variant of multilinear maps that offers only a strict subset of the functionality,
and we term this variant Multilinear Jigsaw Puzzles. These are similar to (the asymmetric version of) the
GGH multilinear encoding schemes [GGH13a], except that in our setting only the party that generated
the system parameters is able to encode elements. Below is an intuitive description of Multilinear Jigsaw
Puzzles using multiplicative notation for groups, a more formal treatment can be found in Section 2. Roughly
speaking, an instance of a Multilinear Jigsaw Puzzle scheme includes a multilinear map system over groups
of prime order p:

e : G1 ×G2 × · · · ×Gk → GT .

The system parameters allows a user to perform group and multilinear operations, but the parameters need
not include canonical generators for the different groups gi ∈ Gi and gT ∈ GT . A valid multilinear form
over such system is anything that can be computed using the group operation in the separate groups and
the multilinear map. (For example, for k = 3 with variables xi ∈ G1, yi ∈ G2, zi ∈ G3 and wi ∈ GT , the
expression w1 · e(x1, y3, z1z2)2 · e(x32x4, y21 , z2z35)5 · w2

3 is a valid form.)
In Multilinear Jigsaw Puzzle we view group elements as the puzzle pieces. The intuitive analogy to jigsaw

puzzles is that these group elements can only be combined in very structured ways – like jigsaw puzzle pieces,
different puzzle pieces either “fit” together or, if they do not “fit”, then they cannot be combined in any
meaningful way. We view a valid multilinear form in these elements as a suggested solution to this jigsaw
puzzle: a valid multilinear form suggests ways to interlock the pieces together. A solution is correct if
evaluating the multilinear form on the given elements yields the the unit in the target group g0T ∈ GT .

Thus, a Multilinear Jigsaw Puzzle scheme consists of just two algorithms, the Jigsaw generator that
generates the system parameters and some group elements, and the Jigsaw verifier that checks whether
a given solution is correct for these elements. In more detail, the Jigsaw generator outputs some system

parameters prms and k + 1 nonempty sets of elements Si = {x(i)1 , . . . , x
(i)
ni } ⊂ Gi for i = 1, . . . , k, T . The

Jigsaw verifier takes as input (prms, S1, . . . , Sk, ST ,Π), where Π and is a valid multilinear form in these
elements, and it outputs “yes” if Π evaluates to the unit element in GT on the given elements and “no”
otherwise. Note that the Multilinear Jigsaw Puzzle scheme itself does not specify which particular multilinear
form the Jigsaw Verifier should apply, this choice will typically come from the application.

The hardness assumptions that we make typically say that two output distributions of the Jigsaw genera-
tor are computationally indistinguishable. For instance, an (asymmetric) analog of the BDDH assumption for
k = 2 could be that ({g1, ga1 , gb1}, {g2, gc2}, {gT , gabcT }) is indistinguishable from ({g1, ga1 , gb1}, {g2, gc2}, {gT , grT }),
where g1, g2, gT are generators of G1, G2, and GT , respectively, that satisfy e(g1, g2) = gT .

1.3 Indistinguishability Obfuscation for NC1

We now sketch some elements of our candidate construction of indistinguishability obfuscator for NC1 using
Multilinear Jigsaw Puzzles. A more detailed high-level overview of our construction can be found in Section 3,
and the construction itself is described in Section 4.

Barrington’s celebrated theorem [Bar86] shows that any NC1 circuit C can be transformed into an
oblivious matrix branching program: That is, it can be transformed into a collection of k square matrices
M0

1 ,M
0
2 , . . .M

0
k and another k square matrices M1

1 ,M
1
2 , . . .M

1
k . The computation of the original circuit on

an input x of length ` can then be reduced to a matrix product as follows, where f : [k] → [`] is a public
function that is fixed in advance:

C(x) = 0 iff

k∏
i=1

M
xf(i)
i = I

Our starting intuition is that this kind of evaluation is very well-suited for the setting of multilinear maps:
The entries of the matrices M0

i and M1
i can be given in the group Gi: for instance, if the (1, 1) entry of M0

i

is α, we can encode this as gαi . Then the multilinear map will allow us to compute the final product in GT .
We remark that our actual construction allows us to multiply k matrices together, not just k elements.

3

However, simply giving these matrices, even when encoded in the exponent, is insecure. Instead, we
apply a combination of Kilian’s matrix product randomization technique [Kil88] together with novel “mul-
tiplicative” randomization techniques that we develop. This yields a construction of an indistinguishability
obfuscator for NC1 and a corresponding assumption; we justify our assumption by showing that it holds in
a generic matrix model.

1.4 How to Use Indistinguishability Obfuscation

Now that we have constructed an indistinguishability obfuscator, we are faced with the question: what good
is an indistinguishability obfuscator? The definition of indistinguishability obfuscation does not make clear
what, if anything, an indistinguishability obfuscator actually hides about a circuit. In particular, if the
circuit being obfuscated was already in an obvious canonical form, then we know that the indistinguisha-
bility obfuscator would not need to hide anything. We observe here an analogy to witness indistinguishable
proofs [FS90]: if a statement being proven only has a unique witness, then a witness-indistinguishable proof
does not need to hide the witness. The way witness indistinguishability can be used is by explicitly con-
structing statements that can have multiple witnesses. Similarly, we will use indistinguishability obfuscation
by constructing circuits that inherently have multiple equivalent forms. We use this analogy to build our
main application of functional encryption.

Warmup: Witness Encryption for NP. As a warmup to see how indistinguishability obfuscation
can be applied, we start by considering a cryptographic notion which implicitly already considers circuits
that inherently have multiple equivalent forms. Recall the notion of Witness Encryption for NP recently
introduced in [GGSW13]: Given an NP Language L, a witness encryption scheme for L is an encryption
scheme that takes as input an instance x and a message bit b, and outputs a ciphertext c. If x ∈ L and w
is a valid witness for x, then a decryptor can use w to decrypt c and recover b. However, if x /∈ L, then an
encryption of 0 should be computationally indistinguishable from an encryption of 1.

We now observe that Indistinguishability Obfuscation for NC1 implies Witness Encryption for an NP-
Complete language such as L =Satisfiability. Consider the “point filter function” function [GK05] Fx,b(w),
defined as follows: if w is a valid witness for x, then Fx,b(w) = b. If w is an invalid witness for x, then
Fx,b(w) = ⊥. Note that for Satisfiability, it is immediate that Fx,b is in NC1.

Now consider an Indistinguishability Obfuscation of Fx,b. This obfuscated circuit is a valid witness
encryption for x, b. Correctness of decryption is immediate. To see why secrecy holds, note that if x /∈ L, then
both Fx,0 and Fx,1 are constant functions that always output ⊥. Thus by the definition of Indistinguishability
Obfuscation, the obfuscations of Fx,0 and Fx,1 are computationally indistinguishable.

1.5 Indistinguishability Obfuscation for all polynomial-size Circuits

Next, we show how to use indistinguishability obfuscation for NC1 and (leveled) fully homomorphic encryp-
tion (FHE) with decryption in NC1 to obtain indistinguishability obfuscation for all polynomial-size circuits.
The main idea is to adapt the two-key paradigm [NY90] to work using indistinguishability obfuscators instead
of witness-indistinguishable proofs. This construction is described in Section 5.

To obfuscate a circuit C, we choose and publish two FHE keys PK0 and PK1. We also give out encryptions
of the circuit C under both FHE public keys, yielding ciphertexts c0 and c1. Finally, the obfuscation also
has the indistinguishability obfuscation of a certain NC1 circuit CDec0 that we will describe below.

The evaluator, who holds an input x, is told to use the FHE evaluation algorithm with x and both
ciphertexts c0 and c1 to yield encryptions of C(x) under both PK0 and PK1: let us call these encryptions
e0 and e1 respectively. The evaluator also keeps track of all the intermediate bit values encountered during
evaluation, which can be seen as a “proof” π that it used x to perform the evaluation correctly on both c0
and c1. The evaluator then feeds e0, e1, x, π into the obfuscated circuit iO(CDec0). This circuit CDec1 first
checks the proof π to make sure that e0 and e1 were correctly computed – note that this can be done easily
in NC1 since the evaluator has included all intermediate bit values encountered during evaluation, so the
circuit merely needs to check that each appropriate triple of intermediate bit values respects the AND, OR,

4

or NAND operations that were used during the evaluation process. If the proof checks out, then the circuit
decrypts e0 using SK0, and outputs this decryption, which should be C(x).

The key insight is that there is another NC1 circuit CDec1 that is equivalent to CDec0, which simply
decrypts e1 using SK1 instead. Because of the proof π that must be provided, both of these circuits always
behave identically on all inputs. Furthermore, when using CDec0, we note that SK1 is never used anywhere,
and therefore the semantic security of the FHE scheme using PK1 is maintained even given CDec0. Thus,
by alternatively applying the semantic security of the FHE scheme and switching back and forth between
CDec0 and CDec1 using the indistinguishability obfuscation property, we can prove that the obfuscation of
any two equivalent circuits C and C ′ are computationally indistinguishable.

1.6 Functional Encryption for all circuits

We next sketch our main application of building functional encryption for all circuits. This construction is
described in Section 6. The starting point idea for our solution is to pick a standard public-key encryption
key pair (PK,SK) in the setup phase of the Functional Encryption. An encryption of a value x will simply
be an encryption of x using the public key PK. The secret key skC corresponding to a circuit C be an
obfuscation of a program that uses SK to decrypt x, then computes and output C(x). While this solution
would work if our obfuscator achieved the black-box obfuscation definition, there is no reason to believe that
an indistinguishability obfuscator would necessarily hide SK.

Recall that the indistinguishability security definition for functional encryption requires the adversary to
declare two inputs x0 and x1, with the promise that all secret keys SKC that she will ask for will satisfy
C(x0) = C(x1). Then the security definition requires that the adversary will not be able to distinguish an
encryption of x0 from an encryption of x1.

A natural first step would be to have two public keys PK0 and PK1, and require the encryption of x to
consist of encryptions of x under both keys. However, in this case, unlike above, the receiver cannot generate
a proof on his own that both ciphertexts encrypt the same message to provide to the obfuscated decryption
circuit. Thus, we must require the encryptor to generate such a proof, which must hide x. A natural solution
is to have the encryptor generate a non-interactive zero-knowledge (NIZK) proof that the ciphertexts both
encrypt the same input. The obfuscated circuit would first check this proof, and if it checks out, it would
use one of the two secret keys SK0 or SK1 for decryption and evaluation, confident that the output would
be the same no matter which secret key it uses. When we are proving that the adversary cannot distinguish
an encryption of x0 from an encryption of x1, we could move to an intermediate hybrid experiment where
the NIZK proof is simulated, and the two ciphertexts are actually to x0 and x1 respectively.

Here we encounter the key new problem that we must tackle: when simulating a NIZK proof, we need to
change the common reference string, and in all known NIZK systems, with respect to a simulated common
reference string, valid proofs of false statements exist. Even with the notion of simulation soundness [Sah99],
which was devised precisely to deal with this problem, valid proofs of false statements exist, even if they
cannot be found by efficient adversaries. However, the notion of indistinguishability obfuscation requires that
circuits be equivalent for all inputs, even inputs to the circuit that contain valid proofs for false statements.
We address this problem by introducing the notion of statistically simulation sound NIZK, which requires
that except with respect to one particular statement to be simulated, all other valid proofs that exist must be
only for true statements1. Statistical simulation soundness can be achieved in a standard way using witness
indistinguishable proofs. Once we have it, then a similar two-key alternation argument to the one given above
allows us to establish security of our functional encryption scheme. We note that full collusion-resistance
follows from a standard hybrid argument using the indistinguishability obfuscation definition for each secret
key given out, one at a time.

Once we achieve indistinguishability security for functional encryption, this can be upgraded to natural
simulation-based definitions of security using the work of De Caro et al. [CJO+13]. Furthermore, we note
that our construction enjoys the property that ciphertexts are succinct; indeed their size depends only on

1Because this statement must be fixed in advance, the resulting security proof is for selective security. Selective security can
be “upgraded” to full security using a standard complexity leveraging argument, by assuming subexponential security of the
underlying cryptographic primitives that we use.

5

the public-key encryption scheme and NIZK being used, and does not depend on the underlying details of
the obfuscation mechanism in any way (and therefore it does not depend on the parameters needed for our
Multilinear Jigsaw Puzzles). We also place no a-priori bound on the circuit size of the circuits used for secret
key generation.

1.6.1 Ciphertext Succinctness and Applications

One thing we emphasize is that ciphertexts in our scheme are very succinct in that their size depends only
upon the message size and security parameter. In fact, if the right combination of public key encryption
and NIZK is used the ciphertext size and encryption time can be considered small in a practical sense.
Prior solutions for (the weaker) primitives of ABE for circuits [GVW13, GGH+13b] and single use functional
encryption [GKP+13] achieved ciphertexts sizes and encryption times that were proportional to the maximum
depth of the function to be evaluated. (It should be noted that these solutions rely on weaker assumptions.)

Following Parno et. al. [PRV12] we get a delegatable computation scheme with where the client’s work
is independent of the circuit size. Following Goldwasser et. al. [GKP+13] we get a reusable Yao garbled
circuits where the work to reuse a garbled circuit is proportional to the input size and independent of the
size and depth of the circuit.

Finally, we get an efficient Private Linear Broadcast Encryption (PLBE) scheme as described by Boneh,
Sahai, and Waters [BSW06], which they show implies a secure traitor tracing [CFN94] system. This final
application requires collusion resistance.

1.7 An application to Restricted-Use Software

We have already given evidence that indistinguishability obfuscation has significant applications to cryptog-
raphy. Here, we discuss an application of indistinguishability obfuscation to a question that does not deal
with encryption or authentication, but rather restricted-use software:

Software developers will often want to release a demo or restricted use version of their software that
limits the features that are available in a full version. In some cases a commercial software developer will do
this to demonstrate their product; in other cases the developer will want to make multiple tiers of a product
with different price points. In other domains, the software might be given to a partner that is only partially
trusted and the developer only wants to release the features needed for the task.

Ideally, a developer could create a downgraded version of software simply by starting with the full version
and then turning off certain features at the interface level — requiring minimal additional effort. However,
if this is all that is done, it could be easy for an attacker to bypass these controls and gain access to the
full version or the code behind it. The other alternative is for a software development team to carefully
excise all unused functionality from the core of the software. Removing functionality can become a very time
consuming task that could itself lead to the introduction of software bugs. In addition, in many applications
it might be unclear what can and cannot remain for a restricted use version.

One immediate solution is for a developer to restrict the use at the interface level and then release
an obfuscated version of the program. For this application indistinguishability obfuscation suffices, since by
definition a version restricted in the interface is indistinguishable from an obfuscated program with equivalent
behavior that has its smarts removed at the start.

1.8 Stronger notions of obfuscation

In this work, we give new constructions for secure obfuscation. While indistinguishability obfuscation is the
technical focus of our work, we note that we know of no actual attacks on our obfuscation scheme as a black-
box obfuscator except for the attacks that arise on specific circuit classes that are known to be unobfuscatable.
This leads to the intriguing possibility that our construction (or future alternative constructions) could
achieve black-box obfuscation for a large class of circuits, that somehow exclude the problematic examples
that have been identified. Indeed, as observed by Goldwasser and Rothblum [GR07], indistinguishability
obfuscation must yield virtual black-box obfuscation if such a virtual black-box obfuscation is possible for

6

the function being obfuscated. In particular, while much study still needs to be done, we currently have no
reason not to conjecture that our obfuscation mechanism suffices for such applications as:

• Secure Patching of Software: If a new malware vulnerability is found in software, there is a risk
that releasing a software patch will allow attackers to become aware of a vulnerability before the patch
has a chance to fully circulate among users. Obfuscation offers a solution concept: an initial patch
can be released in obfuscated form, and then transitioned to a more efficient un-obfuscated patch
once large-scale adoption has occurred for the initial patch. Here, the assumption would be that the
obfuscated patch would hide where the vulnerability in the software was (at least as well as the original
vulnerable software did).

• “Intellectual Property” Protection: If a new algorithm is developed for solving a problem, and
there is a worry that available legal protections will not suffice for preventing reverse-engineering the
algorithm, then obfuscation offers a natural solution: Here, the general required security property
seems very close to black-box obfuscation, but if only certain parts of the algorithm is novel, weaker
yet sufficient obfuscation security guarantees may be formalizable in some contexts.

1.9 Future Directions in Obfuscation

Our work opens up several new possibilities in obfuscation, below we discuss some of them.

• The Power of Indistinguishability Obfuscation: While a black box obfuscator immediately results
in several turnkey applications, our work shows that indistinguishability obfuscation combined with
adroit use of other cryptographic primitives can give rise to powerful functionalities. Seeing that
indistinguishability obfuscation can be much more powerful than it initially appears, an important line
of research is to see how far we can push the limits of what it gives us.

• Indistinguishability Obfuscation from Weaker Assumptions: The argument of security can-
didate for Indistinguishability Obfuscation clearly has a significant heuristic component. In future
research, we can hope to gain better understanding of these heuristics and eventually achieve construc-
tions under more standard assumptions. A major open problem is to obtain an unconditional proof for
our scheme (or a variant of it) in a less idealized generic model, such as the (plain) generic multilinear
map model, as opposed to the generic colored matrix model that we use. The eventual goal of this line
of research may be to get an Indistinguishability Obfuscator provably secure under the Learning with
Error (LWE) assumption (with the aid of complexity leveraging), perhaps using techniques similar to
those developed in the context of FHE.

• Studying the Possibility of Black Box Obfuscation: As mentioned earlier we know of no actual
attacks on our obfuscation scheme as a black-box obfuscator except for attacks that arise on specific
circuit classes that are known to be unobfuscatable. A clear line of research is to better understand
the potential for our construction to serve as a black box obfuscator, by identifying amenable function
classes. One thrust is cryptanalysis, namely finding non-generic attacks when using our scheme, perhaps
even against “natural” functionalities. A second direction is to attempt to gain some evidence of the
viability for black box security of our construction in some heuristic model such as the generic group
model. Of course, such a study would not be limited to our construction and we expect that other
interesting candidates or variants of our construction would emerge in the near future.

• Improving the Practical Efficiency: While our current obfuscation construction runs in polynomial-
time, it is likely too inefficient for most practical problems. An important objective is to improve the
efficiency for use in practical applications.

• Reasoning about Obfuscation of Learnable Programs in Practice: A final important task is
to begin to close the gap between the theoretical definitions for obfuscation and informal expectations
that often arise in practice. Large software development projects can consume millions of dollars and

7

hundreds of person years. A company that invested such an effort might reasonably expect that a
“good” obfuscator would provide some real and tangible protection. For example, the company might
hope that releasing an obfuscated version of their software would not be any “worse than” providing
remote access to a server running the software.

One issue is that despite the substantial investment, the obfuscated program may be learnable in that
its behavior can be completely determined by a (large) polynomial number of input queries. If this is
the case, then simply giving out the program in the clear would technically count as valid obfuscation
from the cryptographic definition even though this strategy would be very disappointing in a real sense.

We would like to be able to bridge this gap between theory and practice and figure out ways to rigor-
ously define and argue about meaningful obfuscation notions for learnable programs. Getting a better
understanding of this gap appears critical for using obfuscation in non-cryptographic applications. We
emphasize that an important initial step is to simply understand this problem better.

1.10 Other Related Work

Some recent work has focused on a collusion-bounded form of functional encryption [SS10, GVW12, GKP+13],
where security is only ensured so long as an attacker does not acquire more than some predetermined number
of keys. This concept is very similar to the manner in which one-time signatures relax the general notion of
signatures. In these settings, collusion-bounded FE has been achieved for general circuits [SS10, GVW12],
and in the case of single-key FE this has been done with quite succinct ciphertexts [GKP+13]. Certain
collusion-bounded functional encryption schemes with special properties suffice for several interesting appli-
cations such as delegated computation and most notably reusable garbled circuits [GKP+13]. However, in
the general use scenario envisioned for FE [BSW11], unbounded collusion resistance is essential, as a single
user or a collection of users would be holding multiple secret keys. This is the focus of our work.

Recent work demonstrated that certain strong simulation-based formulations of the goal of functional
encryption are impossible to meet [BSW11, AGVW12]. Our work focuses on realizing the indistinguishability
based definition of FE, however recent work has shows that indistinguishability security for general circuits
can be used to achieve meaningful simulation-based security as well [CJO+13].

2 Preliminaries

In this section we will start by giving our definition of indistinguishability obfuscation (iO) and the notions
of Multilinear Jigsaw Puzzles and Barrington’s branching program that will be needed in the realization of
our obfuscation candidate.

2.1 Indistinguishability Obfuscators

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an indistinguisha-
bility obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α such that
the following holds: For all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have
that if C0(x) = C1(x) for all inputs x, then∣∣∣Pr

[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ α(λ)

8

Definition 2 (Indistinguishability Obfuscator for NC1). A uniform PPT machine iO is called an indistin-
guishability obfuscator for NC1 if for all constants c ∈ N, the following holds: Let Cλ be the class of circuits
of depth at most c log λ and size at most λ. Then iO(c, ·, ·) is an indistinguishability obfuscator for the class
{Cλ}.

Definition 3 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine iO is called an indis-
tinguishability obfuscator for P/poly if the following holds: Let Cλ be the class of circuits of size at most λ.
Then iO is an indistinguishability obfuscator for the class {Cλ}.

We also define a variant of the indistinguishability obfuscator definition that is suitable for use in uniform
security proofs. This definition easily follows from the basic definition above with respect to non-uniform
adversaries:

Definition 4 (Family-Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an family-
indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT adversaries Samp, D, there exists a negligible function α such
that the following holds: if Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(1λ)] > 1− α(λ), then we have:

∣∣∣Pr
[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

Observe that against non-uniform adversaries, every indistinguishability obfuscator for a circuit class C
must also be a family-indistinguishability obfuscator for the circuit class C. This is because we can non-
uniformly fix the coins of Samp to produce a concrete (C0, C1, σ) that still yields non-negligible advantage
for the distinguisher D(σ, ·).

2.2 Multilinear Jigsaw Puzzles

In this section, we formalize our Multilinear Jigsaw Puzzle framework. The description of the framework
does not refer to any specific implementation of multilinear maps; as such, we do not require any familiarity
with the GGH multilinear encodings [GGH13a] for this section.

However, readers familiar with the GGH framework should think of Multilinear Jigsaw Puzzles as offering
a strict subset of the functionality of (asymmetric) GGH multilinear encoding schemes [GGH13a]. The main
difference is that only the party who generated the system parameters can encode elements. This simplified
framework will suffice for our work (but perhaps not for other applications). Using this simplified variant
offers several advantages: Most importantly, as opposed to [GGH13a] we do not provide nontrivial encodings
of 1 and 0 in the public parameters, which avoids the “weak discrete logarithm” attack from [GGH13a].
For more information of the general GGH framework, we refer the reader to [GGH13a]. Note also that
our multilinear puzzles framework can alternatively be implemented using a subset of the recent work on
approximate multilinear maps over the integers [CLT13].

In the Multilinear Jigsaw Puzzle framework, there are two entities: the Jigsaw Generator, and the Jigsaw
Verifier. Informally, the Jigsaw Generator takes as input a description of the “plaintext elements” that
need to be encoded, and uses this to output the actual jigsaw puzzle pieces (which are encoding of those
plaintext elements). We call them jigsaw puzzle pieces because they can only be meaningfully combined in
very restricted ways (i.e. according to group operations and the multilinear map). The Jigsaw Verifier takes
as input the jigsaw puzzle pieces and a specific Multilinear Form for combining these pieces. The output

9

of the Jigsaw Verifier is 1 if the algorithm successfully “arranges the jigsaw puzzle” to produce a suitable
encoding of 0.

We first formalize the manner in which the plaintext elements are specified. Intuitively we would like
these elements to be given to the Jigsaw Generator as input, but in our setting it is the generator itself
that choose the plaintext space Zp from which these plaintext elements are taken, so we cannot give it the
elements as input. Instead, the generator is given a Jigsaw Specifier, which is roughly an algorithm that
takes p as input and produces as output the elements from Zp that the generator should encode.

One helpful fact for reading the definition below, is that in asymmetric k-multilinear encoding schemes,
there are “encoding levels” that correspond to subsets of the index set [k] = {1, 2, . . . , k}. Hence the Jigsaw
Specifier would output not only the plaintext elements but also the “levels” relative to which they need to
be encoded.

Definition 5 (Jigsaw Specifier). A Jigsaw Specifier is a tuple (k, `, A) where k, ` ∈ Z+ are parameters, and
A is a probabilistic circuit with the following behavior: On input a prime number p, A outputs the prime p
and an ordered set of ` pairs (S1, a1), (S2, a2), . . . , (S`, a`), where each ai ∈ Zp and each Si ⊆ [k].

For a polynomial α(·), we say that a family of Jigsaw specifiers {(kλ, `λ, Aλ)}λ∈Z+ is an α-bounded Jigsaw
Specifier family if kλ, `λ, |Aλ| < α(λ).

We next formalize the notion of a Multilinear Form. This is a purely syntactic object, corresponding to
an arithmetic circuit that we want to compute, so below we define forms with gates for addition, negation,
and subtraction. We also include below special “ignore gates” that allow us to have more potential inputs
than the number of real input to the circuit (and then we can choose only a subset of them for the actual
computation).

Definition 6 (Multilinear Form). A Multilinear Form is a tuple F = (k, `,Π, F), where k, ` ∈ Z+ are
parameters, and Π is a circuit with ` input wires, made out of binary addition⊕ gates, binary multiplication⊗
gates, unary negation 	 gates, and unary “ignore” 2 gates. F is an assignment of an index set I ⊆ [k] to
every wire of Π. A multilinear form must satisfy the following constraints:

(a) For every ⊕-gate or 	-gate, all the inputs and outputs of that gate are assigned the same set I;

(b) For every ⊗-gate, its two inputs are assigned disjoint sets I1, I2 ⊆ [k], and its outputs are assigned the
union set I1 ∪ I2;

(c) The out-degree of all 2-gates is zero; and

(d) The output wire is assigned the set [k].

A form F = (k, `,Π, F) is a-bounded (for some a ∈ Z) if the size of the circuit Π is at most a.

We note that what makes this form “multilinear” is the requirement that the sets corresponding to the
input of a multiplication gate be disjoint. This means that any index i ∈ [k] can be added only once on any
path from input to output, which implies that the output must be a multilinear in the inputs. Multilinear
Forms are meant to be evaluated on the output from the Jigsaw Specifier, as defined next.

Definition 7 (Multilinear Evaluation). Let X = (p, (S1, a1), (S2, a2), . . . , (S`, a`)) be the output of the Jig-
saw Specifier (k, `, A) (with each ai ∈ Zp and each Si ⊆ [k]). We say that a Multilinear Form F = (k′, `′,Π, F)
is compatible with X if k = k′, ` = `′, and the input wires of Π are assigned the sets S1, S2, . . . , S`.

If F is compatible with X then the evaluation of F on X, denoted F(X), is the output of the circuit Π
on the input (S1, a1), (S2, a2), . . . , (S`, a`), defined as follows, where all arithmetic operations are over Zp:

• For every 	 gate, if the input is (S, a), then the output of the gate is (S,−a).

• For every ⊕ gate with input (S, a1) and (S, a2), the output of the gate is (S, a1 + a2).

• For every ⊗ gate with inputs (S1, a1) and (S2, a2) where S1 and S2 are disjoint, the output of the gate
is (S1 ∪ S2, a1 · a2).

10

All the operations above are performed in Zp. We say that the multilinear evaluation F(X) succeeds if the
final output is ([k], 0).

With these definitions, we can now formally define Multilinear Jigsaw Puzzles:

Definition 8 (Multilinear Jigsaw Puzzle). A Multilinear Jigsaw Puzzle scheme consists of two PPT algo-
rithms, MJP = (JGen, JVer), as follows:

Jigsaw Generator. The generator itself is specified via a pair of PPT algorithms JGen = (InstGen,Encode):

• The randomized instance-generator InstGen takes as input the security parameter 1λ and the multi-
linearity parameter k, and outputs a prime p of size at least 2λ, public system parameters prms, and a
secret state s to pass to the encoding algorithm, (p, prms, s)← InstGen(1λ, 1k).

• The (possibly randomized) encoding algorithm takes as input the prime p, the public parameters prms
and secret state s, and a pair (S, a) with S ⊆ [k] and a ∈ Zp (which should be part of the output
of the Jigsaw Specifier), and outputs an encoding of a relative to S. We denote this encoding by
(S, u) ← Encode(p, prms, s, S, a). (We assume for convenience that the index set S is included as part
of the encoding.)

In our framework the Jigsaw Generator is given a Jigsaw Specifier (`, k, A) and the security parameter λ,
it first runs the instance-generation to get (p, prms, s)← InstGen(1λ, 1k), next runs the Jigsaw Specifier
on input p to get (p, (S1, a1), . . . , (S`, a`)) ← A(p), and finally encodes all the plaintext elements by
running (Si, ui)← Encode(prms, s, Si, ai) for all i = 1, . . . , `.

The public output of the Jigsaw Generator, which we denote by puzzle, consists of the parameters prms,
and also all the encodings (Si, ui). For notational convenience, however, below we consider an “extended
output” that includes also the output of A (namely the plaintext version (Si, ai)). Namely, we denote

(p,X, puzzle)← JGen(1λ, k, `, A).

where X = (p, (S1, a1), (S2, a2), . . . , (S`, a`)) and puzzle = (prms, (S1, u1), . . . , (S`, u`)). We call puzzle
the public output and X the private output. For ease of notation, if we want to refer only to the public
output with respect to a Jigsaw Specifier (k, `, A), we sometimes abuse notation and write puzzleA to
denote just the public output in the experiment above.

Jigsaw Verifier. The verifier JVer is a PPT algorithm that takes as input the public output of a Jigsaw
Generator puzzle = (prms, ((S1, u1), . . . , (S`, u`)), and a Multilinear Form F = (k, `,Π, F). It outputs
either accept (1) or reject (0).

For a particular generator output (p,X, puzzle) and a form F compatible with X, we say that the verifier
JVer is correct relative to (p, puzzle,F , X) if either F(X) = ([k], 0) and JVer(puzzle,F) = 1 or F(X) 6= ([k], 0)
and JVer(puzzle,F) = 0. Otherwise JVer is incorrect relative to (p, puzzle,F , X).

We require that with high probability over the randomness of the generator, the verifier will be correct on
all forms. Specifically, if JVer is deterministic then we require that for any polynomial α(·) and α-bounded
Jigsaw Specifier family {(kλ, `λ, Aλ)}λ∈Z+ , we have

Pr

(p,X, puzzle)← JGen(1λ, kλ, `λ, Aλ);
∃ α(λ)-bounded form F = (kλ, `λ,Π, F)
compatible with X, s.t. JVer is incorrect
relative to (p, puzzle,F , X)

 ≤ negl(λ).

for some negl(·), a negligible function. 2

2If JVer is randomized then the condition in the probability expression that JVer is incorrect is replaced by the condition
that it is incorrect with probability more than negl(λ). Our implementation of the Multilinear Jigsaw Puzzle framework will
have a deterministic Jigsaw Verifier.

11

Security in the Multilinear Jigsaw Puzzle framework. The above formalization and guarantees speak
to the correctness of the Multilinear Jigsaw Puzzle framework. For capturing security, we first consider what,
intuitively, we want the Multilinear Jigsaw Puzzle framework to capture: We want it to be the case that
the only way to distinguish between two different Jigsaw Puzzles puzzleA and puzzleA′ is for there to be a
particular multilinear form F that succeeds with noticeably different probabilities when evaluated on A vs.
A′. Thus, we will consider distributions over puzzles puzzleA and puzzleA′ where we do not believe that any
multilinear form distinguishes between these puzzles, and our assumptions will state that these puzzles are
computationally indistinguishable from each other.

Thus, more formally, hardness assumptions in the Multilinear Jigsaw Puzzle framework will require that
for two different polynomial-size families of Jigsaw Specifiers {(kλ, `λ, Aλ)}λ∈Z+ and {(kλ, `λ, A′λ)}λ∈Z+ , the
public output of the Jigsaw Generator on (kλ, `λ, Aλ) will be computationally indistinguishable from the
public output of the Jigsaw Generator on (kλ, `λ, A

′
λ).

In Appendix A, we describe how to implement the Multilinear Jigsaw Puzzle framework using a strict
subset of [GGH13a].

2.3 Branching Programs

For our NC1 functional encryption scheme we use “oblivious linear branching programs” as the underlying
computational model. This is just the notion of branching programs as used in Barrington’s theorem [Bar86],
with the permutations encoded by permutation matrices. Namely, in this model a branching program consists
of a sequence of steps, where in each step we examine one input bit, and depending on its value we choose
one of two permutations. We then multiply all these permutations and the output of the computation is one
if the resulting permutation is the identity. (Slightly more general, we can specify any pair of permutations
π0, π1 to represent the outputs 0 and 1.)

Barrington’s theorem requires only permutations in S5, hence in the definition below we restrict ourselves
to only this case. Also, below let [w] denote the set {1, . . . , w}.

Definition 9 (Oblivious Linear Branching Program). Let A0, A1 ∈ {0, 1}5×5 be two distinct permutation
matrices. An (A0, A1) oblivious branching program of length-n for `-bit inputs is a sequence

BP =
(
(inp(i), Ai,0, Ai,1)

)n
i=1

,

where the Ai,b’s are permutation matrices in {0, 1}5×5, and inp(i) ∈ [`] is the input bit position examined in
step i. The function computed by this branching program is

fBP,A0,A1(x)
def
=


0 if

∏n
i=1Ai,xinp(i)

= A0

1 if
∏n
i=1Ai,xinp(i)

= A1

undef otherwise

Theorem 1 ([Bar86]). There exist two distinct 5-cycle permutation matrices A0, A1 ∈ {0, 1}5×5, such that
for any depth-d fan-in-2 Boolean circuit C(·), there exists an (A0, A1) oblivious linear branching program of
length at most 4d that computes the same function as the circuit C.

3 Intuition: Indistinguishability Obfuscation Candidate for NC1

To help explain the role of the different components in our cryptosystem, we describe below a trajectory
that begins with Kilian’s protocol for oblivious NC1 circuit evaluation, and modifying it until we end up
with our obfuscation candidate for NC1 circuits.

Starting Point: Barrington and Kilian. Barrington’s theorem [Bar86] that bounded-width branching
programs can compute NC1 circuits played a major role in cryptography [GMW87, Kil88, BOGG+88],
providing a simple algebraic structure that facilitates structure-preserving randomization (as well as simple

12

and natural defenses to standard attacks). In a nutshell, Barrington showed how to transform an arbitrary
fan-in-2, depth-d boolean circuit C : {0, 1}` → {0, 1} into a “width-5 permutation branching program” BP
of length n ≤ 4d. This program is defined by a sequence BP = {(inp(i), Ai,0, Ai,1)}ni=1, where the function
inp : [n] → [`] describes what input bit is examined in the i’th step, and the Ai,b’s are permutations in S5

(which we can view as 5×5 permutation matrices). On any particular `-bit input (b1b2 . . . b`), the evaluation
of BP consists of computing the product matrix P =

∏n
i=1Ai,binp(i) , outputting one if P is the identity and

zero otherwise.
Let us recall Kilian’s protocol [Kil88] in which the two players, Alice and Bob, evaluate an NC1 circuit

on their joint input. Let C(x, y) denote that circuit, with Alice’s input x and Bob’s input y, and |x|+ |y| = `.
Invoking Barrington’s theorem, we get a length-n branching program BP that computes the same function
as C. Alice begins the protocol by choosing n random invertible matrices {Ri}ni=1 over Zp, computing their

inverses, and then setting Ãi,b = Ri−1Ai,bR
−1
i for all i ∈ [n], b ∈ {0, 1} (with index arithmetic modulo n).3

Call the new program with Ãi,b the randomized branching program RBP . It is clear that RBP evaluates
the same function as the original BP . Denoting the joint `-bit input by χ = (x|y), Alice sends to Bob the
matrices corresponding to her input x, {Ãi,χinp(i)

: i ∈ [n], inp(i) ≤ |x|}. Next they use oblivious transfer

protocol by which Bob learns the matrices corresponding to his input y, {Ãi,χinp(i)
: i ∈ [n], inp(i) > |x|}.

Now Bob can put the matrices in the proper order to compute the product P =
∏
i∈[n] Ãi,χinp(i)

, and hence

C(x, y). Alice learns nothing about Bob’s input, and Kilian shows that Bob does not learn anything about
Alice’s input since the randomization hides Alice’s input perfectly.

Scheme number one: Kilian’s protocol as-is. Starting our journey from Kilian to iO, we think of Alice
as the obfuscator and Bob as the evaluator. The randomized branching program RBP for a universal circuit
C(x, y) in NC1 is generated during system startup. The x input corresponds to the specific circuit being
obfuscated and y the input on which it is evaluated. The obfuscation consists of the matrices corresponding
to her input x, {Ãi,χinp(i)

: i ∈ [n], inp(i) ≤ |x|} and all the matrixes for the inputs corresponding to y, namely

{Ãi,b : i ∈ [n], b ∈ 0, 1, inp(i) > |x|}. Bob during evaluation chooses the matrices corresponding to his input
y, putting together with the matrices corresponding to input x, evaluates the program outputting C(x, y).

Unsurprisingly, this scheme is broken. Informally speaking, however, we can prove that all attacks on
this basic scheme fall into three categories:

• Partial Evaluation Attacks. A partial evaluation attack occurs when the adversary computes

“partial” products
(
Ãi,χinp(i)

· Ãi+1,χinp(i+1)
· · · Ãj,χinp(j)

)
and

(
Ãi,χ′

inp(i)
· Ãi+1,χ′

inp(i+1)
· · · Ãj,χ′

inp(j)

)
, cor-

responding to two inputs χ = (x, y) and χ′ = (x, y′), and compares these against each other. Note
that the outer randomization matrices Ri−1 and R−1j will be the same. This would allow the adversary
to learn whether two partial computations in the branching program yield the same value, revealing
information about the input x.

• Mixed Input Attacks. A mixed input attack occurs when the adversary performs the matrix product
involved in a correct computation, but doesn’t respect the inp function. That is, for different steps in
the BP that consider the same input bit yi, it uses some matrices that correspond to yi = 0 and others
that correspond to yi = 1. Again, this could yield information about x beyond just the final output
C(x, y).

• Attacks that do not respect algebraic structure or are not multilinear. These attacks must
either fail to respect the algebraic structure of the matrices over Zp, or compute non-multilinear
algebraic functions over these matrices4. Informally speaking, we prove (in a particular idealized generic
model), that all multilinear attacks over matrices must fall into one of the two attack categories above.

3Kilian uses random permutation matrices for the Ri’s, but that aspect of the protocol is not relevant to our discussion.
4For example, Ishai [Ish13] pointed out to us that computing matrix inverses, a function of algebraic degree −1, can lead to

some non-trivial attacks on this scheme.

13

Dealing with “other attacks” using Multilinear Jigsaw Puzzles. We begin by addressing the pos-
sibility of non-multilinear attacks, i.e., attacks that do things other than evaluating multilinear forms on the
given elements. This is precisely where Multilinear Jigsaw Puzzles come in. In our case the Jigsaw Genera-
tor will be the obfuscator, the Jigsaw Specifier will give us the plaintext matrices as above, and the Jigsaw
Verifier will be used when evaluating the program in order to decide if the resulting matrix is the identity or
not. Informally speaking, the Jigsaw Generator will generate a puzzle system with multi-linearity n, where n
is the length of the branching program to be obfuscated. Instead of revealing the matrices Ãi,b in cleartext,

the obfuscator encodes each entry of the ith matrices Ãi,b relative to the singleton index set {i} ⊆ [n].5

Intuitively, this encoding makes it difficult to mount attacks that are not multilinear in the input elements.
Roughly speaking, our hardness assumption states that it is infeasible to distinguish the encoding of two
equal-length sequences of matrices that have the same behavior in terms of their products.

Dealing with Partial Evaluation Attacks: “Bookends” and Higher Dimensional Matrices. Note
that encoding the matrices in the Multilinear Jigsaw Puzzle framework does nothing to prevent Partial
Evaluation Attack and Mixed Input Attacks, as those attacks arise even when the adversary respects the
matrix product structure.

To address the partial evaluation attack, we would like to add special “bookend” components at the start
and end of the computation, without which no partial computation can be compared to any other. To do
this, first we embed the matrices Ai,b inside higher-dimension matrices of the form

Di,b ∼


$

. . .

$
Ai,b

 , D̃i,b ∼ Ri−1 ×


$

. . .

$
Ai,b

×R−1i ,

where the $’s are random coefficients on main diagonal that are unique to each matrix, the unspecified entries
are 0, and the Ri’s are random matrices over Zp (which will be invertible with overwhelming probability).

Intuitively, encoding the matrices D̃i,b relative to the singleton insex set {i} allows us to evaluate the
multilinear form corresponding to their product, thereby recovering an encoding of the matrix R0 · P ·R−1n
(with P the product matrix) relative to the index set [n]. But now P is a high-dimension matrix with random
random entries along the main diagonal, and the output of the function is encoded in the P ’s lower-right 5×5
quadrant (depending on whether or not it is the identity matrix). How can we “decode” the final output? To
accomplish this, we add the special “bookend” terms that exactly cancel out the random diagonal entries.

Specifically, let the random part of the main diagonal have dimension 2m (for m to be specified shortly),
so the matrices all have dimension 2m+ 5. We generate two (2m+ 5)-vectors s and t of the form:

s ∼ (0 . . . 0 $. . . $ - s∗-), t ∼ ($. . . $ 0 . . . 0 - t∗-),

where the first 2 blocks of each vector have size m, and the last blocks have size 5. We also compute s̃ = sR−10

and t̃ = Rnt.
Increasing the multilinearity level from n to n + 2, the obfuscator adds encodings of the two bookend

vectors ŝ = Enc{1}(s̃) and t̂ = Enc{n+2}(t̃) (where Enc{i}(·) denotes an encoding relative to the singleton
{i}), and also adds to the obfuscation an encoding of the scalar p∗ = 〈s∗, t∗〉 at level [n + 2]. Now the
evaluator can compute a level-[n+ 2] encoding of

p = s̃ · (R0PR
−1
n) · t̃T = s∗ ·A · t∗T and p′ = p− p∗

where the first 2m dimensions disappear due to the special structure of the s, t and P . If A is indeed the
identity matrix, then s∗ ·A ·t∗T = 〈s∗, t∗〉 = p∗, and so p′ = 0 which can be verified using the Jigsaw Verifier.
If A is some other permutation matrix, equality will not hold with high probability.

5In group notations, this is the equivalent of encoding the entries of that matrix in the exponent of the i’th group Gi.

14

Dealing with Mixed Input Attacks: Multiplicative Bundling. Finally, we must add a method that
prevents the adversary from computing “mixed up” products of some matrices that correspond to yi = 0
and other that correspond to some yi = 1 (for the same input bit yi). To defend against this threat we use a
multiplicative bundling technique. The idea is simple, to prevent mixing and matching of components, Alice
adds additional scalar multiples that help ensure that every “non-faithful” execution leads to a “garbled”
output. Namely we choose scalars {αi,b : i ∈ [n], b ∈ {0, 1}} at random and set

Di,b ∼


$

. . .

$
αi,b · Ai,b

 , D̃i,b ∼ Ri−1 ×


$

. . .

$
αi,b · Ai,b

×R−1i .

Unfortunately with these multiplicative factors, the encoded value of p∗ is no longer sufficient to decode the
output. To fix this issue, we need to provide in the public parameters something else that helps us to “cancel
out” the αi,b’s. For that purpose, we introduce a “parallel” dummy branching program that computes the
constant 1 function into our obfuscated program, and decoding the result is done by comparing the results
from both programs.

Specifically, at system setup time we also generate a second set of matrices R′i, vectors s′ and t′ with
the same form as s and t where 〈s′, t′〉 = 〈s, t〉, and choose scalars {α′i,b : i ∈ [n], b ∈ {0, 1}} whose product
match that of the α’s, namely ∏

inp(i)=j

αi,b =
∏

inp(i)=j

α′i,b for all j ∈ [`], b ∈ {0, 1}.

Then we set s̃′ = s′ · (R′0)−1, t̃′ = R′n · t′
T

, and

D′i,b ∼


$

. . .

$
α′i,b · I

 , D̃′i,b ∼ R′i−1 ×


$

. . .

$
α′i,b · I

×R′i−1,
Note that this has almost exactly the same structure as the “primary” branching program, except all the
Ai,b’s are replaced by the identity matrix (hence this dummy program computes the constant 1 function).
Also, this new copy is nearly independent of the primary program, except for the choice of the αi,b’s and

α′i,b’s. The obfuscated program includes the “primary” vectors s̃, t̃ and matrices D̃i,b, as well as the “dummy”

vectors s̃′, t̃′ and matrices D̃′i,b.
Given all the encoded matrices and vectors, we can decode the output by checking if the two programs

compute the same thing. Namely, we compute the difference between the two evaluations

δ = ŝ ·

∏
i∈[n]

D̂i,bi

 · t̂T − ŝ′ ·

∏
i∈[n]

D̂′i,bi

 · t̂′T ,
and use the Jigsaw verifier to test if δ = 0.

Observe that these random scalars indeed thwart mixed-evaluation attacks: For every input bit yj , if
we choose all the αi,0’s and all the α′i,0’s for inp(i) = j then the product matches and we could get δ = 0
(similarly if we choose all the αi,1’s and α′i,1’s). However any attempt to mix-and-match these matrices will
result in two different random products for the primary and dummy programs, which an adversary can only
“cancel out” with probability 1/p.

Additional Safeguards. In the construction above we choose to set the number m of “random dimen-
sions” that are added to the matrices to more than the multi-linearity level of the system, namely set

15

m = 2n+ 5. We note that we do not have any concrete reason why even setting m = 1 is insecure, but we
increase m as an additional safeguard against unanticipated attacks. By doing so, we increase the level of
randomness present in both the Di,b matrices, and the individual Ri matrices to be well beyond the maximum
multilinearity supported by the Multilinear Jigsaw Puzzle. In particular, this means that written as formal
polynomials, each entry of R−1i is a polynomial with a degree exceeding the maximum multilinearity of the
system. Intuitively, this gives us more confidence in our assumption because it seems quite implausible that
an adversary that is essentially limited to computations that are “close” to multilinear forms would be able
to detangle such high degree computations involving so many degrees of freedom in terms of the randomness
used. However, again, we are not aware of any attacks on our scheme even without this additional safeguard.

4 Indistinguishability Obfuscation Candidate for NC1

In this section we describe our indistinguishability obfuscation candidate for NC1. We begin by presenting
a notion of randomized branching programs, somewhat similar to Kilian’s [Kil88], then build upon this
construction using Multilinear Jigsaw Puzzles to get our indistinguishability obfuscation candidate.

Notations. Consider a length-n oblivious branching program over ` input variables,

BP = {(inp(i), Ai,0, Ai,1) : i ∈ [n], inp(i) ∈ [`], Ai,b ∈ {0, 1}5×5},

where inp(i) ∈ [`] is the position of the input bit that is examined in step i. We extend this notation naturally
to a set of steps S ⊆ [n], namely inp(S) = {inp(i) : i ∈ S} ⊆ [`]. Conversely, for bit position j ∈ [`] we denote
by Ij the steps in the branching program BP that examine the j’th input bit, Ij = {i ∈ [n] : inp(i) = j},
and let IJ = ∪{Ij : j ∈ J} for J ⊆ [`].

4.1 Randomized Branching Programs

Like Kilian [Kil88], we express the steps of the branching program in terms of matrices, and randomize the
i’th matrix by enveloping it by random matrices Ri−1 and R−1i . However, in our setting, we also need some
additional garbling techniques. Let Zp be the ring over which we randomize the branching program, and let
m = 2n+ 5. We generate a randomized branching program as follows.

1. Sample random and independent scalars {αi,0, αi,1, α′i,0, α′i,1 : i ∈ [n]} in the ring, subject to the
constraint that

∏
i∈Ij αi,0 =

∏
i∈Ij α

′
i,0 and

∏
i∈Ij αi,1 =

∏
i∈Ij α

′
i,1 for all j ∈ [`].

2. For every i ∈ [n], compute two (2m + 5) × (2m + 5) block-diagonal matrices Di,0, Di,1 where the
diagonal entries 1, . . . , 2m are chosen at random and the bottom-right 5× 5 are the scaled Aj,b’s, and
two more (2m+ 5)× (2m+ 5) matrices D′i,0, D

′
i,1 where the diagonal entries 1, . . . , 2m are random and

the bottom-right 5× 5 are the scaled identity:

Di,b ∼


$

. . .

$

αi,bAi,b

 , D′i,b ∼


$

. . .

$

α′i,bI

 , b ∈ {0, 1}.

3. Choose vectors s and t, and s′ and t′ of dimension 2m+ 5 as follows:

• The entries 1 . . . ,m in the s and s′ vectors are set to zero and entries m + 1, . . . , 2m are chosen
at random. In the t and t′ vectors the entries 1, . . . ,m are chosen at random and m+ 1, . . . , 2m
are set to zero.

16

• Choose two pairs of random 5-vectors s∗ and t∗, and s′∗ and t′∗, such that 〈s∗, t∗〉 = 〈s′∗, t′∗〉.
The last 5 entries in s are set to s∗, the last 5 entries in t are set to t∗. The last 5 entries in s′

are set to s′∗, the last 5 entries in t′ are set to t′∗.

s ∼ (0 . . . 0 $. . . $ - s∗-), t ∼ ($. . . $ 0 . . . 0 - t∗-)T

s′ ∼ (0 . . . 0 $. . . $ - s′∗-), t′ ∼ ($. . . $ 0 . . . 0 - t′∗-)T .

4. Sample 2(n + 1) random full-rank (2m + 5) × (2m + 5) matrices over the ring, R0, R1, . . . , Rn and
R′0, R

′
1, . . . , R

′
n, and compute their inverses.

5. The randomized branching program over Zp is the following:

RNDp(BP) ={
s̃ = sR−10 , t̃ = Rnt, s̃′ = s′(R′0)−1, t̃′ = R′nt′{
D̃i,b = Ri−1Di,bR

−1
i : i ∈ [n], b ∈ {0, 1}

}
,
{
D̃′i,b = R′i−1D

′
i,b(R

′
i)
−1 : i ∈ [n], b ∈ {0, 1}

} } (1)

We remark that this “randomized” program consists in essence of two parallel programs, one embeds the
original branching program BP with all the Ai,b’s and the other embeds a “dummy program” of the same
length, consisting only of identity matrices (so it computes the constant function 1). In our construction we
use the dummy program for the purpose of equality test: the original program outputs 1 (on a given input)
only when it agrees with the dummy program on that input.

4.2 Garbled Branching Programs and Hardness Assumptions

Below we describe a transformation for “garbling BPs with fixed inputs,” and define formally our hardness
assumption that says that this garbling transformation has good obfuscation properties.

We use Multilinear Jigsaw Puzzles as specified in Section 2.2. Let BP be a length-n linear branching
program, computing some function f : {0, 1}` → {0, 1}. We apply our Multilinear Jigsaw Puzzle framework
to the “Jigsaw specifier” that on input p randomizes the branching program over Zp and outputsRNDp(BP)
as above. That is, our branching-program garbling procedure begins by running the instance-generation part
of the Jigsaw Generator to get (p, prms, s)← InstGen(1λ, n+ 2). We then randomize the branching program
over Zp to get RNDp(BP), and use the encoding part of the Jigsaw generator to encode each element of
the step-i matrices relative to the singleton index set {i + 1}, each element of the vectors s̃, s̃′ relative to
singleton index-set {1}, and each element of the vectors t̃, t̃′ relative to singleton index-set {n + 2}. We
denote the randomized and encoded program, which is the public output of the Jigsaw generator, by

R̂NDp(BP) ={
prms, ŝ = Encode{1}(s̃), t̂ = Encode{n+2}(t̃), ŝ′ = Encode{1}(s̃

′), t̂′ = Encode{n+2}(t̃
′){

D̂i,b = Encode{i+1}(D̃i,b) : i ∈ [n], b ∈ {0, 1}
}
,
{
D̂′i,b = Encode{i+1}(D̃

′
i,b) : i ∈ [n], b ∈ {0, 1}

} } .
The corresponding private output of the Jigsaw generator (i.e., plaintext) is (p,RNDp(BP)).

For every input χ to the original branching program, we can choose the corresponding matrices from both
the primary and the dummy programs and test whether they yield the same result using only the allowed
multi-linearity. In more detail, for every input χ ∈ {0, 1}` we consider the Multilinear Form Fχ which is
defined as

Fχ
(
RNDp(BP)

)
= s̃

(∏
i

D̃i,χinp(i)

)
t̃ − s̃′

(∏
i

D̃′i,χinp(i)

)
t̃′ mod p.

We observe that (a) if BP (χ) = 1 then Fχ(RNDp(BP)) = 0 (with probability 1), and (b) if BP (χ) = 0

then Fχ(RNDp(BP)) 6= 0 except with probability 1/p. Given R̂NDp(BP) and χ, we can use the Jigsaw
verifier to check if Fχ(RNDp(BP)) = 0, thereby learning whp the output of BP (χ).

17

4.2.1 Hardness assumptions

Roughly, we assume that if for two different ways of fixing some inputs to the branching program result in
the same function on the remaining non-fixed inputs, then it is infeasible to decide which of the two sets of
fixed inputs is used in a given garbled program.

Input-fixing. Given R̂NDp(BP) as above and a partial assignment for the input bits, σ : J → {0, 1} (for

J ⊂ [`]), the Parameter-fixing procedure just removes all the matrices D̃i,b, D̃
′
i,b that are not consistent with

that partial assignment σ (i.e., where i ∈ Ij and b 6= σ(inp(i))). Thus we have

GARBLE
(
R̂NDp(BP), (J, σ)

)
=


prms, ŝ, t̂, ŝ′, t̂′{
D̂i,b : i ∈ IJ , b = σ(inp(i))

}
,
{
D̂′i,b : i ∈ IJ , b = σ(inp(i))

}{
D̂i,b : i /∈ IJ , b ∈ {0, 1}

}
,

{
D̂′i,b : i /∈ IJ , b ∈ {0, 1}

}
 .

We think of a garbled program relative to the partial assignment (J, σ) as a representation of a function,
one with the input restriction from (J, σ). If the underlying program is computing a function F and we have
a partial assignment (J, σ), then we denote the resulting function by F |σ.

Definition 10 (Functionally Equivalent Assignments). Fix a function F : {0, 1}` → {0, 1} and consider the
two partial assignments over the same input variables, (J, σ0) and (J, σ1). We say that these assignments
are functionally equivalent relative to F if F |σ0

= F |σ1
.

Assumption 1 (Equivalent Program Indistinguishability). For any length-n branching program BP com-
puting a function F : {0, 1}` → {0, 1}, and any two partial assignments on the same variables (J, σ0) and
(J, σ1), if these assignments are functionally equivalent relative to F then the two corresponding garbled
programs are computationally indistinguishable

GARBLE
(
R̂ND(BP), (J, σ0)

) (c)
≈ GARBLE

(
R̂ND(BP), (J, σ1)

)
.

4.3 Our Candidate

Theorem 2. Under the Equivalent Program Indistinguishability assumption (Assumption 1), there exists
an efficient iO for NC1 circuits.

Proof. Fix a constant γ, and for every value of the security parameter λ let Cλ be the class of circuits
of depth γ log λ and size at most λ. Let Uλ be a poly-sized universal circuit for this circuit class, where
Uλ(C,m) = C(m) for all C ∈ Cλ and m ∈ {0, 1}n. Furthermore, all circuits C ∈ Cλ can be encoded
as an ` = `(λ) bit string as input to U . Let UBPλ(C,m) be the “universal branching program”, which
was obtained by applying Barrington’s theorem to a universal circuit Uλ(C,m) (its existence is guaranteed
by [Bar86, Theorem 5]).

Denote by IC the steps in the program UBPλ that examine the input bits from the C input, and for each
particular circuit c denote by (IC , σc) the partial assignment that fixes the bits of that circuit in the input
of UBPλ. The obfuscator, on input circuit c, simply applies our garbling method from Section 4.2 to UBPλ,
with parameter-fixing (IC , σc). Namely, we have

iO(λ, c) = GARBLE
(
R̂ND(UBPλ), (IC , σc)

)
.

Functionality and polynomial slowdown are obvious, and Assumption 1 directly asserts that for any two
circuits c1, c2 that compute the same function, UBP (c1, ·) ≡ UBP (c2, ·), we have

iO(λ, c1) = GARBLE
(
R̂ND(UBPλ), (IC , σc1)

) (c)
≈ GARBLE

(
R̂ND(UBPλ), (IC , σc2)

)
= iO(λ, c2).

18

5 Amplifying to Poly-sized Circuit Indistinguishability Obfusca-
tion

In this section we show to achieve Poly-sized Circuit Indistinguishability Obfuscation from an indistinguisha-
bility obfuscator, iONC1 , for circuits in NC1.

In addition to BPO, our construction makes use of two primitives: Perfectly Sound Non-Interactive
Witness Indistinguishable Proofs and Fully Homomorphic Encryption. We also make use of the fact that
any poly-time circuit computation can be verified by a “low=depth” circuit in NC1. (Background material
for these primitives can be found in Appendix B.) We let (SetupFHE ,EncryptFHE ,EvalFHE ,DecryptFHE).
Furthermore, we assume the decryption algorithm DecryptFHE can be realized by a family of circuits in
NC1 and that the system has perfect correctness.

5.1 Our Construction

Consider a family of circuit classes {Cλ} for λ ∈ N where both the input size, n = n(λ), is a polynomial
function of λ and the maximum circuit size, p(λ) is also a polynomial function of λ. Let {Uλ} be a poly-sized
universal circuit family for these circuit classes, where Uλ(C,m) = C(m) for all C ∈ {Cλ} and m ∈ {0, 1}n.
Furthermore, all circuits C ∈ {Cλ} can be encoded as an ` = `(λ) bit string as input to U .

We show how to build an iO for such a circuit class given an indistinguishability obfuscator, iONC1 , for
circuits in NC1.

Our construction is described by an obfuscate algorithm and an evaluation algorithm.6

- Obfuscate(1λ, C ∈ Cλ): The SetupFE algorithm takes the security parameter λ and computes

1. Generate (PK1FHE ,SK
1
FHE) ← SetupFHE(1λ) and (PK2FHE ,SK

2
FHE) ← SetupFHE(1λ). If we are

using a leveled FHE scheme, the number of levels should be set to be the depth of Uλ.

2. Generate ciphertexts g1 = EncryptFHE(PK1FHE , C) and g2 = EncryptFHE(PK2FHE , C). Here we
assume that C is encoded in a canonical form as an ` bit string for use by the universal circuit
Uλ(·, ·)

3. Generate an NC1 obfuscation for program P1(SK
1
FHE ,g1,g2) as P = iONC1(P1(SK

1
FHE ,g1,g2)). (See

Figure 1.)

4. The obfuscation components are output as: σ = (P, PK1FHE , PK
2
FHE , g1, g2).

- Evaluate(σ = (P, PK1FHE , PK
2
FHE , g1, g2),m) The Evaluate algorithm takes in the obfuscation output σ

and program input m and computes the following.

1. Compute e1 = EvalFHE(PK1FHE , Uλ(·,m), g1) and e2 = EvalFHE(PK2FHE , Uλ(·,m), g2). 7

2. Compute a low depth proof φ that e1 and e2 were computed correctly.

3. Run P (m, e1, e2, φ) and output the result.

Correctness To verify correctness we first check that the size of the circuits evaluating P1(SK
1
FHE ,g1,g2) are

in NC1. In step 1 the program is the verification is in NC1 since we applied a low depth proof as described
in Appendix B.4. The only other step of the program is also in NC1 since we use an FHE scheme with
decryption in NC1. Since both steps are in NC1 the entire circuit is in NC1.

The correctness of FHE encryption means that g1 will be an encryption of the circuit C. And the
correctness of FHE evaluation means that e1 will be an encryption of U(C,m) = C(m). The correctness of

6Technically, we could make do with just a single obfuscation algorithm that outputs a circuit description as is the convention
given in Section 2. However, for the exposition of this construction we have the obfuscate algorithm output a cryptographic
material that is used by the evaluation algorithm.

7The circuit Uλ(·,m) is the universal circuit with m hardwired in as an input. This in hardwired circuit takes in an ` bit
circuit description C as its input and evaluates to U(C,m).

19

the iONC1 guarantees the obfuscation of the program P1(SK
1
FHE ,g1,g2) will be executed faithfully. The check

step program itself will pass step one on honest execution and that the result of C(m) will be output.

We describe the two program classes in the two figures below.

P1

Given input (m, e1, e2, φ), P1(SK1
FHE ,g1,g2) proceeds as follows:

1. Check if φ is a valid low-depth proof for the NP-statement:

e1 = EvalFHE(PK1FHE , Uλ(·,m), g1)
∧

e2 = EvalFHE(PK2FHE , Uλ(·,m), g2).

2. If the check fails output 0; otherwise, output DecryptFHE(e1, SK
1
FHE).

Figure 1:

P2

Given input (m, e1, e2, φ), P2(SK2
FHE ,g1,g2) proceeds as follows:

1. Check if φ is a valid low-depth proof for the NP-statement:

e1 = EvalFHE(PK1FHE , Uλ(·,m), g1)
∧

e2 = EvalFHE(PK2FHE , Uλ(·,m), g2).

2. If the check fails output 0; otherwise, output DecryptFHE(e2, SK
2
FHE).

Figure 2:

5.2 Proof of Security

We prove that for all C0, C1 ∈ Cλ there can be no poly-time indistinguishability attacker A that wins the
security game from Section 2 with non-negligible advantage.

We organize our proof into a sequence of hybrids. In the first hybrid the challenger obfuscates C0. We
then gradually change the obfuscation in multiple hybrid steps into an obfuscation of C1. We show that
each successive hybrid experiment is indistinguishable from the last, thus showing our obfuscator to have
indistinguishability security. The proof hybrid steps themselves primarily weave back and forth in between
changing the underlying ciphertexts and the programs that are used in a two-key proof type manner.

Sequence of Hybrids

- Hyb0: This hybrid corresponds to a honest execution of the Indistinguishability Obfuscation game
where C0 is obfuscated.

- Hyb1: Same as hybrid Hyb0 except we now generate g1 = EncryptFHE(PK1FHE , C0) and g2 = EncryptFHE(PK2FHE , C1).
Now g1 and g2 encrypt different circuits.

- Hyb2: We still generate g1 = EncryptFHE(PK1FHE , C0) and g2 = EncryptFHE(PK2FHE , C1) as in Hyb1.

Now P is created as P = iONC1(P2(SK
2
FHE ,g1,g2)).

- Hyb3: We now generate g1 = EncryptFHE(PK1FHE , C1) and g2 = EncryptFHE(PK2FHE , C1). The obfus-

cated program P is still created as P = iONC1(P2(SK
2
FHE ,g1,g2)).

- Hyb4: We still generate g1 = EncryptFHE(PK1FHE , C0) and g2 = EncryptFHE(PK2FHE , C1) as in Hyb3.

Now P is created as P = iONC1(P1(SK
1
FHE ,g1,g2)).

20

Proofs of Hybrid Arguments

Claim 1. If our FHE scheme is IND-CPA secure, then no poly-time attacker can distinguish with non-
negligible probability between Hyb0 and Hyb1.

Proof. We show that if there is a poly-time attacker A that has a non-negligible difference in advantage
between Hyb0 and Hyb1 , then there is a poly-time algorithm B that breaks the IND-CPA security of our
PKE scheme. B begins by running A and receiving C0, C1.
B first gets PK2FHE from the IND-CPA challenger. Next, it gives the IND-CPA challenger C0, C1 and

gets back a ciphertext g′. It sets g2 = g′. B then sets g1 = EncryptFHE(PK1FHE , C0) and P is created as

P = iONC1(P1(SK
1
FHE ,g1,g2)). Note only the first secret key is needed to create P .

If the IND-CPA challenger used the first message C0 , then we are exactly in hybrid Hyb0; if it chose the
second message C1, then we are in Hyb1. Therefore if an attacker can distinguish between the two hybrids
with non-negligible advantage, it will break the IND-CPA property of the PKE scheme.

Claim 2. If the Family-iO assumption holds for our NC1 indistinguishability obfuscator, then no poly-time
attacker can distinguish between Hyb1 and Hyb2.

Proof. We show that if there is a poly-time attacker A that has a non-negligible difference in advantage
between Hyb0 and Hyb1, then there is a poly-time algorithm B that breaks the IND-CPA security of our
PKE scheme. B begins by running A and receiving C0, C1.
B first generates the two FHE private keys itself, keeping both secret keys. It then creates g1 =

EncryptFHE(PK1FHE , C0) and g2 = EncryptFHE(PK2FHE , C1). Next, it submits the circuits P1(SK
1
FHE ,g1,g2)

and P2(SK
2
FHE ,g1,g2) to the indistinguishability obfuscator challenger. It receives back a program P ′ and sets

P = P ′.
Suppose that output of C0 is equivalent to the output of C1 on all inputs. Then both programs

P1(SK
1
FHE ,g1,g2) and P2(SK

2
FHE ,g1,g2) will have the same output on all inputs. Both inputs will halt and

output 0 if the check does not pass. If the check does pass, this means that e1 and e2 are encryptions of the
same message. This is due to the perfect correctness of FHE encryption and evaluation together with the
fact that U(C0,m) = U(C1,m) for all m. Since both of the programs give the same output on all inputs, we
are in a valid instance of the assumption.

If the IND-CPA challenger used the first circuit P1(SK
1
FHE ,g1,g2) , then we are exactly in hybrid Hyb1;

if it chose the second circuit P2(SK
2
FHE ,g1,g2), then we are in Hyb2. Therefore if an attacker can distinguish

between the two hybrids with non-negligible advantage, it will break the indistinguishability security of the
obfuscator.

Claim 3. If our FHE scheme is IND-CPA secure, then no poly-time attacker can distinguish with non-
negligible probability between Hyb0 and Hyb1.

Proof. We show that if there is a poly-time attacker A that has a non-negligible difference in advantage
between Hyb2 and Hyb3 , then there is a poly-time algorithm B that breaks the IND-CPA security of our
PKE scheme. B begins by running A and receiving C0, C1.
B first gets PK1FHE from the IND-CPA challenger. Next, it gives the IND-CPA challenger C0, C1 and

gets back a ciphertext g′. It sets g1 = g′. B then sets g2 = EncryptFHE(PK2FHE , C1) and P is created as

P = iONC1(P2(SK
2
FHE ,g1,g2)). Note only the second secret key is needed to create P .

If the IND-CPA challenger used the first message C0 , then we are exactly in hybrid Hyb2; if it chose the
second message C1, then we are in Hyb3. Therefore if an attacker can distinguish between the two hybrids
with non-negligible advantage, it will break the IND-CPA property of the PKE scheme.

21

Claim 4. If the Family-iO assumption holds for our NC1 indistinguishability obfuscator, then no poly-time
attacker can distinguish between Hyb3 and Hyb4.

Proof. We show that if there is a poly-time attacker A that has a non-negligible difference in advantage
between Hyb3 and Hyb4, then there is a poly-time algorithm B that breaks the IND-CPA security of our
PKE scheme. B begins by running A and receiving C0, C1.
B first generates the two FHE private keys itself, keeping both secret keys. It then creates g1 =

EncryptFHE(PK1FHE , C0) and g2 = EncryptFHE(PK2FHE , C1). Next, it submits the circuits P2(SK
2
FHE ,g1,g2)

and P1(SK
1
FHE ,g1,g2) to the indistinguishability obfuscator challenger. It receives back a program P ′ and sets

P = P ′.
Both programs P1(SK

1
FHE ,g1,g2) and P2(SK

2
FHE ,g1,g2) will have the same output on all inputs. Both inputs

will halt and output 0 if the check does not pass. If the check does pass, this means that e1 and e2 are
encryptions of the same message. This is due to the perfect correctness of FHE encryption and evaluation.
The FHE evaluation of both programs will evaluate U(C1,m). Since both of the programs give the same
output on all inputs, we are in a valid instance of the assumption.

If the IND-CPA challenger used the first circuit P2(SK
2
FHE ,g1,g2) , then we are exactly in hybrid Hyb1;

if it chose the second circuit P1(SK
1
FHE ,g1,g2), then we are in Hyb2. Therefore if an attacker can distinguish

between the two hybrids with non-negligible advantage, it will break the indistinguishability security of the
obfuscator.

Theorem 3. Under the assumptions listed above our iO for poly-sized circuits is secure in the indistin-
guishability game defined in Section 2.

Proof. Our claims show a succession of five hybrids where no poly-time attacker can distinguish one from
the next with non-negligible advantage. The first hybrid Hyb0 corresponds to obfuscating circuit C0 and the
last hybrid Hyb4 corresponds to obfuscating the circuit C1 in the indistinguishability security game. Security
in the indistinguishability game follows.

6 Functional Encryption

Our syntax for functional encryption roughly follows in the line of Boneh-Sahai-Waters [BSW11] except we
specialize our notation for the case where the private key is a function f and the ciphertext input is a message
m. This is without loss of generality when f can be any poly-sized circuit and thus includes a universal
circuit.

For security we use the indistinguishability notion, which was the first one considered for functional
encryption (as well as predicate encryption [BW07, KSW08]). Indistinguishability is a basic notion of
security which may be enough for some applications, and furthermore, De Caro et. al. [CJO+13] show how
in the random oracle model one can transform a system with indistinguishability secure into one with strong
simulation security.

Definition 11 (Functional Encryption). A functional encryption scheme for a class of functions F = F(λ)
over message space M =Mλ consists of four algorithms FE = {Setup,KeyGen,Encrypt,Decrypt}:

• Setup(1λ) – a polynomial time algorithm that takes the unitary representation of the security parameter
λ and outputs a public parameters PP and a master secret key MSK.

• KeyGen(MSK, f) – a polynomial time algorithm that takes as input the master secret key MSK and a
description of function f ∈ F and outputs a corresponding secret key SKf .

• Encrypt(PP, x) – a polynomial time algorithm that takes the public parameters PP and a string x and
outputs a ciphertext CT.

22

• Decrypt(SKf ,CT) – a polynomial time algorithm that takes a secret key SKf and ciphertext encrypting
message m ∈M and outputs f(m).

A functional encryption scheme is correct for F if for all f ∈ F and all messages m ∈M:

Pr[(PK,MSK)← Setup(1λ); Decrypt(KeyGen(MSK, f),Encrypt(PK,m)) 6= f(m)] = negl(λ)

Indistinguishability Security for Functional Encryption

We describe indistinguishability security as a multi-phased game between an attacker A and a challenger.

Setup: The challengers runs (PP,MSK)← Setup(1λ) and gives PP to A.

Query 1: A adaptively submits queries fi in F and is given SK←KeyGen(MSK, f). This step can be
repeated any polynomial number of times by the attacker.

Challenge: A submits two messages m0,m1 ∈ M such that f(m0) = fi(m1) for all f queried in the key
query phase and is given Encrypt(PP,mb).

Query 2: A continues to issue key queries as before subject to the same restriction that any f queried must
satisfy f(m0) = f(m1).

Guess A eventually outputs a bit b′ in {0, 1}.

The advantage of an algorithm A in this game is AdvA = Pr[b′ = b]− 1
2 .

Definition 12. An functional encryption scheme is indistinguishability secure if for all poly-time A the
function AdvA(λ) is negligible.

We also consider a weaker selective variant of security for indistinguishability. The selective game is
equivalent to the adaptive one with the exception that the attacker must declare the challenge messages
m0,m1 in an Init phase that occurs before it sees the public parameters.

Definition 13. An functional encryption scheme is selectively indistinguishability secure if for all poly-time
A the advantage of A is negligible in the selective indistinguishability security game. .

Remarks and Transformations We make a few remarks about the above definitions. First, we observe
that any system that is selectively secure can argued to be adaptively secure if we are willing to utilize
complexity leveraging and loose a factor of |M| in the security reduction. Our construction in the next
section will use the selective notion.

Second, our definition considers a single challenge ciphertext. However, using the usual hybrid methods
it can be shown that any system indistinguishability secure under this definition is secure under a multiple
message definition such as that used in [CJO+13].

6.1 Functional Encryption from Indistinguishability Obfuscation

We now give our construction and proof of security of a functional encryption system from an indis-
tinguishability obfuscator (iO). In addition to an iO, our construction uses public key encryption and
statistically simulation sound non-interactive zero knowledge proofs (SSS-NIZKs). Background material
can be found in Appendix B. We let (SetupPKE ,EncryptPKE ,EvalPKE ,DecryptPKE) be the algorithms
comprising our (perfectly correct) encryption scheme. Our SSS-NIZK system will consist of algorithms
SetupNIZK ,ProveNIZK ,VerifyNIZK and has a simulator Sim.. We build a functional encryption system for
messages of length n = n(λ). For messages of length n and security parameter λ the ciphertexts of our PKE
scheme will be of length ` = `(λ, n). The construction is as follows:

- SetupFE(1λ) : The SetupFE algorithm takes the security parameter λ and computes the following.

23

1. Generate (PK1PKE ,SK
1
PKE)← SetupPKE(1λ) and (PK2PKE ,SK

2
PKE)← SetupPKE(1λ).

2. Set CRS← SetupNIZK .

It sets the public parameters and master secret key as

PP = {PK1PKE , PK2PKE ,CRS} and MSK = {SK1
PKE}.

- KeyGenFE(MSK, f): Output an obfuscation O
P3(f,SK

1
PKE

,CRS) for the program P3(f,SK
1
PKE ,CRS) using

the circuit size value equal to the value max{|P3(f,SK
1
PKE ,CRS)|, |P4(f,SK

2
PKE ,CRS)|}. We output the

secret key SKf as the obfuscated program.

- EncryptFE(PP,m ∈ {0, 1}n): Output c := (e1, e2, π), where e1 = EncryptPKE(PK1PKE ,m; r1) and e2
= EncryptPKE(PK2PKE ,m; r2) and π is a NIZK proof of Equation 2.

- DecryptFE(SKf , c = (e1, e2, π)): The decryption algorithm runs the obfuscated program SKf on input
(e1, e2, π) and outputs the answer.

Correctness Correctness follows immediately from the correctness of the iO, PKE system, SSS-NIZK,
and the description of the program template P3.

We describe the two program classes in the figures below.

P3

Given input(e1, e2, π), P3(f,SK1
PKE ,CRS) proceeds as follows:

1. Check that π is valid NIZK proof (using the VerifyNIZK algorithm and CRS) for the NP-statement

∃m, r1, r2 : (2)(
e1 = EncryptPKE(PK1PKE ,m; r1)

∧
e2 = EncryptPKE(PK2PKE ,m; r2)

)
2. If any checks fail output 0; otherwise output f

(
DecryptPKE(SK1

PKE , e1)
)
.

Figure 3:

P4

Given input(e1, e2, π), P4(f,SK2
PKE ,CRS) proceeds as follows:

1. Check that π is valid NIZK proof (using the VerifyNIZK algorithm and CRS) for the NP-statement

∃m, r1, r2 :(
e1 = EncryptPKE(PK1PKE ,m; r1)

∧
e2 = EncryptPKE(PK2PKE ,m; r2)

)
2. If any checks fail output 0; otherwise output f

(
DecryptPKE(SK2

PKE , e2)
)
.

Figure 4:

6.2 Proof of Security

We now prove that no poly-time attacker can break our system if our underlying assumptions hold. We prove
selective security for the functional encryption indistinguishability game. Any poly-time attack algorithm A
will make a maximum of q = q(λ) private key queries. For simplicity we assume that an algorithm will always

24

make exactly q queries. We denote fi for i ∈ [q] to be the i-th function queried in the indistinguishability
game. By the rules of the game fi(m0) is constrained to be equal to fi(m1).

We organize our proof into a sequence of hybrids. In the first hybrid the challenger encrypts m0. We
then gradually change the encryption in multiple hybrid steps (via a two-key type proof) into an encryption
of m1. We show that each successive hybrid experiment is indistinguishable from the last, thus showing our
obfuscator to have indistinguishability security.

Sequence of Hybrids

- Hyb0: This hybrid corresponds to the honest execution the selective indistinguishability game given in
Section 6 where the challenger encrypts m0 in the challenge ciphertext.

- Hyb1 This hybrid is identical to Hyb0 with the exception that (CRS, π∗) is simulated as

(CRS, π∗)← Sim(1λ,∃m, r1, r2 : e∗1 = EncryptPKE(PK1PKE ,m; r1)
∧
e∗2 = EncryptPKE(PK2PKE ,m; r2)).

where e∗1, e
∗
2 is part of the challenge ciphertext. Note, that in the selective security game the challenge

ciphertext can be given out simultaneously with the public parameters.

- Hyb2 This hybrid is identical to the last hybrid, Hyb1, with the exception that the challenge ciphertext
is generated as e∗1 = EncryptPKE(PK1PKE ,m0; r1) and e∗2 = EncryptPKE(PK2PKE ,m1; r2). (The NIZK is
still simulated.)

- Hyb3,i for i ∈ [0, q]: In this set of hybrids we change the form of the secret keys used to decrypt
the ciphertext. In Hyb3,i the first i private keys requested will result in private keys generated as

obfuscations of the program P4(fi,SK
2
PKE ,CRS). The remaining i + 1 to q private keys are generated

using the program P3(fi,SK
1
PKE ,CRS) as in Hyb2 . We observe that Hyb3,0 is equivalent to Hyb2.

- Hyb4 This hybrid is identical to the hybrid Hyb3,q with the exception that the challenge ciphertext is
generated as e∗1 = EncryptPKE(PK1PKE ,m1; r1) and e∗2 = EncryptPKE(PK2PKE ,m1; r2). (The NIZK is

still simulated and keys all created from P4(f,SK
2
PKE ,CRS).)

- Hyb5,i for i ∈ [0, q]: The challenge ciphertext and CRS is formed the same as in Hyb2. In this set of
hybrids we change the form of the secret keys used to decrypt the ciphertext. In Hyb5,i the first i private

keys requested will result in private keys generated as obfuscations of the program P3(fi,SK
1
PKE ,CRS).

The remaining i + 1 to q private keys are generated using the program P4(fi,SK
2
PKE ,CRS) as in Hyb4 .

We observe that Hyb5,0 is equivalent to Hyb4.

- Hyb6: This hybrid is the same as Hyb5,q with the exception that the CRS is generated from an honest
run of the SetupNIZK algorithm and that the NIZK proof component, π∗, of the challenge ciphertext
is generated from the witness (r1, r2). This corresponds to the security game when message m1 is
encrypted for the challenge ciphertext.

Proofs of Hybrid Arguments

Claim 5. If our SSS-NIZK system is computationally zero knowledge, then no poly-time attacker can
distinguish with non-negligible probability between Hyb0 and Hyb1.

Proof. We show that if there is a poly-time attacker A that can distinguish between Hyb0 and Hyb1 with
non-negligible advantage, then there is a poly-time algorithm B that breaks the zero knowledge security of
our NIZK scheme. B begins by running A and receiving m0,m1.
B generates both public keys itself (keeping the first secret key) and encrypts e∗1 = EncryptPKE(PK1PKE ,m0; r1)

and e∗2 = EncryptPKE (PK2PKE ,m0; r2). It then submits to the challenger the statement

x′ = ∃m, r1, r2 : e∗1 = EncryptPKE(PK1PKE ,m; r1)
∧
e∗2 = EncryptPKE(PK2PKE ,m; r2)

25

as well as the witness (m0, r1, r2). It receives back (CRS′, π′). It uses CRS = CRS′ to make the public
parameters and sets the challenge ciphertext as (e∗1, e

∗
2, π
∗ = π′). The attacker, A, then makes q private key

queries to B. All queries for a function f are answered by using SK1
PKE to make P3(f,SK

1
PKE ,CRS).

If the zero knowledge challenger used the honest setup algorithm and prover to generate CRS′, π′ , then
we are exactly in hybrid Hyb0; if it simulated the proof, then we are in hybrid Hyb1. Therefore, if an attacker
can distinguish between the two hybrids with non-negligible advantage, it will break the zero knowledge
property of the NIZK scheme.

Claim 6. If our PKE system is IND-CPA secure, then no poly-time attacker can distinguish with non-
negligible probability between Hyb1 and Hyb2.

Proof. We show that if there is a poly-time attacker A that can distinguish between Hyb1 and Hyb2 with
non-negligible advantage, then there is a poly-time algorithm B that breaks the IND-CPA security of our
PKE scheme. B begins by running A and receiving m0,m1.
B first generates the first public key itself (keeping the secret key) and encrypts e∗1 = EncryptPKE(PK1PKE ,m0; r1).

It then receives a public key from the challenger and designates it as PK2PKE . Next, it submits m0,m1 to
the challenger and receives back e′. It sets e∗2 = e′. Finally, it uses the simulation algorithm to get:

(CRS, π∗) = Sim(1λ,∃m, r1, r2 : e∗1 = EncryptPKE(PK1PKE ,m; r1)
∧
e∗2 = EncryptPKE(PK2PKE ,m; r2)).

The parameters and challenge ciphertext are now given out as PP = {PK1PKE , PK2PKE ,CRS} and (e∗1, e
∗
2, π
∗).

The attacker, A, then makes q private key queries to B. All queries for a function f are answered by using
SK1

PKE to make P3(f,SK
1
PKE ,CRS).

If the IND-CPA challenger gave an encryption of m0, then we are exactly in hybrid Hyb0; if it gave e′ as
an encryption of m1, then we are in hybrid Hyb1. Therefore, if an attacker can distinguish between the two
hybrids with non-negligible advantage, it will break the IND-CPA property of the PKE scheme.

Claim 7. If the Family-iO assumption holds for our indistinguishability obfuscator, then no poly-time
attacker can distinguish between Hyb3,i and Hyb3,i+1 for i ∈ [0, q − 1].

Proof. We show that if there is a poly-time attacker A that that can distinguish between Hyb3,i and Hyb3,i+1

with non-negligible advantage, then there is a poly-time algorithm B that breaks the Family-iO security of
our obfuscation scheme. B begins by running A and receiving m0,m1.
B generates both public keys (keeping both secret keys) and encrypts e∗1 = EncryptPKE(PK1PKE ,m0; r1)

and e∗2 = EncryptPKE (PK2PKE ,m1; r2). it uses the simulation algorithm to get:

(CRS, π∗) = Sim(1λ,∃m, r1, r2 : e∗1 = EncryptPKE(PK1PKE ,m; r1)
∧
e∗2 = EncryptPKE(PK2PKE ,m; r2)).

The parameters and challenge ciphertext are now given out as PP = {PK1PKE , PK2PKE ,CRS} and (e∗1, e
∗
2, π
∗).

The attacker, A, then makes q private key queries to B. For j ≤ i the j-th private key is created as an
obfuscation of the program P4(fj ,SK

2
PKE ,CRS). For j > i+ 1 the j-th private key is created as an obfuscation

of the program P3(fj ,SK
1
PKE ,CRS). For the i+ 1-th private key query B submits C0 = P3(fi+1,SK

1
PKE ,CRS) and

C1 = P4(fi+1,SK
2
PKE ,CRS) to the Family-iO challenger. and receives back an obfuscated circuit C ′, which B

gives as the i+ 1-th private key.
We now check that we are using a valid instance of the Family-iO assumption in showing that both

programs have the same output on each input. We break these down by cases on the input. We first
consider inputs (e1, e2, π) where e1, e2 are valid encryptions of the same message and π is a proof of this that
passes VerifyNIZK . For these inputs both circuits will proceed to the second step where they decrypt the
same message,m, no matter what key they use and compute the same function fi+1. Thus the output is the
same on all inputs of this class. The second sets of inputs we consider are where the verification check of

26

equation 2 in step 1 does not pass. In this case, both circuits output 0. Finally, we can consider cases where
the verification check passes, but e1, e2 are not valid encryptions of the same message. Due to the statistical
simulation soundness property of the SSS-NIZK this can only happen if e1 = e∗1 and e2 = e∗2. In this case
decrypting e∗1 gives m0 and decrypting e∗2 = m1. However, the first circuit outputs fi+1(m0) which is must
be equal to fi+1(m1) (by the rules of the game), which is the output of the second circuit. Since the two
circuits have the same output on all inputs, this constitutes a valid instance of the assumption.

If the Family-iO challenger chose the first program, then we are exactly in hybrid Hyb3,i; if it chose the
second, then we are in Hyb3,i+1. Therefore, if an attacker can distinguish between the two hybrids with
non-negligible advantage, it will break the Family-iO assumption.

Claim 8. If our PKE system is IND-CPA secure the, then no poly-time attacker can distinguish with
non-negligible probability between Hyb3,q and Hyb4.

The proof of this claim follows in a directly analogous way to that of Claim 6.

Claim 9. If the Family-iO assumption holds for our indistinguishability obfuscator, then no poly-time
attacker can distinguish between Hyb5,i and Hyb5,i+1 for i ∈ [0, q − 1].

The proof of this claim follows in a directly analogous way to that of Claim 7.

Claim 10. If our SSS-NIZK system is computationally zero knowledge, then no poly-time attacker can
distinguish with non-negligible probability between Hyb0 and Hyb1.

The proof of this claim follows in a directly analogous way to that of Claim 5.

Theorem 4. Under the assumptions listed above our FE system is selectively secure in the indistinguisha-
bility game of Section 6.

Proof. Our claims show a succession of a polynomial number of hybrid experiments where no poly-time
attacker can distinguish one from the next with non-negligible advantage. The first hybrid Hyb0 corresponds
to encrypting a message m0 in the selective functional encryption indistinguishability game and the last
hybrid Hyb6 corresponds to encrypting the message m1. Security in the indistinguishability game follows.

Acknowledgements

We are grateful to Boaz Barak and Yuval Ishai for illuminating conversations.

References

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryp-
tion for inner product predicates from learning with errors. In Proceedings of the 17th inter-
national conference on The Theory and Application of Cryptology and Information Security,
ASIACRYPT’11, 2011.

[AGVW12] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption: New perspectives and lower bounds. Cryptology ePrint Archive, Report 2012/468,
2012.

[Bar86] D A Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in nc1. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, STOC ’86, 1986.

27

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In EUROCRYPT, pages 506–522, 2004.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In
Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’01, 2001.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations. In STOC, pages 103–112, 1988.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. In ITCS, 2012.

[BOGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio Micali,
and Phillip Rogaway. Everything provable is provable in zero-knowledge. In CRYPTO, pages
37–56, 1988.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In CRYPTO, pages 868–886, 2012.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In EUROCRYPT, pages 573–592, 2006.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: definitions and challenges.
In Proceedings of the 8th conference on Theory of cryptography, TCC’11, pages 253–273, Berlin,
Heidelberg, 2011. Springer-Verlag.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and
security for key dependent messages. In CRYPTO, 2011.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
Proceedings of the 4th conference on Theory of cryptography, TCC’07, pages 535–554, Berlin,
Heidelberg, 2007. Springer-Verlag.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, pages 257–270, 1994.

[CJO+13] Angelo De Caro, Vincenzo Iovino Abhishek Jain, Adam O’Neill, Omer Paneth, and Giuseppe
Persiano. On the achievability of simulation-based security for functional encryption. In
CRYPTO, 2013.

[CLT13] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over
the integers. Cryptology ePrint Archive, Report 2013/183, 2013.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homo-
morphic encryption over the integers with shorter public keys. In CRYPTO, pages 487–504,
2011.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int.
Conf., pages 360–363, 2001.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM Journal of Computing, 29(1):1–28, 1999.

28

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In STOC,
pages 416–426, 1990.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based
encryption for circuits from multilinear maps. Cryptology ePrint Archive, Report 2013/128,
2013. http://eprint.iacr.org/.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its appli-
cations. In STOC, 2013.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium
on, pages 553–562. IEEE, 2005.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Succinct functional encryption and applications: Reusable garbled circuits and beyond. In
STOC, 2013.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In Alfred V. Aho, editor, STOC, pages
218–229. ACM, 1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for np.
In Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages 339–358. Springer, 2006.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, CCS ’06, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Proceedings of the
4th conference on Theory of cryptography, TCC’07, pages 194–213, 2007.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, 2013.

[Ish13] Yuval Ishai. Personal communication, 2013.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor, STOC, pages
20–31. ACM, 1988.

29

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Proceedings of the theory and applications of
cryptographic techniques 27th annual international conference on Advances in cryptology, EU-
ROCRYPT’08, 2008.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234,
2012.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437, 1990.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556, 2010.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In TCC, pages 422–439, 2012.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In FOCS, pages 543–553, 1999.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO
84 on Advances in cryptology, pages 47–53, New York, NY, USA, 1985. Springer-Verlag New
York, Inc.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Proceedings of the 17th ACM conference on Computer and communications security,
CCS ’10, pages 463–472, New York, NY, USA, 2010. ACM.

[SS11] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems over ideal
lattices. In EUROCRYPT, pages 27–47, 2011.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[SW08] Amit Sahai and Brent Waters. Slides on functional encryption. PowerPoint presentation, 2008.
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt.

[SWP00] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for searches on
encrypted data. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium
on, pages 44–55. IEEE, 2000.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT, pages 24–43, 2010.

A Multilinear Jigsaw Puzzle implementation details

One instantiation of Multilinear Jigsaw Puzzles is obtained by taking the GGH multilinear encoding schemes
and eliminating those aspects that are no longer needed, namely the encodings of 0,1 in the public parameters.
(We note that we can also use the recent multilinear maps over the integers of Coron et al. [CLT13] as a
basis for our Multilinear Jigsaw Puzzles.) We provide the GGH-based instantiation here.

Jigsaw generator. On input (k, λ,Π), the Jigsaw generator proceeds as follows.

30

Instance Generator. The Jigsaw generator first chooses a large random prime q, which will be the overall
modulus used. She will use a dimension parameter m which will be an appropriate (large enough) power of
two. Further work will be done in the ring R = Z[X]/(Xm+1), and the ring Rq = Zq[X]/(Xm+1) = R/qR.
The size of these parameters will be discussed at the end of this section.

The first sequence of operations that the Jigsaw generator performs are to set up the approximate
multilinear maps. She begins by choosing several secret polynomials:

• First, she chooses a “small” random polynomial g ∈ R such that |R/(g)| is a (large) prime p. Here,
“small” refers to each coefficient in g being a small integer – we will describe exactly what “small”
should mean when we later discuss parameter selection. This polynomial g must also satisfy a technical
condition ensuring that g−1 when viewed as residing in Q[X]/(Xm + 1), is sufficiently small. We omit
the proofs that these conditions can be satisfied with noticeable probability by a random choice of
small g; these are found in [GGH13a].

• Then, she chooses k random polynomials z1, z2, . . . , zk ∈ Rq. These polynomials are chosen uniformly,
and therefore are very unlikely to be “small.”

The Jigsaw Generator will identify the “plaintext space” with Zp. In other words, in the analogy to
(true) multilinear maps, the underlying groups will be of prime order p. Furthermore, each “level” of the
multilinear map will be associated with a subset of the set [k] = {1, 2, . . . , k}. Again, to make the analogy
complete, we will think of having groups GS , for every subset S ⊆ [k], and there will be a bilinear map from
GS ×GS′ → GS∪S′ for every disjoint pair of sets S, S′ ⊂ [1, k].

Encoding. Next, the Jigsaw Generator is ready to create the puzzle pieces, which are encodings of various
elements of Zp at different levels. To create an encoding EncodeS(a) of an element a ∈ Zp at the level
S ⊂ [1, k], the Puzzle Maker does the following:

• First, she reduces a modulo (g) to create a small polynomial â ≡ a (mod g) in R.

• Then, she computes in Rq the following:

EncodeS(a) =
â+ e · g∏
i∈S zi

where e is chosen so that â+ e · g is discrete Gaussian centered at the origin, and so that the resulting
e is “small.” Once again, we will discuss exactly what “small” means here when we discuss settings of
parameters. We think of e as being a crucial noise term for achieving security. (We refer the reader
to [GGH13a] for details on a [GPV08] based more sophisticated sampling procedure.)

The various puzzle pieces generated by the Jigsaw Generator will be given to the Jigsaw Verifier.

Zero Test Generation. The final step of the Jigsaw Generator is to create a “zero testing” parameter
that will allow the Jigsaw Verifier to know when he has solved the puzzle by creating a nontrivial encoding
of 0 at the highest level {1, 2, . . . , k}. This will be used to allow the Jigsaw verifier to check if two elements
create at the highest level are equal to each other, by subtracting and then using the zero test.

The Jigsaw Generator now creates the zero-testing element by performing the following computation in
Rq:

pzt =
h ·
∏k
i=1 zi
g

Here, h is a random “mid-size” polynomial chosen from a discrete Gaussian in R, whose coefficients are of
size roughly q2/3. Intuitively, since an encoding of 0 at level {1, 2, . . . , k} is e · g/

∏
i zi, by multiplying it by

pzt, one is left with h · e which will be small. By testing if this product is small, the Puzzle Solver will know

31

whether it has successfully created an encoding of 0 at the final level. The proof of this fact is omitted and
can be found in [GGH13a].

When she is done, she sends (prms,pzt) and the various puzzle pieces (a.k.a. encodings) she has created
to the Jigsaw Verifier. The Jigsaw Generator plays no further role.

Jigsaw verifier. The verifier is given the system parameters prms = (k,m, q, p,pzt), a valid form Π, and
inputs for Π (I1, u1), (I2, u2), . . . , (In, un). If the output wire is not associated with [k] then the verifier
outputs 0. If it is associated with [k] then the verifier just evaluates Π on these inputs using Rq operations,
then use the zero-test parameter to check if the output is an encoding of zero. Namely every ,	,⊕,⊗ gate
in the form Π is replaced by the operations −,+,× in Rq, respectively, applied to the input elements to this
gate (explained below). Denote the element at the output wire by u, the properties of the encoding scheme
ensure that it is of the form

u =
a∗∏
i∈[k] zi

∈ Rq,

where ‖a∗‖ � √q, and a∗ ∈ (g) if and only if u ∈ S(0)
[k] . The verifier multiplies the output encoding by the

zero-test parameter to get w = u · pzt ∈ Rq, and output 1 if ‖w‖ � q and 0 otherwise.
Now we give more details on the the algorithm used by the Jigsaw Verifier.

Addition at same level. Given two encodings α = EncodeS(a) and β = EncodeS(b) at the same level S,
observe the following computation over Rq:

α+ β =
(â+ b̂) + e′ · g∏

i∈S zi

We will choose parameters so that any polynomial number of additions will keep the term e′ from
growing too large. Thus, we see that addition yields another valid encoding at the same level.

Multiplication, jumping levels. Given two encodings α = EncodeS(a) and β = EncodeT (b) at disjoint
level sets S, T ⊂ [1, k], observe the following computation over Rq:

α · β =
(â · b̂) + e′ · g∏

i∈S∪T zi

We will choose parameters so that the term e′ will not grow too large as long as the level sets S and
T are disjoint. Thus, we see that multiplication yields another valid encoding at a different level.

The encodings are designed so that only these operations are “meaningful.” Other operations, such as
addition across different levels, or division of encodings, will produce “junk.” Similarly, multiplication so
that the final level contains any element with multiplicity more than one will produce an encoding that
essentially cannot be distinguished from a random. See [GGH13a] for further details.

Finally, the Jigsaw verifier will yield some concrete encoded value u at the highest level [1, k] at which
point it will then invoke the zero testing procedure:

Zero-testing. The procedure isZero(prms,pzt, u) just multiplies v = u · pzt in Rq, and tests if v is small
enough (e.g., if it has canonical embedding of Euclidean norm smaller than q7/8).

If the zero test passes, the Jigsaw Verifier outputs 1, otherwise it outputs 0.

Setting Parameters. If we think of the dimensionality m as being an effective security parameter, then to
achieve the level of security and functionality that we need, we can set k = mδ, and q of size approximately
2O(mε), where δ and ε are suitably chosen constants 0 < δ < ε < 1. The definition of “small” for the size of

g and the noise term e above will be that each coefficient should be smaller than 2O(mδ).

32

B Additional Background

In this section we first give background on three cryptographic primitives used in Section 6.1: Non-Interactive
and Perfectly Binding Commitments, Statistical Simulation-Sound Non-Interactive Zero-Knowledge Proofs,
and Fully Homomorphic Encryption. In addition, we describe how any proofs that are verifiable in by a
family of polynomial sized ciruits can be transformed into a proof that is verifiable by a family of circuits
belonging to NC1.

B.1 Non-Interactive and Perfectly Binding Commitments

We let Com(·; ·) denote the commitment function of a non-interactive commitment scheme. Com takes as
input a bit b ∈ {0, 1} and randomness r ∈ {0, 1}λ and outputs a commitment c← Com(b; r). Commitment
schemes must satisfy two properties: hiding and binding.

Computational Hiding. Hiding means that no computationally bounded adversary can distinguish as to
which bit is locked in the commitment. Let A be any non-uniform adversary running in time poly(λ). We
say that the commitment scheme is computationally hiding if:

Pr

[
b = b′

∣∣∣∣ b← {0, 1};c = Com(b; r); b′ ← A(c)

]
= negl(λ) .

Perfectly Binding. Intuitively speaking, binding requires that no (even unbounded) adversary can open
the commitment in two different ways. Here, we define the strongest variant known as perfectly binding.
Formally we require that, there does not exist values (r0, r1) such that Com(0; r0) = Com(1; r1).

For simplicity of exposition, in the sequel, we will assume that random coins are an implicit input to the
commitment function. We will also naturally extend the commitment function Com to commit to strings
instead of just bits.

For simplicity of exposition, in the presentation of our results in this manuscript, we use a non-interactive
perfectly binding string commitment which can be based on any 1-to-1 one-way function. It is easy to see
that all the constructions in this work can in fact be built using Naor’s [Nao91] 2-round commitment scheme
which can be based on any one-way function.

B.2 Statistical Simulation-Sound Non-Interactive Zero-Knowledge Proofs

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the statement and w the
witness. Let L be the language consisting of statements in R.

A non-interactive proof system [BFM88, FLS99, GOS06] for a relation R consists of a common reference
string generation algorithm K, a prover P and a verifier V . We require that they all be probabilistic
polynomial time algorithms, i.e., we are looking at efficient prover proofs. The common reference string
generation algorithm produces a common reference string σ of length Ω(λ). The prover takes as input
(σ, x, w) and produces a proof π. The verifier takes as input (σ, x, π) and outputs 1 if the proof is acceptable
and 0 if rejecting the proof. We call (K,P, V) a non-interactive proof system for R if it has the completeness
and statistical-soundness properties described below.

Perfect completeness. A proof system is complete if an honest prover with a valid witness can convince
an honest verifier. Formally we have

Pr
[
σ ← K(1λ) : ∃(x, π) : x /∈ L : V (σ, x, π) = 1

]
= 1.

Statistical soundness. A proof system is sound if it is infeasible to convince an honest verifier when the
statement is false. For all (even unbounded) adversaries A we have

Pr
[
σ ← K(1λ); (x, π)← A(σ) : V (σ, x, π) = 1 : x 6∈ L

]
= negl(λ).

33

Computational zero-knowledge [FLS99]. A proof system is computational zero-knowledge if the
proofs do not reveal any information about the witnesses to a bounded adversary. We say a non-interactive
proof (K,P, V) is computational zero-knowledge if there exists a polynomial time simulator S = (S1, S2),
where S1 returns a simulated common reference string σ together with a simulation trapdoor τ that enables
S2 to simulate proofs without access to the witness. For all non-uniform polynomial time adversaries A we
have for all x ∈ L

Pr
[
σ ← K(1λ);π ← P (σ, x, w) : A(x, σ, π) = 1

]
≈ Pr

[
(σ, τ)← S1(1λ, x);π ← S2(σ, τ, x) : A(x, σ, π) = 1

]
.

Statistical Simulation-Soundness (SSS). A proof system is said to be statistically simulation sound if
it is infeasible to convince an honest verifier of a false statement even when the adversary itself is provided
with a simulated proof. For all statements x and all (even unbounded) adversaries A we have

Pr
[
(σ, τ)← S1(1λ, x);π ← S2(σ, τ, x) : ∃(x′, π′) : x′ 6= x : V (σ, x′, π′) = 1 : x′ /∈ L

]
= negl(λ).

Realizing statistical simulation soundness. Constructions of non-interactive zero-knowledge (NIZK)
proof system [BFM88, FLS99, GOS06] are well known. Now we will describe how a NIZK proof system can
be used to realize a SSS NIZK proof system. Formally, using a NIZK proof system (K,P, V) and a non-
interactive commitment scheme Com(·; ·) we will construct a NIZK proof (K ′, P ′, V ′) that is also statistically
simulation-sound. Let ` be an upper bound on the length of the statements proven and let 0` represent a
special statement that is never proven.

• K ′(1λ): Generate σ ← K(1λ) and c ← Com(0`; r) where r are the random coins and output the
common random string as Σ = (σ, c).

• P ′(Σ = (σ, c), x, w): Generate the proof π′ as P (σ, x′, w) where x′ is the following statement:

∃w, r such that (x,w) ∈ R
∨
c = Com(x; r). (3)

• V ′(Σ, x, π′): The verifier V ′ outputs V (σ, x′, π′) where x′ is the statement as in Equation 3.

Correctness. The correctness of the scheme (K ′, P ′, V ′) follows directly from the correctness of (K,P, V).

Zero-Knowledge. We will start by describing our simulator S′ = (S′1, S
′
2) assuming the simulator S =

(S1, S2) for (K,P, V).
S′1(1λ, x) generates the common random string Σ = (σ, c) where σ ← K(1λ) and c← Com(x; r).
S2 generates the proof for x′ (from Equation 3) using the randomness r. More specifically, it just outputs

P (σ, x′, r).
The zero-knowledge property of our simulator follows from the following simple hybrid argument.

- Hyb0: This hybrid corresponds to the honest generation of the proof.

- Hyb1: We start generating c as a commitment to x rather that 0`.

Indistinguishability between hybrids Hyb0 and Hyb1 follows from the computational hiding property
of the commitment scheme.

- Hyb2: We start using the randomness used in generation of the commitment c for generating the proof
rather than the real witness. In other words, we use the simulation strategy.

Indistinguishability between hybrids Hyb1 and Hyb2 follows from the zero-knowledge property of
(K,P, V).

34

Statistical Simulation-Soundness. SSS follows directly from the statistical soundness of the (K,P, V)
proof system and the fact that the only false statement for which an acceptable proof exists is x because the
commitment c is perfectly binding.

B.3 Fully Homomorphic Encryption

Our definitions here follow [BGV12]. We start with a generic definition of homomorphic encryption that
captures both fully and non-fully homomorphic schemes. A homomorphic encryption scheme HE is a tuple
of PPT algorithms (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval). The message space RM of HE is some ring and
our computational model will be arithmetic circuits over this ring (with addition and multiplication gates).
HE.KeyGen takes the security parameter (and possibly other parameters of the scheme output by a Setup
procedure) and outputs a secret key sk and a public key pk. HE.Enc takes the public key pk a message µ
and outputs a ciphertext c that encrypts µ. HE.Dec takes the secret key sk and a ciphertext c and outputs
a message µ. HE.Eval takes the public key pk, an arithmetic circuit f over M , and ciphertexts c1, . . . , c`,
where ` is the number of inputs to f , and outputs a ciphertext cf .

Definition 14. We say that a homomorphic encryption correctly evaluates a circuit family F if for all
f ∈ F and for all µ1, . . . , µ` ∈ RM it holds that if sk, pk were properly generated by HE.KeyGen with security
parameter λ, and if ci = HE.Encpk(µi) for all i, and cf = HE.Evalpk(f, c1, . . . , c`), then

Pr[HE.Decsk(cf) 6= f(µ1, . . . , µ`)] = negl(λ) ,

where the probability is taken over all the randomness in the experiment.
We say that the scheme compactly evaluates the family if in addition the running time of the decryption

circuit only depends on λ and not on its input.

We use standard semantic security (security under chosen plaintext attack) as our security notion.

Definition 15. A homomorphic scheme is secure if any polynomial time adversary that first gets a properly
generated pk, then specifies µ0, µ1 ∈ RM and finally gets HE.Encpk(µb) for a random b, cannot guess the
value of b with probability > 1/2 + negl(λ).

In a leveled fully homomorphic scheme, the parameters of the scheme depend (polynomially) on the depth
of the circuits that the scheme is capable of evaluating. In a pure fully homomorphic scheme, the parameters
do not have this dependence on the depth.

Definition 16 (Leveled FHE [Gen09a]). We say that a family of homomorphic encryption schemes {HE(L) :

L ∈ Z+} is leveled fully homomorphic if, for all L ∈ Z+, they all use the same decryption circuit, HE(L)

compactly evaluates all circuits of depth at most L, and the computational complexity of HE(L)’s algorithms
is polynomial (the same polynomial for all L) in the security parameter, L, and (in the case of HE(L).Eval)
the size of the circuit.

Definition 17. A pure FHE scheme is a leveled FHE where the complexity of HE(L)’s algorithms is inde-
pendent of L, except insofar as the complexity of HE(L).Eval depends on the size of the circuit.

Often decryption can be decomposed into a two step process, DecPreprocess and Dec, where DecPreprocess
is a completely public algorithm that does not use sk or any secret information. Conceptually, one may prefer
to view DecPreprocess as more properly belonging to Eval. Definition 16 refers only to the circuit for Dec,
and it is fine if DecPreprocess depends on L.

Gentry’s bootstrapping theorem allows one to transform schemes that enjoy some level of homomorphism
(bootstrappable schemes) into FHE schemes. Let us first define what a bootstrappable scheme is:

Definition 18. We say that a homomorphic encryption scheme HE is bootstrappable if HE compactly
evaluates all circuits of depth at most (D + 1), where D is the depth of HE’s decryption circuit, and the
computational complexity of HE’s algorithms is polynomial in the security parameter and (in the case of the
evaluation algorithm) the size of the circuit.

35

In Definition 18, the depth of the decryption circuit is measured when the secret key is treated as the
input, and the decrypted ciphertext is treated as constant.

We can now state the bootstrapping theorem:

Theorem 5 (Bootstrapping [Gen09b, Gen09a]). If there exists a bootstrappable encryption scheme HE,

then there also exists a leveled FHE scheme {HE(L)} with related security. There also exists a pure FHE
scheme FHE with related security with an additional assumption of circular security (that semantic security
holds even if the attacker is provided with a (bit-wise) encryption of sk under pk). The decryption circuit of

{HE(L)} and FHE is the same as the decryption circuit of HE.

Gentry also showed that semantically secure bootstrappable encryption schemes exist, assuming the hard-
ness of certain lattice problems. More recently, bootstrappable encryption schemes have been constructed
based on the approximate-gcd problem [vDGHV10, CMNT11], the learning with errors (LWE) problem
[Bra12], the ring learning with errors (RLWE) problem [BV11], and the NTRU problem [SS11, LATV12].

Theorem 5 establishes that there are FHE schemes whose decryption circuit is the same as the decryp-
tion circuit of an underlying bootstrappable encryption scheme, which has size polynomial in the security
parameter. However, we will require something stronger – namely, that the decryption circuit has depth
only logarithmic in the security parameter (is in NC1). Fortunately, essentially all known bootstrappable
encryption schemes already have this property, although it has not often been proven explicitly. However,
Brakerski, Gentry and Vaikuntanathan (BGV) [BGV12] did prove such a claim explicitly, as it was essential
to their basing security on LWE for λO(log λ) approximation factors. Specifically, they provide the following
lemma regarding their decryption circuit. (Note that the modulus q in their system can be made poly(λ)
through a technique called “modulus reduction”.)

Lemma 1 ([BGV12]). Let n = O(λ), q = poly(λ) and let the ciphertext c ∈ Znq . Consider the function
D(s) = [[〈c, s〉]q]2, for input secret key s ∈ Znq , where the coefficients of s are represented using standard

binary representation. Then D(·) can be computed by a circuit of size Õ(λ) and depth O(log λ).

Beginning with BGV, there are also leveled FHE schemes that do not use bootstrapping. In all such
schemes that we know of, Dec is in NC1.

B.4 Low Depth Proofs

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the statement and w the
witness. Let L be the language consisting of statements in R. As defined in Section B.2, a non-interactive
proof with perfect completeness and perfect soundness for a relation R consists of an (efficient) prover P
and a verifier V such that:

Perfect completeness. A proof system is perfectly complete if an honest prover with a valid witness can
always convince an honest verifier. For all (x,w) ∈ R we have

Pr
[
π ← P (x,w) : V (x, π) = 1

]
= 1.

Perfect soundness. A proof system is perfectly sound if it is infeasible to convince an honest verifier
when the statement is false. For all x /∈ L and all (even unbounded) adversaries A we have

Pr
[
π ← A(x) : V (x, π) = 1

]
= 0.

Furthermore we say that a non-interactive proof is low-depth, if the verifier V can be implemented in
NC1.

We next sketch a very simple construction of a low-depth non-interactive proof. The prover P executes
the NP-verification circuit on the witness and generates the proof as the sequential concatenation (in some
specified order) of the bit values assigned to the individual wires of the circuit. The verifier V proceeds by

36

checking consistency of the values assigned to the internal wires of the circuit for each gate. In particular for
each gate in the NP-verification circuit the verifier checks if the wire vales provided in the proof represent a
correct evaluation of the gate. Since the verification corresponding to each gate can be done independent of
every other gate and in constant depth, we have that V itself is constant depth.

C Security of our Assumption

In this section we provide evidence for our assumption, demonstrating that our hardness assumption (As-
sumption 1) does not fall prey to a class of “simple attacks.” Below we define a generic model that we
term the generic colored matrix model, capturing attacks where the adversary only multiplies matrices in
the correct order, and prove that Assumption 1 holds (unconditionally) in this model. Later in Section C.4
we discuss why we think that the generic colored matrix model captures the “most natural” attacks against
our scheme.

C.1 Generic Colored Matrix Model

Roughly, the generic colored matrix model considers attacks in which the adversary is provided with matrices
in some specific order, and is only allowed to add/multiply them in ways that respect this order (and to
check for equality). The order is specified by assigning each matrix a left color and a right color, permitting
only addition of matrices of matching colors, and only multiplication of matrices where the right color of one
matches the left color of the other.

In more detail, a matrix in this model is associated with left and right colors LC,RC and an opaque
handle h. The colors are just arbitrary strings, and below we use simple indexes 1, 2, 3, . . . for the handles,
i.e. the first matrix that the adversary sees has handle 1, the second has handle 2, etc. The adversary
in this model is given the prime number p that defines the field Zp, and for every matrix A ∈ Zm×np it
is given the tuple ((m,LC), (n,RC), h) but not the matrix A itself. The adversary is interacting with a
stateful representation oracle that keeps track of the correspondence between matrices and their handles and
let the adversary perform generic computation on these matrices. Given the prime p, the representation
oracle chooses an initial set of ` colored matrices and assign to them the handles 1, . . . , `, inserts into its
database the records {

(
Ai, (mi, LCi), (ni, RCi), i

)
}`i=1, sends to the adversary the prime p and representa-

tions {((mi, LCi), (ni, RCi), i)}`i=1 (without the matrices themselves), and then processes queries from the
adversary as follows:

Addition. When the adversary makes a query add(h, h′), the representation oracle looks up in the database
the records corresponding to the two handles h, h′. If such records exist, let us denote them by
(A, (m,LC), (n,RC), h) and (A′, (m′, LC ′), (n′, RC ′), h′). If they have the same dimensions and colors
— (m,LC) = (m′, LC ′) and (n,RC) = (n′, RC ′) — then the representation oracle computes their
modular sum A+ = A + A′ mod p. If the database already contains the matrix A+ with dimensions
and colors (m,LC), (n,RC) then the oracle returns the handle of that matrix. Otherwise the oracle
assigns to this matrix the next available handle index h+, inserts into the database a record for
(A+, (m,LC), (n,RC), h+), and returns h+ to the adversary.

Multiplication by constant. When the adversary makes a query ConstMul(h, a) (with h a handle and a ∈
Zp), the representation oracle looks up in the database the record corresponding to h. If it exists, let us
denote it by (A, (m,LC), (n,RC), h), and the representation oracle computes the modular product A′ =
a·A mod p. If the database already contains the matrix A′ with dimensions and colors (m,LC), (n,RC)
then the oracle returns the handle of that matrix. Otherwise the oracle assigns to this matrix the next
available handle index h′, inserts into the database a record for (A′, (m,LC), (n,RC), h′), and returns h′

to the adversary.

Multiplication. When the adversary makes a query mult(h, h′), the representation oracle looks up in the
database the records corresponding to the two handles h, h′. If such records exist, let us denote

37

them by (A, (m,LC), (n,RC), h) and (A, , (m′, LC ′), (n′, RC ′), h′). If they have matching dimensions
and colors — namely (n,RC) = (m′, LC ′) — then the representation oracle computes their modular
product A× = A × A′ ∈ Zm×n′

p . If the database already contains the matrix A× with dimensions
and colors (m,LC), (n′, RC ′) then the oracle returns the handle of that matrix. Otherwise the oracle
assigns to this matrix the next available handle index h×, inserts into the database a record for
(A×, (m,LC), (n′, RC ′), h×), and returns h× to the adversary.

C.2 Equivalent Program Indistinguishability in the Colored Matrix Model

We now proceed to show that Assumption 1 holds (unconditionally) in the generic Colored Matrix Model.
Specifically, an adversary that gets t handles from the representation oracle has at most O(t2/p) advantage
in distinguishing any two equivalent programs. Recall the structure of the randomized branching programs
in our construction, as explained in Equation 1:

RND(BP) ={
s̃ = sR−10 , t̃ = Rnt, s̃′ = s′(R′0)−1, t̃′ = R′nt′{
D̃i,b = Ri−1Di,bR

−1
i : i ∈ [n], b ∈ {0, 1}

}
,
{
D̃′i,b = R′i−1D

′
i,b(R

′
i)
−1 : i ∈ [n], b ∈ {0, 1}

} } .
Our analysis in this generic model examines only adversary strategies that cancel out the randomizing
matrices Ri, R

′
i, which means that these matrices must be multiplied in order. Hence, in our model we

assign to the matrices D̃i,b left color i and right-color-(i + 1), and similarly the matrices D̃′i,b are assigned

the distinct left color i′ and right-color-(i+ 1)′. The row vectors s̃ and s̃′ both are assigned the left color 0,
and they are assigned the right colors 1 and 1′, respectively. Similarly, the column vectors t̃, t̃′ are assigned
left colors (n+ 1) and (n+ 1)′, respectively, and they are both assigned the right color (n+ 2).

The representation oracle in our model, on input a prime p, branching program BP , and a partial input
assignment (J, σ), chooses the matrices and vectors as above (using the procedure described in Section 4.1),
then discards the matrices that are incompatible with the partial assignment (J, σ), and interacts with the
adversary using the remaining matrices. Denoting N = 2m + 5, the initial database of the representation
oracle consists of the following matrices and their representation:

DB
(
p,BP, (J, σ)

)
=

(s̃, (1, LC = 0), (N,RC = 1), h = 1), (s̃′, (1, LC = 0), (N,RC = 1′), h = 2),
(t̃, (N,LC = n+ 1), (1, RC = n+ 2), h = 3), (t̃′, (N,LC = (n+ 1)′), (1, RC = n+ 2), h = 4),{

(D̃i,b, (N,LC = i), (N,RC = i+ 1), h = ..) : i ∈ IJ , b = σ(inp(i))
}
,{

(D̃i,b, (N,LC = i), (N,RC = i+ 1), h = ..) : i /∈ IJ , b ∈ {0, 1}
}
,{

(D̃′i,b, (N,LC = i′), (N,RC = (i+ 1)′), h = ..) : i ∈ IJ , b = σ(inp(i))
}
,{

(D̃′i,b, (N,LC = i′), (N,RC = (i+ 1)′), h = ..) : i /∈ IJ , b ∈ {0, 1}
}
,


(where the handles are just all the indexes 1, 2, . . . , |DB|). The adversary is given as input the representation
without the matrices themselves, and then it interacts with the representation oracle as above. We denote
the total number of handles that the representation oracle sends to the adversary by T (these include the
initial |DB| handles that are given to the adversary as input, and all the handles that are sent in reply to
the adversary queries). The view of the adversary A in this interaction is denoted by viewA(p,BP, (J, σ), T).
Staged in this model, our hardness assumption can now be stated as the following theorem:

Theorem 6. For any prime p, branching program BP and two functionally-equivalent partial input as-
signments (J, σ) and (J, σ′), and any generic-colored-matrix-model adversary A that receives at most T
handles from the representation oracle, the statistical distance between the views viewA(p,BP, (J, σ), T) and
viewA(p,BP, (J, σ′), T) is bounded below O(nT 2/p).

Note that within the generic colored matrix model the above claim is unconditional.

38

C.3 Security Proof

To prove Theorem 6 we describe an information theoretic simulation strategy that can simulate the queries of
the adversary without knowledge of σ, but just with oracle access to the function BP |σ. Since the simulation
relies just on BP |σ which are identical over the two choices of σ, σ′, the simulation in the two settings must
be identical, and since it is a good simulation in both cases the theorem follows.

Non-commutative formal polynomials. We introduce some useful notation for describing our simula-
tion strategy. The simulation strategy must keep track of the computation that the adversary is performing
over the representations that are given to it, and it does that using non-commutative formal polynomials
(NCFPs). A non-commutative formal polynomial over the set of variables V = {v1, v2, . . . vt} is of the form∑
i ci ·vi1×vi2× . . . viti , where ci ∈ Zp is a constant and vi1×vi2× . . . viti is the ith monomial. The addition,

subtraction and multiplication of any two NCFPs is also a NCFP.
Let s, t, s′, t′, Di,b, D

′
i,b denote the variables corresponding to the representations that are given to the

adversary at initialization, then any handle that the adversary gets during the interaction must correspond
to a NCFP in these variables.

Simulation. The simulator gets as input the prime p, the length n of the branching program BP , and the
set J of fixed input bits (but not the actual input assignment σ or σ′), and it has access to the functionBP |σ =
BPσ′ . The simulator maintains a database P of NCFPs in the variables above, each stored in canonical
sum-of-monomials form where the monomials are in lexicographic order, along with their representations.
Initially the database consists of only the single-variable terms corresponding to s, t, s′, t′, Di,b, D

′
i,b, and the

adversary is given the corresponding representation. Thereafter, the simulator interacts with the adversary,
playing the role of the representation oracle as follows:

Addition. When the adversary makes a query add(h, h′), the simulator checks its database to find the
records corresponding to these two handles. If these records exist, we denote them by (P, (LC,m), (n,RC), h)
and (P ′, (LC ′,m′), (n′, RC ′), h′), where P, P ′ are NCFPs. If both records exist and they satisfy
(LC,m) = (LC ′,m′), (n,RC) = (n′, RC ′), then the simulator computes the NCFP P+ = P + P ′

with scalar arithmetic modulo p. (Otherwise the simulator returns ⊥). The simulator next checks if
a record for (P+, (LC,m), (n,RC), h+) exists in the database, and otherwise it inserts such record to
the database, using the next available index for h+. Finally the simulator returns h+ to the adversary.

Multiplication by constant. When the adversary makes a query ConstMul(h, a) (with h a handle and
a ∈ Zp), the simulator looks up in the database the record corresponding to h. If it exists, let us
denote it by (P, (m,LC), (n,RC), h), and the representation oracle computes the NCFP P ′ = a · P .
If the database does not already have a record for (P ′, (LC,m), (n,RC), h′) then the simulator inserts
one, using the next available handle index h′. The simulator returns h′ to the adversary.

Multiplication. When the adversary makes a query mult(h, h′), the representation oracle looks up in the
database the records corresponding to the two handles h, h′. If such records exist, let us denote them by
(P, (m,LC), (n,RC), h) and (P ′, (m′, LC ′), (n′, RC ′), h′). If they have matching dimensions and colors
— namely (n,RC) = (m′, LC ′) — then the representation oracle computes their product P× = P×P ′.
(If they do not exists or are not matching them the simulator returns ⊥.)

If LC = 0 and RC ′ = n+ 2 (which means that this is a “1× 1 matrix” corresponding to products that
includes the bookend vectors), then the simulator performs an additional step to ensure consistency.
Note that because of the color consistency requirements, all of the monomials in P× must be of the
form either c · s̃×

∏n
i=1 D̃i,bi × t̃ or c · s̃′×

∏n
i=1 D̃

′
i,bi
× t̃′ (for some bits b1, b2, . . . , bn), but cannot have

a mix of primed and non-primed variables. Moreover, for all i ∈ IJ we must have bi = σ(inp(i)) (since
for these steps we only give out one matrix in the primal program and one in the dummy program,
corresponding to the bit σ(inp(i))).

39

Considering the sequence of bits b = b1, b2, . . . , bn, we say that this it is consistent with the program BP
if there exists an input χ such that bi = χinp(i) for all i. (Moreover in this this case we sometime say
that b is consistent with χ.) In other words, if we have two steps i, i′ with inp(i) = inp(i′) but bi 6= bi′

then we say that b is inconsistent with the program BP , and otherwise it is consistent. The same
terminology is extended to the monomials, a monomial c · s̃×

∏n
i=1 D̃i,bi × t̃ or c · s̃′ ×

∏n
i=1 D̃

′
i,bi
× t̃′

is consistent (with χ) if b1, b2, . . . , bn is consistent (with χ), and inconsistent otherwise.

If LC = 0 and RC ′ = n + 2, then the simulator goes over all the monomials in P×. If it finds any
monomial that is (a) made up of non-primed variables (c · s̃×

∏n
i=1 D̃i,bi× t̃), and (b) is consistent with

some χ such that BP (χ) = 1, then the simulator replaces that monomial by its primed counterpart
c · s̃′×

∏n
i=1 D̃

′
i,bi
× t̃′. (If there is already a monomial for these primed variables, then it adds the two

constants.) Note that the simulator can check the two conditions (a) and (b) above, since it knows the
branching program BP and it has access to an oracle for BP |σ,

Denote the resulting NCFP after all the substitutions (if any) by P ∗. (If LC 6= 0 or RC ′ 6= n+ 2 then
no substitutions are made and we have P ∗ = P×). If the database does not already have a record for
(P ∗, (LC,m), (n,RC ′), h∗) then the simulator inserts one, using the next available handle index h∗.
The simulator returns h∗ to the adversary.

Intuition: Note that a consistent monomial made out of non-primed variables corresponds to the
evaluation of the primary program on some input χ, and the counterpart monomial of primed variables
corresponds to the evaluation of the dummy program on the same input. By construction, if BP (χ) = 1
then these two evaluations yield the same element of Zp, even though as NCFPs they correspond to
different terms. In the simulation we therefore identify these two terms, and only keep one of them.
(The choice to keep the dummy term is arbitrary, we just as well could have kept the primal term
instead.)

We note that simulator above uses super-polynomial time (and space), but this is irrelevant since the
statement we are proving is an unconditional probability statement.

C.3.1 Proof that the simulation works

Now we need to argue that the view of the adversary A when interacting with the simulation strategy above
is close to its view when interacting with the representation oracle, regardless of whether the execution uses
(J, σ) or (J, σ′). It is clear by construction that whenever the simulator returns an existing handle from its
database (i.e., the latest query returns the same NCFP as a previous one), then also the representation oracle
must return the same existing handle (since also the actual matrix must be the same in this case). It is left
to show that when the simulator returns a new handle (corresponding to a new NCFP) then whp also the
representation oracle would have returned a new handle (corresponding to a new actual matrix modulo p).

For the arguments below, recall again that the coloring constraints restrict what monomials we could
have in the NCFPs in P. Specifically the variables can only appear in a specific order. Specifically, s can
only be followed by D1,0 or D1,1. Similarly for each i ∈ [n− 1], Di,0 and Di,0 can only be followed by Di+1,0

or Di+1,1. Finally, Dn,0 and Dn,1 can only be followed by t. Similar constraints are also true for the primed
variables. This implies that primed and non-primed variables cannot be multiplied, and they can only be
added for terms that include the bookends s̃ and t̃ (or s̃′ and t̃′). We partition the argument to two cases:
one for queries that return a 1 × 1 matrix with colors LC = 0, RC = n + 2, and the other for all the other
queries. We begin with the latter case.

NCFPs with LC 6= 0 or RC 6= n+ 2. This case corresponds roughly to the “partial evaluation attacks”
from Section 3. Consider an adversary query that returns a matrix with left color LC 6= 0 (i.e. i or i′ for
i > 0) or right color RC 6= n+ 2 (i.e., RC = j or RC = j′ for j < n+ 2). Below we provide the details for
the non-primed case LC > 0 and RC < n+ 2, treatment of the other cases is analogous.

Recall that we consider here a query that results in a new formal polynomial, different than the formal
polynomials in all previous queries, we denote the previous NCFPs that the simulator has in its database

40

before that query by P1, P2, . . . , Pr, and the new NCFP generated by the query is denoted P . Our goal is to
show that with high probability over the choices of the representation oracle, the actual matrix that result
is also different from the matrices in all the previous queries. This would imply that in both the simulation
and the real execution, the adversary will get a new handle in reply to this query.

For the case LC = i > 0 and RC = j < n + 2, the coloring constraints imply that all the variables in
P must be non-primed, and also that P does not include the variables s̃ or t̃. Thus P describes an N ×N
matrix of the form c ·Ri−1DR−1j , where D is mostly diagonal except in the bottom 5× 5 quadrant and the
R’s are invertible matrices. Fix any one of the previous NCFPs Pk and we have two sub-cases:

• P and Pk are colored differently. This is the easy case, by definition of the model the handle that is
returned to the adversary for this query (in both the simulation and the real execution) is different
than what was returned for Pk.

• P and Pk have the same left and right colors. Hence also Pk is of the form ck ·Ri−1DkR
−1
j . Note that

the scalars c, ck ∈ Zp are completely determined by the queries of the adversary, and are independent
of the random choices of the representation oracle in the real execution, and the matrices Ri−1 and Rj
are the same for P and Pk. It follows that the actual matrices in the real execution are equal if and
only if c ·D = ck ·Dk (mod p).

Note now that the matrices c · D and ck · Dk can themselves be expressed as formal multilinear
polynomials over Zp in the variables Di,b and these polynomials have degree at most n and they must
differ as formal polynomials (since P and Pk differ). Moreover, since the Di,b’s are all diagonal (except
the bottom-right 5× 5 quadrant), then the top-left entries in c ·D and ck ·Dk can be expressed as the
same formal polynomials in the top-left entries of the Di,b’s.

Since in our construction all these top-left entries are chosen independently at random in Zp, we
conclude that the top-left entry in the matrix c · D − ck · Dk mod p is obtained as the evaluation of
a non-zero multilinear polynomial of degree at most n, in variables that are chosen uniformly in Zp.
The Schwartz-Zippel lemma implies that this entry is non-zero, except with probability bounded below
n/p. Hence the probability that the actual matrices corresponding to P, Pk are equal is also bounded
below n/p.

All the other sub-cases are treated mostly the same: The non-primed case LC > 0 and RC = n + 2 is
identical to above, except that here we consider the first entry in the column vectors c ·Dt and ck ·Dkt. The
non-primed case LC = 0 and RC < n + 2 is similar, but we consider the m + 1’st entry in the row vectors
c · sD and ck · sDk (note that the 1’st entry is identically zero by construction). Finally, treatment of the
primed variables is identical to their non-primed counterparts.

NCFPs with LC = 0 and RC = n+2. This case corresponds roughly to the “mixed input attacks” from
Section 3. In this case the formal polynomial P correspond to a 1 × 1 matrix, and all the terms in P are
either of the form X = c · s̃

(∏n
i=1 D̃i,bi

)
t̃ or X = c · s̃′

(∏n
i=1 D̃

′
i,bi

)
t̃′ (for a scalar c ∈ Zp and bits bi).

Recall that the structure of s̃ and t̃ cancels out all the random diagonal entries in the D̃i,b’s and D̃′i,b’s
except the bottom-right 5 × 5 quadrant. Hence the actual 1 × 1 matrix corresponding to every such term
therefore depends only on the permutation matrix in the bottom 5×5 quadrant, the random scalars αi,bi (or
α′i,bi), and the vectors s∗, t∗ (or s∗′, t∗′). Specifically, a term of primed variables corresponds to

(∏
i∈[n] α

′
i,bi

)
·

ρ where ρ = 〈s∗′, t∗′〉, and a term of non-primed variables corresponds to
(∏

i∈[n] αi,bi
)
· s∗
(∏

i∈[n]Ai,bi
)
t∗.

Below we refer to the set of steps Ij in the program BP (which are the steps that examine the input bit
χj) as the j’th block of steps. A monomial X as above is consistent with the j’th block if for all i ∈ Ij we
have bi = 0 or for all i ∈ Ij we have bi = 1. Otherwise, if for some steps i ∈ Ij we have bi = 0 and for others
bi = 1, we call this monomial inconsistent with the j’th block. Clearly, a monomial is consistent with some
input χ ∈ {0, 1}` if and only if it is consistent with all the blocks j = 1, . . . , `.

Next recall that the αi,b’s and α′i,b’s were chosen at random subject to the constraint that for every
j ∈ [`] and b ∈ {0, 1} we have

∏
i∈Ij αi,b =

∏
i∈Ij α

′
i,b. Below it will be convenient to consider the following

41

procedure for choosing these scalars: Denoting k = |Ij | and Ij = {i1, . . . , ik}, for b ∈ {0, 1} we draw 2k
random scalars γj,b ∈ Zp for j = 1, . . . , 2k, and then set αij ,b = γ2j−1,b · γ2j,b and α′ij ,b = γ2j,b · γ2j+1,b (with

index arithmetic modulo 2k). It is easy to see that this process indeed generates the uniform distribution
subject to the constraint above.

With this procedure, for every concrete choice of the vectors s∗, t∗, s∗′ and t∗′, we can express the scalar
corresponding to each NCFP monomial X as a formal monomial in the γ’s. Below we prove that for any two
distinct NCFPs P 6= P ′, it holds with high probability (over the choice of the vectors) that the corresponding
formal polynomials in the γ’s are also be distinct. Applying the Schwartz-Zippel lemma again, we conclude
that the scalars that correspond to P, Pk are different whp. A key lemma that we use is the following:

Lemma 2 (Straddling Lemma). Fix an integer k, and consider drawing 2k random scalars γj ← Zq for
j = 1, . . . , 2k, and setting αi = γ2i−1 · γ2i and α′i = γ2i · γ2i+1 (with index arithmetic modulo 2k).

Also fix two subsets I, I ′ ⊆ [k] with ∅ (I ([k], then we have that
∏
i∈I αi and

∏
i∈I′ α

′
i are distinct

formal multilinear monomials in the variables γ1, γ2 . . . γ2k.

Proof. It is clear that the two products are indeed multilinear monomials in the γ’s, it remains to show that
they are distinct. Two case arise, either I = I ′ or I 6= I ′:

• If I = I ′, then since I is a non empty set strictly contained in I, there must exists an index j ∈ I such
that j − 1 mod k /∈ I = I ′. This implies that

∏
i∈I αi contains γ2j−1 but

∏
i∈I′ α

′
i does not.

• I 6= I ′: In this case there exists j such that either j ∈ I \ I ′, or j ∈ I ′ \ I. In the first case we get that∏
i∈I αi contains γ2j but

∏
i∈I′ α

′
i does not, and in the second case

∏
i∈I′ α

′
i contains γ2j but

∏
i∈I′ δi

does not.

Armed with Lemma 2, we can now finally present our analysis. Let P, P ′ be two fixed distinct NCFPs
in the database of the simulator at the end of the simulation, both with colors LC = 0, RC = n + 2, and
we prove that the scalar corresponding to ∆ = P − P ′ in the real execution of the representation oracle is
nonzero except with probability at most 2n/p. Since ∆ is a non-zero NCFP, then let X be a monomial in
∆. We analyze two cases, where X is either a consistent monomial or an inconsistent one.

Inconsistent Monomials. For an inconsistent monomial, assume that it is made up of non-primed vari-
ables X = c · s̃

(∏n
i=1 D̃i,bi

)
t̃ (the case for primed variables is symmetric). As argued above, the scalar

corresponding to this term can also be described as

c · (
∏
i∈[n]

αi,bi) · s∗Πt∗ = c · (
∏
i∈[n]

γ2i−1,biγ2i,bi) · s∗Ψt∗

(for some permutation matrix Ψ). For every concrete choice of s∗Ψt∗ this gives a single monomial in the γ’s
with coefficient which is nonzero except with probability O(1/p).

We claim that no other monomial in the NCFP ∆ corresponds to the same product of γ’s. It is easy to see
that no other monomial of non-primed variables in ∆ can correspond to the same γ’s, since every other non-
primed monomial must correspond to some b′i 6= bi (for some i ∈ [n]) and thus include αi,b′i = γ2i−1,b′iγ2i,b′i
rather than αi,bi = γ2i−1,biγ2i,bi . To see that also no primed monomial can correspond to the same product,
we use Lemma 2 above. Since X is an inconsistent terms then in particular it is inconsistent with some
block j. This means that the product of D̃’s contains both D̃i,0’s for some i ∈ Ij and D̃i′,1’s for some other
i′ ∈ Ij . Hence the corresponding product of the α’s contains some of the αi,1’s for i ∈ Ij but not all of them.
We can therefore apply Lemma 2 using the set of steps where we use αi,1 as our non-empty proper subset I.
The lemma then tells us that no product of the α′i,b’s can yield the same product of γ’s, which is what we
needed to show.

Since no other term in ∆ has the same monomial in the γ’s, it means in particular that the standard formal
polynomial in the γ’s must be nonzero whenever s∗Ψt∗ 6= 0, since nothing can cancel out this monomial.

42

Consistent Monomials. Assume that ∆ consists only of consistent monomials, let X be one of these
monomials, and let χ be the input that X is consistent with. Observe that if BP (χ) = 1 then it means that
X is made up of primed variables (since non-primed monomials that are consistent with accepted inputs are
replaced by the simulator with their primed counterparts). In this case we again argue that no other term
in ∆ that corresponds to the same product of γ’s as X, since every other (primed or non-primed) monomial
must have some αi,1−bi in at least one step where X has αi,bi .

It remains to examine the case where X is consistent with an input χ such that BP (χ) = 0. In this case
∆ can perhaps contain another term corresponding to the the same product of γ’s, i.e. one primed monomial
X ′ = c′ · s̃′

(∏n
i=1 D̃

′
i,χinp(i)

)
t̃′ and one non-primed X = c · s̃

(∏n
i=1 D̃i,χinp(i)

)
t̃. We assume w.l.o.g. that both

terms exist with at least one of c, c′ nonzero. Denoting bi = χinp(i), the (unique) term in ∆ with the product
of all the γ’s corresponding to X,X ′ is therefore(∏

i∈[n]

γ2i−1,bi · γ2i,bi

)
·
(
c′ · 〈s∗′, t∗′〉 + c · s∗ Π t∗

)
(where Π is the non-identity permutation matrix for output zero of BP). Since Π is a permutation matrix
different from the identity and since at least one of c, c′ is nonzero, then the expression

(
c′·〈s∗′, t∗′〉+c·s∗ Π t∗

)
is nonzero except with probability O(1/p). To be precise, for every permutation Π 6= I and every c, c′ ∈ Zp
not both zero, we have

1/p < Pr
[
c′ · 〈s∗′, t∗′〉+ c · s∗ Π t∗ = 0

]
< 2/p,

where the probability is taken over the choice of the vectors s∗, t∗, s∗′, t∗′ such that 〈s∗, t∗〉 = 〈s∗′, t∗′〉. We
again conclude that except with small probability over the choice of the vectors, the formal polynomial in
the γ’s must be nonzero.

Completing the proof. We have shown that for every nonzero NCFP ∆, it holds with probability at least
1− O(1/p) (over the choice of the vectors s∗, t∗, s∗′, and t∗′) that the corresponding formal polynomial in
the γ’s is also nonzero. Since the latter formal polynomial has degree 2n, is follows from the Schwartz-Zippel
lemma that the actual scalar corresponding to ∆ is nonzero with probability at least 1 − O(n/p). We thus
conclude that for any pair of distinct NCFPs that the simulator has in its database, the representation oracle
will have distinct matrices except with probability no more than O(n/p). As there are T such NCFPs, the
probability that any pair of them causes a collision is at most

(
T
2

)
· O(n/p) = O(T 2n/p). And as long as

there are no collisions, the view of the adversary in the simulated execution is identical to its view in the
real one. This competes the proof of Theorem 6.

C.4 Justification for the model

We now describe our intuition for why attacks under the generic colored matrix model constitute “the
most natural class of attacks” against our obfuscation scheme. Our results in this model should be viewed as
ensuring that our scheme cannot be “broken by linear-algebra.” We note, however, that at present we are not
aware of any plausible attack on the scheme that does not fit in this model (except of course lattice-reduction
attacks on the underlying GGH encoding scheme).

Recall that in our scheme we give out GGH-type encoding of the elements of the matrices D̃i,b and

vectors s̃, t̃, which are computed as s̃ = SR−10 , D̃i,b = Ri−1Di,bR
−1
i , and t̃ = Rnt, for randomly-chosen Ri’s.

The elements of D̃i,b are encoded relative to a GGH-denominator zi, the vectors s̃, t̃ are encoded relative to
z0, zn+1, respectively, and the zero-test parameter is given relative to a product of all the zi’s. Regarding
plausible attacks on the scheme, we note the following points:

• Using the zero-test parameter to cancel out the zi’s require an element which is encoded relative to
the product of all of them, and obtaining such element from the given public parameters boils down
essentially to computing a multilinear function with each term having exactly one element encoded
relative to each zi. Note that the presence of noise in the numerator seems to effectively destroy the

43

utility of performing any higher degree computations, such as building a term which is degree-two in
each zi in the denominator, and then attempting to compute a “square root”.

• Trying to mix and match elements from different matrices/vectors, or to multiply these matrices out
of order, makes it seemingly impossible to eliminate the random Ri’s.

• At the same time, it seems that GGH-specific attacks such as the “Weak discrete logarithm attack”
from [GGH13a] are not applicable to our scheme, since this scheme does not provide encoding of known
constants (such as zero or one) that are needed in such attacks. Although a nontrivial encoding of
zero relative to the product of all the zi’s is obtained as part of the computation, it is not clear how
an attacker can compute a “lower level encoding” of zero (relative to just part of the zi’s) as required
those attacks.

Given these difficulties in devising attacks that do not respect the matrix structure or their order, we therefore
devised the generic colored matrix model to isolate and analyze the attacks that do respect this structure.

44

