
THE UNIVALENCE AXIOM AND FUNCTIONAL

EXTENSIONALITY

TALK BY NICOLA GAMBINO; NOTES BY C. KAPULKIN, P. LEF. LUMSDAINE

These notes were taken and LATEX’d by Chris Kapulkin and Peter LeFanu
Lumsdaine, from Nicola Gambino’s lecture in the Oberwolfach Mini-Workshop
on the Homotopy Interpretation of Constructive Type Theory.

We present Vladimir Voevodsky’s proof that the Univalence Axiom im-
plies Functional Extensionality. The original proof was written in Coq code;
here we present it in ‘standard mathematical prose’.

We will proceed as follows. First, we introduce the notions of weak equiva-
lence and homotopy equivalence of types, and show that these are equivalent.
Since the diagonal map δX : X → Id(X) from a type to its total path space is
a homotopy equivalence, it is hence also a weak equivalence. Next, we state
the Univalence Axiom (UA), and show it implies that the map of function
spaces given by precomposition with any weak equivalence is also a weak
equivalence. Hence precomposition with δX is a weak equivalence. From
this fact we derive Functional Extensionality.

Functional Extensionality

(−) ◦ δY is wk. equiv.

If f : X → X ′ is wk. equiv.,
so is (−) ◦ f : [X ′, Y ]→ [X,Y ]

Univalence axiom UA

δY : Y → IdY is wk. equiv.

Homotopy equivalence
⇓

Weak equivalence

We begin by fixing some notation and terminology. By the (propositional)
η-rule for Π-types, we mean that any function is propositionally equal to its
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η-expansion:
f : Πx:XY (x)

ηf : IdΠx:XY (x)( f , (λx :X) fx )
Π-η

The formation and introduction rules for Id-types are taken to be:

X type x, x′ : X

IdX(x, x′) type
Id-form

x : X

r(x) : IdX(x, x′)
Id-intro

By Id(X) we will denote the total identity type of a type X:

Id(X) :=
∑
x,x′:X

IdX(x, x′),

whose elements are triples of the form (x :X, x′ :X, e : IdX(x, x′)). This
type comes equipped with the following maps:

X
1X

��

1X

��
δX
��

X Id(X)π1
oo

π2
// X

where π1, π2 are the obvious projections, and δX maps x :X to the triple
(x, x, r(x)).

We now introduce two classes of maps between types: weak equivalences
and homotopy equivalences. For the former, we will need the notions of
contractibility and a homotopy fiber of a map.

Definition 1. Let X be a type. We say that X is contractible if there is
some x0 :X, such that for all x :X we have an inhabitant α(x) of IdX(x0, x).

Definition 2. Given a map f : X → Y we define its homotopy fiber over
y :Y to be the type

hfiber(f, y) :=
∑
x:X

IdY (fx, y).

Definition 3. A map f : X → Y is a weak equivalence if for all y : Y , the
homotopy fiber hfiber(f, y) is contractible.

Examples 4.

(1) Any identity map 1X : X → X is a weak equivalence.
(2) Suppose (x : X) P (x) type and e : IdX(x, x′). Then the transport

map e∗ : P (x)→ P (x′) is a weak equivalence.

We denote the type of weak equivalences f : X → X ′ by WEQ(X,X ′).

Definition 5. A map f : X → Y is a homotopy equivalence if there exists
some map g : Y → X, inverse to f in that there are ‘homotopies’

η :
∏
x:X

IdX(x, gfx), ε :
∏
y:Y

IdY (fgy, y).
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The following theorem gives a comparison between these classes of maps:

Theorem 6 (Grad Students’ Lemma1). A map f : X → Y is a weak equiv-
alence if and only if it is a homotopy equivalence.

Proof. The ‘if’ direction is routine. For the converse, use the ‘type-theoretic
axiom of choice’. �

The Grad Students’ Lemma gives us an important corollary:

Corollary 7. The diagonal map δY : Y → Id(Y ) is a homotopy equivalence
(with inverse given by either projection), so it is a weak equivalence.

We can now turn toward the Univalence Axiom. We begin by fixing a
type universe U type, closed under the standard type constructors. Now,
consider the identity types of U.

Definition 8. For any types X,X ′ : U and e : IdU(X,X ′), there is a weak
equivalence we : X → X ′. In case X = X ′, we define wr(X) := 1X ; this then
extends inductively to all X, X ′, e.

Axiom 9 (Univalence). For all X,X ′ :U, the canonical map

w : IdU(X,X ′)→WEQ(X,X ′)

is a weak equivalence.

As a consequence of the Univalence Axiom (UA) and the Grad Students
Lemma, one obtains:

Fact 10. We can derive rules asserting that every weak equivalence f : X →
X ′ has a ‘name’ 〈f〉 : IdU(X,X ′), and that this construction is inverse to w
above:

f : X → X ′ w. e.

〈f〉 : IdU(X,X ′)

e : IdU(X,X ′)

ηe : IdIdU(X,X′)(e, 〈we〉)
f : X → X ′ w. e.

εf : Id[X,X′](w〈f〉, f)

The next lemma will be the key step in proving Functional Extensionality
from the Univalence Axiom.

Lemma 11. If X,X ′ : U, and f : X → X ′ is a weak equivalence, then for
every type Y the map ‘precomposition with f ’

(−) ◦ f : [X ′, Y ]→ [X,Y ]

g : X ′ → Y 7→ g ◦ f : X → X ′ → Y

is a weak equivalence.

Proof. Let f : X → X ′ be a weak equivalence. By Fact 10 we get 〈f〉 :
IdU(X,X ′). Fix any type Y , and consider the transport map 〈f〉∗ : [X ′, Y ]→
[X,Y ] obtained by applying Id-elim on 〈f〉.

1The name is due to Voevodsky.
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Since 〈f〉∗ : [X ′, Y ]→ [X,Y ] is a weak equivalence (as a transport map),
it is enough to show that∏

u : X→X′

Id[X,Y ](〈f〉∗(u), u ◦ f)

because then (−) ◦ f will be homotopic to a weak equivalence, and hence a
weak equivalence.

However, by the second rule of Fact 10, it suffices to show that

Id[X,Y ](〈f〉∗(u), u ◦ w〈f〉)
but because of the η-expansion we have

Id[X,Y ](e
∗(u), u ◦ we)

for any any e : IdU(X,X ′). �

Remark 12. Similarly, postcomposition with a weak equivalence gives a
weak equivalence between the appropriate function spaces.

Out last lemma on the way to Functional Extensionality is a special case
of it:

Lemma 13. For any type Y :U, the two projections π1, π2 : Id(Y )→ Y are
propositionally equal: that is, we have Id[Id(Y ),Y ](π1, π2).

Proof. Combining Lemma 11 with Corollary 7 we get that the map

(−) ◦ δY : [Id(Y ), Y ]→ [Y, Y ]

is a weak equivalence. On the other hand we have

Id[Y,Y ](π1 ◦ δY , π2 ◦ δY )

so we must also have Id[Id(Y ),Y ](π1, π2). �

Proof of Functional Extensionality. Let f1, f2 : X → Y and

φ :
∏
x:X

IdY (f1x, f2x).

Define f : X → Id(Y ) by x 7→ (f1x, f2x, φx). Now from Lemma 13 we have

Id[X,Y ](π1 ◦ f, π2 ◦ f),

completing the proof, as these composites are just η-expansions of f1, f2. �

As a final remark, we note two equivalents of Functional Extensionality:

Remark 14. The following are equivalent, for a given type X:

(1) Functional Extensionality as used above: For all types Y , and f, g : X →
Y , if IdY (f(x), g(x)) for all x :X, then Id[X,Y ](f, g).

(2) For all types Y , the canonical map Id([X,Y ])→ [X, Id(Y )] is a weak
equivalence.

(3) If for each x :X we have a contractible type P (x), then the product
Πx:XP (x) is contractible.


