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Abstract iii

Abstract

The main topic of this dissertation is the Lagarias-Odlyzko analytic algorithm
for computing 7(z)—the number of primes less than or equal to x. This
algorithm is asymptotically the fastest known algorithm for the computation
of w(x). It uses numerical integration of a function related to the Riemann
zeta function, {(s) := > -, n™%, in combination with a summation involving
a “kernel” function evaluated at prime powers near x.

Our work resolves many issues left untreated in the original paper by La-
garias and Odlyzko and makes several original contributions—some of which

have applications in other areas. In this dissertation we

e introduce a kernel function which appears to be more effective than

one suggested by Lagarias and Odlyzko;
e perform a careful analysis of various sources of truncation error;

e give choices of parameters which bound the truncation error while keep-

ing computation to a minimum;

e develop two new methods for enumerating primes in intervals, which
require much less memory than previously known sieving methods and
which are much faster than methods which test primality of single

numbers;

e describe a new method for computing ((s) which gives more accurate

values with less complexity than classical methods.
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1 Introduction

1.1 Background

The function 7(x), (Figure 1.1) counts the number of primes up to z. More

m(x) = Z 1,

p<z

specifically,

where the sum is taken over primes.

7 ()

i F

2 4 6 8 10

Figure 1.1: The function 7(z), 0 <z < 11.5

In 1982 [LO84] Jeff Lagarias and Andrew Odlyzko described two new
algorithms for computing 7(z). One method, their “analytic” algorithm,
uses numerical integration of a function related to the Riemann zeta function,
¢(s) := >, n~*, in combination with summation of a function evaluated at
prime powers “near” z. (“Prime powers” means all numbers of the form p™, p
prime, m > 1.) In a later paper, after Odlyzko and A. Schénhage [OS88] had
developed a fast method for computing ((s), Lagarias and Odlyzko showed
that their analytic algorithm could compute 7(z) in z/2*¢ time and z/4+€
space [LO87]. (We give more precise definitions of “time” and “space” in
Section 1.5.)
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The other method of Lagarias and Odlyzko—the extended Meissel-Lehmer
method—with later improvements by Marc Deléglise and Joel Rivat, com-
putes 7(x) in O(2??/In*z) time and O(z/®In*(x)Inln(z)) space [DR96a).
Lagarias, Miller, and Odlyzko used the original version of this algorithm to
compute values of m(z) up to 7(4 - 10'%) [LMOS85]. Deléglise and Rivat im-
proved the algorithm and continued computations up to 7(10'®), and more
recently to 7(10?°) [DR96a, DRI6b].

The extended Meissel-Lehmer algorithm has been further improved by
Xavier Gourdon [GouOla]. His most important improvement has been to
modify the algorithm so that it is well suited to distributed computation, with
little communication needed between processors. Gourdon has implemented
an ongoing project of computing 7(x) using resources provided by several
contributors on the Internet. As of March 2001, computation had proceeded
through 7(4-10%?) [Gou01b]. While attempting to compute 7(10**), Gourdon
found an error in his program—two slightly different computations gave two
different values for m(10%%). As of early 2004, 7(4 - 10??) appears to be the
“record computation” of 7(x).

Until the research of this dissertation, little work has gone towards care-
fully analyzing the analytic algorithm—other than the few papers by Lagarias
and Odlyzko cited above, and an analysis given by Ekkehart Vetter in his
Diplomarbeit [Vet91, Chapter 2]. Although the analytic method has better
asymptotic running time than other methods, the O-constant is expected to
be large.

The following crude argument suggests that it is only for very large values
of = that the analytic algorithm is faster than the extended Meissel-Lehmer
algorithm. Ignoring factors of ¢ we assume that the running time for the
extended Meissel-Lehmer algorithm has the form a;2”, and that the running
time for the analytic algorithm has the form asz®2. This implies that the
latter will be faster for z > (ag/a;)*/®17%). If we assume that b, = 2/3
and that by = 1/2, this implies a crossover point at x = (az/a;)®. However,
fitting the timing data given in [DR96a] gives b; ~ 0.625 (Figure 1.2). If we
further assume (arbitrarily, but perhaps realistically) that b ~ 0.525 near
the crossover point, we find crossover near z = (ay/a;)*.

Without an implementation it is difficult to estimate what ay/a; might
be, but values from 100 to 10,000 seem plausible, implying crossover in the

range 102 < z < 100, In any case, it is clear that a careful implementation is
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Figure 1.2: Log-Log fit to Deléglise-Rivat timings
log,o(t) = —5.768 + 0.626 log,((x)
(t in seconds)

required to bring the crossover point into a practical range. This dissertation
attempts to give nearly optimal solutions for the tasks that must be solved

to produce an implementation.

1.2 Notational conventions

Many of our notational conventions are outlined in Table 1.1 on the following
page. Although most of our notation is standard, there are a few fine points

and nonstandard conventions which we describe below.

Given f(z) and g(z), possibly complex valued, we write f(z) = O(g(z))
(equivalently, f(z) < g(2), g(z) > f(2)) if there is a constant C' > 0 (an
O-constant) such that |f(z)| < C'|g(z)| over some domain (that should be
clear from the context). We write f(z) < g(z) to denote that f(z) and g(z)
are of the same order, i.e., f(2) < ¢g(2) and f(z) > g(2). A subscript in the
notation indicates a variable that the constant depends upon. For example,
f(2) = O,(g(2)) means that there is a function C(p), independent of z, for
which |f(2)| < C(p) |g(2)|-

We use the nonstandard notation f(z) = C' O(g(z)) to specify an explicit
O-constant. Our meaning is that |f(z)] < \ (2)| for the given C. We
write f(z) = h(z) + O(g(z)) to mean f(z) — h(z) = O(g(z)), and similarly
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Notation Meaning
| Terminates a proof, or an argument supporting a conjecture.
0 Terminates a definition or remark.
= Equality defining the left side.
= Equality defining the right side.
f(z)? Denotes f(b) — f(a). Also written f(z)|*=".

sgn(z)

n<z

Greatest integer < z.

Least integer > z.

The value z — b|z/b]. The expression z mod b = y often
implies a computation yielding y as its value. In contrast,
x = y (mod b) states that a congruence holds, without
implying computation.

Cardinality of a set or sequence S.

Complex conjugate of z € C.

Real part of z € C.

Imaginary part of z € C.

Natural logarithm of z.

Principal branch of In(z), satisfies —7 < ImLn(z) < m,
eLn(z) = 2.

Logarithm of z to the base b, log,(z) = In(z)/ In(b).

The set of strictly positive integers, N = {1,2,...}.

The set of non-negative integers, Z¢ = {0, 1,... }.

The set of prime numbers.

Unless stated otherwise, p € P and ¢ € P. E.g., Zp...
denotes a sum over all primes.

A positive number that can be taken arbitrarily close to
zero. Not to be confused with .

Denotes a fixed error bound, € > 0. We often write z+¢ O(1)
to denote a floating point approximation to a number, as
discussed in Section 1.4.

Indicates a section number in citations, as in “§10.11.11".

The “sign” or “signum” function, sgn(z) := —1,0,1 for
x <0,z =0, x>0, respectively.

Sum with a weighting of 1/2 if n = x. Similarly for Z’ o

and for Z,

pm <z

p<z

Table 1.1: Notational Conventions
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f(z) = h(z) + CO(g(z)) means f(z) — h(z) = C O(g(z)). In particular,
(1.1) f(z) =h(z) +0(1)

means that h(z) approximates f(z) with an error bounded by &.

Given g(z), possibly complex valued, which satisfies g(z) # 0 in a neigh-
borhood of zq, we write f(z) ~ g(z) as z — zp to mean lim,_,,, f(2)/9(z) = 1,
and write f(z) = o(g(2)) as z — 2 to mean lim,_,,, f(2)/g(2) = 0. We also
write f(z) = h(z) + 0(g(2)) if f(2) — h(2) = 0(¢(z)). In many cases the z,
should be clear from the context, and will not be specified.

For some functions, say f(x) to be specific, we will only give definitions
valid when z > 0. In such cases we let f(0) := lims o, f() whenever the

limit is well defined.

Many of our functions, such as ¢(u;x,\), depend on a “variable” u and
other “parameters” z, A, etc., which will typically be fixed while u varies. In
such cases we may write ¢(u) for ¢(u;z, A), with the understanding that the

parameters remain fixed.

The integrals used in this dissertation can be taken as Riemann-Stieltjes
integrals. Although most of our sums and integrals converge absolutely, some
are only conditionally convergent. To ensure that these are well defined, we

use the conventions that

e’} N
Y= S = lim 3o
neZ n=-—00 n=—N
oo T
/ ---dt:= lim -+ - dt.
PN T—o00 _T

Integrals of the form [~ ... du are best thought of as the improper integral
g 0

f_oooo ... d7, under the change of variables u :=e”.

Empty sums and products (sums and products with no terms) always

denote the additive or multiplicative identity, respectively. For example,
S _ k=0 while [[,_, k = 1.

The Index and Glossary beginning on page 167 serves as a guide to

notation introduced in other sections of this dissertation.
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1.3 Algorithmic notation

Much in the same way that we number theorems, definitions, etc., we identify
our algorithms with a numeric label of the form C.N, where C denotes
the chapter where the algorithm is defined, and /N numbers the algorithm
within the chapter. We also give each algorithm an alphanumeric name.
Algorithm 1.1 (ExampleErfc), on page 10, illustrates this convention. All
the algorithms in this dissertation are indexed under their name, and under
the entry for “Algorithms”, in the Index and Glossary.

Algorithms are presented in a mixture of mathematical notation and no-
tation based on the C and C++ computer languages.

We emphasize important conditions or truths with assert statements:
which assert that a predicate holds without implying any computation. We
start short comments with “//” which run to the end of the line. Longer com-
ments may be interspersed between lines of an algorithm, as in the comments
following line 2 of Algorithm 1.1 (ExampleErfc).

Assignment is denoted by <, and z++ is shorthand for z < z + 1. We
may use assignments as values—for example to assign a value to n and then
compare that value against z, we could use the expression (n + u?+u3) < z,.

We write && for the conditional conjunction of boolean expressions. That
is, in evaluating expr1 && expr2 the second subexpression is evaluated only if
exprl is TRUE, ultimately yielding the logical and of the two subexpressions.
For unconditional conjunction (logical and) we write exprl A expr2.

We use the standard while and for looping constructs of the C language
and also use nonstandard instances of for as illustrated below:

for (n « 1;n <10;n++) ... // Standard for loop.

for(1<n<10) ... // Shorthand for the line above.

for(pe[2,1000NP) ... // Loop over primes p, 2 < p < 100.
Of course, in addition to these looping constructs, we also use traditional
mathematical notation such as Z%:l ... and H%:l ... to indicate sums
and products taken over a range of integers.

Without complete consistency, we follow some rules-of-thumb concerning
the scope of variables and other names used in our algorithms. Variables
passed as arguments can be assumed local to an algorithm, as can most
other variables used within the algorithm. Names of algorithms such as

ExampleErfc are treated as global, as are standard functions such as sin(z)
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and well-known constants such as 7 = 3.14159. ...

We do not use a rigorously typed language—instead, we use a variety
of methods to indicate the type of a variable when we consider its type to
be important. When we do not indicate the type it is because we believe
the type to be either obvious or immaterial. Methods for indicating type
include comments at the start of an algorithm, the choice of typeface used
for a variable, or a declaration such as x € Z.

Without going into details of their representation, we assume that integers
may have any magnitude and are represented exactly. Given z € Z we call
z an n-bit integer provided |z| < 2". It follows from this convention that an
n-bit integer is also an N-bit integer for any N > n. We assume that z € Z
can be represented using O(In(2 + |z|)) bits, from which it follows that an
n-bit integer can be represented using O(1 + n) bits.

We assume that a rational number, say x/y, is represented by a pair
x € Z, y € N, not necessarily coprime. (We rarely use rationals, and the
requirement that ged(x,y) = 1 is unnecessary for our purposes.)

Unless they are obviously elements of Z or QQ, real numbers are assumed
to be approximated by floating point numbers, following conventions which

are detailed in the next section, and which are defined as follows:

Definition 1.1 Given z € R, we say that z is a floating point number pro-
vided z =2FM, E € Z, M € Z.

We say that the pair £ € Z, M € Z define an n-bit floating point
representation of z = 2P M provided |M| < 2™ and |E| = O(n). We do not
require that |M| > 2"~!. The O-constant in the bound on |E| will remain
unspecified but it could be deduced by careful analysis of the algorithms

presented in this dissertation. ]

Remarks Instead of saying that z has an n-bit floating point representation,
for ease of writing we are often willing to confuse z with its representation and
will say that z is an n-bit floating point number if it has such a representation.

Assuming that an n-bit floating point number z = 2€M is represented
by the pair E, M, it follows that z requires O(In(2+ |E|+ [M])) = O(1+n)
bits for its representation. We do not require that floating point numbers fit
within the precision of any particular hardware, but instead allow arbitrary

precision, following conventions spelled out in Section 1.4. O



8 Chapter 1. Introduction

As would be expected, unless they are obviously elements of R, complex
numbers are assumed to be approximated by numbers of the form x + iy,
with x and y represented as floating point numbers. We call z = = + iy an

n-bit (complex) number if both z and y are n-bit floating point numbers.

1.4 Floating point numbers and error analysis

Given arbitrary z € R or z € C, we make heavy use of the notation z+¢ O(1)
to denote a number which differs from z by an amount bounded by ¢ in
absolute value.

The “error term” denoted by ¢ O(1) serves two, slightly different, pur-
poses. One use is as a bookkeeping tool to document the accumulation of
errors during a computation. These errors may arise both from truncation
error, such as the error due to approximating integrals and infinite sums as
finite sums; and from roundoff error, which is the error due to approximating
arbitrary numbers with finite-precision floating point numbers.

When describing computations executed within an algorithm-—as op-
posed to discussing computations within an assert statement, or within a
theorem (say)—the inclusion of ¢ O(1) in a sum has the further meaning of
indicating the rounding of the sum to a certain number of bits of precision.
More specifically, given z € R we assume that a computed result of the form
z +€0(1) denotes 22 M, with E := |log,(¢)] and with M chosen so that
‘QEM - z‘ < 2¥ and thus |2EM - z| <e.

In this setting, note that we have ‘QEM — z‘ strictly less than . It fol-

lows that after executing a statement like
21 (z+e0())+e0(1);

we can conclude that z; = z + ¢O(1), and not just the weaker conclusion
that z; = z + 2¢ O(1). More generally, when we round an already rounded

expression to another precision we have
(12) (Z+81 0(1)) + &9 0(1) = z—|—max(61,52) 0(1)

In the case of complex numbers, given z = x + 1y we assume that a

computed result of the form z + e O(1) denotes the rounded result

(x + 20(1)) +1 (y + %O(l)) :
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where the real and imaginary parts are floating point numbers.

Although not strictly necessary, when z +¢ O(1) denotes a floating point
number we often use € of the form ¢ = 2% both to emphasize that z is
approximated by a floating point number, and because ¢ of this form are

themselves easily represented as floating point numbers.

By the conventions of Definition 1.1 on page 7, and the subsequent dis-
cussion, it follows that z 4+ ¢ O(1) is an O(In(2 + |z/¢))-bit number—both
for z € R and for z € C; and provided that ¢ < In(2 + |z/¢]), with an O-
constant for the bound which is related in an obvious way to the O-constant
mentioned in Definition 1.1. Our complexity analyses of algorithms will
depend on these estimates of the number of bits in the representations of

numbers, as explained further in Section 1.5.

In our presentation of algorithms we assume that all arithmetic operations
are computed exactly and then rounded as indicated. In particular, we as-
sume that operations are exact when they yield integers, rationals, or boolean
values. This assumption extends to calculations which involve results outside
the realm of Z or Q. For example, we assume that boolean expressions such

as x}/m <p< :vé/m

are evaluated unambiguously provided z;, z2, m and
p are in N. Similarly, given 2z = 26 M we assume that expressions such as

[log,(z)] are computed exactly.

Our convention that computations are rounded from exact results implies

what happens when we sum several rounded quantities, namely that

(1.3) Y (e +a01) => z+ (Z sk> O(1),

k

under the standard assumption that all ¢, > 0. Computations such as those
illustrated in (1.2) or (1.3) need not occur within a single expression—they
would yield the same result even if the computations were spread over sev-
eral statements in an algorithm. Note that Equation (1.3) would certainly
not hold if our algorithms used floating-point arithmetic as implemented in
contemporary hardware. We can assume that it holds since we assume that
floating-point arithmetic, as defined in this section, adjusts the number of

bits of precision as needed to ensure that our assumptions are met.

Note that our convention that computations are performed exactly and

then rounded allows considerable leeway in the amount of detail we give
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in specifying how a computation is performed. For example, we may write
7+ 27%20(1) and leave it to an implementor to determine the details of how
such a computation would be done. Perhaps less reasonably, we could also

write something like
e0O(1) + Z Vi ™k,
k>0
and again let the implementor determine how the rounded result could be
found.

Algorithm 1.1 (ExampleErfc), below, illustrates many of the concepts
discussed here and in the previous section. The algorithm implements a
standard formula for erfc(z) from [AS92, Entry 7.1.5], which can be stated
as erfc(z) =1 — 25,,/+/7, where

—1)kp2k+1
(1.4) Seo = ; ((2k)+71)k,

Algorithm 1.1 (ExampleErfc: Approximate erfc(z))
Given z € R, |z| <1/2, and ¢, 0 < & < 1, returns erfc(z) + € O(1).
ExampleErfc(z e R,¢e) {

assert 0<e<1;
Store the sign of z in s and then negate z if z < 0. This ensures an alter-
nating series, which simplifies error analysis.

if(z>0) s« 1; else {s+ —1; z<+ —=z;}
Subdivide allowable error amongst two sources of error: truncation error and
roundoff error. We bound each by €q := €/2.

g0 + €/2;
Since |z| < 1/2 and € < 1 it is easy to show that K bounds the total number
of terms accumulated in line 12 and line 14, below.

K < [logy(1/e)/2];
We use 1 to determine the precision(s) to which we round some results. Our
choice of €1 is explained further in the Remarks below.

e1 ¢ g0/ (2K); & « 2llog(e0)];

1+ z;

S« 0; // S serves to approzimate S.

for (k< 0;|t|/(2k+1) > e0;k++) {

// The following assertion is easily proved by induction, using |z| < 1/2.
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assert t=(—1)F22+1/k! +£,0(1);
S S+t/(2k+1) +e,0(1);
t+ —zt/(k+1)+ 3610(1); }
S S+t/(2k+1)+e,0(1);
assert S=S5.,+50(1);
Apply the identity erfc(—z) = 2 — erfc(z) as we return our result, recalling

that s denotes the original sign of z.

return 1-— (% + 20(1)) sS;}

Remarks The arguments z and € which are passed to ExampleErfc must, of
course, be floating point numbers. Although Algorithm 1.1 carefully bounds
the error in its computation of erfc(z), we have not analyzed the error implicit
in the possibility that z = zy + ¢ for some small §, and that our intention
may have been to find erfc(zg). To analyze this issue, we could note that
|d/dz erfc(z)| < 2/+/m, so from Taylor’s Theorem it follows that

20

erfc(zg + 00(1)) = erfe(zy) + ﬁO(l)

and that

ExampleErfc(zo + 00(1),¢) = erfc(z) + (26/v/7 +¢)O(1).

In line 6 we choose £; so the total roundoff error accumulated in lines
12-14 is bounded by €¢/2. It suffices to set €1 < &¢/(2K), but, as explained
above, setting €; to a power of two better characterizes how --- + ,0(1)
denotes the act of rounding to a given precision.

To establish that ExampleErfc(z,¢) does return erfc(z)+¢ O(1), it suffices
to establish each of the assertions made in the body of the algorithm, and then
to establish that the value computed and returned in line 16 is sufficiently
accurate. Assuming the validity of the assertion of line 15, the accuracy of

the value returned follows, since

= (% + Zom) S=1- (% + 20(1)) (5 +200)
= erfe(z) + 25000(1) + %20(1) + %0(1)
(1.5) = erfc(z) + (i + % %) e O(1) = erfe(z) + £ O(1).
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In (1.5) we have first used the fact that ¢ < 1, and the easily established
result that 0 < S, < 1 for z > 0. A simple calculation establishes that
1/441/y/m +1/8 <1, and the final result of (1.5) follows. O

1.5 Computational model

To characterize the complexity of our algorithms, we use essentially the same
model of computation as that used by Lagarias, Miller and Odlyzko [LMO85],
and by Deléglise and Rivat [DR96a]—although those authors focused on
(arithmetic) operational complexity while our fundamental measure will be
bit complexity, as discussed below. We use a Random Access Machine (RAM)
model of computation. A rigorous description of this model of computation
is given in [AHU75].

Our measure of complexity is bit complezity (logarithmic cost criterion
in the terminology of [AHU75]). This measure counts the number of bit-
operations required to perform a computation. However, our complexity
analyses will focus on higher-level operations such as the arithmetic oper-
ations of addition and multiplication of integers. As explained below, the
corresponding bit complexity is easily derived from a count of arithmetic
operations and a bound on the size of the numbers operated on.

A good survey of results on the bit complexity of arithmetic operations
is given in Chapters 6, 7, and 10 of [BB87]. Another source discussing the
bit complexity of algorithms for arithmetic, especially the bit complexity of
multiplication, is [Knu81, §4.3].

Throughout this dissertation we will assume that a fixed, but unspecified,
algorithm is used for the multiplication of integers. We let M(n) denote
an upper bound on the number of bit-operations required to multiply two
integers of n bits. Following [BB87, §6.4], we also assume that M(n) is

nondecreasing in n, that
(1.6) 2M(n) < M(2n) < 4M(n),

and that M(n) is interpolated consistent with these conditions to be defined
foralln >0, n € R
In [BB87] the authors show that addition, subtraction, multiplication,

and division of n-bit integers all require O(M(n)) bit-operations. Recall-
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ing that operations on floating point numbers can be reduced to operations
on integers, it is easy to show that these operations on floating point rep-
resentations of real or complex numbers of n bits also require O(M(n))
bit-operations. Similarly, extraction of mth roots requires O,,(M(n)) bit-

operations.

Definition 1.2 Throughout this dissertation, the term arithmetic operation
and the unqualified term operation will mean any operation working on num-
bers of O(n) bits and requiring O(M (n)) bit-operations, where the value of
n will either be stated or will be clear from the context. O

When z is an n-bit number, the elementary transcendental functions: e?,
In(z), sin(z), etc., require O(Iln(2n)M(n)) bit-operations. (We take In(2n)
rather than In(n) to handle the nearly trivial case where n = 1.)

We will informally use the term time (or running time) to mean the
number of operations (on numbers, or on bits, as appropriate) performed by
an algorithm. Of course, in other settings time simply means the number of
seconds (say) that the algorithm takes to complete a computation.

We use a “logarithmic” measure for the space used by a program, so all
references to the “space” (or‘“storage”) required will be in units of bits. In
analogy to the C-language construct sizeof, we will write BitSizeOf (v) to
denote the number of bits of storage required to represent some quantity (or
data structure) v.

It should be noted that on contemporary computers the RAM model of
computation may give only a crude idea of the actual performance of an
algorithm. This is illustrated in our discussion of the timing data presented
in Table 5.2 on page 121. The problem of finding more appropriate models
of computation is discussed further in [McGO01].

As discussed in Section 1.1, we expect the analytic algorithm for 7(z) to
be faster than other methods only when z is very large. To compute 7(z) past
x = 10%, or so, in a practical length of time, we will need to use a parallel
version of the algorithm. However, we will not discuss parallel models of
computation beyond noting without proof that the analytic algorithm is well
suited to parallel implementation. In particular, if we use the “hybrid” sieve
of Chapter 6, we can efficiently implement the analytic algorithm using as

many as O(z'/*) processors.
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1.6 Properties of the Mellin transform

The analytic algorithm for computing 7(z) is based on properties of the

Mellin transform, which we summarize in this section.

Definition 1.3 Given a function ¢(u), defined for u > 0, we say that ¢(u)
is of type (a, 8) if for @ < 0 < B we have [° [¢(u)| v du < co. O

We mention in passing that a function of type («, 3) is also of type (a1, 51)
for any a; > a, 81 < B.

Theorem 1.4 Let ¢(u) be a function of type (o, B) and of bounded variation
s)

on finite intervals. For a < Re(s) < B define b(s) as

(1.7) g/;(s) = /000 d(u)u® * du.

Then given u > 0 and o < 0 < 3 we have

_ otico
(1.8) ¢(“+);¢(“ ) _ QLM / Bl ds.
Proof: See [Hen91, §10.11.11]. |

Definition 1.5 The function ¢(s) defined by Equation (1.7) is called the
Mellin transform of ¢, and we always write f(s) to denote the Mellin trans-
form of a function f(u). Equation (1.8) defines the inverse Mellin transform
of &5\ Together, ¢ and (Z form a Mellin transform pair.

Functions like ¢(u) in the integrand of a transformation formula are of-
ten called kernel functions—in this dissertation we reserve the term kernel
function for a function of bounded variation on finite intervals. We also

introduce the term evenly-stepped function for a function ¢(u) satisfying
d(u) = limgo(d(u + 9) + o(u —0))/2. O

In the following discussion we will assume that ¢(u) is of type (a, 8) and
that s always lies in the range a < Re(s) < 3. For convenience, throughout
the rest of this dissertation we will require our kernel functions to be evenly-
stepped.

Provided ¢(u) is evenly-stepped, Theorem 1.4 states that

(1.9) b(u) = — / T Ss)u ds.

T—100
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Setting u = n in Equation (1.9), then summing over n, suggests the formula

1 o+100

(1.10) 2—7r7, ' A Zann sds—Zan¢

—t00 n>1 n>1

Theorem 1.6 and Corollary 1.7, below, give conditions under which (1.10)
holds. (Theorem 1.6 and its proof are based on a similar result in Ekkehart
Vetter’s Diplomarbeit [Vet91, Satz 2.1].)

Theorem 1.6 Let ¢(u) be an evenly-stepped kernel function of type («, ).
Let Y, <, angd(n) be convergent and let o, denote the abscissa of absolute
convergence for the Dirichlet series ), -, ayn *. Given fized o > o, with

a < o < f, let the convergence of

o+iT
(1.11) /+ g/is(s)n‘f*sds

—i

as T — oo be uniform in n € N. Then Equation (1.10) holds.

Proof: Given T' > 0, n € N, and recalling that o is fixed, let

R(T,n) :=n° (¢(n) L / - d(s)n~* ds) :

2m o—iT"

so that
1 o+l
(1.12) — d(s)n~°ds = ¢(n) —n"°R(T,n).
21% Jo_ir

Since ¢(u) is an evenly-stepped kernel function, we may apply Equa-
tion (1.9) to find that R(T,n) — 0 as T — oo. Our requirement that (1.11)
converges uniformly in n implies there is a function of T, say Rz, such that
|R(T,n)| < Rr and that Ry — 0 as T" — oo.

Since ¢ > g,, our Dirichlet series converges absolutely, so we can exchange

integration with summation and then apply (1.12) to find:

o+iT'
Zan “ds = Z Gng— / (;S(S)n_5 ds

—iT n>1

(1.13) = Zan (¢(n) —n "R(T,n)) = Zanqﬁ Zann “R(T,n)

n>1 n>1 n>1

1 0'+ZT

2mi J,
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We justify the convergence of the rightmost sum in (1.13) by the fact that
|R(T,n)| < Ry uniformly in n, and so |a,n ?R(T,n)| < Rrl|a,|n~?. Thus
the rightmost sum converges (absolutely) by the absolute convergence of our

Dirichlet series. Further, this implies

Z ann “R(T,n)

n>1

<Ry lan|n ”,

n>1

and the theorem follows since Ry — 0 as 1" — oc. [ |

Corollary 1.7 Let ¢(u) be an evenly-stepped kernel function of type («, 5).
Let Y, <, and(n) be convergent and let o, denote the abscissa of absolute
converge_nce for the Dirichlet series ), -, a,n™". Given fized o > o, with a <
o < B, Equation (1.10) holds provided_f:jiizo a(s) ds converges absolutely.

Proof: Along the path of integration in (1.11) we have |[n°~*| =1, so

o+ico
/ d(s)n°~*ds

—1200

< /OO ‘$(a+it)‘ dt < .

—00

Thus (1.11) converges uniformly in n, satisfying the one remaining condition
needed in Theorem 1.6. |

1.7 The analytic algorithm

Given fixed z > 0, let

—_
S
N

8

(1.14) x(u) = x(u; ) ==

O i

uU>2x.

It is easy to show that x(u) is an evenly-stepped kernel function of type
(0,00), and that its Mellin transform is X(s) = X(s;z) = z°/s. It can
be shown that X(s;z) satisfies the conditions of Theorem 1.6. Thus, for

o > max(0,0,) we have

1 o+io0 .8

(1.15) 55 | %Zannﬂ ds = ZI .-

¢ n>1 1<n<z
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Equation (1.15) is often called Perron’s formula [Apo76, §11.12].

Recall that for Re(s) > 1 the Riemann zeta function ((s) is defined as

C(s) = Zn_s. Euler’s product formula for {(s) states that, for Re(s) > 1,
n>1

¢(s) =T -»)"

p

where p runs through all prime numbers. For ¢ > 1 define In((0) to be the

real branch of the logarithm, and more generally define In ((o + it) by

dz.

(1.16) In¢(o+it) =In((o) + /H“’ g((j))

With this definition of In {(s), Euler’s product formula gives, for Re(s) > 1,

(1.17) In¢(s)=—>» In(l—p~*

p
(1.18) = ann ?,
n>1
where
1/m n=p™,
(1.19) a, = / P
0 otherwise.

!

Let 7*(z) = Z 1/m (see Figure 1.3 on the following page). From Equa-
pm<z

tion (1.18) and Equation (1.15) (Perron’s formula) it follows that for z > 0

and fixed o > 1

(1.20) @ =g [ ety
. T (z) = — — In{(s) ds.

2M1 Jyioo S
Equation (1.20) is due to Bernhard Riemann (see [Rie90]), and is the basis
for the first proofs of the prime number theorem, which (in one form) states
that 7(z) ~ z/In(z) as  — oo [Edw74].

For now, to simplify the exposition by avoiding the discontinuities of

7*(x), we will assume that x is not a prime power. Under this assumption,
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2 —

2 4 6 8 10

Figure 1.3: The function 7*(z), 0 < z < 11.5. Although it is not apparent
in the figure, note that 7*(z) is evenly-stepped in the sense of Definition 1.5.

7(x) is related to 7*(x) by

(1.21) m(z) =m"(x) - ) Ew(xl/m).

m>2

We see that a fast method for approximating 7*(z) gives a fast algorithm
for 7(x), since computation of (1.21) requires subtracting from 7*(z) a sum
with roughly log,(x) non-zero terms, and since . ., m(z*/™)/m may be
computed in x/2+°(1) operations on numbers of O(ln(2_+ |z|)) bits. Ensuring
that the error in the resulting approximation of 7(x) is less than 1/2 lets us
then round to the nearest integer to find 7(z) exactly.

Formula (1.20) is unsuited to computation because the integrand ap-
proaches zero slowly as |Im(s)] — oco. Lagarias and Odlyzko noted that
7*(x) could be computed efficiently by choosing a different kernel-—designed
in part to ensure more rapid convergence. Before describing their method,

we first characterize kernel functions which might be used in their method:

Definition 1.8 We say that ¢(u) is a suitable kernel function (for the an-
alytic algorithm) provided ¢(u) is an evenly-stepped kernel function of type
(cr, 00) for some o < 1 and provided Equation (1.10) holds for o > 1 when

the a, in that equation are the Dirichlet coefficients of In((s), as given by
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Equation (1.19). O

It follows immediately from Definition 1.8 that given any suitable kernel
function ¢(u), for o > 1 we have

1 o+i00 R 1

(1.22) o(s)InC(s)ds = > — (™),

2mi o—100

and this yields the key formula for the analytic algorithm:

1239) @ =g [ Fe)mCe o —6m).

21 J oo

If we choose ¢(u) to closely approximate the step-function x(u;x), and
also so that ¢(s) damps out quickly as |[Im(s)| — oo, as in Figure 1.4(b) on
the next page, then we may closely approximate (1.23) by truncating both

the integral and the sum to reasonably short intervals:

1

™(z) & — /UH a(s) In{(s)ds

211 J i

+ > %(x(p’”;x)—cb(pm))-

z1<p™<z2

(1.24)

The analytic algorithm approximates the integral in (1.24) by numerical
quadrature, and computes the sum over p™ € [z, o] by enumerating primes
and prime powers.

Lagarias and Odlyzko proposed a kernel ¢(u;x,y, k) where z > y > 0.
They begin with the polynomial fi(v) = ckvk(l — v)*¥, where ¢; is chosen
to make f01 fr(v)dv = 1, and then define gy(w) as [, fx(v)dv, and finally
define ¢(u;z,y, k) as

1 US-’E—Z/,
du;z,y,k) = gu((z —u)/y) z—y<u<az,
0 u> .

As illustrated in Figure 1.7, the kernel function ¢(u;x,y,k) is a step-
like function which drops along a smooth polynomial spline over the middle

section £ — y < u < z. (Smooth in the sense that all derivatives through



20 Chapter 1. Introduction

1.75
1.5
1.25

1
0.75
0.5
0.25

0 5 10 15 20 % U

~
(a) x(u) and X(s)
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(b) ¢(u) and ¢(s)

Figure 1.4: Two Mellin transform pairs. The graphs on the right show real
part and modulus as a function of s = 1.5 + it.
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1

0.8

0.6

0.4;

Figure 1.5: The Lagarias-Odlyzko kernel ¢(u;z,y, k). =11, y=3, k=1

the kth derivative are defined and zero at the endpoints z — y and x.) The
parameters k and y are chosen to roughly minimize the running time of the
algorithm. A careful analysis of the Lagarias-Odlyzko algorithm using this
kernel is given in Ekkehart Vetter’s Diplomarbeit [Vet91].

As summarized below, we propose a different kernel and make several
other modifications to the algorithm. We also develop several new algorithms

to support the implementation of the analytic algorithm.

1.8 Summary of following chapters

In order to minimize the length of the truncated intervals in Formula (1.24),
we want a kernel ¢(u) that closely approximates a step-function, and whose
Mellin transform ;5(5) approaches zero rapidly as [Im(s)| — oco. In Chapter 2,
we introduce a different kernel than that used by Lagarias and Odlyzko,
which we believe better achieves these goals (as explained in Section 2.5 on
page 33). We also restate Formula (1.23) after introducing our kernel along
with some associated notation.

In addition to a good kernel, we need good error estimates for the tails
of our truncated sum and integral, so that we do not use unnecessarily wide
intervals. These error estimates and choices of truncation points are treated
in Chapter 3. Chapter 3 also gives our proposed quadrature algorithm, and
treats the choice of its associated parameters, such as the step size h.

To compute our sum over prime powers we need an efficient method for
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enumerating primes. Some form of the sieve of Eratosthenes would seem to
be well suited for this, but this would require roughly /x bits of memory to
sieve efficiently in the neighborhood of x. In Chapter 4 we give a brief survey
of methods for enumerating primes, focusing on the tradeoff between speed
and memory needs.

In Chapter 5 we describe a new “dissected” sieving algorithm that reduces
the memory requirements to roughly z/% bits. In Chapter 6 we describe a
“hybrid” sieving algorithm that we conjecture requires even less memory.
The hybrid sieve works in two phases, using a mixture of sieving to exclude
“small” prime factors and a simple probable primality test. An initial phase
creates a table of “bad” pseudoprimes which would otherwise remain unde-
tected by either sieving or a probable primality test. The second phase uses
this table to enumerate all primes in the interval.

The most time-consuming part of computing our key integral is likely to
be the many computations of ((s) required in approximating the integral by a
sum. When Re(s) = 1/2 the method of choice for computing ((s) has been to
use the Riemann-Siegel formula (an asymptotic expansion). Although Wolf-
gang Gabcke has derived good error bounds for the Riemann-Siegel formula
in the case o = 1/2 [Gab79], the analysis becomes significantly more compli-
cated with each additional term included in the expansion, and good bounds
are currently unavailable for arbitrary values of 0. Rather then generalizing
Gabcke’s analysis, in Chapter 7 we instead outline a method to compute ((s)
using numerical quadrature of an integral underlying the Riemann-Siegel for-
mula. This method should have several advantages, including the ability to
find {(s) to arbitrary accuracy (for most values of s), and simplicity of error

analysis.
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2 The Kernel Function

2.1 Choice of the kernel

We choose to use a “Gaussian” kernel, ¢(u; z, A), based on the complementary
o
error function: erfc(z) := — / e~ dr. After stating some properties of
7r

erfc(z) we will proceed with the definition of our kernel.

Lemma 2.1 For z € R we have

(2.1) erfc(—z) = 2 — erfe(2)
(2.2) erfc(0) =1

d 2
(2.3) P erfc(z) = —ﬁe .

For z > 0 we have

_22 \/— 6_22
24 < —erfc .
(24) 2+VA2 T2 ()_z+ 224+ m/4

Proof: These results follow from the definition of erfc(z) and from results in
Abramowitz and Stegun [AS92]—see Entries 7.1.1, 7.1.2,7.1.9,7.1.13. N

The following corollary, which we state without proof, follows easily from
the bound (2.4).

Corollary 2.2 For z > 0 we have

(2.5) /:O dr < % nd
(2.6) erfc(z) < % e
(2.7) exte(z) <

5
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Definition 2.3 Let

1
(2.8) B(p) = 5 exfe(p/V/2),

and for A >0,z >0, u > 0, let

(2.9) (u; 7, ) = B(In(u/z)/\) = %erfc (ln(“/ “"”)) .

V2 A
For A = 0 we let ¢(u;z,0) := limy_0 ¢(u;z, A). It follows that ¢(u;x,0) is
our “step kernel”, x(u;x), defined by Equation (1.14). From this point we

will usually write ¢(u;x,0) in preference to x(u;x). O

3 2 1 1 2 3 P
(a) ®(p)
0.5
0.25
20 40 60 80 100 150 ¢
-0.25
0.5

(b) ¢(u;x,0) — d(u;z,N), z =100, A = 0.1

Figure 2.1: Functions related to the kernel function ¢(u;z, \)

Remark The use of this kernel is not original to this dissertation. For
example, Lehman used a closely related Gaussian kernel in his work on the
difference between 7(x) and li(z) [Leh66]. O
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Lemma 2.4 For A > 0 we have

(2.10) dle Txyx, N) = B(—7/A) =1 —-B(1/A) =1—p(e"z;x,N)
(2.11) d(z;z,N) =1/2
212) Lo =——Lerr

dp V2T

For A > 0 and 7 > 0 we have

(2.13) BT m,\) = B{r/) < 2O,
(2.14) Be T w, N) = B(=1/A) = 1+ 0 /),

Proof: These results follow easily from Lemma 2.1 and Corollary 2.2. |

Figure 2.1(a) shows ®(p; A), while Figure 2.1(b) illustrates the behavior
of the difference ¢(u;z,0) — ¢(u;x, A), which corresponds to the difference
x(p™; ) — ¢(p™) appearing in Equation (1.23).

The length parameter, A, controls the rate at which ¢(u;z, \) “cuts off”.
The bounds (2.13) and (2.14) imply that ¢(e”z; z, 0)—d(e7z; 2, \) < e 7 /(X))
(for both positive and negative 7). As will be seen in later sections, we are
especially interested in situations where both A and |7| are much less than
one, so that e’z will lie near x + 7z, while ¢(e"z; z,0) — ¢(e"z;x, A) will be

nearly zero once |7| exceeds a few multiples of .

2.2 Mellin transform of the kernel

After a preparatory lemma, in Theorem 2.6 on the next page we find the
Mellin transform of ¢(u;x, A).

Lemma 2.5 For fired s € C, A > 0, we have

(2.15) / e~ (TN CX) 4 — \forr A,
Proof: Letting z = (7 — A?5)/(v/2 ), we have
* 2.0)2 2 co=As/V2 2
(2.16) / e TN @) g = \/5)\/ e dz.
—00 —co—As/v/2
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We then move the path of integration to the real axis. This leaves the
value of the integral unchanged since the integrand is an entire function
of z and since, for bounded Im(z), the integral converges absolutely and
uniformly as |[Re(z)| — oco. By the identity fj;o e % dz = \/7 (equivalent to
Equation (2.2)), we find that (2.16) is = V2 [ e™*" dz = /21 A, ]

Theorem 2.6 For A > 0, Re(s) > 0, the Mellin transform of ¢(u;z, A) is

~

(2.17) o(s;2,N) == / d(u; 2, N du = N2 T
0 S

Proof: The proof is trivial if A = 0. Otherwise, letting u = e”x, we have

(2.18) ‘Aw¢0uLAﬁﬁ4du=af/To@@JAk”dr

oo

Since Re(s) > 0, the bound (2.14) gives

lim ®(7/\)e’” < lim e BT =,

T——00 T——00

while (2.13) gives

lim ®(r/\)e’” < lim 5"~ /®M) = 0.
T—00

T—00

With these limiting values, integrating the right side of (2.18) by parts, and
using (2.12), gives

o0 1:5 o d
s ST _ ST P Y
xtlméﬁﬂﬂe dr s.Kaf L a(r/x) dr
A | ©

6772/(2)\2)4—57 dr.

:?wﬁA[m

After completing the square in e/ (2)‘2)“7, this is

T ey 1 /oo —(1—-A25)2/(2)2)
= —e¢ € dT,
S \/2_71')\ —00

which is e’*’/22° /s by Equation (2.15). [ |

In Lemma 2.7, below, we establish two bounds on \a(s; x,A)|. The first

bound will be used in showing that ¢(u;z, A) is a suitable kernel function for
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the analytic algorithm in the sense of Definition 1.8. The second bound will

be used later—in Chapter 3.

Lemma 2.7 Let s=o0+1it,c > 1, A > 0. Then

(2.19) ‘a(s; z, /\)‘ < NP )2p0

(2'20) ‘5(8;37, )\)‘ < 6’\2(02_t2)/2$0/ ‘t| .

Proof: Recalling that a(s;x, A) = eN's* 2y /s, we bound individual factors
and then take the product of the bounds. We find that |z°| = 27 and that
‘e’\252/2 = N )2 Writing |s| = |o +it|, since o > 1 we have both

1/ |s| <1, establishing (2.19); and 1/ |s| < 1/|t|, establishing (2.20). |

Theorem 2.8 Given fized x > 0, A\ > 0, we have ¢(u;x, \) is a suitable
kernel function for the analytic algorithm in the sense of Definition 1.8 on

page 18.

Proof: As mentioned in Section 1.7, the case where A = 0 is a classical result.
Considering the case where A > 0, Definition 1.8 leads us to first establish
that ¢(u;x, \) is a kernel function; evenly-stepped; and of type (0, 00)—and
thence to Definitions 1.3 and 1.5 of Section 1.6. We see that ¢(u;x, \) is
of bounded variation on finite intervals since it is monotone decreasing, and
thus a kernel function. It is evenly-stepped since it is continuous. It easily
follows from the bounds (2.13) and (2.14) that ¢(u;z, A) is of type (0, 00).
The one remaining requirement of Definition 1.8 is that for o > 1 Equa-
tion (1.10) holds for the Dirichlet series > ., a,n™* :=In((s). This follows
from Corollary 1.7, where we again use the bounds (2.13) and (2.14) to es-
tablish that ) ., a,¢(n) converges; and the bound (2.19) to establish that

~

[ §(s) ds converges absolutely. [ |

0—100

2.3 Restatement of the analytic algorithm

Before restating the analytic algorithm for computing 7(x) we introduce a

“smoothed” version of 7*(z):
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Definition 2.9 For A > 0, we let

1
2.21 (0) = —¢(p™ 3, \). O
(2.21) (w5 A) an¢@,ak)

The convergence of (2.21) follows easily from the bound (2.13). Note that
7*(x;0) = 7*(x) as defined in Section 1.7.

= N w N ol (=2}
= N w s al (=2

(a) A = 0.02 (b) A =0.1

Figure 2.2: 7*(x; \) versus 7*(z) = 7*(x; 0), for two values of A

Remark For A > 0, under a change of variables, we can view 7*(z; \) as a
convolution of 7*(z) with an approximation to the Dirac delta function—as
follows: Rewriting (2.21) as a Stieltjes integral, and writing z = €%, u = €,

and then integrating by parts, we have

T (e*\) = /00 o(eT; e, N dn*(e") = — /00 W*(eT)%qb(eT; e, \) dr
o d
_ /_Oo 7 (¢7) S 0((r — 0)/A) dr
0 m(r-a)/eN)
(2.22) - /0071' () e

In (2.22) the Dirac delta function, §(7), is approximated as A — 0 by

d (/) e~7°/(22%)
- T = -
dr V2mA
Thus 7*(x; \) approximates 7*(x) as A nears zero. Figure 2.2 illustrates

7*(x; \) versus the step-function 7*(z) for two values of A\. Note how 7*(z; \)

becomes smoother as \ increases. O
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Returning to our restatement of the analytic algorithm, we see that in
terms of 7*(z; A) Equation (1.22) from page 19 gives, for x > 0,0 > 1, A > 0,

(2.23) T (z; A) = L /UHOO é(s; 2, \) In((s) ds,

270 J g_ino
while Equation (1.23) yields the almost trivial statement
(2.24) () = 7 (x5 A) + (7 (z) — 7 (23 N)),

which becomes less trivial after expanding the first occurrence of 7*(z; A) as

an integral and the parenthesized term as a sum over prime powers:

o+ico
7 (x) ! / o(s;2,N) Ind(s) ds

27y og—100

(2.25) 1
pm
The analytic algorithm proposed by Lagarias and Odlyzko approximates
the sum and the integral in (2.25), giving an approximation to 7*(z). In a

final stage, their version computes an approximation to 7(x), via the identity

(2.26) 7(x) =7 (x) — Z %W(xl/m),

m>2

valid for z not a prime power. In Section 3.2 we present a slightly different
approach, in which the sums over prime powers of Equations (2.25) and (2.26)
are combined. In either case, if all sources of error have been sufficiently
bounded, we will get an approximation to 7 (z), say 7(z) + ¢ O(1), with
e comfortably less than 1/2. Rounding this approximation to the nearest

integer gives m(x) exactly.

2.4 Computing the kernel and its transform

For our kernel to be useful, we must be able to efficiently compute both the
kernel, ¢(u; z, A), and its transform, a(s;x, A).

We can easily deal with the computation of g/g(s; x, A), which reduces to
the computation of elementary transcendental functions. As discussed in

Section 1.5, it follows that a(s; x, ) can be computed to n-bit accuracy using
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O(In(2n) M (n)) bit-operations. For our application we can almost certainly
reduce the average cost of computing ¢(s; z, \) to O(M(n)) bit-operations.
However, we will not explore techniques for this, since each computation
of (Z(s; x,\) is paired with a computation of ((s), and we expect the latter
computation to have the dominant bit complexity.

The computation of ¢(u;z, ) is not so straightforward, although it re-
duces to the problem of computing erfc(z), which is a well-understood func-
tion. Furthermore the computation of ¢(u; x, \) is less likely to be dominated
by other computations.

As detailed further in Chapter 3, most evaluations of ¢(u;z, A) occur in
the context of evaluating ¢(p;x,\) for prime p in an interval [z, 23] with
T < & < Ty, and with x5 — 21 = 21/%7°() as 2 — oco. If we use the algorithm
of Chapter 5, we can enumerate the primes in the interval [z;,xs] with an
average cost of O(In(z) M(Inz)) bit-operations per prime. For this reason,
we will give a detailed analysis of a method that can approximate ¢(u;x, \)
with a computational cost of the same order of magnitude.

Our approach is based on a suggestion by Richard Crandall, who ob-
served [Cra02] that the following expansion—based on work of Chiarella and
Reichel [CR68]—can be used to compute erfc(z) with error bounded by 27",

using O(n) arithmetic operations on numbers of O(n) bits:

(2.27) erfc(z) il " + 2 +30(e™™ /")
: = E e :
i S U A S e2mz/h

Here h > 0 is a parameter chosen to bound the O-term. (Note that the
O-term is dominant for h > 7/z.)

The expansion (2.27) has a removable singularity at z = 0, which makes
the task of approximating it more difficult when |z| is near zero. For this rea-
son, for |z| < 1/2, we prefer to use a classical formula such as the series (1.4)
used by Algorithm 1.1 (ExampleErfc) on page 10. Since, for |z| < 1/2,
Algorithm 1.1 sums O(In(2 + |z/¢)) terms, Algorithm 1.1 requires

(2.28) < In(2+ |z/e|) M(In(2 + |2/¢|))

bit-operations to find erfc(z) + ¢ O(1).
When z is bounded away from zero we can use Equation (2.27). This

requires that we choose A and the number of terms to be summed in the
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series in order to achieve a given error bound. Theorem 2.10, below, gives

detailed choices for these parameters:

Theorem 2.10

Given 0 <e < e !, let h=n/y/In(6/c) and let K = L/ln(l/e)/h-‘. Then

2 K 27.2
—2p —h%k
(2.29) erfe(z) = &% c

+e0(1).

Z
2 212 2nz/h
™ 22 + h2k 1 — e2nz/

Proof: With h = 7/+/In(6/¢) we have 7%/h* = —In(¢/6) and thus

€

(2.30) 30(e™™ /") = ;0.

Turning to our choice of K, note that the transition from (2.27) to the
truncated sum of (2.29) introduces an error bounded by
2 2 €_h2k2
2.31 —e “h —.
(2:31) ¢ Y

k>K

Focusing on the sum over k in (2.31): since K € N we can easily justify
bounding the sum by an integral to find that

e—h’k? 0o o—h?k? 00 o—h’k?
2.32 e ——— dk < ———dk
(2:32) 222+h2k2_/1( 2% + h2k? —/K h2k2
k> K
and under the change of variables r := hk, the rightmost bound in (2.32) is

1 [ _.»
(2.33) = —/ e [r¥dr.
h Jhx

Our constraint that ¢ < e~! ensures that hK > 1, so the bound (2.33) is

1 © 2 ]. 7h2K2
< — 2re " dr = —e
2h Juk 2h

It follows that the expression (2.31) is

(2.34) <L < i
. —lzle e —_—
om T om/2e

where the rightmost bound follows from solving for the zeros of d/dz ze~?

to find that |z| 2" achieves its maximum value at z = +1/v/2.



32 Chapter 2. The Kernel Function

Our choice of K ensures that K > /In(1/¢)/h, so e ""K* < ¢. With this
fact, and noting that 7v/2 e > 2, we can apply the rightmost bound of (2.34)
to conclude that (2.31) is bounded by £/2. Combining this bound with the
bound (2.30) finishes the proof of our theorem. |

Remark In [Cra96, §2.4] Crandall suggests the rule-of-thumb that n decimal
digits of accuracy in (2.29) may be achieved by setting & = 1/4/n and setting
K = [nVIn10]. Theorem 2.10 implies that A can be taken roughly twice as
large, and K roughly half as large, as in this rule-of-thumb. O

Recall from Section 1.5 that the elementary transcendental functions re-
quire O(In(2n)M (n)) bit-operations for computation to n-bit accuracy. By
Theorem 2.10, we see that Formula (2.29) sums a total of O(K) = O(In(1/¢))
terms, and that a straightforward evaluation of each term would require
O(In(2n)M(n)) bit operations, with n < In(2 + |z/¢]). This would imply
that we can compute erfc(z) + ¢ O(1) using

< In(1/e) In(21n(2 + |z/e|)) M(In(2 + |z/¢]))
bit-operations. This can be reduced to

(2.35) < In(1/e) M(In(2 + |z/¢]))

WK oceurring in (2.29) can be

bit-operations by noting that the factors e~
computed with one elementary function evaluation of e’ = R, followed by

repeatedly applying the recursions:

_ 2p2 _ 2 232
e~ (k+1)2h? _ p,—2kh? ,—k?h

_ 2 _ 2
o 2kt Dh? _ p2,—2kh*

Note that the bound (2.35) for the complexity of computing Formula (2.29)
dominates the bound (2.28) for the complexity of using Algorithm 1.1 to com-
pute erfc(z) + £ O(1), since the latter bound assumes that z < 1/2. Thus,
we can (and will) use the bound (2.35) for all z.

Turning now from the computation of erfc(z) to the computation of
d(u;x, \) = erfe(In(u/z)/(v/2 A))/2, we apply a simple analysis like the one
given in the Remarks on page 11 which follow Algorithm 1.1 (ExampleErfc).
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This leads us to conclude that

In(u/z) + c1Ae O(1)
V2

where we can take ¢; := /27 /4, and ¢y := /7/4. In other words, the
c1Ae O(1) term indicates the accuracy to which ¢ := In(u/z) must be approx-
imated; while the cye O(1) term indicates the accuracy to which z :=t/(v/2 \)

must be approximated; and the £ O(1) term indicates the accuracy to which

$(us 2, \) +£O(1) = % <erfc ( + 0250(1)) +50(1)> |

erfc(z) must be approximated.

Clearly the complexity of approximating In(u/x) and erfc(z) dominates
the complexity of approximating ¢/(v/2 A). For our application—as outlined
in Theorem 3.13 on page 50 and its proof—we can assume that In(2) <
In(u) < In(z) for some fixed O-constant, so In(z) < In(z). We can also
assume that A > z /2 and that ¢ < e !. Under these conditions, sum-
ming the two dominant complexity bounds and observing that the first term

dominates, we find that we need

< In(z/(Ae)) M(In(z/(Xe))) + In(1/e) M(In(2 + In(z)/¢))
(2.36) < In(z/(Xe)) M(In(z/(Ae)))

bit operations to compute ¢(u;z, A) +¢e O(1).

2.5 How optimal is our kernel?

X(u; ) be the step function defined by Equation (1.14) on page 16. Taking
x as fixed, our criterion for optimality of ¢(u), will be that ¢(u) — x(u; x)
should approach zero as rapidly as possible as u moves away from x, while
(Z(s) should approach zero as rapidly as possible as Im(s) — +o0.

Our argument depends on a theorem due to G. H. Hardy, which places
constraints on how rapidly a function and its Fourier transform can both

decay to zero. Hardy’s theorem can be paraphrased as:

Theorem 2.11 (Theorem 2 of [Har33]) Let the functions f and g be a

Fourier transform pair, i.e., a pair satisfying

1 = —ipl _L > eipe
1) = o= / 0, g0) == / F)e dp
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Treating f and g as functions of the variable o, if f(a) and g(«) are both
O(e /2 as |a| = oo, then f(a) = g(a) = Ae **/?, where A is a constant;

and if moreover one of f(c), g(a) is o(e”*/?) then A = 0.

Thus we see that if one member of a non-zero Fourier pair were chosen to

2 .
~2*/2 as |a| — oo, the other member must vanish

vanish more rapidly than e
less rapidly.

Recognizing that we must balance the rate at which ¢(u) — x(u;2) — 0
as u moves away from z against the rate at which ¢(s) — 0 as Im(s) — o0,
we introduce A > 0 as a “balancing parameter”. To formulate our goal in
terms of Fourier transforms we write ¢(u) =: ®(In(u/z)/A), where ®(p) is

not necessarily the function erfc(p/+/2)/2 of Definition 2.3.
Our goal that ¢(u) — x(u;z) should rapidly approach zero is equiva-

lent to the requirement that ®(p) closely approximate the step function
X(p;0) as p moves away from zero. Assuming that ®(p) is differentiable,
let f(p) := —®'(p), so that ®(p) = fpoo f(r)dr. To achieve our goal it suf-
fices to require that f(p) — 0 rapidly as p moves away from zero, with the
additional constraint that [* f(p) dp =1 so that ®(p) — 1 as p — —o0.

~

We now consider the ¢(s) that results from the ¢(u) described above. We
have, for Re(s) > 0,

(2.37) b(s) :/ (u)u" du = )\xs/ ®(p)e** dp.

0 —00
The integrals in (2.37) converge for Re(s) > 0, i.e., ¢(u) is of type (0, 00),
since our assumptions imply that ®(p) is bounded as p — —oo and that

®(p) — 0 rapidly as p — oco. Integration by parts in (2.37) gives
~ s o0 <
(2.38) 36 == [t

where the integral converges for s € C under the assumption that f(p) — 0
sufficiently rapidly as p — +o0o. Letting s = i6/), Equation (2.38) can be
written as

.)\xw//\

6(i0/)) = —/2mi ;

9(6) == \/%—W /_oo F(p)e dp.

9(9),

where
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Our goal that @(s) — 0 rapidly as Im(s) — oo suggests that we re-
quire g(#) — 0 rapidly as Re(f) — +oo. In particular, setting Im() = 0
lets us apply Theorem 2.11. Arguing that, as functions of a single vari-
able o, we want both f(a) and g(a) to vanish as rapidly as possible as
o — +o0o, Theorem 2.11 implies that f(a) = g(a) = Ae /2. Our re-
quirement that f_oooo f(p)dp =1 gives A = 1/+/2x, from which we find that
®(p) = erfc(p//2)/2 and that ¢(u) = ¢(u;x, ) as defined by Equation (2.9),

thus supporting our claim that this kernel is optimal.
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3 Bounding Errors and Choosing Parameters

3.1 Overview

In Section 2.3, Equations (2.25) and (2.26), we reduced the computation of
7(x) to the computation of an integral and of a sum over prime powers. In
this chapter we present specific algorithms for accomplishing these tasks. We
carefully analyze the approximations we use for the integral and sum over
prime powers, analyze the complexity of the resulting algorithms, and discuss
the choice of the parameters involved. A concise list of these parameters ap-
pears in the Index and Glossary, under the entry “Parameters for analytic
7(x) algorithm”.

The choice of parameters is determined by two goals: ensuring that the
total error is bounded by ¢ (say); and minimizing the computation time. In
bounding the error, most of our analysis will be concerned with truncation
error; while we give a less thorough analysis of roundoff error. One of our
tasks will be to subdivide an error bound £ amongst various sources of error.
For this reason, our algorithms may perform assignments such as ¢ + £/2
when there are two sources of error—and the reader should remain aware
that € may indicate different quantities at different points in our exposition.

Of course, our choice of parameters and our complexity results depend
on the complexity of the methods we use for enumerating primes and for
computing ((s). Readily available complexity bounds for previously known
algorithms for those tasks suffice to show that the algorithms of this chapter
can compute 7(x) using z'/2*¢ time and x'/4* space. Ignoring the details
hidden in the x¢ factors, these bounds agree with the bounds which Lagarias
and Odlyzko gave for the complexity of their version of the analytic algo-
rithm.

Before presenting Algorithm 3.1 (APix), our “top-level” algorithm for

computing 7(x), we begin by introducing a new function, A(x; \):

Definition 3.1 For z > 0 and A > 0 we let A(z; \) :=7w(z) — 7*(z; A). O

(A similar, but different function A(...) is used by Ekkehart Vetter in his
Diplomarbeit [Vet91, pg. 33, Eqn. 2.2.2-6].)
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By using A(z; ), Algorithm 3.1 (APix) avoids a nuisance that was present
in our previous formulations of the analytic algorithm as given in Sections 1.7
and 2.3. These formulations where not applicable when z had the form
x = p™. Working with A(z;\) also simplifies our sums over prime powers,
and combines the computations corresponding to Equations (2.25) and (2.26)

from Section 2.3.

We impose a few constraints on the arguments of Algorithm 3.1, for
technical reasons which are explained later in this chapter. Note that Al-
gorithm 3.1 subdivides its error bound ¢ amongst two sources: error in the

computation of A(z; ) and error in the computation of 7*(z; A).

Algorithm 3.1 (APix: Find 7(z) using analytic algorithm)
Given x > 2, o0 > 1.045, and length parameter X\ > 0, returns m(z).

APix (z,0,)) {
assert x >2; assert o> 1.045;
e+ 1/4;

Delta(z, A, &) returns A(z; A) + € O(1), while QuadPiStar(z, 0, A, &) returns
7 (z; ) + e O(1).

pival < Delta(z, A,¢/2) + QuadPiStar(z,o, A, £/2);
assert pival =m(z)+e0O(1);
return |[1/2 +pivall;}

To summarize the reminder of this chapter: We analyze the computation
of A(z;A) as a sum over prime powers in Section 3.2. Algorithm 3.2 (Delta)
for approximating A(z;\) is presented in that section, on page 48. We
analyze the computation of 7*(x; \), using numerical quadrature along a path
of the form s = o +4t, =T <t < T, in Sections 3.3-3.5. This culminates
in our presentation and analysis of Algorithm 3.3 (QuadPiStar) on page 72.

The choice of the parameters ¢ and A is discussed in Section 3.6.
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3.2 Approximating A(z;\) as a sum over primes

To approximate A(x;\), we use the definition of 7(z) and the definition of
7*(x; \) (Definition 2.9 on page 28) to find that

DD B I) PEICEPY

(3.1) =Y (1-omiz,N) =D oz, ) =Y > %¢(pm; z, A).

As illustrated in Figure 3.1 on the next page, given suitable x|, x5, with
r1 < = < x9, we will have ¢(p™; z,0) — ¢p(p™;z,\) = 0 for p™ outside the
interval [z1,z5]. With this in mind, we carefully rearrange (3.1) and collect
terms of the form ¢(p™;z,0) — ¢(p™; x, A) with p™ lying outside [z, 5] as

error expressions (the last two “tail-sums” in Equation (3.2)), giving

Ax; N) = Z (1— p,x/\ Z o(p;z, \)

z1<p<z r<p<zT2
_z%(z 1+ 3 spm m)
(3'2) m>2 MIT 1<pm<zo
p<z
+ 3 (607w, 0) — 65w, ).
P>z

Dropping the tail-sums over p™ < z; and p™ > x5 in Equation (3.2) gives
the finite sum used by Algorithm 3.2 (Delta) to approximate A(z; A). Note
that the sum over m in Equation (3.2) can be treated as a finite sum, since

for m sufficiently large we have p™ > x5 for all prime p.

The bulk of our analysis in this section is devoted to choosing the trun-
cation points x; and x9; and in presenting and analyzing the complexity of
Algorithm 3.2 (Delta). Somewhat surprisingly, some of the results of this

section are also useful in our analysis of quadrature error in Section 3.3.

In order to choose suitable x1, x5, we bound the tail-sum over p < x; by
E_(z1;2,)) and the tail-sum over p™ > x5 by £ (z2; 2, A), where £, (u;z, \)
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0.5

T2

80 , 90 100 110 130 "

-0. 5}

Figure 3.1: ¢(u;x,0) — ¢(u; 2, \) showing truncation points z1, zo. 21 = 86,
x =100, zo =114, A = 0.1

are defined below. The two tail-sums are of opposite sign, so it follows that

Az )= > (1=dmz,N) - >, dp;z, )

z1<p<z T<p<z2
(3.3) 1
-z—(zu 5 ¢<pm;x,»)+eo<1>,
m22m pm <z 1 <pm<x2

provided both £ _(z1;2,A) < e and €, (z2;2,)) <e.

We now define our bounds £ (u;x, A):

Definition 3.2 Recall that ®(p) is defined by Equation (2.8) on page 24.
Foru > 0,2 >0, A >0, let

E (uym, A) := x/ O(r/N)e dr,
In(u/x)
and let
E_(ujz,N) = x/ O(r/N)e T dr. O
In(z/u)
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Although it is not immediately apparent from Definition 3.2, we will see in
the proof of Theorem 3.5 that £, (u;z, A) correspond to the shaded areas of
Figure 3.1. Note that although £, (u;z,)) is defined for all u > 0, we are
primarily interested in its behavior for u > z. Similarly, our primary interest
is in the behavior of £ (u;z, A) for u < z.

In order to save space we often state results for both £ _(u;z, A) and for

E_(u;x, \) using the following sign convention:

Definition 3.3 (Sign convention for £, ) Throughout the rest of this sec-
tion the upper sign in “+” and “F” corresponds to statements about &£, (u; z, A),

while the lower sign corresponds to statements about £_(u;x, \). O

Before showing that £, (...) do indeed bound our tail-sums, we begin by

establishing some of their simple properties:

Lemma 3.4 We have £ (u;x,A\) > 0. For fized x, A, and for increasing u,
E (u;x, A) is strictly decreasing, while £_(u;x, \) is strictly increasing. For

fized u, x, provided u*' > %', £, (u;x, ) are strictly increasing in .

Proof: That &, (u; x, A) are positive and that £, (u;z,\) is decreasing while
& (u;x, \) is increasing in u follow since both their respective integrands are
strictly positive, and since In(u/x) is increasing while In(x/u) is decreasing.

Differentiating the defining integrals for £ (u;x, A) and taking the deriv-
ative under the integral (which is easily justified), we find

o rx .0
S E(a ) =7 /i R O

Using Equation (2.12) to find 0 ®(7/A)/0\ under the integral, we find that

0 T *° 2 2
3.4 —&. (u;z, \) = / et re ™) gr
( ) o\ :t( ) A2/ 27 =+ In(u/z)

+1 > 2#1 50 the integrand

Now, 7 > 0 over the range of integration since u
in (3.4) is strictly positive. Since A > 0 by assumption in the definition of

E,., we have 0 &, /0\ > 0 and so €, (u;z, ) are strictly increasing in A. W

We now establish that £, (...) serve to bound our tail-sums:
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Theorem 3.5 Given xo € Zy, we have

(3.5) S 6w N) < £, ),

pm>x2

Further, given x1, ©o € Zy, v1 < x < 9, we have

(3.6 > (675 w,0) — o™ w, )| < £, (i, V),
P >T2

and

(3.7 S (875 0,0) — 0w, )| <€ (i, A).
pm<z1

Proof: To establish (3.5), we note that
1 o
. —o(p™x, ) < T, A) < 5T, M) d
@8 3 Semiad) < 3 olnis )< [ otz N

since zy € Zg and ¢(u;x, A) is a decreasing function in u. Setting u = ez in

the rightmost side of (3.8) and integrating with respect to 7 gives

/ooqﬁ(u;x, A) du::r/oo O(r/N)e" dr = &, (x952, M),
T2 1

n(z2/z)

which proves (3.5). The bound (3.6) follows immediately from (3.5), since
é(p™; x,A) > 0 and since ¢(p™;x,0) = 0 when p™ > x5 > z.

Similarly, to establish (3.7), we note that z; < z implies

> %(¢(pm;x,0)—¢(pm;x,A)) = %(1—¢(pm;x,A))
(39 =3 (n(e/rm)/N

by Equation (2.10) on page 25. As before, we bound this by an integral (of
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an increasing function in u) and then write v = e "z to find that (3.9) is

< S (n(z/n)/A) < /0 " o (n(z/u) /) du

1<n<z;

= x/ O(r/N)e "dr =E_(x1;x,N). |
In(z/xz1)

Lemma 3.6, below, gives formulae useful both for computing &, (u; z, \)

and for finding analytically tractable approximations to &, (u;x, \):

Lemma 3.6
(3.10) & (wyx,\) ==+ e’\2/2<1>( +In(u/z)/A F A) Fu®(£In(u/z)/N).

Proof: Letting o = +1 as appropriate, we see from Definition 3.2 that both
of &, (u;z,\) may be defined as

o0

(3.11) E(uyjz, ) = x/ ®(1/\)e™/* dr.

aln(u/x)

We proceed in much the same spirit as in the proof of Theorem 2.6 on
page 26. Integrating (3.11) by parts, with e”/*dr = dae™/®, using Equa-
tion (2.12) from page 25 and noting that o = 1, we find that

_1 / fag=77/(22%) )
'T ae T dT
T= alnu/;v 2’/T)\ a]nu/J;)

6’\2/2 /oo 2 2
3.12 =ax e (=22 47— o & (adn(u/z)/N).
( ) \/ﬁ)\ aln(u/x) ( ( )

Letting r = (7 — A\2/a)/(v/2)) and 1y := (aln(u/z) — X\2/a)/(v/2)), we
find that (3.12) is

E (u;z, ) = ax ( T/QCIJ(T//\)

N’ /2
“VE
= a:re’\z/QCI)((aln(u/x) — X/a)/A) — au®(aln(u/z)/N).

e dr — au ®(aln(u/z)/N)

The desired result follows upon setting oo = +£1. |

Theorem 3.9, below, gives asymptotic expressions for &£, (u;x, \) which
will be used in our analysis of Algorithm 3.2 (Delta). We first establish
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some results for a function to be used in the proof of Theorem 3.9.
Definition 3.7 For the remainder of this section we define F'(p) to be
(3.13) F(p) := V2re” > ®(p). O
Lemma 3.8 For p > 0 we have

(3.14) Fl(p)=—p 2+ 0(p "),
(3.15) F"(p) < p~2.

Proof: Differentiation of (3.13), using Equation (2.12) from page 25, gives
(3.16) F'(p) = pF(p) — 1,

while differentiation of (3.16) gives

(3.17) F"(p) = F(p) + pF'(p).

From Abramowitz and Stegun [AS92, Entry 7.1.23], we have

-3...(2m—1)
(2z2)m

Vrze” erfe(z) ~ 1+ Z(—l)m !

m>1

as z — o0o. Truncating this expansion to the first few terms, and rewriting
in terms of F(p) gives F(p) = p~! — p~2 + O(p~°). Inserting this expansion
into (3.16) and (3.17) yields (3.14) and (3.15) respectively. [

It will become clear in our exposition below that if A > 1 then our
truncation points x;, x5 would satisfy o — 1 > x as x — o0o. This would
imply a computational cost for approximating A(z; A) that far exceeds our
reasonable goal of z/2¢ operations. For this reason, and to simplify our

arguments, we often assume that A < 1/2, as in Theorem 3.9 below.

Theorem 3.9 Given x > 0, u > 0, and using the sign convention of Defi-
nition 3.3, let T = £1In(u/x). For 0 < A <1/2 and 7 > X we have
Au

(3.18) Ei(u;z, N\) = \/—Q_We’ﬁ/(?’\z) (X?/T* +0(N°/7%)).
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Proof: Letting p := 7/) and rewriting Equation (3.10) in terms of F(p), we
find that

E.(u;m,\) = +ze¥ P0(p F ) F ud(p)

= :I:L27r (e,\2/26_(p¢>\)2/2F(p:F \) — e(if—pzﬂ)p(p))

u

V2m

The estimation of (3.19) reduces to an application of Taylor’s Theorem and
to the use of the expansions (3.14) and (3.15). These give

(3.19) =+——c"2(F(pF\) — F(p)).

F(p® 3 = Flp) = FF (A + 0y

(3.20) =X (P +0(p )+ 0N ?)).

where p lies in the interval between p and p F .

Our assumptions that 0 < A < 1/2 ensures that O(Ap~2) = O(p~2). Our
additional assumption that 7 > X gives p > 1, and so p~* < p~2 and also
p— > p/2. Since p > p— X we conclude g~ < p~t. Thus, Equation (3.20)
gives

FlpFA) = F(p)==£A(p*+0(p7?%)).
Substituting this last result into Equation (3.19), with p = 7/A, completes
the proof. [

Theorem 3.10, below, gives an analytically tractable estimate for the val-
ues of u, expressed in terms of 7 = +In(u/z), which solve £, (u;z,\) = ¢,

subject to some restrictions on the parameters.

Theorem 3.10 There is an absolute constant py > 2 such that given > 0,
0<A<1/2, and 0 < € < exp(—p3/2)\z, there is a unique T solving

(3.21) E (e"z;2,A) =¢,
and a unique T solving

(3.22) E_ (eTTzyz, ) =e.
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Furthermore, for both choices of sign, T lies in the interval

(3.23) A(V2In(Az/e) = 1) <7 < AM+/2In(Ax/e) + 1).

I thank Adolf Hildebrand for suggesting the approach used in the following

proof.

Proof: First note that Lemma 3.4 gives £ _(e*"z;x, \) are strictly decreasing
as 7T increases, so the solutions to (3.21) and (3.22) are unique, if they exist.

By Theorem 3.9, provided 7 > A we have

Lo AT/e
\/ﬁ

Let p := 1/2In(Az/e), C be a fixed real number, and 7 = A(p+C). We claim
that when p is large enough then (3.21) and (3.22) have solutions and (3.23)
holds.

Note that for p > 1 — C we have 7 = (p+ C) > A, and so (3.24) holds.
Using In(Az/e) = p?/2, we then rewrite the logarithm of (3.24) in terms of

(3.24) E (e xyz,0\) /e = eF e~/ (2N) ()\2/ +0(\3 /73 ) -

p to find that as p — oo

InE, (e*"z;z,)) —Ine
In(27) N P’ (p+0C)

=+ —
AMp+C) 5 5 5
—2In(p+C) = In (1+0((p+C) ™))
In(2
(3.25) =(—C+Np+ A0 —C?/2 In(2) —21In(p) + Oc(p™).
Setting C = —1, our requirement that p > 1 — C gives p > 2. Fur-

thermore, using our assumption that A < 1/2, we see that when p is large
enough in (3.25) the (—C £ \)p term dominates and is positive, which gives
In&, (e Vg; 2, \)—Ine > 0. Similarly, if we set C' = 1, then we must have
p > 0 and when p is large enough we have In &, (e**?*1z: 2 \) —Ine < 0.

We conclude that there is a constant py > 2 such that p > py gives
E (e Vg A) > e > £, (e g 1, M),

Our condition that ¢ < exp(—p3/2)\x ensures that p > po. Since £, (e*"x; 2, ))

are continuous and strictly decreasing in 7; both the existence of the solutions
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to (3.21) and (3.22), and the bounds (3.23) on their values follow. |

Theorem 3.11, below, is our main tool in the analysis of Algorithm 3.2
(Delta). It gives bounds on the size of the interval [z, x5], which we define

to be the number of integers within the interval.

Theorem 3.11 Given x >0, 0 < A < 1/2, and e > 0, let z1 be the largest
integer < x satisfying €_(x1;2,\) < € and let x5 be the least integer > x
satisfying €, (zo;2,\) < €.

Let py denote the absolute constant specified in Theorem 3.10. Then if
e < exp(—pi/2)\x we have

(3.26) 142y — 21 < 14 (e¥ — e ),

where p := y/2In(Az/e).

On the other hand, if we do not require € < exp(—p3/2)\z we still have
(3.27) 14z —21 <1+ (e)"’o — e_’\”o):c.

Proof: Provided € < exp(—p2/2) Az, we can apply Theorem 3.10 and use the
upper bound on 7 given in (3.23) to conclude that z; > —1+ e~ M+ g while
1y < 1+ eMptlg, (The F1 arises because x; and x5 are restricted to be

integers.) Since A < 1/2, we can absorb e into our O-constant, giving
(3.28) 14z — 2 <14 (¥ — e )z

Similarly, the lower bound on 7 in (3.23) gives z; < e MP~Dz while
xo > Moy, Again, since A < 1/2, it follows that

1+zg—21>1+ (e>"’ — e_)"’)ac,

and (3.26) follows.

In the case where we drop the condition that ¢ < exp(—p2/2)\z we
can still apply the reasoning which gave the bound (3.28), but now with
exp(—p2/2) Az replacing the role of € in our application of Theorem 3.10.
This leads us to conclude that there are u; < x and us > =z satisfying
E_(ur;z,N) <exp(—pf/2) Az < e and &, (ug; z, \) < exp(—p3/2) Az < €.
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Furthermore, by analogy to (3.28), we have
l4+uy—u <1+ (6)"’0 — e’)‘po)m.

Since £, (e*"x;x, \) are continuous and strictly decreasing in 7 we must have
x1 > ug and x9 < uy, and the bound (3.27) follows. [ |

We are now ready to present Algorithm 3.2 (Delta) for approximating
A(z; X). This algorithm implements Equation (3.3) given on page 40.

To find solutions to equations such as £&_(z1;x,\) = € we introduce the
construct

solve _for var in eqn;

to denote the act of finding a solution for the variable var in the equation
eqn. Recognizing that our computations are subject to roundoff error, we
use expressions such as
solve_for z in z?2=2+10"120(1);

to denote the act of setting z to some value for which |22 — 2| < 1072,
This construct is used in lines 7 and 10 of Algorithm 3.2, where we rather
arbitrarily specify an error tolerance of £/4 for our solutions. The equa-
tions on those lines may be solved using O(z°) operations on numbers of
O(In(2 + |z])) bits by means of root-bracketing and bisection methods such
as the routines zbrac and rtbis of [PTVF92, §9.1]. In practice, one would
probably instead use Newton’s method—although the complexity analysis
seems more difficult—since as functions of v both £, _(u;z, ) and £_(u;z, )

are monotone, with closed forms for their derivatives.

Algorithm 3.2 (Delta: Approximate A(z;\) :=7(z) — 7%(z; A))
Given x>0, A > 0, £ > 0, return A(z; \) +£O(1).
Delta(z,\,e) {

assert >0AA>0Ae > 0;

// Subdivide allowable error equally amongst truncation error and roundoff error.

€<+ €e/2;
z1  |z];
if(E_(z1;2,0) >¢e) {
solve_for u in & (ujz,\) = %s+ ieO(l); z1  |ul;}
z9  [z];

if (&, (z232,)) >¢) {
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. 3 1
solve_for u in & (u;z,)) = Zs+160(1); x9 < [ul;}
Set N to the number of integers in the two ranges that p™ may lie in, so that

N bounds the total number of terms in both the sums over p in line 13 and

the sums over p™ of lines 16-19.

N(—(1+$2—$1)+[\/@—|;

e1 ¢ €2 o8N // e is the mazimum allowed error per term.
A > (T=dp;z,N) +e00) — > (dp;2,)) +e0(1));
T1<p<z T<p<z2

for (pe[2,y/z2 |NP)
for (m < 2;p™ < zo;m++)
if (p™ < 21)
A+ A-(1/m+¢e0(Q));
else
A A= p(p™x,A\)/m+e10(1);

return A;}

Lemma 3.12 Let z, A, and € satisfy the conditions of Algorithm 3.2. Let x4
and x4 denote the corresponding quantities calculated in the algorithm and let
L := 14z —x1. Then Algorithm 3.2 requires < L/In(L + 1)+ \/z2/ In(x5)

computations of ¢(u;x, A).

Proof: Our proof uses a special case of the Brun-Titchmarsh Theorem in
the form proven by Montgomery and Vaughan in [MV73]. To paraphrase
the instance of their result which we use: given z > 0 and y > 1, then
m(x +y) — m(z) < 2y/log(y). It follows that uniformly for z > 0 and y > 0

we have
(3.29) m(x+y)—7(z) < (y+1)/log(y + 2).

We first bound the number of computations of ¢(p;x, A) in the sums of
line 13. This is simply the number of primes in the interval [z, z5], which is
lims_,o4 m(z2 + 6) — w(x1 — ). By (3.29), this is < L/In(L + 1).

In order to bound the number of computations of ¢(p™;x, ) in the exe-

cution of lines 16-19, we use the nearly trivial bound provided by bounding
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the number of p™ with m > 2 within the interval [2, /x5 |. This is

[In(z2)/ In(p)]

Z Z 1< Z In(zs) + Z 1 < \/z2/In(x2),

p<\/T2 m=2 p<wal/4 w21/ 4<p< /32

where the rightmost bound follows from the Brun-Titchmarsh Theorem (or,
more simply, from the prime number theorem).

Summing these bounds, the result follows. |

In order to continue our analysis of Algorithm 3.2, we must characterize
the cost of enumerating primes in an interval [z, z5]. To simplify our analysis
we will assume that a single fixed method is used, and that the method

requires O(Bp(z3)) bits of memory and
(3.30) < a(xg)(xe — x1) + B(x2)

arithmetic operations on numbers of O(In(2 + xz,)) bits. Using these con-

ventions, Table 3.1 summarizes the costs of several methods for enumerating

primes.
Method Bp(x) a(x) B(x)
Eratosthenes’ sieve z'/? Inln(z) | 22 InIn(z)
Pritchard’s “wheel sieve” || 2'/2*¢ | 1/Inln(z) pl/2+e
Dissected sieve z'/3 1 zl/3
Hybrid sieve pl/4 Inln(z) | /2 Inln(z)
APRCL, ECPP x€ z€ 1

Table 3.1: Costs of some methods for enumerating primes. See Chapter 4
for a further discussion of Pritchard’s sieve and of the APRCL and ECPP
algorithms; Chapter 5 for details of the dissected sieve; and Chapter 6 for
details of the hybrid sieve. Note that it is an unproven conjecture that
Bp(z) = x'/* for the hybrid sieve.

To simplify the statement and proof of Theorem 3.13, we assume that
A > z~1/2. This restriction is reasonable, since we will show that the num-
ber of quadrature points evaluated by Algorithm 3.3 (QuadPiStar) is > 1/,
and thus the cost of quadrature would dominate the cost of executing Algo-
rithm 3.13 if we were to have \ < 2~ 1/2

Theorem 3.13 Assume that x > 2, 27 /2 < A < 1/2, and 0 < ¢ < 1/2.
Assume also that a(Cx) = Oc(a(x)); and that 3(x) is nondecreasing in x
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and B(z) < /zln(x); where, as explained above, the functions a(zx) and
B(x) characterize the cost of enumerating primes.

Then Algorithm 3.2 requires

(3.31) < (14 a(z))y/In(Az/e) Az M(In(x/¢))

bit operations and < z¢ + Bp(zx) bits of memory. The O-constant implicit
in the bound (3.31) depends both on € and on the O-constant implicit in our
assumption that A > x /2.
Proof: The bound on the memory requirement of Algorithm 3.2 follows im-
mediately upon noting that all computations other than the enumeration of
primes can be accomplished using z¢ bits of memory.

To establish the bound (3.31), we begin by observing that our assumption
that 7'/ < X < 1/2 implies that for z sufficiently large we have

(3.32) e < exp(—p2/2) )z,

where pg is the absolute constant of Theorem 3.10. Throughout the rest
of our proof we will assume that z is so large that (3.32) holds, and then
observe that the theorem holds for all x > 2 after suitably readjusting the
O-constant in the bound (3.31).

Under this assumption, it follows from Theorems 3.10 and 3.11 that

T1 X X T9 and that

(3.33) L < N =< y/In(\z/¢e) Az,

where L := 1 4 29 — 1 as in Theorem 3.11, and where N is the variable
defined in line 11 of Algorithm 3.2. Note that these results hold even though
we halved ¢ in line 4 of Algorithm 3.2, and although we allow some slack in
solving the equations that determined x; and z, in lines 7 and 10. Note also
that our assumption that z7'/2 < A < 1/2 implies that Az > z%/2.

From (3.33) it follows that €1, defined in line 12 of Algorithm 3.2, satisfies

Vi) e

By the bound (2.36), given on page 33, we know that each computation

(334) g1 X<
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of ¢(u;x, A) +£:0(1) in Algorithm 3.2 takes
(3.35) < In(z/(Ae1)) M(In(z/(Ae1))) < In(z/e) M(In(z/¢))

bit operations, where the rightmost bound follows from (3.34) and since
Az > zt/2,

From (3.33) we have In(L + 1) < In(z), and clearly In(z;) =< In(z). Using
these two facts, we apply Lemma 3.12 to find that the number of computa-
tions of ¢(u;z, A) +€,0(1) is

< ﬁ (Vinta/e) he + Vi) < ﬁx/ln(x/e) Az,

where, again, the rightmost bound follows since Az > z'/2.
Combining this last bound with the bound (3.35), we find that the totality
of all computations of ¢(u;x, \) + &10(1) takes

(3.36) < y/In(Az/e) Ax M(In(z/¢))

bit operations, where we have used the fact that In(z/¢)/In(z) = O.(1).
By our assumptions about a(z) and 5(z), the enumeration of the primes

in the interval [z, z5] takes

< (a(aﬁ)\/ln()\a: J) A + B(x)) M(In(z))
(3.37) < a(z)y/In(Az/e) Az M(In(z))

bit operations, since, by our assumption that 8(z) < \/xT(x), the ((x)
term is dominated by the other term.

Since we assume that 3(z) is nondecreasing in x, we can easily show
that the bound (3.37) dominates the cost of enumerating the primes in the
interval [2, /x5 ]. Finally, we note that the costs analyzed above dominate
all other costs in Algorithm 3.2, such as the cost of accumulating the partial
sum in lines 13, 17, and 19; and the cost of computing p™ after p is given.
Recall from our discussion in Section 1.5 that M (n) is nondecreasing in 7, so
M(z/e) > M(z). With this in mind, summing the bounds (3.36) and (3.37)
the bound claimed in (3.31) follows. |

This completes our analysis of Algorithm 3.2 (Delta). We conclude this



3.2. Approximating A(x; \) as a sum over primes 53

section by finding some upper bounds on 7*(z; ) which will be useful in our
analysis of quadrature error in Section 3.3. After a preparatory lemma, we

give these bounds in Theorem 3.15, below.

Lemma 3.14 Given A > 0, u > ez > 0, and writing T = In(u/x), we have

4+/2
(3.38) E (usz, A) < i)\u e T2,

T/
Proof: We begin by treating 7 as a variable of integration, and only later
set 7 = In(u/x). With this understanding, we begin with the definition of
£, (u;z, A) and then note that In(u/z) > 0, so the bound (2.13) from page 25

applies. This gives

(3.39) E(uyz, N) = x/ ®(t/N)e” dr < Ex/ oTTH(@N) g
1

In(u/x) ™ n(u/x)

We then complete the square in 7 — 72/(2)?), set r = (T — A?)/(v/2))
and z = (In(u/x) — A?)/(v/2)), to find that

E (uyz, ) < ge)‘Z/zm /00 ¢ (TN /@) g
In(u/x)

/i
4+/2
e ™ dr < ie’\Q/Q/\xe’z2.

o0
. T/

_ 200, /5y /
T

The last bound follows from the bound (2.5) on page 23, where we have used
In(u/x) > A? to ensure z > 0. The result follows upon rewriting z in terms
of 7 :=In(u/z). [

Theorem 3.15 Given x > 0, A > 0, we have

(3.40) ™(z; A) < ¥z
Furthermore, if © < 2e ", letting T := In(2/z), we have
(3.41) 7 (z;\) < 1.7¢ TN,
Proof: Letting 5 = 1 in the bound (3.5), we have

@A) = 3 —o(p™a, ) < &, (1w, ) < £, (05, ).

pm>1
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Applying Lemma 3.6 and then the bound (2.14) from page 25, we find
E (0;z,A) = liIr(l)a;e)‘Q/2 ®(In(u/z)/A = A) —u®(In(u/z)/N\) = N2y,
u—

and (3.40) follows.

To establish (3.41), we pull out the first term of the sum defining 7*(z; A)
and then use the bound (3.5) from page 42, to find

T (x;N) = 6(2; 2, \) + Z qu T, \)
pm>2

< P25, + €. (252, N).

Letting 7 := In(2/x), our conditions ensure 7 > 0, so we may apply the
bound (2.13) from page 25 to find that

$(2: 7, 2) = B(r/\) < 2eT /23,
m

Again, our condition that x < 2¢ " lets us apply Lemma 3.14, giving

4f 2)\2

E,(252,)) < 7r\/_

These bounds give

r (o) < ( 4?) T < L7,
m

since a simple calculation establishes that 2/ + 4v/2/(my/7) < 1.7 [ ]

3.3 Approximating the integral by an infinite sum

Throughout the reminder of this chapter, we will let ¥(s) denote our inte-

grand for the analytic algorithm:
(3.42) U(s) = U(s;,\) = d(s;2, ) InC(s) = /2 T lnc( ).

In this section, beginning with Theorem 3.16 below, we will relate the
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integral representation for 7*(x; \) to its approximating Riemann sum:

™ (x; ) = ! /a Zoo\Il(s) ds ~ %Z\D(o—i—ikh).

2 .
1y ico beZ

We will continue our quadrature analysis in Section 3.4 starting on page 65,
where we analyze the error introduced by truncating this infinite sum to a
finite sum. In Section 3.5 we will apply our analysis by presenting Algo-

rithm 3.3 (QuadPiStar) for approximating 7*(x; \).

Theorem 3.16 Let

(3.43) S(z) := S(z; A\, 0, h) Z\If o +ikh;x, \)
T yez
(3.44) I, :=1I.(z) :=I.(x;\0,h) Ze 2mka /b (o2mk/h . )
k>1
(3.45) IR = [R(a;) L (x A, 0, h Ze2wka/h *( _27r/c/hac )\)
k>1

Then, for fited c > 1 and h > 0 we have

(3.46) S(z; A, 0,h) =Y Xt (e7 2 g )),

kEZ

or, equivalently,
(3.47) 7 (z;A) = S(x; A\ 0,h) — I (x; N\ 0, h) — I (x; M\, 0, h).

Proof: We will use a version of the Poisson summation formula. Recall-
ing from Section 1.2 our convention for writing infinite sums which may be

conditionally convergent, the Poisson summation formula may be stated as

(3.48) Z/ e 2k (%) dz,

kEZ kEZ

provided the following three conditions hold [Hen91, §10.6.IV]:
1. for some § > 0, g(z) is analytic in the strip [Im z| < §;

2. > ez 9(2 + k) converges uniformly for z in the rectangle 0 < Rez < 1,
IIm z| < 6;
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3. % 19(2)] dz < oo

Recall that o is fixed and let g(z) := V(o +ihz;z,A). Since o > 1, letting
d := (6 —1)/(2h) we see that g(z) satisfies condition 1. From Equation (2.17)
we see that, uniformly for |[Im(z)| < 4, we have g(z) < exp (—(Ah Re(2))?/2),
from which it follows that conditions 2 and 3 are satisfied. Thus, Equa-
tion (3.48) holds. Rewriting (3.48) in terms of s and ¥(s) and multiplying
both sides by h/(27), gives

h e2rko/h  potioco .
(349) o> W(o+ikh) =) / e~ 2/ G (55 2, A) In ((s) ds.

2T .
kEZ kEZ —?00

By Equation (2.23) on page 29, and noting that
e 2R3/ (552, M) = B(s; e g, N,

the right side of (3.49) is = ZeQWUk/hW*(e_QWk/hx; A), establishing (3.46).
kEZ
Collecting terms with & < 0, £ = 0, £ > 0, from (3.46) gives S(z) =

I.(z)4+7*(x; \)+15(z), and Equation (3.47) follows upon rearrangement. W

Remark Note that both I, and I, are positive. Thus Equation (3.47)
implies that 7*(z; A) is always overestimated by the approximating Riemann
sum S(z; A, 0, h). O

Equation (3.47) serves as the basis of our quadrature algorithm for ap-
proximating 7*(z;A). Treating I, and I, as errors to be bounded, if we
define h, = h,(z, )\, 0,¢) and hy = hg(z, A, 0,¢) so that I.(z;)\,0,h,) <e¢

and I (z; A, 0,hy) < ¢, it suffices to have h < min(h,, hy) to ensure that
(3.50) 7 (z;A) = S(z; A, 0, h) + 2 O(1).

However, we also describe and partially analyze a more sophisticated
quadrature method that offers the possibility of using a larger value of h. This
method incorporates “quadrature correction terms”, based on the following

expansion for I (z; A, o, h), arising from Equation (3.45) and the observation
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that 7*(z; \) = m(z) — A(z; \):

eZwka/hﬂ_*(e—Zﬂk/hm; ) + eQnKU/hIR(e—an/hx; A o, h)

I
M=

IR(ma )\a g, h)

=~
Il
—

e27rka/h (71_(6727rk/hx) _ A(efZWk/hm; /\))

M=

(3.51)

=~
Il
—

+ 627TKU/hIR(€_27Tk/h$; )\,O’, h)

(Note that when K = 0, Equation (3.51) reduces to the trivial statement that
Ly (x50, 0,h) = I, (z; A, 0, h), under the convention that 22:1 ... denotes an
empty sum.)

Redefining hy, = hy(z, A, 0,¢, K) so that it also depends on the parameter
K € Zy, and requiring that

(3.52) TR I (7™ MR p; X, 0, hy) < e,

it suffices to have h < min(h,, hy) to ensure that the following generalization
of Equation (3.50) holds:

T (x; ) =

M=

(3.53) S(zsA,0,h) — Y e*™ko/h(r(e72khg) — A(e ™ ™*/hz; \)) + 26 O(1).

ES
Il

1

Provided that e~?™*/"z is significantly smaller than z, each term of the
form m(e=2"*/hy) — A(e=?"k/hz: \) in Equation (3.53) can be computed by
taking a sum over primes. Thus, each term contributes “number theoretical”
information to refine the accuracy of our numerical quadrature.

In Section 3.6, we will find that the optimal choice for K in (3.53) is very
dependent on the method used to compute ((s), and that for any reasonable
algorithm for ((s) it is doubtful that we would want K > 2. Based on our
current understanding of the fastest methods of computing ((s), it is likely
that we will want K = 0, but we spend some effort in analyzing our more
sophisticated method both in anticipation that better methods for computing
((s) may be found and because the conditions leading to the choice K = 0

lie close to the boundary where we would choose K = 1.

Although we will not give a detailed analysis of the computational cost
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of approximating the ), ... in Equation (3.53), we believe the cost will be
low. In Remark 3.35, on page 75, we discuss some of the issues that should
be dealt with to implement Equation (3.53).

In this section, we will further discuss how to choose the parameter K
after dealing with defining suitable h, and h4. Turning now to the definition

of h,, we begin by bounding I, as a function of A:

Lemma 3.17 Giwven o > 1, h > 0, we have
6—271'(0—1)/}1,

. A2/2
(354) I[:(-/Ll; )‘7 g, h) S € / ‘/E]_ _ e—27r(a'—1)/h :

Proof: Applying the bound (3.40) to the right side of (3.44) and summing

the resulting geometric series, we find

—2rko/h N?/2 21k/h A2/2 e 2mle-D/k
Q(a:;)\,a,h)ﬁZe et e e = e ey
k>1
The series converges by our assumptions that o > 1, h > 0. [ |

As in the method used in the previous section to choose x1, x5 in Algo-
rithm 3.2 (Delta); one way of finding h, to ensure that I.(z; A\, 0,h,) < €
would be to numerically solve for i to make the right side of (3.54) equal to ¢,
and to then set h, = h. However, we prefer to define h, by Equation (3.55),

below, since this gives an analytically tractable expression that works well.

Theorem 3.18 Given x >0, A >0,0>1,0<e<1, let

2n(0 — 1)
In(z/e) + A\2/2+1/x"

(3.55) hp = he(z, A, 0,€) =

Then for 0 < h < h, we have I.(x;\,0,h) < e.
Proof: Assuming h < h,, a short calculation gives

(3.56) e 2@ D/h < g e N 2e= 1 /g

Since we assume ¢ < 1, and since e **/? < 1, the bound (3.56) gives

1 1

(357) 1 — e 27m(c-1)/h S 1— 6*1/$/$.
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Using the bounds (3.56) and (3.57) in (3.54), we find

6727r((771)/h €

. A2/2
Iﬁ(x’ )\70-7 h’) S € ./E]_ _ 6_27.r(0__1)/h S el/m _ ]_/./E S 65

where we have used the fact that e® > 1 + « for real o. |

We now turn to choosing hp. As suggested by Figure 3.2(a) on the
following page, I (z; A, 0,h) grows irregularly as a function of h. For this
reason, we will not present an analogue to Lemma 3.17 above. However, as
illustrated in Figure 3.2(b), I (z; ), 0, h) behaves nicely when e=2"/"z < 2,
since the £ = 1 term dominates all other terms in Equation (3.45) (the
defining sum for I;). Thus, generalizing the above remarks to arbitrary

2n(K+1)/h

K € Zgy, we ensure e~ z < 2 by our choice of hg in Theorem 3.19,

below.

Theorem 3.19 Gwenx >2, A>0,0>1,0<e <1, and K € Zy; let

hg == hg(z,\ 0,6, K)
2n(K +1)
In(z/2) + 0A2 4+ A\/2(K + 1)\/o In(z/2) + 02)2/2 + In(3.4/¢)

(3.58) =

Then for 0 < h < hy we have 2™ /M [, (e=2™K/hg: )\ o, h) < €.

Proof: In this proof we will let 7 := In(2/z) and ¢ := 27 /h. Since we assume
h < hg, Equation (3.58) and o > 1 imply that

In(z/2) + o)\? 2)2
— T + M/2/(K +1)y/oIn(z/2) + 02)X2/2 4 In(3.4/¢)

> (In(a/2) + \)/(K +1),

(3.59) ¢>

and so e *¢z < 2¢ " for k > K + 1. For e %z < 2¢*" we may apply the
bound (3.41) of Theorem 3.15 on page 53 to find that for £ > K + 1

(3.60) (e z; N) < L.7exp (— (10 + kc)*/(2)0?)) .

Rewriting Equation (3.45) from page 55 in terms of ¢, and then applying
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logyy Iz
3.5

2.5¢

1.5

(a) h over a “bad” range

h

1.3 1. 35 1.4 1. 45 1.5

(b) h over a “nice” range where h satisfies e 2"/"z < 2

Figure 3.2: log,, Iz (x; A, 0,h) as a function of h. z = 100, A = 0.1, 0 = 2.
Note e 27/hy = 2 near h = 1.606. ...
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the bound (3.60) gives

e27rKa/hIR(6727rK/hl,; \ o, h) — Z ekacﬂ_*(efkcx; )\)

E>K+1
2X%koc — (1 + kc)?
(3.61) <17y exp< % )
k>K+1

The numerator of the argument of exp(...) in (3.61) is

2X%koc — (1o + ke)? = —12 — 2k(19 — N20)e — k*c?
(3.62) = \o? - 2X2071) — (10 — N0 + kc)?,

so, substituting (3.62) into the bound (3.61) and noting that e~ 7™ = (z/2)°,
we find that
eZﬂ'KU/hIR(e—Zﬂ'K/hx; )\,O’, h)

(3.63) < 1.7 (2 /2)° Z exp (— (o — o) + kc)2> .

2)\2
E>K+1

Now, the bound (3.59) gives
To — oA% + ke
k—K-—1 0 5
> il ————(—70 + oA%) + kA \/alnx/Q +02X2/2 +1n(3.4/¢).

Our assumption that > 2 implies —7y = In(z/2) > 0, so, for k > K + 1,
the preceding bound is

> kM/2/(K 4 1)\/oIn(x/2) + 02X2/2 + 1n(3.4/¢).

Squaring and rearranging this, and then noting that —k% < —k(K + 1)
for k > K + 1, we find

(10 =0\ + ke)?
22
(3.64) < —kIn (3.4¢N72(2/2)7 7).

< —k? (oIn(z/2) + 0’A*/2 + In(3.4/¢)) /(K + 1)
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Using the exponentiation of (3.64) to bound each term in (3.63) gives

eQ'IrKa/hIR(efQWK/hx; /\’ o, h)

< 17N (2/2)7 N (34N (w/2)7e ) T
E>K+1
_ %(3.46*202/2(55/2)05*1)‘1‘Z (34X 2(z/2)7e71) 7"
k>0
(3.4€¥°7/2(z/2)7e 1)
1— (3.4e¥%/2(z/2)7) e

(3.65) = %

Finally, the conditions of our theorem (including the condition that ¢ < 1)
imply (3.4@’\2”2/2(:5/2)")715 <1/3.4 < 1/2, so from (3.65) it follows that

eQWKa/hIR(e’QWK/hx; A o,h) <e. [ |

As we have seen in Figure 3.2(b), as h grows smaller than hy the value

of I, drops very rapidly. Theorem 3.20, below, quantifies this observation.

Theorem 3.20 Gwenx >2, A>0,0>1,0<e <1, and K € Zy; if

2K

(3.66) h < NOPETT

then e2™Xo/M [ (72K /hg: X, 0, h) < exp (— 272 /(A?h?)).

Proof: Much of our proof is similar to the proof of Theorem 3.19. As in that
proof, we let 75 := In(2/x) and ¢ := 27 /h.
Now, the bound (3.66) and ¢ > 1 imply that

(3.67) c> (-1 — \)/K,

and it follows that e %z < 2= for k > K. Thus, we can apply the
bound (3.41) to again verify that Equations (3.60) through (3.63) hold.
From the bound (3.67) we have, for £ > K,

(3.68) 0 — 0N +ke=1— 0N+ Kc+ (k— K)ec > (k— K)ec.

Using the rightmost bound of (3.68) in each term of (3.63), recalling that
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¢ := 27 /h, and letting j = k — K gives, as claimed,

e27rKa/hIR(ef27rK/hx; \ o, h) < 1.7€A202/2(m/2)0 267% 32/(A2h?)

j21

< e =272/ (A?h?) + Ze—2j/(/\2h2) < =272 [(Nh?) [
j22

Remark Taken together, the bounds of Lemma 3.17 and Theorem 3.20 im-
ply that I, dominates I as h — 0 and that

7 (x; A)

K
S(z; N, 0, h) — Ze2ﬂka/h —27rk/hx) _ A(e‘Z”k/hx; )\)) +0(e —2r(o— 1)/h)_
k=1

That is, the trapezoidal rule approximation to the integral representation
of 7*(x; \) converges exponentially in 1/h. This rapid convergence as h — 0
applies whenever the trapezoidal rule is used to approximate the integral of a
function which is analytic in a strip about the line of integration. In Chapter 7
we again take advantage of this rapid convergence. Further discussion of this

phenomenon, and other applications, can be found in [Ste93]. O

To approximate 7*(z; A), Algorithm 3.3 (QuadPiStar) implements Equa-
tion (3.50) (i.e., Equation (3.53) with K = 0). Since K = 0 is fixed, it first
computes h, and hy to bound the error term in Equation (3.53), and then
sets h = min(h,, hy).

To implement the more sophisticated method implied by the general case
of Equation (3.53) where K > 0, we need a method for choosing K. To do
this, we propose to first use Equation (3.55) to find h,(z, A, 0,¢). We then
set h = h,(x, A, 0,¢) and use Equation (3.58) to find an integer K such that
h < hg(z, A, 0,¢, K). Theorem 3.21, below, gives the details.

Theorem 3.21 Let hy(z, A, 0,¢, K) be defined by Equation (3.58). Given
h>0,2>2, A>0,0>1,and 0 <e <1; K satisfies h < hy(z, A, 0,¢, K)
provided

(3.69) K>-1+ % + C;h

(1 +4/1+ 87T01/(02h)> ;
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where
(3.70) Cy :=In(z/2) + o)?, and
(3.71) Cy :=2X* (01n(z/2) + 0°A*/2 + In(3.4/¢)) .

Proof: Within the body of this proof we treat K as an element of R, and
let o := K + 1. Having used C; and C5 to abbreviate the ponderous ex-
pressions in Equation (3.58), which defines hy(z, A, 0,6, K) , we find that
h < hg(x, A 0,¢,K) is equivalent to h < 27a/(C; +1/Cya), which holds
provided

(3.72) vV Cea < 2ma/h — Cy.

Since h > 0, C; > 0, and Cy > 0, it is clear that the inequality (3.72)
holds for large enough a. Focusing on the value of a which gives equality
in (3.72), and then squaring both sides, gives a quadratic equation which the
right side of (3.69) solves when rewritten in terms of «. It is also clear that
the value of a solving —/Coa = 2wa/h — C is less than the value solving
+v/Cya = 2ma/h — Cy, which confirms that we chose the correct quadratic
root for (3.69). [

With C; and C, defined by (3.70) and (3.71), it follows from (3.69) that
we get an error term of 2¢ O(1) in Equation (3.53) by setting h = h,(z, A, 0, €)
and then setting

Cih  Cyh?

. K=-1 —
(3.73) + [ o+ s

(1 +/1+ 87r01/(02h))-‘ .

This expression for K becomes less opaque if we recall that we will choose
A = 27 1/2%°() a5 2 — co. Without giving a careful analysis, if we once again
treat K as a real variable and treat all terms as negligible if the contain a
factor of A2 or 7!, we find from Equation (3.55) (defining h ) and from (3.73)
that as * — oo we have

(3.74) Krolt(o—1)2@2 o o

In(z/e)

If we hold z, A, and ¢ fixed and treat K as a function of o, then K as

defined in Equation (3.73) changes value at points where h,(z, A, 0, €) crosses
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hgz(z, A, 0,¢, K). These intersection points are illustrated in Figure 3.3 below.
Note that the points at which A, and hg(..., K) intersect are well-estimated
by the middle expression in the approximation (3.74).

hﬁ
0.25/
he, K =1
0.2!
0.15/
0 1. hr, K=0
o5
2 2.5 3 3.5 7

Figure 3.3: h,(z, A, 0,¢) and hg(z, ), 0,6, K), K = 0,1, as functions of o.
z = 10% X\ = 1072, ¢ = 1/16. For K = 0, h; = hp ~ 0.1151 near
o =2.0635. For K =1, h; = hiy =~ 0.2303 near o = 3.127.

3.4 Approximating the integral by a finite sum

Recall that
U(s) = U(s;2,A) = (532, \) InC(s) = "2 T In¢(s),
S

where the parameters z, A are assumed to be fixed when not explicitly given.
We now turn to the analysis of the error introduced by approximating

the infinite sum

(3.75) S(z; N, 0, h) := QE > " U(o +ikh)

™
kEZ

with the finite sum

(3.76) % > (o +ikh).

kh|<T



66 Chapter 3. Bounding Errors and Choosing Parameters

We halve the number of quadrature points in (3.76), and simplify some
of our analysis, by noting that since ¥(s;z, \) = ¥(s;z, A), the sum (3.76) is

h/1 LT'/h]
(3.77) == (E\Il(o;x,)\) + ; Re ¥(o +zkh;x,)\)>.
After an initial lemma, we will bound |Re ¥(s;z, \)| in Lemma 3.23.

Lemma 3.22 Let s=o0+1it, 0 > 1. Then

(3.79) In¢(s)| < 10 ¢(o),
and
(5.79) Lin¢(s)| < [C0)/clo)],

where ('(s) denotes d/ds ((s).

Proof: Since o > 1, Euler’s product formula gives

n ¢ (s) ‘ Yl -p )| = Zzp: <Zzp =In((0),

p m>1 p m>1
establishing the bound (3.78).
Similarly, we establish the bound (3.79) by noting that

)| = ‘—%Zln(l —p)| =D _In(pp~ > p ™
<Y Yy = ‘% In¢(0)

m>1

d
—1
‘ds nc(s

= [('(0)/¢(a)].- u

Lemma 3.23 establishes two, slightly different, bounds to be used below.

Lemma 3.23 Let s =0 +it, 0 > 1,¢ >0, A >0. Then
(3.80) IRe U(s;z, \)| < [¥(s;z, N)| < V7227 In((0)e™ P72,
and

(3.81) Re U(s; 2, \)| < [¥(s;2,\)| < X227 In¢(o)e N2 /1.
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Proof: Tt is obvious that [Re ¥(s)| < |¥(s)].

Recalling that U(s;z, A) = ¢(s;z,A) In((s), we have |In¢(s)| < In¢(o)
by (3.78). Furthermore, |$(s;x, A)| < M@ =)/227 By the bound (2.19) on
page 27; while \(Z(s;x,/\)| < M@ )/229 /t by the bound (2.20), and using
t > 0. The results follow upon taking the product of the bound on In((s)
with the two bounds on |$(s; z, A)|. |

In analogy to our error bounds £_(u;x, A) and £_(u;z, A) of Section 3.2,
we define an error bound & (T'; z, A, o), for the tail of the sum (3.75):

Definition 3.24 Given T >0,z >0, A >0, 0 > 1, let

(3.82) Es(T) := &g (T, M 0) := %&202/%0 In ¢ (o) By (X2T?/2),

where Ey(z) is the exponential integral, Ei(z) := [~ ™" /rdr. O

Remark Formulae for computing E(z) are given in [AS92, Chapter 5] and
in [PTVF92, §6.3]. O

Theorem 3.25 Giwen z > 0, A > 0, 0 > 1, h > 0, and T > 0 with the

restriction that T be a positive integer multiple of h, then we have

(3.83) h Z Re V(o +ikh;x,\)| < Eg(T;z, A, 0).

kh>T

Proof: Bounding the summand by the right side of (3.81), noting that this

bound is decreasing in ¢, and since we assume 7T'/h € N, we have

h Z Re ¥ (o + ikh;x, \)|
T

kh>T
1 o dt 1

< =N lng(a)/ e NP = N 207 10 ((0) By (NPT?)2)
T T t 27

=&x(T;z, M, 0). [

We now present two corollaries of Theorem 3.25. The first: Corollary 3.26,

justifies the choice of T" which we will use in Algorithm 3.3.

Corollary 3.26 Given T > 0 with E(T;z, ), 0) < & we have

[T/h]
1
(3.84) S(z;\,0,h) = h (5\11(0;3:,)\) + Z Re ¥ (o + ikh; z, )\)) +e0(1).

™
k=1
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Proof: As z increases E1(z) decreases, so Ex(h [T/h];x,\) < Eu(T;x, A, 0).
Since h[T/h] is an integer multiple of h, Equation (3.84) follows immediately
from Theorem 3.25. n

As an aid to the error analysis of Algorithm 3.3, our second corollary of
Theorem 3.25: Corollary 3.27, gives a bound for the partial sums in For-
mula (3.84).

Corollary 3.27 Given 0 < A <1/2, 0 > 1, and h > 0, for any k; > 0 we

have

k1
%\I!(a; 2, M)+ Y Re¥(o +ikh;x, \)
(3.85) k=1
< <§ ;h (17/8+1n(2/)\2))> Yo 27 In (o).

Proof: First focusing on the sum over &, we have

k1
ZRe V(o +ikh;z, ) < Z | (o + ikh;z, )|

k=1 k>1
[1/h]

(3.86) = Z |W (o +ikh;z, \)| + Z |U (o + ikh;z,\)|.
k=1 k>[1/h]

By the bound (3.80), the first subsum in (3.86) is

[1/h]
(3.87) < Z N7 In C(0)e N2 < (14 1/h)eN 7 227 In (o).

Exactly as in the proof of Theorem 3.25, we find that the second subsum
of Equation (3.86) is

1

2 2/ 0_
T e 227 InC(0)E1(\?/2).

(3.88) < %52(1;x,A,o)

From [AS92, Entry 5.1.20] we have E;(z) < In(1 +1/z) for z > 0. Now,
In(1+1/2) =1In(1/z) +1In(1 + 2) and In(1 + 2) < z. Furthermore, we may
assume that z < 1/8 since A\? < 1/2. It follows that (3.88) is

(3.89) ih(1/8+ln(2/)\2)) N 229 1n ¢ (o).
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The bound (3.85) follows upon summing the two bounds (3.87) and (3.89),
and also adding in the initial term: ¥(o;2,A)/2 = X227 In((0)/2. W

Theorem 3.29, below, clarifies how the solution for 7" in & (T2, A, 0) = ¢
varies as a function of z and other parameters. We begin with a lemma

giving an asymptotic expansion for the inverse function of E;(z).

Lemma 3.28 Given 6 = F(z), z > 0, the inverse function that gives z as

a function of positive real 0 is well defined, and
z=—Ind+O(n|lnd|) asd— 0+.

Proof: The inverse function is well defined since Ej(z) is continuous and
strictly decreasing from oo to 0 as z ranges from 0 to co. Using [AS92,
Entry 5.1.51] we find that

e*Z

(3.90) Ei(z) = (1+0(z") asz— oo

z

Setting 6 = FEj(z), treating z as a function of 4, and taking logarithms
in (3.90), we find that for § sufficiently small (and thus z sufficiently large)
we have In(6) = —z — In(2) + O(z71). Tt follows that

(3.91) z=—In(0) —In(z) + O(z7").

From [AS92, Entry 5.1.19] we have e /(2 + 1) < Ei(z) < e ?/z. Taking

logarithms and writing this in terms of § gives
(3.92) z+1In(z) < —In(d) < z+1In(z + 1).

Since z < z+In(z) for z > 1, the left inequality in (3.92) gives z < —In(d),
and thus In(z) < In(—1n(d)) = In(|In(d)|) as § — 0+. Since In(z+1) < 2z for
z > 0, the right inequality in (3.92) gives 2z > —1In(6). Thus 27! < 1/ [In(d)]
as 0 — 0+. Inserting these bounds on In(z) and on 27! into (3.91) completes
the proof. [

In our proof of Theorem 3.29, below, note that the result depends on
restricting o to lie within an interval [Omin, Omax|, With omin > 1. We will

justify those restrictions in Lemma 3.30 and in Section 3.6, below.
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Theorem 3.29 Given x > 0, 0 < A < 1/2, 1 < Opmin < 0 < Omax, and
e > 0, the solution for T in Ex(T;x, A\, 0) = € satisfies

(3.93) (JT/e +0 (]I;il(lw”/é)g)n as 2% e = 00

where the O-constant depends only on opin and Omay.

Proof: Letting z = A\?T?/2, the condition ¢ = Ex(T) is equivalent to the
condition Ei(z) = ¢, where we define § by

_ L 2o 2/2 o
(3.94) 1/8= 5 In ¢ (o).

Note that 27 /e — oo suffices to ensure 6 — 0+. Taking logarithms in (3.94),

we find that as 27 /e — co we have

—Iné = In(2/e) — In(27) + InIn¢ (o) + A?0?/2
(3.95) =In(z?/e) + O(1),
(3.96) In [Ind| = O(Inln(z? /¢)).

Note that the O-constants in (3.95) and (3.96) depend only on i, and opmax,
since A is bounded.

Now, recalling that z = A*7?%/2 we apply Lemma 3.28 and use (3.95)
and (3.96) to find that

N?T?/2 = In(z° /e) + O(Inln(z7 /¢)).

Finally, solving for T gives

- @\/m (27 /¢) + O(In1n(z7 J¢))
(W”J <hllrlln$”/£)€))> ' .

We now deal with a technical issue that would otherwise complicate the
computation of ¥(s;xz,\). More specifically, we treat the computation of
In{(s), which is a factor of U(s;z,A). Given ((s) the computationally sim-
ple way to find In ((s) would be to take the principal branch of its logarithm,
Ln((s), for which —7 < ImLn((s) < w. Although it could well be that
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In((s) = Ln((s) whenever Re(s) > 1, neither our definition of In ((s) given
by Equation (1.16) on page 17, nor the expansion for In ((s) given by Equa-
tion (1.17), obviously satisfies this condition. Lemma 3.30 gives conditions

under which the principal branch certainly gives the desired value:

Lemma 3.30 If 0 > oy, := 1.045 then —m < ImIn((o + it) < 7, where
In (o + it) is defined by Equation (1.16).

Proof: Writing In((o + it) = p + i0, we have |§] < /p?+ 62 = |In((s)|.
Since o > 1, we can apply the bound (3.78) to find that In((s) < In((o).
The result then follows since ((o) is a decreasing function of o when o > 1,

and since a numerical computation yields In ((1.045) = 3.126879--- < 7. W

Remark For the proof of Lemma 3.30 we computed In((1.045), working
with a minimum of 30 digits of precision, using two different methods. In

Mathematica version 4.2 we used the command
N[Log[Zeta[1045/1000]1],30]
and in PARI/GP version 2.1.4 we used the commands

default(realprecision,30); log(zeta(1045/1000)) O

3.5 Quadrature algorithm for 7*(z; \)

In this section we summarize the results of the last few sections by present-
ing Algorithm 3.3 (QuadPiStar) for computing 7*(z;A). Roughly speak-
ing, this algorithm implements Equation (3.84) from page 67 to approxi-
mate S(x; A\, 0, h) with an explicitly bounded error term, and applies Equa-
tion (3.50) on page 56 to find 7*(z; A) from S(z; A, 0, h), again with an ex-
plicitly bounded error term.

To ensure that £ (T;z,\,0) < ¢, in line 3 of Algorithin 3.3 we again use
our solve_for construct. As before, it is clear that the equation of line 3 may
be solved using O(z¢) operations on numbers of O(In(2 + |z|)) bits by root-
bracketing and bisection methods, but that in practice one would probably
instead use Newton’s method, since £ (T’; z, A, 0) is monotone as a function

of T and has a closed form for its derivative.
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To avoid spending too much time on error analysis, in Algorithm 3.3
we often use the construct x := y in preference to x <— y. In programming
terms, x := y may be thought of as a “macro definition” —in which the right-

hand side of the definition specifies the expansion to be used in replacing the
left-hand side.

Algorithm 3.3 (QuadPiStar: Approximate 7*(z;\) by quadrature)
Given © > 2, 0 > omin = 1.045, A > 0, ¢ > 0, return 7*(x; \) + £ O(1).
(The requirement that o > oy is a technical condition discussed just before

Lemma 3.30 on the preceding page.)

QuadPiStar(z,0,X,e) {
Subdivide allowable error amongst four sources: roundoff error, 1., I, and
D knsr(--)-

€<+ €/4;
See Equation (3.84) on page 67 on the choice of T. For the choice of h
see Theorem 3.18 on page 58, and Theorem 3.19 on page 59. Recall that in
choosing hy we are setting K = 0 in Theorem 3.19. Note that at this point

€ is a fraction of its original value.
solve_for T in & (T;z,\,0) = 3e+ 16 O(1);

b 2m(oc — 1) )
£ In(z/e) + A2/2 + 1)z’

27
hy, = :
R In(2/2) + 0X2 + AW2+y /o In(z/2) + 02X2/2 + In(3.4/€)
h :=min(h,, hg);
// Equation (3.42) on page 54 defines ¥(s;x, ).

[T/h]
h[1 .
return ¢O(1) + - §\If(a;m, A) + kg_l +Re¥(0 + zkh;x,A)) i}

Remark We have glossed over a few computational issues in our presenta-
tion of Algorithm 3.3. In particular, the computation of [T'/h], the uppper
bound for the sum of line 8, might require computation to an arbitrarily high
accuracy if T'/h were an integer. Speaking practically, this is not a difficulty
since, instead of [T/h], it would suffice to use any integer that was certainly
larger than T'/h. O

We now establish a bound on A which will be used below in our complexity

analysis of Algorithm 3.3:
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Lemma 3.31 Let z, 0, A\, and € satisfy the conditions of Algorithm 3.3 and
of Theorem 8.29 as stated on page 70. Assume further thate < 1/2. Let h be
the value defined in line 6 of Algorithm 3.3. Then there is an h,. for which
h < h,n. Subject to the constraints on our parameters, h.p is an absolute

constant.

Proof: As shown in Section 3.3, as functions of o, h, grows in proportion
to o — 1 while A is roughly constant (but slowly decreasing) as o increases.
Thus, there is a unique 0,5 for which h, = hy at 0 = 0,.4.

Let hyp = hp(x,\,0,%,€). Since h = min(h,, hy), we conclude that
h < hyp. That h,p is an absolute constant follows from Equation (3.55),
which defines h,, and from our assumptions that x > 2, A < 1/2, ¢ < 1/2,
and 1 < omin < 0 < Omax- [ |

Definition 3.32, below, introduces our notation for characterizing the cost
of computing ((s) in Algorithm 3.3. Note that we characterize our precision
requirement for the computation of ((s) in terms of a fixed number of bits

of relative precision, instead of an absolute precision.

Definition 3.32 Givenn > 0, let ¢ := 27" and let I¢(n) denote the number
of bit operations required to compute (1+& O(1)){(o +it), averaged over all
values of o + it used in line 8 of Algorithm 3.3. Let B, denote the memory

requirements for those calculations. ]

Remark Note that C¢(n) and B, are implicitly functions of o, and of other

parameters than n, which are used in Algorithm 3.3. O

In our statement of Theorem 3.33, below, we once again assume that
A > z Y2, Our justification for this assumption is explained just before

Theorem 3.13 on page 50.

Theorem 3.33 Let x, o, A, and ¢ satisfy the conditions of Lemma 3.31.
Assume further that X > Y2, Let h be the value defined in line 6 of the
algorithm. Then Algorithm 3.3 requires

oIn(z)

(3.97) < DV (]CC(O' In(z)) + In(20 In(z))M(o ln(x)))
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bit operations and <K x€+ B; bits of memory. The O-constant implicit in the
bound (3.97) depends on e, and on the O-constant implicit in our assumption
that A > x1/2,

Proof: The bound on the memory requirement of Algorithm 3.33 follows
immediately upon noting that all computations other than the computation
of values of ((s) can be accomplished using z¢ bits of memory.

Clearly, the complexity of Algorithm 3.3 is dominated by the complexity
of the computation of the main sum in line 8. Applying Theorem 3.29, we
find that there are

oln(z)

. 1+T/h
(3.98) <14+T/hk h

terms summed in that line, where we have absorbed a dependency on ¢ into
the O-constant.

To determine the bit complexity of computing each term in the main sum,
it suffices to estimate to within an order of magnitude the number of bits of
precision needed in each term. Note that although we subdivided ¢ in line 2,
switching between either of these two values for ¢ in our arguments below
will only perturb our results by an O-constant.

Now, assume that we approximate ¥(s;x, \) to a fixed number of bits of
precision in each term of the main sum, which implies that we approximate
it to within a fixed relative precision. (See Remark 3.34, below, for further
comments on this assumption.)

More precisely, write (1 + £0O(1))¥(s;x, A) for our approximation of

U(s;x,A), and write our main sum as
1 [T/h]
U = 5\11(0;33,)\) + Z +Re V(o + ikh;x, \).

k=1

To compute € O(1) + (h/7)U, as we do in line 8, it suffices to choose & so
that heg |U| < €, for some appropriately chosen O-constant. In other words,
it suffices to have ¢y < /(h|U|).

Now, applying Corollary 3.27, we find that

(3.99) hU| < (14 h+1n(1/)))e* " 227 < In(z)z°.
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The rightmost side of (3.99), and the fact that the O-constant is absolute,
follow from the result of Lemma 3.31 that A < h,p < 1; and because we
have assumed that o lies within a bounded range, that z > 2, and that
1?2 < A< 1)2.

It follows from the rightmost bound of (3.99) that ¢y < e/(h|U|) provided
g0 € ez~ 7/In(z). Thus,

(3.100) < In (27 1In(z)/e) < oln(x)

bits suffice to compute ¥(s; z, A) to the necessary precision. (The O-constant
in the rightmost bound of (3.100) depends on ¢.) The computation of
U(s;z, \) reduces to the computation of e**s*/2z% /s and of In((s), both to
O(olIn(z)) bits of precision. A short argument, that depends on our as-
sumption that 1 < oyin < 0 < Omayx, shows that the computation of In {(s)
reduces to the computation of ((s) to O(oln(z)) bits of precision. The
result (3.97) follows upon summing the complexity bounds for the computa-
tion of e****/22% /s and of ((s), and then taking the product of the resulting
bound on bit complexity with the bound (3.98) on the number of terms
computed. [ |

Remark 3.34 In our analysis of Algorithm 3.3 we assumed that ¥(s;z, \),
and thus ((s), were both approximated to within a fixed relative precision.
This is not the optimal choice for precision, since Algorithm 3.3 would be
more efficient if we approximated ¥(s;z, \) to within a fixed absolute preci-
sion. This would imply that the number of bits required in our computation
of ¥(s;z,A\) would grow smaller as U(s;z,A) grows smaller. Although it
might lower our complexity bound for Algorithm 3.3, we have not treated
the possibility of working to within a fixed absolute precision here, since it

would complicate our complexity analysis. O

Remark 3.35 Several changes would be required in order to have Algo-
rithm 3.3 apply the more sophisticated quadrature method implied by Equa-
tion (3.53) on page 57. We would further subdivide € to account for one
further source of error. We would not compute hy, and instead set h < h.
We would then choose K as suggested by Equation (3.73), and set R := e?™/%,
Instead of returning the sum computed in line 8 we would instead assign the

result to pistar, say, and then compute the value to be returned by adding
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in our “quadrature correction terms” as follows:

K
pistar « pistar — Z RFo (m(R™%z) — Delta(R %z, A\, R™"7¢)) ;
k=1

Note that in this sum we have R~*z replacing the role of z, and R~*7¢
replacing the role of ¢ as arguments passed to Delta(...). These values
invalidate several assumptions that we made about the arguments passed
to Delta(z, A, ¢) (Algorithm 3.2) in our analysis given in Theorem 3.13 on
page 50, and that analysis would need to be extended to cover a more diverse

range of values. O

3.6 Choosing the parameters ¢ and A

Recall that in this dissertation we only consider paths of integration for the
analytic algorithm of the form s = o + it, parameterized by ¢, —co < t < 00,
with fixed ¢ > 1. There may be advantages to choosing more general paths,
in particular, paths that pass to the left of ¢ = 1, but the apparent complexity
of analyzing such paths has prevented their consideration here.

We now consider the choice of ¢ that minimizes the running time of
Algorithm 3.3. We give only a rough analysis, which has not been tested in
an implementation. In practice, o would best be chosen based on experience
with an implementation—since the running time will be sensitive to details of
the machine arithmetic and of the software used to implement multiprecision
arithmetic.

In our analysis, we need only consider how the running time of Algo-
rithm 3.3 depends on ¢. Figure 3.4, on the next page, illustrates how the
choice of o affects the quantities that determine the running time. These
quantities are the magnitude of the integrand, which is the main factor de-
termining the precision required for our arithmetic; and the number of quad-
rature points used, which depends on 7" and h.

As shown in the proof of Theorem 3.33, the required number of bits of
accuracy grows in proportion to o. By Theorem 3.29, T' grows roughly in
proportion to 1/o.

From the proof of Lemma 3.31, we know that there is a 0,4 for which A
as a function of o reaches its maximum value at o = 0,5, and that h grows

in proportion to 0 — 1 for 0 < 0,4, while h is roughly constant (but slowly
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Re U(o +it;z, \)

600\
400!
200!
[\ /\ /’\VAvA NI NI . . t
&/wsv 107 1550 55 30
- 200!

(a) 0 = 1.5, h = 0.52, T =~ 30.72, 60 sample points.

Re¥(o + it;z, \)

2000\
1000/
U\gbﬂfyﬁi\fVﬁi""io 5530735 ¢
-1ooou
-2000!

(b) 0 =2.0, h = 1.05, T ~ 35.07, 35 sample points.

Figure 3.4: Integrand and quadrature sample points for two choices of o. In
both cases we have z = 100, A = 0.1, ¢ = 1/4, we let h = h,.(x, \,0,¢) and

choose T to solve &, (T;z, A, 0) =
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decreasing in o) for o0 > o5.

The analysis above leads us to conclude that the number of quadrature
points grows roughly in proportion to /o /(0 — 1) for ¢ < 0, and in pro-
portion to y/o for o > 0,,. We note that the same analysis that led to the
estimate (3.74) on page 64 shows that, as a rule of thumb,

(3.101) O 1+

On the assumption that it exists and is well defined, let o, denote the
optimal choice for o. Clearly we must have o,y < 0,%. This argument
helps justify the assumption of Theorem 3.29 that o < g, for some oay,
since it would be inefficient to choose o > o4, and we can reasonably let
Omax ‘= Oopt < 0.

To continue with our analysis we let (o) denote the running time of
Algorithm 3.3 as a function of 0. Let f(0)  g(o) denote the property that
f(0)/g(o) is constant as a function of o, i.e., that f(o) grows in proportion
to g(o). Working from the bound (3.97) on page 73, and dropping all factors
which change slowly with o, we use a rough and simple model in which we

assume that

gituz /2 putl/2

102 K
(3.102) (0) o o—1 X o—1

where the meaning of u; and u, are explained below, and where, of course,
W= g1 + po. Assuming that p > 1/2, we can easily show that K(o) is

minimized at

_p+1/2
Cou—1/2

(3.103) o=0p:

The model for K(o) in Equation (3.102) is based on three assumptions:
First, that o is restricted to the range oy, < 0 < 0,4, so that h = h, in
that range. Second, that for some choice of u;, we have M(oIn(z)) o o#t.
Third, that on average in Algorithm 3.3, and for some choice of ps, the
computation of ¥(s;x,\) to an accuracy of O(olIn(z)) bits requires o< o#2
arithmetic operations on numbers of O(o In(z)) bits.

Our first assumption will be violated if Equation (3.103) gives op > 0.,

but that simply means that we should set oopy = min(og, o,5).
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Our second and third assumption are plausible if we ignore factors of
o¢ and assume that o In(z) is so large that theoretical complexity estimates
apply, and for the third assumption, perhaps only for ¢ in a limited range.

Considering the choice of p, we should have 1 < y; < 2, depending on
the algorithm used for multiplication. The lower limit of y; = 1 applies for
an FFT-based algorithm [Knu81, §4.3.3], while the uppper limit of p; = 2
applies for the classical multiplication algorithm.

Similar remarks apply to ps. Recall from Definition 3.32 on page 73 that
KC¢(n) denotes the bit complexity of computing ((s) to n-bit accuracy, and
that K¢ (n) is implicitly a function of o. Since y; already accounts for the cost
of basic operations on numbers of n bits, and since the dominant complexity
in computing W¥(s;z,A) will be the complexity of computing ((s), we see
that po will be determined by the behavior of ¢(oIn(z))/M(oln(z)) as a
function of o.

Assuming that we use the method of Chapter 7 to compute ((s), the
number of operations required to approximate ((s) is determined by two pa-
rameters: N and M, which bound the number of terms in the first two sums
of Formula (7.9) on page 146. There are two other sums in Formula (7.9),
but our analysis in Section 7.6, starting on page 152, indicates that the first
two have the dominant complexity.

The first sum of Formula (7.9) is the truncated Dirichlet series: S~ n=*.
Writing s = o + it, our analysis in Section 7.6 shows that N =< t'/2, with
little dependence on o provided ¢ is large compared to . The analysis also
suggests that M is much smaller than N unless o is quite large. If we compute
the truncated Dirichlet series in a straightforward way, it follows that we can
assume po = 0.

On the other hand, if we use the Odlyzko-Schonhage algorithm to com-
pute the truncated Dirichlet series, the complexity of computing the series is
relatively insensitive to N and should grow roughly in proportion to o. Fur-
thermore, our analysis indicates that, roughly, M < ¢ provided ¢ is not too
large, and M < ¢%/2 for larger values of o. (See the discussion immediately
below Equation (7.22) on page 152, and the discussion which follows—which
describes of a choice of parameters for Formula (7.9) which are suitable for
very precise computation of ((s).) It follows that, when using the Odlyzko-
Schénhage algorithm, we can assume 1 < py < 3/2.

To summarize, depending on our multiplication algorithm and our algo-
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rithm for computing ((s), we will have y = pq + po in the range 1 < p < 7/2.
From Equation (3.103), we conclude that oy a decreasing function of 4 in the
range 3 > 0y > 4/3. Since our rule of thumb given by Equation (3.101) sug-
gests that 0,5 ~ 2, we expect that ooy Wwill lie in the range 2 > oo, > 4/3,
depending on our choice of algorithms. If we assume that y; = 1 (fast mul-
tiplication) and that py = 1 (best case when using the Odlyzko-Schénhage
algorithm) then we find that, by this model, o, = 5/3 ~ 1.67.

We now turn to the question of choosing A, our length parameter. As in
the case of choosing o, in practice A would best be chosen based on experi-
ence with an implementation. Here we use a simple model where we assume
that the complexity of Algorithm 3.2 (Delta) is characterized by the func-
tion i (z, A) and the complexity of Algorithm 3.3 (QuadPiStar) is given by
Ko(z, X). Of course K; and Ky depend on other parameters such as ¢ and o,

but we assume that those parameters are fixed.

Although Theorem 3.13 gives an upper bound on K;(z,\) and Theo-
rem 3.33 gives an upper bound on Ky(z, A), we assume that the true costs
have the same form as these upper bounds. Also, recall that we have assumed
that 27/?2 < A < 1/2 in our analyses above. With this understanding, we
find that

(3.104) Ki(z, A) = k1(z)y/In(Az) Az,
(3.105) Ko(z,A) = ka(x)/A,

where k1(z) depends on our choice of method for enumerating primes, and
ko(z) depends on our choice of method for computing ((s).

Rather than solving for A that minimizes K1 (z, ) + /K2 (x, ) as a function
of x, we simply solve for A\ to make C;(z,\) = Ky(x, ) as a function of z,

since the latter solution serves nearly the same purpose. This gives

_ N = /2 K2 (7) ,
(3.106) \//fl(ac)\/ln()\ac)

and our restriction that 7'/2 < A < 1/2 implies that

107 A=< g /2 —KQ(m) .
(3.107) k1(z)+/In(z)
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Substituting the solution (3.107) back into Equations (3.104) and (3.105),

we find that for this choice of A we have

Kz, X) < Ka(z, A) < InV4 (@) /K1 (2) ke (2) .
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4 Survey of Methods for Enumerating Primes

e-nu-mer-ate v. 1. To name one by one; list. 2. To determine
the number of; count. [Lat. énumerare, count out.]

The American Heritage Dictionary, 3rd Ed.

4.1 Preliminaries

To implement Algorithm 3.2 (Delta) we need an efficient method for enumer-
ating primes, where by enumerate we mean the first sense of the dictionary
definition quoted above. In this chapter we introduce terminology and sum-
marize some of the issues involved in enumerating primes, while the following
two chapters give new efficient methods for achieving this goal.

Throughout this chapter, and the following two chapters, we will analyze
the task of enumerating primes in an interval [z, 5], 0 < 21 < x9. In the ter-
minology of Section 1.5, all our estimates of computational complexity will be
given in terms of the number of arithmetic operations performed on numbers
of O(In(2 + z3)) bits. Following the convention of Definition 1.2 on page 13,

the unqualified term operation refers to such an arithmetic operation.

4.2 Enumeration by sieving

The sieve of Eratosthenes, or one of its many variants developed over the
last few decades, has been the method of choice for enumerating primes in
an interval [z, 5], provided the interval is sufficiently long. However, as

we will explain below, sieves previously described in the literature become

inefficient unless x, — 21 > xé/ 2o(l) s To — 00. For these methods, this
implies a lower bound of xé/ 2+e) hitg of memory required for efficient sieving.

A survey of many sieving algorithms and their memory requirements is given

in a recent paper by Sorenson [Sor98].
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In this section we give an overview of sieving algorithms, and then illus-
trate this overview with Algorithm 4.1 (DemoSieve) on page 87. We begin

by introducing some convenient notation:

Definition 4.1 We define the size of an interval [z1,xs] to be the number
of integers in that interval, i.e., 1 + |xo] — [21].

Given a sieving algorithm, and an interval [z1, 5], let K denote the num-
ber of arithmetic operations required to sieve the interval and let B denote
the size of the interval. We define the cost per unit subinterval for the sieve
to be IC/B. O

Remarks We will often assume that x,,x9 € Z, in which case the size of
the interval [z1,x9] is 1 + o — 1. The distinction between the length of an
interval (i.e., x5 — 1) and the size of an interval becomes important for very

short intervals, especially in the case 1 = z5. ]

All of the sieves that we consider will use a “bit vector” to represent a
set S of numbers within an interval [z, z5]. Usually we will be interested in
S = P N [z1, 5], but in Chapter 6 we will also consider the set of numbers
in [z1, x9] which are free of “small” prime divisors.

In imitation of C-notation, writing S for the bit vector representing the set
S, we associate three quantities with S: the endpoints of the interval, which
are denoted by S.x1 and S.x2; and the actual vector of bits, which is denoted
as S.data. We represent the binary values in S.data as S[n| € {0, 1}, where
n €8 < S[n] =1 and where S.x1 < n < S.x2.

In other words, the elements of S can be enumerated by testing whether
S[n] = 1 as n runs through the values S.x1 < n < §.x2, although we will
normally consider the elements to be enumerated once the computation of
S is completed. For convenience, we require S.x1 € N, S.x2 € N. By
the “size” of the bit vector S we mean BitSize0f(S.data). The expression
S < AllocateBitVector(B) denotes the creation of (storage allocation for)
a bit vector S of size B.

After creating the bit vector, we then assign values to S.x1 and S.x2
to specify the endpoints of the interval being treated—under the restriction
that BitSizeOf(S.data) > 1+ S.x2 — S.x1. This convention lets us reuse
the space allocated for S.data when we sieve over consecutive intervals of

size bounded by B. Note that we allow for the case that S.data is larger
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than strictly necessary. Also note that since it takes O(In(S.x2)) bits to
represent both S.x1 and S.x2, a bit vector S of size B requires a total of
B + O(In(S.x2)) bits of storage, i.e.,

BitSizeOf(S) = BitSize0f(S.data) + O(In(S.x2)).

Of course, a practical implementation of a sieve would not allocate stor-
age for, nor waste computation on, the even numbers in an interval. More
generally, it is possible to exclude from consideration all numbers divisible
by primes below some bound. By letting the bound grow with z5, as in
Pritchard’s “wheel sieve” [Pri81, Pri82], it is possible to sieve with a cost of
O(1/1InlIn(z9)) arithmetic operations per unit subinterval provided the inter-
val [z1, 2] is long enough. However, attempting to apply these techniques
would complicate our exposition and analysis, and except for a few comments
in Section 5.7 we will not explore them further in this dissertation.

When discussing any sieving algorithm, we will usually be concerned with
a family of closely related algorithms for sieving an interval [z1,z5]. By
convention, the unsegmented version of a sieve will work with a preallocated
bit vector of size 1+ |z2| —[21], i.e., a bit vector of sufficient size to represent
the entire interval [z1,z5]. We also consider the segmented version of the
sieve. This version, in order to save storage, breaks [z1, z5]| into subintervals
whose disjoint union is [z, zo]—where each subinterval is as large as possible
subject to having a size bounded by B. The segmented sieve enumerates the
primes in each subinterval using the unsegmented version, working with a bit
vector of size B. (The idea of a segmented sieve was mentioned in print as
early as 1973 by Richard Brent [Bre73], although the idea is often attributed
to a later paper by Bays and Hudson [BH77].)

We can characterize the operation count for the unsegmented version of
a sieve by a bound of the form O(a(z2)(1 + |2 — [21]) + B(x2)). Here,
a(x2) measures the sieve’s cost per unit subinterval, while 3(z5) measures a
fixed overhead independent of the size. When, as is often the case, we have
B(x2) > a(xs) then the bound on the operation count can be written more
simply as O (a(z2)(z2 — 1) + B(22)).

In practice, §(x2) increases as x5 increases, and a sieve becomes inefficient
if the interval [z1, z2] fails to grow longer as z, increases. More precisely, a

sieve becomes inefficient when the interval is so short that the sieve’s overhead
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dominates its cost per unit subinterval.

In terms of a(zy), B(x2), we see that the cost of a sieve in arithmetic
operations per unit subinterval is < «a(z2) + 5(22)/(1 + |z2] — [21]). Thus,
provided zo—x1 > [(x3)/a(x2) a sieve requires O(«(z3)) operations per unit
subinterval. Although we have been discussing upper bounds, in practice
the operation count is also > «(z3)(xe — 1) + S(z2), so a sieve becomes
inefficient if the size of [z1,x3] grows more slowly than 8(xq)/a(z2), i.e., if
(xg — x1)a(za)/B(x2) — 0 as xo — 00.

Suppose «(z3), [(z) characterize the operation count for the unseg-
mented version of a sieve, 3(z2) > «a(z3), and that a(z2) is nondecreasing.
The unsegmented sieve will require O(a(x2)B + [(x2)) operations to sieve a
subinterval of [x1, 23], where B bounds the size of the subinterval. (We allow
B to vary with z5.) The segmented version will require an additional O(1)
operations per subinterval to partition [z, z5] and to invoke the unsegmented
version on each subinterval, but this O(1) cost will be dominated by ().

Thus, summing over subintervals, we find that the segmented version of

the sieve requires

e L)

B
+ a(z2) min(B, 1 + |22 — [21]) + B(22)
(4.1) < (az2) + B(22)/B) (22 — 1) + B(22)

operations to sieve the interval [z, z5]. In other words, the segmented sieve

requires

(4.2) <afn) + ) (% 1 szj - [xﬂ)

operations per unit subinterval, which works out to O(«(z3)) operations per
unit subinterval provided both B > (z3)/a(zs) and xo—x1 > B(x2)/a(z2).
This analysis shows that the segmented version becomes inefficient when
either B a(x3)/B(x2) — 0 or (z2 — x1)a(xe)/B(x2) — 0 as xo — oco. Sim-
ilar remarks apply to the “wheel sieve”, even though a(zs) = 1/Inln(zs)
decreases slowly as x5 increases.
We illustrate our discussion above by analyzing the sieve of Eratosthenes.

The unsegmented version is given by Algorithm 4.1 (DemoSieve), below.
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Algorithm 4.1 (DemoSieve: Sieve of Eratosthenes)
Given a preallocated bit vector Pset with Pset.x1 = 1z, Pset.x2 = o,
1 < 2y < zy, this algorithm sets Pset([n| such that upon completion we have
Pset[n| =1 if and only if n is prime.
DemoSieve (Pset) {

T] < Pset.xl; z7 < Pset.x2;

assert x1 e NAxzy € N; assert 1<z <x9;

// Initialize Pset to have all 1 entries.

for (n < z1;n <z2;n++) Pset[n| <+ 1;

// Now zero out (cross out) entries at nontrivial multiples of primes £ < /3.

for (£ € [2,,/z2]) NP)

for (m < max(2, [z1/4]);m < z2/l; m++)
Pset [ml] «+ 0;

To simplify our analysis, we will assume that the primes £ in Algorithm 4.1
have been precomputed. Letting x; = Pset.x1, o = Pset.x2, we see that
the initialization phase takes O(1 + xo — 1) operations. This is dominated

by the number of operations needed to cross out composites, which is

< Z (W-{-l) L (1429 — 1) Z %-1—7'((\/:6_2)

<z N
(4.3) < Inln(zg)(xe — x1) + +/72/ In(z2).

From (4.3) we see that for Algorithm 4.1 we have a(z2) = Inln(z,) and
B(z2) = /T2/In(x;). (In a more realistic implementation of the sieve of
Eratosthenes, where we would also need to sieve to enumerate the primes
¢ < /73, we would have B(z3) = Inln(zs),/73.)

Algorithm 4.2 (SegmentedSieve), below, gives the segmented version of
Algorithm 4.1.

Algorithm 4.2 (SegmentedSieve: Segmented sieve of Eratosthenes)

Enumerate the primes in the interval [z1,x2], 1 < 21 < 5.

SegmentedSieve (B € N, z1,z2) {
Pset < AllocateBitVector(B);
for (Pset.x1 < [z1];Pset.x1 < z9;Pset.x1 < Pset.x2+1) {
Pset.x2 < min(zg,Pset.x1 + B —1);



88 Chapter 4. Survey of Methods for Enumerating Primes

DemoSieve(Pset);
for (n < Pset.x1;n < Pset.x2;n++)

if (Pset[n] =1) Enumerate(n); // Enumerate n as a prime

13

In Algorithm 4.2, the construct Enumerate(n) denotes the act of passing
n to another computation or activity. We assume that the activity denoted
by Enumerate(n) requires O(1) operations, so the bound (4.1) implies that
Algorithm 4.2 requires

<lnln(x2) ﬂ))(wa—xlﬂ N

+ Bln(z In(z2)

operations. Provided that z; — z1 > /73/(Inln(z2) In(z;)) and also that
B > \/z3/(Inln(x2) In(x)), the bound (4.2) implies that Algorithm 4.2 re-
quires O(lnIn(x9)) operations per unit subinterval. On the other hand, when
B =1 then Algorithm 4.2 is, in effect, using trial division to test for primality,
and the bound (4.2) implies that the algorithm then requires O(,/2/ In(z2))

operations per unit subinterval.

In the language of this section, all sieves previously described in the liter-
ature have a/(zs) = 25" while B(z») = z5/*"" as 2, — co. Thus, for these
sieves we also have 3(z3)/a(zy) = x§/2+°(1). Again, the bound (4.2) implies
that the segmented versions of these sieves require only O(a:g(l)) operations
per unit subinterval to sieve [z1, 3], provided both x5 — z1 > B(xs)/a(x?)
and B > f(x9)/a(x2). However, we see that these sieves become much

slower if B grows more slowly than §(zs)/a(x2) as zo increases.

For the analytic algorithm we are interested in z, > 4 - 10**—which
corresponds to the current “record computation” of 7(x). The analysis above
shows we would need on the rough order of B = 10! bits of memory for one
of the classical sieves to operate efficiently near x5 = 4-10%2, but this amount
of fast computer memory is unavailable on contemporary machines.

In Chapter 5 we develop a new sieve—the “dissected sieve” —with much
lower overhead, for which §(z5) = xé/ % while a(z5) = 1. Thus, the segmented
version of this sieve operates efficiently provided both zo — 21 > x;/ % and

B>>x;/3.
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4.3 Enumeration by primality testing

In order to bound the memory requirements for the analytic algorithm to
O (z'/4+°(1) bits, Lagarias and Odlyzko [LO87] proposed to enumerate primes
without sieving by using the “APR” algorithm of Adleman, Pomerance and
Rumely [APR83].

The APR algorithm was the first to be developed of several primality tests
which test the primality of a single n using O(n) bits and O(n¢) arithmetic
operations. All of these primality tests can be thought of as generalizations
of probable primality tests such as the test that 2"~' = 1 (mod n). This
particular probable primality test requires O(Inn) arithmetic operations on
numbers of O(Inn) bits, and is satisfied by all odd prime n and by a relatively
sparse set of composite n.

Primality tests differ from probable primality tests in that the former
determine the primality of n with complete certainty, although at greater
computational cost. The APR algorithm has since been refined to give the
“APRCL” test [CL84]. Both tests use properties of cyclotomic number fields.
They are probabilistic algorithms which require O(n¢) bits and (at least if

Clnlnlnmy arithmetic

we assume the Extended Riemann Hypothesis) O((Inn)
operations to determine the primality of n, where C' > 0 is a constant.

In contrast, the “ECPP” primality test [AM93, Mor98| uses properties
of elliptic curves. This probabilistic algorithm determines the primality of n
using O(n¢) bits and a number of operations which is polynomial in In(n),
with an expected running time of O(In°n). (However, see the discussion of
Figure 4.1 on the following page.) Although the ECPP test requires less
time than the APRCL test as n — oo, current refinements of the APRCL
test require less time for n of reasonable magnitude (say In(n) < 10°, as
claimed in [Mih98, §6]).

A third kind of primality test is that of Agrawal, Kayal and Saxena [AKS02,
Bor03], which is a deterministic algorithm which runs in time which is poly-
nomial in In(n). However, in its current form the algorithm is of only theoret-
ical interest, since, in practice, its running time exceeds that of the APRCL
and ECPP tests.

To get a sense of the speed of a primality testing algorithm, we can
refer to Figure 4.1 on the next page, which presents timing data for an im-

plementation of the ECPP primality test, Version 6.4.5, available at http:
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logyo?
1.2

1. 95 205 2.1 215 2.2 2.25 198101082

Figure 4.1: Average time, ¢, in seconds, required by ECPP to test primality
of the 500 primes following z, with = = 10%,10'%, ... 108, A linear fit of
log,, (%) to log;, log,,(7) at these sample points gives t &~ 2.4-10~" (log;, n)**°.

//www.lix.polytechnique.fr/ “morain/Prgms/ecpp.english.html. The
timing data was collected on a 500 MHz SUN SPARCv9 processor. ECPP
uses trial division and probable primality testing to detect composite num-
bers relatively quickly. For this reason we restricted our test data to prime
numbers. Because this implementation of ECPP is designed to work slowly
with “small” numbers (e.g., numbers on the order of 10?*) we collected data
for primes in the range 10%...10%%°.

Note that log,(t) is well approximated by a linear expression of the form
log,,(t) ~ Ko+ k1logglogo(z). Recall that M(b) denotes the number of bit-
operations required to multiply two numbers of b bits. Without knowing the
specific multiplication algorithm used by ECPP, we can reasonably assume
that b < M(b) < b?. These bounds on M(b), and the complexity bound
of O(In°(n)) arithmetic operations for ECPP, lead us to expect 7 < x; < 8.
Since k1 =~ 3.45 in our fitted data it appears that the actual complexity of
ECPP is significantly less than the upper bound of O(In®(n)) operations—at
least for the range of numbers used in our benchmark.

Extrapolating the data presented in Figure 4.1 suggests that it would
take roughly 0.0138 seconds/prime (72.5 primes/second) for ECPP to test
primality near x = 10?4, In contrast, on the same processor it takes roughly

2.06 - 10™* seconds (4863 tests/second) to perform a probable primality test
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on a number near 10%*. (Our implementation of the probable primality test
used the GNU Multiple Precision Arithmetic Library (GMP), see Section 6.4
for further information on that library.)

By applying a primality test to each n € [z1,z5] we may enumerate
primes in arbitrarily short intervals [x1, 25| using O(z5(1+x9—x1)) operations
and O(z§) bits. We can enumerate primes more rapidly by reducing the
number of primality tests with a “partial sieve” —i.e., by first sieving out
those composite numbers with at least one divisor below ¥, for some fixed y
in the range 2 <y < ,/7y. By letting y and x5 — x; both grow with x5, with
Ty — 1 > y < a3 for some fixed ¥, 0 < ¥ < 1/2, we can reduce the number
of primality tests by a factor of ¥ 1n(zs). (To prove this, see Corollary 6.19
on page 138.)

In Chapter 6, beginning on page 125, we develop a “hybrid sieve” which
uses this technique of partial sieving, but which replaces strict primality
tests with faster probable primality tests. Provided z; — x; > /T3 this
sieve requires O(Inln(zy)(ze — 1)) operations to enumerate the primes in
the interval [z1, x2]. Also, we conjecture that this hybrid sieve requires only
O(a;;/ *) bits of memory. Although we have not proven this conjecture, we do

provide some arguments and computational evidence to support it.
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5 Enumerating Primes with a Dissected Sieve

5.1 Introduction

In this chapter we describe a sieve that operates efficiently while using no-
tably less memory than sieves previously described in the literature. We
make use of the terminology and analyses given in Section 4.2.

Our new sieving algorithm uses ideas from a recently developed sieve of
Atkin and Bernstein [AB02]. We modify their sieve by using ideas developed
by Voronoi for analyzing the Dirichlet divisor problem [Vor03]—arriving at a
“dissected sieve” that enumerates primes in the interval [z, 5] using O(xé/ %)
bits and O(z3 — 21 + z3/*) arithmetic operations on numbers of O(In z5) bits.
Thus, provided z, — 1 > 25/%, the dissected sieve requires O(1) arithmetic

operations per unit subinterval to sieve the interval [z1, 5]

5.2 The Atkin-Bernstein sieve

Atkin and Bernstein base their sieve on classical theorems that relate pri-
mality to properties of binary quadratic forms [AB02|. Theorem 5.1, below,
paraphrases their formulation. (It uses a different but equivalent condition
for case (a), and is stated so that there is no overlap between the congruence

classes considered.)

Theorem 5.1 Let n be a positive integer, ged(n,6) = 1, and

(a) ifn=1 (mod 4) let R = {(u1,u2) : us > us > 0} and let
Q(uy,uz) = u? + u;

(b) if n="7 (mod 12) let R = {(uq,uz2) : uy > 0,uy > 0} and let
Q(u1, ug) = 3u? + ui;

(¢) if n =11 (mod 12) let R = {(u1,u2) : uy > ug > 0} and let
Q(u1,us) = 3u? — u.

Let P(n) = [{(u1,us) € Z2NR: Q(uy,uy) =n}|. Then n is prime if and

only if n is squarefree and P(n) is odd.
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(a) nmod4=1,n=uf +uj (b) nmod 12 =7, n = 3u2 + u2
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(¢) nmod 12 = 11, n = 3u? — u?

Figure 5.1: The three cases of Theorem 5.1 and of Algorithms 5.1 and 5.2.
Darkened points lie within a “swath”, which is the set of points bounded by
the conditions z; < Q(u1,us2) < 9, (u1,us) € R, where Q(uq,uz) and R are
defined case-by-case in Theorem 5.1.
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For any n not divisible by 2 or 3, Theorem 5.1 gives a method for determin-
ing the primality of a single n in O(y/n) operations. Atkin and Bernstein
observed that Theorem 5.1 is much more efficient when used to determine
the primality of all n, x1 < n < x,, provided z, — ;1 and the available
memory are large enough. (Just as the O(y/n) method of trial division for
determining the primality of a single n leads to the much more efficient sieve
of Eratosthenes.) We present an unsegmented version of the Atkin-Bernstein
sieve in Algorithm 5.1, below.

The purpose of Algorithm 5.1 is to set the bits in a bit vector Pset
so that Pset[n] = 1 if and only if n is prime. In the following discussion
we let z; = Pset.xl, o = Pset.x2. After initializing Pset[n] to zero,
1 < n < x9, Algorithm 5.1 enumerates lattice points (u1, u2) € R bounded
between (or lying on) the conics Q(uy,us) = 21 and Q(uq,us) = 9, where
R and the matching @QQ(u1, us) range through the three cases of Theorem 5.1.
For each such point, the corresponding n is complemented when n is in
the congruence class appropriate for the quadratic form. Having computed
Pset[n] = P(n) mod 2, the algorithm makes a final pass to sieve out numbers
with square factors.

For a given quadratic form and associated congruence class, the lattice
points within the swath z1 < Q(u1, us) < xo, (u1, us) € R, are enumerated by
varying vy, and then for fixed u; incrementing u, along a vertical scanline,
choosing the starting and ending values of uy to avoid points outside the
swath. Enumerated points are illustrated in Figure 5.1 and correspond to the
darkened points within a swath. (The figure shows all lattice points within

a swath, not just those satisfying the corresponding congruence condition.)
Algorithm 5.1 (AtkinBernsteinSieve: Sieve of Atkin & Bernstein)

Given a preallocated bit vector Pset with Pset.x1 = 1z, Pset.x2 = o,
3 < x1 < o, this algorithm sets Pset[n| such that upon completion we have
Pset[n| =1 if and only if n is prime.
AtkinBernsteinSieve (Pset) {

T1 <Pset.xl; z9 +Pset.x2;

assert x1 e NAxzy € N; assert 3 <z <x9;

for (n < z1;n <z9;n++) Pset[n]+ 0;

// Case (a) n =1 (mod 4), handles n mod 12 € {1,5,9}.
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for (u; « [(:1:1/2)1/2] su? < xo;ur++)
for (ug + [maX(O, T — u%)l/g] cup < up && (n 4 u? 4+ ud) < 3o us++)
if(nmod4=1) Pset[n] <Pset[n]+ 1 mod 2;
// Case (b)) n =7 (mod 12).
for (u; + 1;3u? < zo;u1++)
for (up + [max(0, 1 — 3u?)V2]; (n « 3u? +ud) < zo;us++)
if(nmod12=17) Pset[n] +Pset[n]+ 1 mod 2;
// Case (¢) n =11 (mod 12).
for (u1 < [(21/3)Y/?];2u? < zo;u1++)
for (us + [max(0, 3u? — 22)'/2] ;us < w1 && (n « 3u? — u3) > z1;up++)
if (nmod 12 =11) Pset[n] <Pset[n]+ 1 mod 2;
// Sieve out numbers with square factors.
for (¢ < 3;¢° < zp;q++)
for (m « [z1/¢%] ;mg® < zo;m++)
Pset[mq?] + 0;}

The presentation of Algorithm 5.1 given here is quite different from that of
Atkin and Bernstein. They avoid enumerating points and allocating storage
for n divisible by small primes, and they use difference equations satisfied by
the quadratic forms to reduce the number of multiplications and square roots
required. However, both versions have the same basic complexity. (Atkin and
Bernstein also mention a modification which reduces the operation count of
their sieve by a factor of Inlnz,, at the cost of slightly increased memory

requirements. )

We can bound the operation count K for Algorithm 5.1 by
K<+ K+ Ks+ Ky

where Ky is the size of the interval [z, z5], Ko the number of lattice points
enumerated, 3 the number of scanlines (values of u;) enumerated, and K4
the number of operations performed by the squarefree sieve of lines 18-20.
Trivially, i = 1+25—x1, and it is easy to show that I3 < xéﬂ and that
Ki <29 —21 + xé/ 2 The number of lattice points, K4, is closely related to
the area of the swath they lie in—the number differing from the area by an
amount which is O(xé/ ?). For each of the three cases, the area of the swath
is O(zy — x1). We conclude that the number of lattice points, and the total
/2
)

operation count for Algorithm 5.1, is O(zs — x; + 23'°). The corresponding
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segmented sieve, working with subintervals of size bounded by B, requires
O((1 + z3/*/B) (x5 — x1) + x3/*) operations. Thus, the segmented version is
inefficient if B grows more slowly than x;/ 2.

We may refine the bound of O(xé/ %) given above for the difference be-
tween the area of a swath and the number of points within it. The problem
of estimating this difference is closely related to the circle problem, which
is concerned with estimating the difference between the number of lattice
points within a circle of radius /z and its area. By a result of van der
Corput [vdC20] it follows that for each case of Algorithm 5.1 the number
of points enumerated is O(zs — 71 + z3/*). Van der Corput’s result general-
izes earlier work of Voronoi on the Dirichlet divisor problem [Vor03] and of
Sierpinski on the circle problem [Sie74]. (See Section 5.9 on page 123 of this
dissertation, and the discussion following Theorem 2.4.2 in [Hux96].)

Van der Corput’s result suggests our dissected sieve. This sieve reduces
the number of scanlines needed to enumerate points, and thus reduces the
fixed overhead of O(:ré/ ?) operations for Algorithm 5.1 to O(xé/ %) operations
for our sieve. The key idea behind van der Corput’s result is to dissect the
region into pieces, and to estimate the number of points within each piece
by scanning roughly tangent to the boundary curve (see Figure 5.2 on the
following page for the case of the circle). In our dissected sieve we dissect the
swath into pieces, and then scan each piece in a direction roughly tangent to
the boundary curves. (See Figure 5.3 on the next page, and also Figure 5.4
on page 103.) We choose tangents with slopes defined by a Farey sequence
of order r, and then use corresponding “cuts” to separate the pieces. The
optimal choice for r is discussed in Section 5.5 beginning on page 106, where

we analyze the number of operations performed by the dissected sieve.

5.3 Notation and background material

Before giving details of the dissected sieve, we introduce some notation and
state, often without proof, some properties of quadratic forms and of Farey
sequences.

We use vector notation, with vectors denoted by lowercase boldface let-
ters, and matrices by uppercase boldface letters. The transpose of A is
written A’. Vectors are always treated as column vectors, although often

]"”. We often write

written as the transpose of a row vector as in “u = [u; ug



98 Chapter 5. Enumerating Primes with a Dissected Sieve

Transformation de la somme ' f(m, n)
sp

2. Prenons sur le cercle défini par 1’équation
mi+tnt =g :

k points Py, P,,..., Py, dont les coordonnées u; et » (i=1,2,..,k)
satisfont aux conditions

My > pp > o >pp >0 eb 0<1’1<1’2<...<W;.

Menons les tangentes au cercle aux points choisis et aux points P,
et P, situés sur les axes de coordonnées.

N
A

Py

1
14} [3] *VQa(u) =0
12+ PO 1
+ + + . V — 0
10, + + + + |:4:| QA( )
8t + + £l + + +
° + + + + + +
67 + + + + + + +
4+ + + + + + + + + +
+ + ° + + + + + + +
2+ 7 + + + ) + + + + + + +
+ + + + + ° + + + A * * * O V 0
2 4 6 T vl 1 A

Figure 5.3: A dissection for Qa(u) = 3u? — u3, using three cuts
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a matrix as two column vectors, as in “T := [T 7']".

Definition 5.2 Given a symmetric matrix A, we define the associated inner

product to be (u,v), = u'Av. O
Remark Our inner product is a symmetric bilinear form [Coh93, §2.5.1]. O

Definition 5.3 Given u = [u; up]' and a symmetric matrix A, define the

quadratic form Qa(u) as
Qa(u) = (u,u), = a1ui + apuius + azus,

where A and the coefficients a; are related by

A— [(1,1 a2/2]. n

CL2/2 as

Note: In many cases we will require that Q4 (u) be a diagonal form, i.e.,
that aq = 0.

Lemma 5.4 Given a symmetric matriz A, we have

(5.1) (u,v)4 = (v,u)s

(5.2) (au+ Bov,w)y = afu, w), + B{v, w)y,

(5.3) Qa(au) = a*Qa(u),

(5.4) Qa(u+v)=Qa(u)+Qa(v) + 2{u, v),,
(5.5) VQa(u) =2Au.

Definition 5.5 Given a quadratic form @ a(u) and vector 7, let the cutting
line for T, or T-cut, be the set of points w at which the gradient VQ4(u) is

perpendicular to T, i.e.,
{u: 7-VQa(u) =0} ={u: (r,u)y =0} ={u: k-u =0},

where Kk = AT. O

The 7-cut is a line passing through the origin. It depends on the quadratic
form Q 4(u) as well as on 7; the quadratic form should be clear from context.

For a given z, the curve Q4 (u) = x is parallel to 7 where the curve intersects
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the 7-cut. In other words, given a line k- u = 0 the vector 7 = A 'k is the
tangent vector at the intersection of k - u = 0 and the curve Qa(u) = z.

We define F(r), the Farey sequence of order r, to be the ascending se-
quence of reduced fractions 5/« between 0 and 1, with denominators bounded
by r: F(r):={f/a: ged(a, ) =1, 0< < a<r}

Lemma 5.6 (Properties of the Farey sequence)
If B]a < B'/d’ are consecutive elements of F(r), then

a+d >r (Theorem 30 in Hardy and Wright [HW79])
(5.6) aff —d'f=1 (Theorem 28 in Hardy and Wright,)

!
1
or, equivalently, é, — é = —. Also, forr > 2, we have
o a  ao

|F(r)| = %7‘2 +O(rlnr) (Theorem 330 in Hardy and Wright).

Lemma 5.7 (Recursion for the Farey sequence) Let 5y/, 51/, . ..

be the Farey sequence of order r. Then,

Bo=0, ag = 1; Bi=1, ay =r;
Brt2 = [(r + ar)/cks1] Br+1 — Bk;

Qo = L(T =+ ak)/ak—HJ Q1 — O.

Proof: See [Knu75, Exercises 1.3.2.18 and 1.3.2.19] and [HW79, §3.4]. N

5.4 Dissecting the Atkin-Bernstein sieve

Algorithm 5.2 on the facing page, and the component algorithms that follow,
give an unsegmented version of the dissected sieve. Although we give a dis-
section which appears to be applicable to general quadratic forms, it should
be noted that we have only analyzed and demonstrated the validity of the
following algorithms for the particular quadratic forms of Theorem 5.1. Also,
many decisions concerning details of the algorithms are rather arbitrary. We
discuss possible improvements in Section 5.7.

To dissect a swath, Algorithm 5.2 uses a sequence of tangent vectors
related to 8/a € F(r), of the form 7 = [—f «]’ in cases (a) and (b) of



5.4. Dissecting the Atkin-Bernstein sieve 101

Theorem 5.1, and of the form 7 = [ a]® in case (c¢), so that in all cases the
corresponding cutting lines run through the upper-right quadrant. In case (c)
we must terminate the sequence upon reaching a cut of slope 1, which occurs
when /o = 1/3, so we must choose r > 3. To dissect the swath over the
entire quadrant in case (b), we swap the roles of u; and uy and then perform
a similar dissection for Q4 (u) = u? + 3u3

We now give a formal definition of a “piece” of our dissection:

Definition 5.8 Given z; < 1z, quadratic form Qa(u), and consecutive
tangents 7 and 7', the corresponding piece is the set of points w with
21 < Qa(u) < x5 and with u between the 7-cut and the 7/-cut. We exclude

points on the 7-cut and include points on the 7'-cut. O

Remark In cases (a) and (c) of Theorem 5.1 the included points lying on
the very last 7'-cut, i.e., on the line us = uy, lie outside the corresponding
region R (defined Theorem 5.1). Similarly, in case (b) the points on the line
uy = 3u; are counted twice. Although this gives an incorrect calculation of
P(n) mod 2 for n corresponding to these points, the end result is still correct

because such n have square factors and are removed in the final pass. O

Algorithm 5.2 controls initialization, dissection into pieces, and calling
of the squarefree sieve routine; while Algorithm 5.3 (ScanPiece) scans a
single piece, and Algorithm 5.4 (SquareFreeSieve) does the final sieving to
eliminate square factors. We present each algorithm in turn. It should be

noted that these algorithms only use diagonal forms.

Algorithm 5.2 (DissectedSieve: Dissected sieve of order r)
Given r > 3 (the order of dissection), and a preallocated bit vector Pset with
Pset.x1 = x1, Pset.x2 = 1y, 3 < x1 < o, this algorithm sets Pset|[n| such

that upon completion we have Pset|[n] = 1 if and only if n is prime.

DissectedSieve (r,Pset) {
assert r > 3;
assert Pset.xl € NAPset.x2 € N;
assert 3 < Pset.xl < Pset.x2;
B+ 0; a+1; // Bla, B']d denote successive Farey fractions of order .
B+ 1; o+ r;
while (TRUE) {
// Case (a) n =1 (mod 4), handles n mod 12 € {1,5,9}.



9

10

11

12

13

14

15

16

17

18

19

20

21

22

102 Chapter 5. Enumerating Primes with a Dissected Sieve

ScanPiece (1,4,[39],[-8 a]*,[-B o/]',Pset);
// Case (b) n =7 (mod 12).
ScanPiece (7,12,[39],[-8 of",[-8" &]',Pset );
ScanPiece (7,12,[}9],[-8 o",[-8" &]',Pset );
if (38’ <d') { // Case (¢) n=11 (mod 12).
ScanPiece (11,12, [3 9],[8 of',[8 &/]*,Pset);}
if(f'=d') break;
// Advance to next Farey fraction of order r, B/c, using Lemma 5.7.
k< |(r+a)/d];
{8, B't < {8, kB' — B};
{a, &'} + {d, k' — a};
¥
// Sieve out square factors, using Algorithm 5.4, presented on page 105.

SquareFreeSieve (Pset);}

To scan a piece bounded by the cuts for tangents 7 and 7', Algorithm 5.3
on page 104 transforms to another coordinate system, or “v-space”. The
coordinates are related by u = Tv, with T := [T 7'], so the map v =T 'u
sends 7 to the unit horizontal vector and 7' to the unit vertical vector. By
the method used to construct 7 and 7' from Farey fractions, Equation (5.6)
implies det(T") = £1, so the mapping is area-preserving and gives a one-one
map between points in Z? (see Figure 5.4 on the next page).

Working in v-space, Algorithm 5.3 scans both horizontally and vertically,
shifting between the horizontal and vertical directions at the image of the

mediant-line, illustrated in Figure 5.4(a) and defined as follows:

Definition 5.9 Given a symmetric matrix A and vectors 7 and 7', the

associated mediant-line is the set of points w satisfying (7 + 7/, u), =0. O

Algorithm 5.3 computes Qa(u) using the identity Qa(u) = Qp(v) =

bﬂ)% + b2U1U2 + bgvg, with

(577  B:=TAT = [<T’T>A <T’T'>A] = [ b b2/2] .
T T4 (7,74 ba/2 b3

Writing [b b'] := B, it follows that the cutting lines and their mediant-line
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(", u), =0

(T+ 1 u), =0

(T,u), =0

(a) Original coordinate system (u-space), show-
ing the two cutting lines (solid) and the
mediant-line (dashed)

(b) Transformed coordinate system (v-space),
showing crossing points (circled) used by Al-
gorithm 5.3

Figure 5.4: A piece of a dissection, in two coordinate systems. (Note that
the horizontal axis and vertical axis are at different scales.)
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have images in v-space satisfying

b-v=0 for the 7-cut
b-v=0 for the 7'-cut

(b+b)-v=0 for the mediant-line.

These equations follow easily from the definitions above. For example, for

the 7-cut the following equations are equivalent:
T"Au=0 <= T'Al[T Tlv=0 < blv=0.

To bound the range of the scanlines, we use three crossing points il-
lustrated in Figure 5.4(b), and defined as scalar multiples of “normalized”

crossing points ¢, ¢/, ¢’ given by

(58) C= ‘det_l(T)| (alagbl)_1/2 [b2/2 — bl]t
(5.9) ¢ = |det™(T)| (arasbs)~/*[by —by/2]"
(5.10) ¢” = |det™ (T)| (aras(bs + bo + b3))™/*[(b2/2 + b3)  (—b1 — ba/2)]".

(We allow for the possibility that |det(T")| # 1 in future implementations
of Algorithm 5.3.) For diagonal forms @ a(w); which are the only type of
form used in Algorithm 5.2; ¢, ¢/, ¢” lie at intersections between the curve
@B(v) =1 and the images in v-space of the 7-cut, 7/-cut, and mediant-line,
respectively.

Given z € R, Equation (5.3) implies that /z ¢ lies at an intersection
between Qp(v) = x and the image of the 7-cut, and similarly for ¢/, "
Algorithm 5.3 sets xj, = x1 and Toyy = T2, O Ty = o and oy = X1, SO as
to make det(T")(Zous — Zin) > 0. This is necessary to make the point /z;i, ¢”
lie above the point |/Toy ¢ and to the left of |/Zou

Making use of the material above, Algorithm 5.3 proceeds in much the
same way as Algorithm 5.1, although finding the endpoints for a scanline
becomes more complicated because of the greater generality of the quadratics
to be solved, and because each end of the scanline may be bounded by either

a non-degenerate conic or by a line.
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Algorithm 5.3 (ScanPiece: Process lattice points within a piece)
This routine enumerates all uw € Z X Z lying within the piece corresponding
to T and T (in the sense of Definition 5.8 on page 101). Letting n = Q(u)
for each w enumerated, Pset[n] is complemented if n =k (mod m).
ScanPiece(k,m,A, 7,7 ,Pset) {
T+ [t T);
if (det(T) >0)
Tin < Pset.x1l; zy < Pset.x2;
else
Tin <Pset.x2; zoy <Pset.xl;
by« Qa(7); by« T"AT; b3 Qa(7'); B+ [bb21/2 bb23/2] ;
c+ ‘det_l(T)‘ (arasby))~2[by/2  —bi]t;
c « |det™H(T)| (arasbs)~'/2[bs  —by/2]t;
" « |det™(T)| (a1as(bs + by + b3))"Y2[(ba/2 + b3)  (—by — ba/2)]';
// Scan the half-piece below, or on, the mediant-line (horizontal scanlines).
for (v2 ¢ [[0 1] /Zous €] ;02 < [[0 1] @in €”]; vat+) {
d < max (0, b3v3 —4by(b3v2 —zin)); // d = discriminant of quadratic, or zero.
// Vstart € R, vstop € R give limits for the scanline.
Vstart < (—bovg + Vd)/(2b1) ;
d « bivZ — 4by (b3v3 — zout); assert d>0;
Vstop < min(—(2b3 + ba)va/(2b1 + ba), (—bove +Vd)/(2b1));
for (vi < 14 [Ustart] 3 v1 < Ustop; vi++) {
n QB ([v1 vo]);
if(nmodm =%k) Pset[n]<Pset[n]+1mod2;}}
// Scan the half-piece above, and off, the mediant-line (vertical scanlines).
for (vi « [[1 0] \/Zin "] 501 < |[1 0] \/Tow €] 5 v1t++) {
d « b3v? — 4b3(b1v? — zou); assert d>0;
Ustart < max(—(2by + by)v1 /(203 + by), (—bovy — V/d)/(2b3));
d < max(0, b2v? — 4b3(bov? — zin)) ;
Ustop ¢ (—bov1 — V/d)/(2b3);
for (vo < 14 |Ustart] ; V2 < Vstop; vo++) {
n < Qp([v1 v2]');
if(nmodm =k) Pset[n|<Pset[n]+1mod2;}}}

Algorithm 5.4 is similar to the corresponding code of lines 18-20 in Algo-

rithm 5.1, but uses “Dirichlet’s hyperbola method” [Ten95, Part I, §3.2] to

reduce the operation count from O(zy — 1 + :Lé/Q) to O(xg — 21 + QC;/?’).
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Algorithm 5.4 (SquareFreeSieve: Sieve out n with square factors)
This algorithm sets Pset[n] = 0 for each n of the form n = mg¢*, q¢ > 1.
SquareFreeSieve (Pset) {
z1 <Pset .xl; z9 <Pset.x2;
for (¢« 3; g<ay’iq++)
for (m « [z1/¢*]; mq® < z2; m++)
Pset[mg?] + 0;
for(m+1; m< x;/g’; m++)
for (g« max(3, [(z1/m)'/?]); mq® <zp; q++)
Pset[mg?] « 0;}

5.5 Choosing the order of dissection

We begin by presenting a lemma to be used several times in our analysis:

Lemma 5.10 Given xo > x1 > 0, we have

(5.11) VB~V < (52— o) [V
Proof: Noting that (zo/71)'/2 > 1, we have
z/? — 2l? = acgl/?(:vz — (zy)x1) %)) < x;1/2(x2 — I1). |

The heart of our analysis will be to put a bound on the operation count
for Algorithm 5.2 (DissectedSieve). Writing K for this count, we have

KKK+ Ky + K3+ Ky + Ks,

where /C; is the size of the interval [z, x5], Ko the number of lattice points
enumerated, [C3 the number of scanlines enumerated, K4 the number of pieces
enumerated, and K5 the number of operations required by Algorithm 5.4.

We proceed to bound each KCj, and then K. After completing the analysis,
we will be able to prove Theorem 5.20 on page 118, which treats the choice
of the order » which minimizes K.

Trivially, 1 = 1+ x5 — 1. We next bound the other components which
are independent of r, namely Ky and 5. To bound the number of lattice
points, Iy, we use material of van der Corput [vdC20]. Definition 5.11 and

Theorem 5.12 below paraphrase his results.
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Definition 5.11 We define a Voronoi-Pfeiffer region to be a subset of the
plane bounded by n lines, A\, (n > 0; v =1,2,...,n) and m convex! Jordan
curves o, (m > 0; p = 1,2,...,m), which together form a simple closed

curve satisfying the conditions A and B below:

A. Each line )\, is either vertical or has a rational slope. The equation of
the line may then be written uniquely as a,u; + b,us = ¢,, where a,,
b, € Z, ged(ay,b,) = 1, and where a,u; + byus < ¢, for all interior

points of the region which are sufficiently near any point on the line.

B. Each Jordan curve o, has an orientation and at every point P has a
unique tangent (that is, at each point P of the Jordan curve, exclud-
ing the endpoints, the tangents from the two sides coincide), where
the angle € that this tangent makes with the positive u;-axis varies
monotonically and continuously with P over ¢,. Furthermore, the co-
ordinates of P are well-defined differentiable? functions u;(6) and us(6)
of @ (in the interval traversed by #) with continuous derivatives du/d#,
dv/df. Consequently, the curve o, has a length s, which we regard as
positive when moving in the same sense as ¢ and negative when moving

in the opposite direction.

In condition B the angle 6 is only defined modulo 27, since negative values
and values > 27 are not excluded. However, it follows from the convexity
of o, that 6 ranges over an interval of length at most 27. Let the point P
vary continuously and monotonically over the convex Jordan curve o,. The
monotone and continuous variable 6 is then determined at each point of the
curve o, by the given sense of direction of the curve, when it is given at a
single point. Thus it suffices to fix the value of # at a single point, e.g., at an
endpoint. Because the coordinates of P are to be well defined functions of
we exclude the possibility of # remaining constant over an interval; thus 6 is
strictly increasing or strictly decreasing with P.

At each point P of o, we define the radius of curvature, o(6), as ds/df

(using the notation of case B). Since

ui(0) = o(f) cos(6),  u5(0) = o(6) sin(6)

LA Jordan curve (that is, a continuous, non-self-intersecting curve in the plane) is called
convex if it intersects every straight line in at most two distinct points.
2QOnly differentiable from one side at the endpoints.
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it follows that o(#) is continuous over the interval traversed by 6. O

Theorem 5.12 Let G be a Voronoi-Pfeiffer region parameterized by x > 0.
Let the associated variables m, n, a,, b, which occurred in Definition 5.11 be
bounded above, independent of x. Let the greatest radius of curvature along
any Jordan curve o, be O(y/x). Then the number of lattice points inside and

on the boundary of the region G is

el o1,

7@ = ; NCEY

In this formula J(G) denotes the area of G, 1, the length of the line \,, and
we let Y(c,) :==c¢, — |e,] —1/2.

Proof: See [vdC20]. [

Recall from page 101 that Algorithm 5.2 runs through four quadratic
forms. For each quadratic form, Qa(u), it enumerates lattice points u =
[u uo]’ satisfying z; < Qa(u) < xo which lie strictly above the horizontal
axis and below (or on) a line with a slope which we will denote as Mag4.
(Specifically, M4 = 1 when Q4(u) = u? + u3 and when Q4 (u) = 3u? — u;
My =3 when Qa(u) = 3u? +u2, and My = 1/3 when Q4 (u) = u? + 3u?.)

Theorem 5.14 on the facing page bounds the number of points enumerated
in this region. We begin by expressing the region in terms of a slightly simpler

region, Ga(z), defined in the following lemma.

Lemma 5.13 Let Q a(u) be one of the quadratic forms used in Algorithm 5.2,
and let M be the associated slope defined above. Writing u = [uy us]®, define

the associated region G o(x) to be
Ga(z) ={u: Qa(u) <z,0 <uy < Mau;}.

Then G a(x) is a Voronoi-Pfeiffer region parameterized by x, satisfying the
conditions of Theorem 5.12.

Proof: For fixed Qa(u) we see that G a(z) satisfies Definition 5.11. The
conditions of Theorem 5.12 are clearly satisfied, with the possible exception
of the bound on the radius of curvature. To show that the radius of curvature

is O(y/z), we parameterize the curve Qa(u) = x, writing u as a function of a
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parameter .. Writing v} for du,/da, etc., we use a standard formula [KK68,

Eq. 17.1-7] for the radius of curvature:

(uf +up)"

(5.12) o(a) =

Three of our four quadratic forms may be written as Q a(u) = au? + bu3,

where a > 0, b > 0. The corresponding curves may be parameterized as

uy = \/g cos(a)  up= \/% sin(a).

Applying (5.12) we find that
o(@) = Vabz (sin*(a)/a + cos2(04)/b)3/2 < V.

Our remaining quadratic form is Q4(u) = 3u? — u2, for which My = 1.
The segment of the curve Q a(u) = x with 0 < uy < u; may be parameterized

as

up = \/gcosh(oz) uy = +/zsinh(a) (0 < a<In(2)/2).

Again, applying (5.12), we find that o(a)) = —v/32(sinh*(«)/3+cosh?(a))?/?,
and thus o(a) < /z in the interval 0 < o < In(2)/2. [

Theorem 5.14 Let ICy denote the total number of lattice points enumerated

by Algorithm 5.2. Then Ky < 29 — 1 + :c;/g'.

Proof: Fixing Qa(u), we will first show that

‘{u €Z%: 11 <Qa(u) < 29,0 <uy < u1}|

<<x2—x1+ac§/3.

(5.13)

Given Qa(u), let N(z) denote the number of lattice points in the region
G a(z) of Lemma 5.13. Theorem 5.12 then implies that the number of lattice
points within G 4(z) is ¢12 + coy/Z +O(x/?), where the term ¢,z corresponds
to the area of the region, while the term ¢,/ corresponds to the length of the
linear boundaries. Furthermore, the number of points within the intersection
of G o(z) with the horizontal axis is O(y/z2 —/Z1) + O(1). We conclude that
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the left side of (5.13) is

N(w3) = N(z1-) + O(V#2 = V1) + O(1)
0

(5.14) (x5 — 21) + O(VT2 — \/71) + O(zy*) + 0(1).

Since Algorithm 5.2 requires xo > 3, Lemma 5.10 on page 106 implies
that \/7; — /71 < x3 — ;. Since x5 > 3, the O(xé/?’) term dominates the
O(1) term in (5.14), and the bound (5.13) follows. Finally, summing over all
four Qa(u) used in Algorithm 5.2, the result follows. [

We next show that Algorithm 5.4 (SquareFreeSieve) satisfies a similar
bound on its operation count.
Theorem 5.15 Let K5 denote the operation count for Algorithm 5.4. Then
Ks € 29 — 14 —|—a:1/3.

Proof: Referring to the listing of Algorithm 5.4 on page 106, we see that the

operation count may be broken into three components:

o(1) Constant overhead

(5.15) + Z Z 0(1) for lines 3-5

1/3
3<q<z, T <mq <z

(5.16) + Y Z o(1) for lines 6-8.

1/3
1<m<x; :c1<mq2<w2

The sum (5.15) is

« ¥

3<q<w

o
L« 1/3+(x2—x1)/ q_qu<<x2—a:1+x;/3.
2

Using Lemma 5.10, we find that the sum (5.16) is

1/3
Y/

2
< 2y + (\/:v_g—\/:v_l)/ m Y2 dm < 2* + (3 — 31)7, >
2

Totaling these bounds gives O(zy — 1 + xé/ 3) operations. [ |

Turning now to estimating operation counts that depend on our parame-
ter r, we begin by bounding K3, the number of scanlines enumerated by the

dissected sieve. Figure 5.5 shows the crossing points used in our analysis.
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Figure 5.5: Crossing points (circled) used for scanline analysis. (Note that
the horizontal axis and vertical axis are at different scales.)
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Recall that for each Q 4 (u) used in Algorithm 5.2 we run through tangents
parallelto 7 = [+ «aft, 7' = [£8 ']', where B/a < /o’ are consecutive
elements of the Farey sequence F(r), 8/a < Ra, and where R4 :=1/3 when

Qa(u) = 3u? —u3, and R4 := 1 in all other cases.

Using the definitions of b and ¢ (see Equations (5.7) and Equation (5.8),
starting on on page 102), and also using the fact that |det(T)| = 1, where

T = [t '], we find the alternative expressions:

¢ = (ama3Qa(T))™"/? <TI’T>A]
.17 (010:Q4(7)) [_ i
(5.18) c = (alagQA(r’))—1/2 [ <""a"','>A]
_<TaT>A
' = (ama T+ 7))7Y2 (T T+ 7
(5.19) (a1a3Qa(T + 7)) [—<T,T+T')A

In these expressions, note that zi,, oy depend on the sign of det(T), and
that, throughout our dissection, det(T') = sgn(aia3) = sgn(Qa(7)). Thus,

in expressions like (a;a3Q a(7))~1/? we take the root of a non-negative value.

Focusing on a single piece, we group the scanlines into two classes. The
first class consists of those horizontal scanlines between the central point
/T €' and the point /x;, ¢, and those vertical scanlines between ,/zi, ¢”

and /7, ¢'. We see that the number of such scanlines is
(5.20) O(1)+vzm ([0 1]("—e)+[1 0](c - ")).

The second class consists of those remaining scanlines (horizontal and verti-
cal) lying between the curves @p(v) = xi, and QB(v) = Zou- Recalling that

Qa(u) = (u,u),, we see that the number of such scanlines is

O(1) +sgn(aas)(vaz - va([1 0j¢ = [0 1)
(5:21) <1+ (VQa(r)/(@as) + VQa(™)/(@as)) (w2 — 21)/v/72,

by (5.17), (5.18), and by Lemma 5.10 on page 106.
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To bound the total number of scanlines we sum (5.20) and (5.21) over all
pieces. The number of summands is O(|F(r)|) < r?, by Lemma 5.6. Letting

(5.22) C_i(r;A) = > [0 1)(¢"—e)+[1 0](c' - "),
B/a€eF(r)
B/a<Ra
and
DAY — Qa([£f o] Qa([x8 o)
(5.23)  Cs(r; A) == ﬂ/;m \/ o +\/ P
B/a<Ra

We see by Equations (5.20) and (5.21) that the total number of scanlines,

over all pieces, is the sum over our four quadratic forms of
(5.24) O(r®) + 22 C_1(r; A) + Cs3(r; A)(z9 — 1) /+/T2-

In the following two lemmas we bound C_;(r; A) and then Cs(r; A).
Lemma 5.16 We have C_i(r; A) < 1/r.

Proof: Expanding a single term in (5.22), we have

0 1](c"—¢e)+[1 0](c - ")

<T’ T)A <T= T+ T,>A <T,’ T,>A <TI’ T+ TI)A

N Va105Q4(T)  0105Qa(T + 7') i Va105Qa(T)  /a105Qa(r + )

by Equations (5.17) through (5.19). Recalling that Algorithm 5.2 exclusively
uses diagonal forms, we find that this simplifies by the definition of Q) a(u)
as (u,u), and by the bilinearity of (,)4, to yield

__ Qalr) n RQalt)  Qalr+7)
VaazQa(r)  ara3Qa(t')  aiazQal(r + 1)

(5.25) = sgn(ayas) \/QA(T) N \/QA(T’) - \/M

a1a3 a1as a a3

Let F(p) := +/Qa([p 1]")/(a1a3). Equation (5.3) gives

VQa([£B al)/(aras) = aF (8/a),
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so, dropping the “sgn” factor from (5.25), we get

VQa(r)/(amas) +Qa(r)/(amraz) — VQa(r + 7')/(a103)
(5.26) :aF(é)+dF<%>—&wHﬂF(ﬁ+ﬁ>.

o a+ o

Taylor’s Theorem, and a simple computation, give

p 1 2 3
F(p+46)=F(p) + 0+ 0"+ 0(0°),
(p ) (p) a3F(p) 2a1a3F3 (p) ( )

while restricting p and p+0 to the closed interval [0, R 4] ensure the O-bound
is uniform. Letting p = 8/«, p' = 8'//, and p" = (8 + 8') /(o + '), gives
1

= -, — +
p=r ala+ o) p=r

1
o(a+a)’

and 0 < p < p" < p' < Ra. Expanding (5.26) about p” gives (uniformly)

aF(p) + o'F(p) = (e + ) F(p")

iy o L 1 1
B P azsF(p") ala+ o)  2a1a3F3(p") o?(a + o )?
! 1 1 1
A P
+o ( (") + asF(p") o (o + o) + 2a1a3F3(p") o (a + 0/)2)

—w+dW@%+0(@(a SR )

a+a)?  o(a+a)?

which is, after considerable cancellation and some simplification,

1 o o
5.27 =
(527) 2na; () (a?(a T T et a'>2>

o o'
0]
+ <a3(a +a')3 + o (o + a’)3>

1
5.28 _—
(5.28) ad(a+ o)

Summing (5.28), and then noting that oo + o' > r (Lemma 5.6) and
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collapsing the resulting telescoping sum, gives

1
" ' "
Z [0 1](6 —C)+[1 0](6 — C )<< Z m
B/acF(r) B/acF(r)
,3/04<RA ,3/01<RA
1 11 g B
< - =- 2_Z) =1 n
r Z ac! T Z (oz’ a) /T
B/a€F(r) B/a€F(r)

Lemma 5.17 We have Cs(r; A) < r3.

Proof: This bound is easy to obtain, since 0 < 8 < a < r gives

V(Qa([#8  a])/(aras) = v/ (a1(£6)? + a30?)/(aras) <

and since the number of summands is < |F(r)| < 2. |

Remarks Table 5.5 on page 117 shows values of C3(r; A) and of C_(r; A)
for our four quadratic forms and for several values of r. This table sug-
gests that Cs(r; A) ~ c3r® as r — oo, for some constant c3 depending on
A. We can prove this and calculate c3 explicitly by using Mobius inversion
on Formula (5.23) and estimating sums by integrals. For example, when
Qa(u) = u? + u3 we find that

~ 0.4651832. ...

w/4
2 / sec’(6) df = V2 + Intan(37/8)
0

EETE0)) 3¢(2)

Similarly, and confirming the trend apparent in Table 5.5, Alexandru
Zaharescu reports in a personal communication that one may show that
C_1(r; A) ~ c_yr~! for some c_; depending on A. Zaharescu has found that
when Qa(u) = u? + u2 we have c_; = 3v/2In(2)/7? ~ 0.2979627.... The
techniques used by Zaharescu were developed in the series of papers [BCZ01,
ABCZ01, BCZ00, BGZ03].

The values in Table 5.5 were computed using 64-bit floating point arith-
metic. The central column was found using Equation (5.25), which is badly
behaved numerically due to a large amount of cancellation. This accounts for
the irregular (or nonsensical) values in the central column when r = 100000.

For large r, the right hand columns in Table 5.5 give a more satisfactory
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estimate of C_;(r; A). These values were found using:

0—1(7“; A)
_ 9 sgn(aa;) 1
(5.29) =O0(1/r*) + ﬂ/;(r) 20103 F3((8 + B))/(a + o)) acd (o + o)
B/a<Ra

which follows from Equations (5.25) and (5.27). The O(1/r?) error term

comes from summing the error term in (5.27), which gives

o o 1 2
— 1/a?2+1/d
Z a3(a+a’)3+a'3(a—|—a’)3<<r3 Z (1/a”+1/a”)

B/a€F(r) B/acF(r)
B/a<RA
1 , 1 a+o 9
<<7“_3 E (1/oz+1/oz):r—3 E - < 1/r%. O

B/acF(r) B/acF(r)

We now conclude our analysis of the number of scanlines enumerated by
Algorithm 5.2.

Theorem 5.18 Let K3 denote the number of scanlines enumerated by Algo-
rithm 5.2. Then

(5.30) Ks < oyt (wo — 21) + 1% + 222 /1.

Proof: The result follows from Equation (5.24) on page 113 and from Lem-
mas 5.16 and 5.17. [

We can now bound the total number of operations performed by Algo-

rithm 5.2, as well as its memory requirements:

Theorem 5.19 Let K denote the number of operations performed by Algo-
rithm 5.2. Then

(5.31) K< 2+ 1+ 725 (@ — 21) + 17+ 5.

Furthermore, Algorithm 5.2 uses O(In(z2) + 2o — x1) bits of memory.

Proof: The bound on memory usage is obvious since the bit vector Pset
requires O(In(zy) +x2 —x1) bits of memory, while all other quantities require
O(In(z9)) bits.
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approx.
T r3C5(r) rC_1(r) rC_1(r)
10 0.49613153 0.29047367 0.29094833
100 0.46619902 0.29777181 0.29778011
1000 0.46570740 0.29785074 0.29785085
10000 0.46520914 0.29798864 0.29795720
100000 0.46518671 0.46601781 0.29796200
(@) Qa(u) = uf +u3
approx.
r r=3C5(r) rC () rC_(r)
10 0.45623773 0.11858174 0.11875558
100 0.42772269 0.12156555 0.12156814
1000 0.42727143 0.12159609 0.12159711
10000 0.42681429 0.14473659 0.12164052
100000 0.42679371 —136.21091493 0.12164248
(b) Qa(u) =uf + 3uj
approx.
r r=3C5(r) rC (r) rC_(r)
10 0.34323070 0.35529676 0.35480283
100 0.32365145 0.36466715 0.36467333
1000 0.32331229 0.36479088 0.36479094
10000 0.32296640 0.36875505 0.36492160
100000 0.32295083 —20.64236905 0.36492743
(¢) Qa(u) = 3ui +u}
approx.
r r=3Cs(r) rC () rC_1(r)
10 0.08143222 0.28392399 0.28455475
100 0.07372946 0.29753753 0.29751630
1000 0.07350154 0.29784492 0.29784457
10000 0.07342030 0.29323661 0.29795719
100000 0.07341681 29.09729592 0.29796199

(d) Qa(u) =3uf —u3

Table 5.1: Numerical approximations of sums related to scanline analysis.
“Approximate” values for r C_;(r) computed using the expansion (5.29)
on the facing page, which, for large r, is better behaved numerically than
the defining expression (5.22) on page 113. (See the remarks following
Lemma 5.17.)
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As noted at the beginning of this section, on page 106, K < Z?:l K,
where the quantities C; are also defined on page 106. We began by noting
that 1 = 14+ 29— x;. In Theorem 5.14 we showed that Ko < 29 — 2, +x§/3,
and in Theorem 5.15 we showed that K5 < x9 — 21 + x§/3. The number
of pieces enumerated by Algorithm 5.2, K4, satisfies Ky < |F(r)| < r?, by
Lemma 5.6. Theorem 5.18 established K3 < 3z, /% (z2 — z1) + r2 + 2/ /7,

and the result follows upon summing these bounds. [ |

We now determine the order of our Farey dissection, r, so that Algo-

rithm 5.2 performs O(zy — z; + :ré/‘q') operations.

Theorem 5.20 Let K denote the number of operations performed by Algo-
rithm 5.2. Provided r satisfies

aa (zo — 1)Vt if 3o — 21 > 2)°,
r =<
x;/ﬁ if xo — 1 K x;/?’,
1/3
we have K L z9 — 1 + x5 ".
Proof: In the first case, where xo — z; > xé/?’, we see that

(5.32) r << x;/4(ac2 —z) V< xém.

Using (5.32) in the bound (5.31), we find that

(5.33) K< xé/?’ +xo— 1 + xé/Q/r.
Also in this case, zo — 21 > xé/s implies x§/4 < (w3 — 21)%*, so we have
23 1 < 2b* (@9 — 1) /4 < 39 — 71, thus (5.33) gives K < 79 — 1 + 23/ °.

/

In the second case, where 5 — 11 < :1:; 3, the result follows from an easy

computation using r < z/® and the bound (5.31). [ |

Algorithm 5.5, below, presents the segmented version of the dissected
sieve, using subintervals of size bounded by B, and with the appropriate
value of r for each subinterval. By the bound (4.1) on page 86 we see that
the segmented version requires O((xe —x1)(1 + b/ /B) + b %) operations to

sieve [x1, Ta].
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Algorithm 5.5 (SegmentedDissectedSieve)
Enumerate the primes in the interval [x1,15], 3 < 1 < x9, working over
subintervals of size < B. We choose the “order of dissection”, r, to be

roughly optimal, as in the discussion above.

SegmentedDissectedSieve(B € N, z1,72) {
assert 3 <z < z9;
Pset < AllocateBitVector(B);
for (Pset.x1 < [z1];Pset.x1 < z9;Pset.x1 < Pset.x2+1) {
Pset.x2 < min(zo,Pset.x1 + B —1);
if (Pset.x2 —Pset.x1 < (Pset.x2)/?)
r + (Pset.x2)!/6;
else
r < (Pset.x2/(Pset.x2 — Pset.x1))!/*;
DissectedSieve (max(3,7),Pset);
for (n < Pset.x1;n < Pset.x2;n++)
if (Pset[n] =1) Enumerate(n);
}

return k;}

5.6 Implementation notes

We have tested Algorithm 5.5 (SegmentedDissectedSieve) with a C-language
implementation dsieve.

Although this is a rudimentary implementation, we made some optimiza-
tions. We take advantage of the fact that |det(T")| = 1. We reduce the size of
the numbers used in Algorithm 5.3 (ScanPiece) by working both in u-space
and in a coordinate system in which v-space is re-centered around the lattice
point given by rounding the components of \/Z; ¢” to their nearest integers.
We also get smaller numbers by computing Q) a(u) — z1, rather than Q4 (u).

Asin the Atkin-Bernstein paper, ScanPiece uses Equation (5.4) to reduce
the number of multiplications needed to update Qa(u) — z; as u varies.
It reduces the number of square root operations by testing the values of
Qa(u) — xq, (T,u),, and (7', u),, to decide whether a point lies within a
piece and when to move to the next scanline.

Algorithm 5.4 (SquareFreeSieve) was modified to sieve only the odd

numbers, and an additional parameter was added to control the point at
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which it switches from the loop of lines 3-5 to the loop of lines 6-8. The
optimal transition point was found experimentally to be near ¢ = 1.53:;/ STt
should be noted that the constant 1.5 is certainly dependent on the details
of our implementation, and is likely to be machine dependent.

We also found experimentally, for a wide range of values of 25 and B, that
setting r = |0.5 4 0.7(z2/B)"/*| approximately minimizes both the number
of scanlines and the operation count for Algorithm 5.2 (DissectedSieve).

Again, the constant 0.7 is both implementation and machine dependent.

5.7 Possible improvements

There are several ways in which dsieve could be improved. For simplicity
in coding and analysis, we used a single Farey dissection. It may be more
efficient to use three Farey dissections, each of an order chosen to optimize
the corresponding case in Theorem 5.1. Also, “Farey-like” sequences tailored
to each quadratic form may be more efficient—Sierpinski used a sequence of

the form

{,B/Ck: ng(Ck, /6) = ]_’ C¥2 +52 < ,,,2}

in his work on the circle problem [Sie74]. Furthermore, besides the three pairs
of congruence classes and quadratic forms used in Theorem 5.1, there are
other choices—see the paper of Atkin and Bernstein for one example [AB02].
How to determine an optimal set of quadratic forms seems to be an open
question.

Currently, dsieve enumerates too many points. Although it does not
allocate storage for even indices, it does enumerate all points within a swath,
including points yielding Qa(u) = 0 (mod 2). Reducing the number of
points enumerated, and avoiding the costly test “n mod m = k” used in
Algorithm 5.3 (ScanPiece) could improve the speed. However, this will
not reduce the number of scanlines enumerated—which may dominate the
operation count when x5 — x; is small enough in comparison with :vé/ 3, Also,
the value of T' (mod m) determines the periodic pattern of remainders taken
by n = Qa(u) (mod m) as u moves along a scanline. Since the congruence
class of T = [t 7’| changes irregularly between calls to ScanPiece, it may
be preferable to restrict T' to a limited set of congruence classes.

We have not carefully bounded the size of numbers used by Algorithms 5.2,
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5.3, and 5.4. The implementation dsieve works with a mixture of 32-bit and
64-bit integers, and 64-bit floating point numbers, and becomes unreliable

near 1018,

5.8 Timing data

Bernstein has implemented the Atkin-Bernstein sieve and posted it on the
web as a package of routines, “primegen 0.97”; see the paper by Atkin and
Bernstein for the URL [AB02]. Tables 5.2 and 5.3 show running times for
primegen and for dsieve. Both programs were compiled to run on SUN
SPARC computers, using the Gnu C-compiler (gcc) version 2.8.1, with com-
pilation options -03 -mcpu=v8. Times were measured on a 300 MHz Ul-
traSPARC 5/10 with 64 megabytes of “main” memory. In addition, it has
roughly 16 kilobytes of “level-1” cache memory—very fast compared to main
memory—and 512 kilobytes of somewhat slower level-2 cache. (The amounts
and speeds of cache were estimated using a C implementation of the mem1d

program given in [DS98, Appendix EJ.)

time (seconds)

z1 | B~2.05-10°| B=2% | B=2% | B=2%
107 20 27 73 156
1010 26 27 75 194
10! 49 30 72 204
1012 121 38 72 204
10'3 340 67 75 207
10 1035 157 96 215
10'° 3231 438 174 241
1016 11716 1527 491 362
107 74909 9142 2891 1313

Table 5.2: Time for Bernstein’s primegen program to count primes in the
interval [z1,z; + 10°], using bit vector of size B

The program primes.c provided in the primegen package was modified
to print the count of primes in an interval [z1, 2], and was run to count
primes in several intervals. These counts were compared with those found
by dsieve, and by a third program based on Robert Bennion’s “hopping
sieve” [Gal98]. Although Bernstein warns that the primegen code is not valid

past z = 10'°, all programs returned the same counts except for the interval
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[1017,10'7 + 10%), where primegen counts 10*7 4 111377247 = 7 - 1195228612
and 107 + 158245891 = 11 - 953462592 as primes.

The buffer size used by primegen (B, in our notation) is set at compile
time. Table 5.2 shows running times for primegen to count primes in the
interval [z1,29 = 1 + 109] for several combinations of B and z;. In Bern-
stein’s installation notes he suggests choosing B so that data used by the
inner loop of the algorithm resides in level-1 cache. (The inner loop treats
n = 60k + d for fixed d, where d takes one of the 16 values relatively prime to
60.) Thus, for our smallest value of B, we used B = 16 - 128128 ~ 2.05 - 108,

as Bernstein’s notes suggest for UltraSPARC computers.

To avoid having a runtime that became linear in z; for very large z;
(linear with a small O-constant), we modified the routine primegen_skipto

to use division instead of repeated subtraction in its calculation of a quotient.

As well as showing that primegen slows as /T, grows larger than B,
Table 5.2 illustrates that the operation count can be a poor predictor of the
running time on a computer with cache memory. Increasing B reduces the
operation count for sieving an interval, but also increases the chance that
memory references will miss the level-1 cache. This slowdown as the locality
of memory references decreases can be striking. On the computer used for
these tests, widely scattered references to “main” memory were measured to
be roughly 20 times slower than references to level-1 cache. An informative
discussion of cache memory is given in [DS98, Chapter 3]. A more scholarly
treatment may be found in [HP90, Chapter 5].

Table 5.3 shows running times for dsieve to count primes in the interval
(1,29 = 21 + 10%), using two different values of B, with B depending on
Zo. The entries with B =~ 10x§/ % illustrate the running time when using
a “small” amount of memory, while the entries with B =~ xé/ ? show the
running time with memory usage comparable to that needed for efficient
operation of previously known sieves. In both cases and for all values of x4,
after computing Pset it took roughly 18 seconds to count the primes (the
number of 1-bits in Pset). As expected, the running time does not greatly
increase as x; increases. The slowdown for larger x; is presumably due in
part to decreasing locality of reference, although more detailed statistics on

operation counts should be collected to better understand these results.
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le(]a:;/?5 Bzx%ﬂ
time (sec.) time (sec.)
x1 B r | sqfree | total B r | sqfree | total

109 | 1.26-10% | 14 51 301 4.47-10% | 10 25 | 333
100 | 2.22.10* | 19 55 402 1.05-10° | 13 23 | 329
101 | 4.66-10* | 27 57 403 3.18-10° | 17 22 | 334
102 | 1.00-10° | 39 59 407 1.00- 108 | 22 20 | 334
103 | 2.15-10° | 59 59 416 3.16-10° | 30 18 | 339
10 | 4.64-10° | 86 61 423 1.00- 107 | 39 20 | 414
10%5 | 1.00-10° | 125 61 428 3.16-107 | 52 20 | 453
10% | 2.15-10° | 183 61 437 1.00- 108 | 70 19 | 456
1017 | 4.64 - 10° | 268 63 465 3.16- 108 | 93 19 | 466

Table 5.3: Time for dsieve (our implementation of Algorithm 5.5) to count
primes in the interval [x;,z, = x; + 10°%], using a bit vector of size ~ B and
a Farey dissection of order r = 0.7(x/B)Y*. The “sqfree” column gives the
time required to sieve out square factors.

5.9 Miscellaneous remarks

The ideas of this chapter can also be used with Qa(u) = ujus, giving a dis-
sected “Eratosthenes-like”. sieve. This corresponds to the Dirichlet divisor
problem, which is concerned with estimating the number, D(zx), of lattice
points within the hyperbola ujus < x, u; > 0, ug > 0. Voronoi [Vor03] used

a dissection based on the Farey-like sequence

with ¢ = 2'/3, to show that D(z) = zIn(z) + (2y — 1)z + O(z'?Inz),
where v & 0.5772... is Euler’s constant. His result was an improvement of
an earlier result of Dirichlet, who used the “hyperbola method” to get an
error term of O(x'/?) instead of O(z'/3*€) for the approximation of D(z).
Voronoi’s result for the Dirichlet divisor problem suggests that a dissected
Eratosthenes-like sieve would require O(xé/ 7€) bits and O(z5(zy — 21 +$;/ )

operations to sieve the interval [z, z].

We can also use dissection to improve some factoring algorithms. For
example, trial division searches for a solution to n = Qa(u) = ujuy, and
dissection would reduce the operation count to O(n/3%¢). If 25 — z; > :1:;/3,

it should be possible to factor the numbers n in an interval 1 < n < x5 using
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an average of O(z§) operations per integer. Dissection would similarly reduce
the number of operations needed to solve the quadratics used by Derrick and
Emma Lehmer [LL74] for factoring.

Sierpiniski’s O(x'/®) bound for the circle problem, i.e., for the difference
between the number of lattice points within a circle of radius 1/z and its
area, has since been improved to an O(z3%/1%+¢) bound [Ivi85, §13.8], and it
is conjectured that the bound can be reduced to O(x/4*€). Ivic’s improved
bound was proven using analytic techniques, and it is not clear if these tech-
niques could be applied to making sieving more efficient. However, the result
does raise the intriguing possibility that some variation on the dissected sieve
might sieve efficiently over intervals [z, 73] of length 25 with C significantly
less than 1/3.
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6 Enumerating Primes with a Hybrid Sieve

6.1 Introduction: sieving using probable primes

In this chapter we give an algorithm which, provided zo — z; > /x5, enu-
merates primes in the interval [z, z5] using O(Inln(xs)(zo — 1)) arithmetic
operations on numbers of O(ln z,) bits.

We conjecture that the algorithm requires O(xé/ *) bits of memory, and
provide arguments to support this belief. As in the previous chapter, we will
make use of the terminology and analyses of Section 4.2.

Before presenting this “hybrid” method, we begin by introducing some

additional terminology:

Definition 6.1 We say n € N is y-unsieved if all £ | n, ¢ prime, satisfy
£ >y. We write U, for the set of y-unsieved numbers. Conversely, if there is

a prime £, £ | n, £ <y, then we say that n is y-sieved. O

Remarks Note that the number 1 is y-unsieved for any value of y.

The y-unsieved numbers are those numbers which remain after sieving
out all multiples of primes ¢ < y. The term y-unsieved is analogous to the
term y-smooth for numbers free of “large” prime factors. The latter term is
quite standard [Rie94, Chapter 5], while the terms y-unsieved (for numbers
free of “small” prime factors) and y-sieved are not standard.

The distributions of both y-smooth and y-unsieved numbers have been an-
alyzed using related techniques [Ten95, Part III, Chapters 5 and 6]. Much of
the work on the distribution of y-unsieved numbers dates to Buchstab [Buc37],
and is related to the Meissel-Lehmer algorithm for computing 7(z). (A brief
historical summary of this work may be found in the end-notes to Chapter 2
of the book Sieve Methods by Halberstam and Richert [HR74, Note 2.1].) O

Definition 6.2 We say that n € N is a Fermat probable prime to the base 2,
or, more succinctly, that “n is a probable prime”, when 2" ! =1 (mod n).
We say that n is a pseudoprime if it is a composite probable prime. We write
prp(n) or psp(n) to abbreviate the statements that n is a probable prime or

pseudoprime, respectively. O
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Remarks Some sources use the term pseudoprime to mean what we call a
probable prime, and other sources define n to be a pseudoprime to the base
a if n is a composite satisfying " = a (mod n), but the terminology given
here has become quite standard [PSW80], [Rie94, Chapter 4].

A prp-test, i.e., a test of 2"~ = 1 (mod n), requires O(Inn) arithmetic
operations, using numbers of O(Inn) bits [Rie94, Chapter 4]. Fermat’s “little
theorem” states that if p is prime and ged(p,a) = 1 then a?~' =1 (mod p),
so we see that odd primes are probable primes. Conversely, pseudoprimes
(composite probable primes) are quite rare [Pom81], so a prp-test serves to

eliminate most composite numbers from consideration as possible primes. [

In rough outline, our hybrid sieve works as follows. During an initial
phase we generate a set C C [z1,x9] of “candidate” pseudoprimes which
includes all y-unsieved pseudoprimes in the interval [z;, z5]. (The set C may
also include “spurious” candidates, i.e., y-sieved pseudoprimes.) During the
second, main phase, we use a sieve to enumerate all y-unsieved n € [z, 23],
and then enumerate n as a prime if it satisfies the two conditions prp(n) and
n ¢ C. This works if y < x4, since the primes in [z, z5] coincide with those
y-unsieved n € [z1, z5] that satisfy prp(n) and n ¢ C. (The restriction y < x;
is a minor technical point—required since primes p < y are y-sieved.) For

/* seems best for

reasons discussed in the following sections a choice of y > acé
this method.

Eliminating y-sieved numbers lets us reduce the number of (expensive)
prp-tests. If we have B bits of memory available for sieving, then sieving is
efficient provided we choose y < B, roughly speaking. Although a number
n may be y-unsieved (free of small prime factors) and still satisfy psp(n),
the condition that n ¢ C prevents n from being mistaken as a prime. The
low memory requirements of this hybrid approach depends on the unproven

/

observation that, at least for y > x; 4, the set C has few entries.

6.2 Initial phase: finding unsieved pseudoprimes

Turning to the problem of finding our set C, we begin by introducing some
further notation. Throughout this section w(n) denotes the number of dis-
tinct prime divisors of n and Q(n) denotes the total number of prime divisors
of n. For example, w(12) = 2 and Q(12) = 3. We write v(¢) for the order of
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2 in the multiplicative group of integers modulo /.

To find the set C we use Algorithm 6.1 (CandidatePSPs), below. This
algorithm is roughly based on a sieving technique described by Richard
Pinch [Pin00, §7]. This technique depends on the fact that if psp(n), and
¢ | n, then n = £ (mod £v(f)). (Proofs of this fact are given in [Pin00,
Proposition 1] and [PSW80, Proposition 3].)

Algorithm 6.1 (CandidatePSPs: Find y-unsieved pseudoprimes)
Given y > 0 and 1 < x1 < x9, this routine returns a set C of pseudoprimes
satisfying [z1, o) NU, C C C |21, 2]
CandidatePSPs(y,z1,z2) {

assert y>0; assert 1<z <z9;

C« {};

for (Le[ly+1],/z2]NP)

for (n«+ £+ Lv(f) max(1, [(z1 — £)/(lv(£))]);n < zo;n < n+Lv(L))
if (2" 1 modn=1)
C+ CU{n};

return C;}

Before analyzing the storage needs and operation count for Algorithm 6.1,

in Theorem 6.3 we confirm that the set C serves our needs:

Theorem 6.3 Let C be the set returned by CandidatePSPs(y,z1,22). Pro-
vided 0 < y < 21 < x9 and given n € NN [z1,xs], we have n is an odd prime

if and only if n € U, prp(n), and n & C.

Proof: First assume that n is an odd prime. Then, by Fermat’s little theo-
rem, prp(n). Since n is prime and y < z; we have n € U,. Note that n € C
has the form n = ¢(1+kv(¢)), k > 0, so n € C is composite. Since we assume
n is prime, we have n ¢ C.

Conversely, if n = 2 then prp(n) is false. If n is composite, n € U, and
prp(n), then there is a prime £ | n withy < £ < /n <, /zyandsonecC. N

Our cost analysis of Algorithm 6.1 is based on the costs of computing
key values enumerated during its execution. These are: the primes /; the
factorizations of ¢ — 1; the values v(¢); the values 2"~! mod n; and the set

C (which is “enumerated” as elements are placed into it). We are interested
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in the factorizations of £ — 1 since, as explained below, they are used in the
computation of v(¥).
With this in mind, in our analysis of Algorithm 6.1 we break the storage

requirement B and operation count K into five parts:

B =B, + By + By + By + Bs,
K=K +Ky+Ks+ Ky + Ks,

where By, K; are the cost of enumerating primes £, y < ¢ < /Zy; Ba, Ko
the cost of finding the factors of all £ — 1; B3, K3 the cost of computing all
v(€); By, K4 the cost of computing all values of 2"~! mod n; and Bs, K5 the
total cost of placing elements into C. Although it will not influence our cost
analysis, note that the same value may be enumerated several times. For
example, if n has prime factors ¢, {5, with y < {; < £, < /75, then that
value of n will be enumerated more than once by the for loop at line 5.

The primes £ may be enumerated using thesieve of Eratosthenes, requiring
B, = O(mé/ *) bits and K; = O(In In(z2),/2) operations. The complete prime
factorizations of all m, y < m < /7, + 1 can also be found using a sieve,
using O(xé/ %) bits and O(In In(z,),/Z2) operations [Gal98, §6]. Since this
includes the factorizations of m = £ — 1, this gives By = O(ac;/ *) bits and
ICo = O(Inln(z2)\/2).

Given the factorization of £—1, Algorithm 1.4.3 from [Coh93] will find v(¢)
using O(¢¢) bits and O(In(£)Q(£ — 1)) operations. Thus B; = O(z5). We now
turn to analyzing K3, the cost of computing all v(¢) given the factorizations
of /—1. Our analysis of K3 culminates in Theorem 6.6 on page 130. The key
tool in our analysis is Theorem 6.5, below, which bounds the average value

of Q(¢ — 1) by O(Inln(z)), when the average is taken over all primes ¢ < z.

Lemma 6.4 Let F(x Z 1. Then F(z) <

—, uniformly for x > 2.
pm<z In ( )

Proof: The prime number theorem implies that 7(z) < z/In(z) uniformly
for x > 2. Thus

[In(z)/ In(p

Z Z 1<<Zln

p<z p<VT f T<p<z
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Theorem 6.5 Z QU —1) < zlnln(z)/In(z) as z — oo.
<z

Proof: In the body of this proof let 7(z; ¢, a) denote the counting function
for primes £ = a mod ¢. Beginning with the definition of 2(n), we have

Sar-n=Y Y 1=% Y 1= a1

<z <z p™ pm<x <z p<lx
p™e—1 £=1 mod p™

= Sl +S2a

where S := Z m(x;p™, 1), and Sy := Z m(x; p™, 1).
pm<z/2 z/2<pm <z
To bound S; we note that 7(z;p™,1) < 1 when p™ > z/2, so, using

Lemma 6.4,
(6.1) Sy = Z m(x;p™, 1) < Z 1 < z/In(x).
z/2<pm<x p<z

To bound S;, we use the Brun-Titchmarsh Theorem (see [MV73] or [Ten95,
Part I, §4.6, Theorem 9]), which can be stated as

X

(62) 7r(ac;q, CL) < m

uniformly for z/q > 2, where ¢(q) denotes Euler’s totient function:

pl@):= Y L

1<m<gq

ged(m,g)=1

Since ¢(p™) = (p — 1)p™! > p™, the bound (6.2) gives

(6.3) S = Z m(x;p™ 1) < x Z m

pm<x/2 pm<z/2

Rewriting the sum in the right side of (6.3) as a Stieltjes integral, in terms
of the F(x) of Lemma 6.4, gives

1 [Pt dF(u)
(6.4) > o n(z/p™) /2 uln(z/u)’

pm<z/2

We then integrate by parts, noting that F'(u) = 0 for v < 2, while for u > 2
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we have F(u) < u/In(u). Thus, (6.4) is

z/2+ z/2 d 1
- / Fl)L— _qu
2

F(w) o
o duuln(z/u)

uln(z/u)

z/2 U
(6.5) — 0(1/In(z)) + /2 - f; ((x)/u) (1 _ ln(; /u)) du.

Again using F'(u) < u/In(u), we find that the integral in (6.5) is

/2 F(u) . z/2 1 .
<</2 u21n(a:/u)d <</2 uln(u)ln(x/u)d '

Setting u = €” and changing variables, this is

/ln(z/2) 1 p 1 /ln(m/Q) 1 N 1 p
= T = - ——— aTt
In(2) 7(In(z) — 1) In(z) In2 7 In(z) — 7

ln?x) (Inln(x/2) ~ Inln(2)) < Inln(z)/In(z).

Substituting this bound for the integral in (6.5), and then working back to
the right side of (6.3), we find that S; < zlnln(z)/In(x). This dominates
our bound (6.1) for Sy, so the result follows. [

Theorem 6.6 Let I3 denote the number of operations required to enumerate
all values of v({), totaled over all £ € P, y < £ < /Ty, and assuming that
the factorization of each £ — 1 is precomputed. Then K3 < Inln(zg),/Z2,

uniformly for zo > 3.

Proof: As noted above, given the factorization of /—1, v(¢) can be computed
using O(In(¢)§2(¢ — 1)) operations. Thus, by Theorem 6.5, we find that

Ks< > W@Q-1) <) Y Qf—1) < Inln(zs) /7.

y<L<(/m2 < /x2
This holds uniformly since Inln(z) is bounded away from 0 for z > 3. |

Throughout the remainder of this section we let N denote the number
of times that line 6 of Algorithm 6.1 is executed. In other words, N is the
number of prp-tests performed by the algorithm and N is also the number
of enumerations of n, with the convention that repeated enumerations of the

same value are treated as distinct. Much of our analysis in the remainder



6.2. Initial phase: finding unsieved pseudoprimes 131

of this section depends on bounds and estimates for IV, as given below in

Theorem 6.11 and as discussed in Conjecture 6.16. Here, the key tool in our

analysis is Lemma 6.9, below, which bounds E )
v
>y

Lemma 6.7 Let S(z) := Z 1/v(€). Then S(z) < z/? asz — oo .
<z

The following proof of Lemma 6.7 is due to Gergely Harcos (personal

communication).

Proof: Recall that w(n) denotes the number of distinct prime divisors of n,
and note that w(n) < In(n). For any z > 0 we have

s -0 (75 -1) < X Lo

<z <z
=2 2 1=2 2 1= > !
<z m<z <z m<z m<z ({<z
v(l)|m £2m—1 £|2m—1
(6.6) < Zw(Qm— 1) <« Zm<<z2.
m<z m<z

It follows that S(z) < z + x/z. Setting z = y/x concludes the proof. [
Conjecture 6.8 In the notation of Lemma 6.7, S(z) = 2°Y as 2 — oc.

Supporting Arguments: We know that, “on average”, w(n) = Inln(n) [HWT79,
Theorem 430]. Provided that numbers of the form 2™ — 1 factor like “av-
erage” numbers, we would expect, “on average”, that w(2™ — 1) < In(m).

Thus, picking up the proof of Lemma 6.7 at (6.6), we conjecture that, for

z>0
x)—xSZw(Q <<Zln ) < zln(z).
m<z m<z
Setting z = « then gives S(z) < In(x) = z°").

The following argument—which seems to be better supported by some
cursory computational tests—suggests that S(z) may be somewhat larger,
but still S(z) = x°.

Note that 2™ — 1 =[], ¥a(2), where ¢4(w) denotes the dth cyclotomic
polynomial. Now, the number of divisors of m has average order In(m). This

suggests that if ¢4(2) factors like an “average” number then we might expect
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w(2™ — 1) to have average order -, Inln(¢q(2)) < In*(m). Arguing as

before, this implies

:U)—:USZL«)(? <<Zln ) < zIn(2),

m<z m<z

and setting z = z gives S(z) < In’(z) = z°0. [

Lemma 6.9 Let T(y . Then T(y) < y~'/? as y — oo.

EV

Proof: Writing the sum for 7T'(y) as a Stieltjes integral, using integration by
parts and applying Lemma 6.7 gives

g % - /yoo LaS(@) = =Sy + /yoo S(z)/a?de <y V2. W

+ X

Conjecture 6.10 T(y) < y~ 't g5 y — co.

Supporting argument: Provided Conjecture 6.8 holds, the result would follow

by the same argument as used in the proof of Lemma 6.9. |

Lemma 6.11 Let N denote the number of enumerations of n in Algorithm 6.1,
where repeated occurrences of the same value are treated as distinct enumer-

ations. Then

6.7 N <y (2, - VT2

( ) <y (x2 331) + 111(33‘2)

Proof: Let N; denote the number of values of n enumerated for a fixed value
of £. The conditions of the for loop in line 5 ensure that n = ¢ (mod £ v(¥)),
z1 < n <z Thus Ny < 14 (22 —21)/(£v(£)). Summing over ¢, applying

the prime number theorem and Lemma 6.9, gives

Z Ny € 7(\/T2)+(zo—11 Z—<<y 1/2($2—I1) VT2

y<l< /T3 ln(@)

Conjecture 6.12 N < y~'+°()(z, — z,).
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lo N
i 0510( )

9.5/

o1 N o1 o o1 ©

12 14 16 18 20 22 24 1980(@)

Figure 6.1: Number of prp-tests, IV, required by Algorithm 6.1—compared
to the approximation log;, (V) & 0.25log;,(z) + 0.375

Supporting arguments: Recall, if psp(n), and £ | n then n = ¢ (mod £v(¥)).
As in our proof of Theorem 6.11, let

Ne:=[{n€Z: z1<n<mzy,n=~ (modLv(l))}|.

We have shown that Ny < 1+ (zg —x1)/(£v(£)). However, for fixed ¢ the
probability that a “random” n satisfies n = ¢ (mod £v(¢)) is 1/(¢v(L)).
Thus, on average over £ > y, we expect Ny = (x9 — x1)/(£v(£)). This belief
and Conjecture 6.10 suggest that

— 1 —1+o0(1)
N = Z Ng<<($2-$1)2m<<y (.Tg—l'l).
y<£€<(T2 >y

To further test our conjecture, Figure 6.1, and also Table 6.1 on page 135,
present data showing the growth of N as a function of a parameter z, with
r1 = 2 — 5000/, 5 = 2+ 5000,/z, and y = x'/%. Although Conjecture 6.12
is stated as giving an upper bound on N, the argument immediately above
leads us to expect N = z'/*°() and this expectation seems to be well
supported by the data. [ |

We now turn to bounding K, and Ks, i.e., the number of operations
required in Algorithm 6.1 to compute all values of 2"~! mod n and to place

elements into the set C.
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Theorem 6.13 Let K4 denote the number of operations required in Algo-
rithm 6.1 to compute all values of 2"~! mod n, and let K5 denote the number

of operations required to place elements into the set C. Then

(68) Ki <y~ In(@s) (22 — 21) + /T2, and
(6.9) Ks <y~ In(z2) (22 — 1) + /.

Furthermore, if Conjecture 6.12 holds then

(6.10) Ky <y W In(zy) (zo — 21), and
(6.11) Ks <y~ 140 In(zy) (22 — 7).

Proof: The algorithm computes NN instances of 2* ! mod n. For fixed n > 1,
2"~1 mod n can be computed in O(In(n)) operations. The bound (6.8) then
follows from (6.7), since n < xs.

Assuming C is implemented as a balanced tree, an element may be placed
into C using O(In(2 + |C|)) operations [Knu73, §6.2.3]. The number of ele-
ments placed into C is bounded by N, while, trivially, |C| < x5. Thus, the
bound (6.9) follows from (6.7).

The bounds (6.10) and (6.11) follow similarly under Conjecture 6.12. W

We now finish our cost analysis that we began just after the presentation

of Theorem 6.3 on page 127.

Theorem 6.14 Algorithm 6.1 requires B = O(:Lé/4 + In(z,) [C|) bits and
K = O(y 2 In(z,)(z2 — 1) + Inln(z2)\/Z2) operations. Furthermore, if Con-
jecture 6.12 holds then K = O (y="+*M In(zs)(z2 — 21) + Inln(z2)/Z3).

Proof: To summarize our analysis of the previous several pages, recall that
B= Z?Zl B;, K = Z?Zl IC;, where the meanings of B, and KC; are explained
on page 128.

In the remarks preceding Lemma 6.4, we noted that

B, < z3/*, K1 < Inln(z2)\/7>
By < CU;/4, Ko < Inln(z9)+/72,

and that B3 = O(z§).
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In Theorem 6.6 we showed that K3 < Inln(z3),/Z3, while Theorem 6.13
above gives our bounds on K, and K. Clearly B, = O(z5).

Again assuming that C is implemented as a balanced tree, we have B; <
In(xs) |C|, and the unconditional result follows.

Finally, the result conditional upon Conjecture 6.12 follows from replacing
the bounds (6.8) and (6.9) with the bounds (6.10) and (6.11). [ ]

cnYy
x time N |Cust| | |C| | C y
10*2 11 3.1-10% | 4.8-10° | 538 | 411 0.52
10 |1 1.2-10% | 1.6-107 | 322 | 266 0.56
10% || 4.6-10% | 5.1-107 | 218 | 187 0.64
10*® || 2.2-10* | 1.9-108 127 | 119 0.82

1020 e 6.8 - 108 94| 93 0.82
10%2 e 1.9-10° 68 | 66 0.85
10% e 5.9-10° 45 | 45 0.96

Table 6.1: Results from Algorithm 6.1 (CandidatePSPs). x1 = = — 5000+/z,
Ty = x + 5000/, y = x/*. The runtime, in seconds, is given for z < 10'®,
Times are not given for > 10*® since those computations were run in parallel
on several machines of varying speeds. The variable N denotes the number
of prp-tests performed in line 6 of the algorithm. Further details are given
in Remark 6.15.

Remark 6.15 Table 6.1 shows some results from a C implementation of
Algorithm 6.1 (CandidatePSPs). For various values of x we used y = z'/*
and took intervals of width 10*y/z centered around z.

For larger values of x the computation was performed on several comput-
ers running in parallel—after splitting the range y < £ <,/ into segments
which were allocated among the computers. The computation for z = 10?4
made use of the Condor system [BL99, CON] for “high throughput comput-
ing” on a distributed system of computers. This computation took roughly
four days, running on roughly 30 SUN UltraSPARC workstations with pro-
cessor speeds ranging from 300 to 500 MHz.

Table 6.1 shows both the size of C and also the size of Cyg, i.e., the
list of all candidates enumerated by Algorithm 6.1 with duplications. The
smallness of C is striking. For example, in the interval of width 10'¢ about

10?* we found only 45 candidates. Interestingly, for this choice of parameters,
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we see that as z increases |C| decreases. However, it is far from certain that
this trend would continue for even larger values of z.

The rightmost column of the table shows the density of y-unsieved can-
didates, |C NU,|/|C|. (The remaining candidates, those which are not mem-
bers of C N U, are “spurious”, y-sieved candidates.) We see that—for this
choice of parameters—the density of y-unsieved candidates increases as x

increases. O

The data presented in Table 6.1 suggests that |C| is very small when
y > zi/* and 75 — 71 < \/Z2. Although we cannot prove that |C| is small,
we will show in Theorem 6.20 on page 139 that the plausible, and relatively
weak, conditions of Conjecture 6.16, below, suffice to ensure that the hybrid

. . . : 1/4y 1.
sieve can efficiently enumerate primes near z, using O(xz/ ) bits.

Conjecture 6.16 Provided y > xé/4 and o — 1 > /To we conjecture that
C| < (x2 — z1)z5 "/ In(,).

Supporting Argument: With y > x;/4, Conjecture 6.12 on page 132 suggests
that N < (zy — xl)x;1/4+0(1), and, trivially, |C| < N. However, N counts
composite n which satisfy n = ¢ (mod £v(£)) for some £ > y. For n to be in
C it is necessary for n to also satisfy 2°! =1 (mod n), which we believe to
be a much stronger condition. Thus, when bounding |C| it seems reasonable
to drop both the xg(l) factor in our conjectured bound on N and also an
additional factor of In(z2). |

6.3 Main phase: the hybrid sieve

Having analyzed the first phase of the hybrid sieve, which finds the candi-
date pseudoprimes in an interval, we will now complete our treatment of the
hybrid sieve—following the outline given in Section 6.1. We begin by pre-
senting a simple variation on thesieve of Eratosthenes which finds y-unsieved
numbers. This exposition uses some of the terminology and analyses given

in Section 4.2.

Algorithm 6.2 (PartialSieve: Find y-unsieved numbers)
Given y > 0 and given a preallocated bit vector Uset with Uset.xl = xq,
Uset.x2 = o, 1 < x1 < 1z, this algorithm sets Uset[n| such that upon com-

pletion we have Uset[n] = 1 if and only if n is y-unsieved, i.e., if and only if
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n € Uy.
PartialSieve(y,Uset) {
z1 < Uset.x1; x9 ¢ Uset.x2;
assert r1 e NAzy € N; assert 1<z <z9;
// Initialize Uset to have all 1 entries.
for (n < z1;n <z9;n++) Usetln]+ 1;
// Now zero out all entries at multiples of “small” primes.
for (L€ [2,y|NP)
for (m + [z1/4]; m <z9; m++)
Uset [ml] «+ 0;

Theorem 6.17 Given 1 < x1 < xo, Algorithm 6.2 enumerates the y-unsieved
numbers in the interval [z, zo] using O(Inln(y)(z2 — 1 +y)) operations and
O(z2 — o1 + /Y + In(x2)) bits—uniformly for y > 3.

Proof: We require y > 3 to ensure Inln(y) > 0. Using the segmented sieve
of Eratosthenes we can enumerate the primes ¢ < y using O(Inln(y)y) op-
erations and O(,/y) bits. We require O(In(z3) 4+ x2 — 21) bits of storage for
the bit vector Uset and O(In(zs)) bits for the other quantities used.

It takes O(1 + z3 — x1) operations to initialize Uset. This is dominated

by the number of operations needed to cross out y-sieved numbers, which is

1 — 1
<X (MR ) <t -a) Y g+ 70)

<y <y
< Inln(y)(zz — 1) + y/ In(y).
Summing these bounds on bits and operations, the result follows. |

To analyze the density of y-unsieved numbers, we will use Corollary 6.19,
below, which uses the following theorem from Sieve Methods [HR74]:

Theorem 6.18 (The case K = 2 of Theorem 3.6 in [HR74])

Given 1 < xo, and z > €5, then

To — 21+ 1 22

.12 , <n< < 4 .
(6.12) HnelU,: 1 <n <z} < In(2) + 8ln2(z)
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Corollary 6.19 Given C > 0 and 2 < y < C(zy — 1), the number of

y-unsieved numbers in the interval [z1, x5 is Oc((z2 — 1)/ In(y)).

Proof: The bound (6.12), and 2 < y < C(z9 — 1), imply

2
To — X1 V4
. : <n< =
(6 13) |{n c Z/{z 1SN s -TQ}‘ OC ( lIl(Z) + 1n2(z)>

uniformly for z > V2. Note that for any z <y, U, C U,. Setting z = /y
and applying (6.13), we have

To — X
{nely: mi<n<z} <|{{nely: s <n<m}< 2Ly 7

In(y) In®(y)’

The rightmost bound is O((z2 — 1)/ In(y)) since zo — 1 > y. |

Algorithm 6.3, below, implements the hybrid sieve as a two-tiered seg-
mented sieve. Because Algorithm 6.1 (CandidatePSPs) has a relatively large
overhead of at least O(InlIn(z,),/Z2) operations, independent of the width of
the interval being processed, we find the set C of candidate pseudoprimes for
“long” subintervals of [z, z5]. We then segment each long subinterval into

. . 1/4
short subintervals of size y ~ =,

Algorithm 6.2 (PartialSieve) low.

, 50 as to keep the memory requirements of

To ensure that Algorithm 6.3 enumerates only primes, we place some
minor restriction on its arguments so that the conditions spelled out in The-

orem 6.3 are satisfied—mamely that x; > 2 and z; > y.

Algorithm 6.3 (HybridSieve: Enumerate primes by hybrid method)
Given 2 < [x;/{‘ < x1 < Iy, enumerate the primes in the interval [xq, x2).

HybridSieve (z1,z2) {

1/4
2

assert 2< [a: -|<ac1§ac2;

L+ [x%/2-| ; Y [x%/4-| ;
Uset < AllocateBitVector(y);
// Find candidate pseudoprimes within “long” subintervals of size L.
for (ky < [z1];k1 <93k <+ ko +1) {
kg < min(ze, k1 + L — 1);
We assume that space used for C is freed and re-used each time we invoke
CandidatePSPs(...).
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C < CandidatePSPs(y, k1, k2) ;
// Now enumerate primes over “short” subintervals of size y.
for (Uset.x1 < ki ;Uset.x1 < ko;Uset.xl + Uset.x2+1) {
Uset.x2 < min(kg,Uset.x1 4+ y);
PartialSieve(y,Uset); // Find y-unsieved numbers using Algorithm 6.2.

At this point, by Theorem 6.3 on page 127, n is prime <= Uset[n] =1,
2" 'modn=1, andn &C.
for (n < Uset.x1;n <Uset.x2;n++) {
if (Uset[n]=1)
if(2" 'modn=1&& n¢gC)
Enumerate(n); // Enumerate n as a prime

1333

Theorem 6.20 Provided its arguments satisfy xo—x1 > /T2, Algorithm 6.3
enumerates the primes in the interval [z1,xs] using O(Inln(zs)(xze — x1))
operations and O(:U;/4 + C'In(zy)) bits, where C' denotes the mazimum value
of |C| over all invocations of line 8. Furthermore, Algorithm 6.3 uses O(x%“)

bits of memory provided Conjecture 6.16 holds.

Proof: The operation count for Algorithm 6.3 is dominated by the calls to
CandidatePSPs at line 8; the calls to PartialSieve at line 12; and the
prp-tests and checks for n ¢ C at line 15.

Since y > :Lé/ Yand L < \/Z2, Theorem 6.14 implies that each invoca-
tion of CandidatePSPs requires < ln(:zcg)acg/8 + Inln(z3)/72 < Inln(xs),/T2
operations. The number of calls is < (22 — 21)/L < (x2 — x1)//Z2 since
we also have L > /x5. Thus the total cost of all calls to CandidatePSPs is
O(Inln(zs)(ze — x1)) operations.

Similarly, by Theorem 6.17 each invocation of PartialSieve requires
O(Inln(y)y) operations. Thus O(Inln(z,)y) operations since y < x§/4. The
number of calls is O((z2—x1)/y), so the total cost of all calls to PartialSieve
is O(Inln(zy)(xe — 1)) operations.

Line 15 is executed only when n € U,. Since zo — z1 > /T3 > x§/4 =y
Corollary 6.19 implies that line 15 is executed O((xe — x1)/ In(x2)) times. In
the proof of Theorem 6.13 we noted that the computation of 2"~! mod n re-
quires O(In(z2)) operations when n < xo. If C is implemented as a balanced

tree, the test n & C also requires O(In(z,)) operations. Thus the total cost
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over all executions of line 15 is O(zo — x1) operations. Summing all these
bounds gives the claimed bound on the operation count for Algorithm 6.3.
Turning now to bounding the memory requirements, we see that the
bit vector Uset requires O(:Lé/ 4) bits. By Theorem 6.17 this dominates the
storage needed by PartialSieve. Other than the storage required for C,
all other quantities require O(In(zz)) bits. The bound of O(iﬂé/ Y+ Cln(zy))
bits then follows unconditionally, where C is defined in the statement of this
theorem. The conditional result follows immediately from Conjecture 6.16

on page 136. |

6.4 Acknowledgments

The idea of the hybrid sieve was inspired by a discussion with Carl Pomerance
about how quickly an implementation of a primality test such as the “APRCL
test”might run. Pomerance suggested that I first start by finding how fast
an implementation of the much simpler prp-test would be, i.e., how quickly a
computer could find 2"~! mod n. This led me to consider how one could best
use a prp-test to determine primality, in a situation where a large amount
of precomputation might be justified, but under the constraint of keeping
memory requirements low.

The idea of computing a set of “candidate” pseudoprimes, implemented in
Algorithm 6.1 (CandidatePSPs), was suggested by an early draft of Richard
Pinch’s paper [Pin00], which describes similar techniques used in Pinch’s
compilation of tables of pseudoprimes.

In addition to thanking Gergely Harcos for the proof of Lemma 6.7, 1
thank Adolf Hildebrand for suggestions which were incorporated into the
proofs of Lemma 6.9, Theorem 6.5, and Corollary 6.19.

The C implementation of Algorithm 6.1 (CandidatePSPs) made use of the
GNU Multiple Precision Arithmetic Library (GMP), version 3.1.1, developed
by Torbj6érn Granlund and others [GT].

Miron Livny, Jim Basney, and other members of the Condor development
team provided excellent support for their Condor system for “high through-

put computing”.



141

7 Computing ((s) by Numerical Integration

7.1 Introduction

In Section 3.4 we reduced the problem of approximating 7*(z; A) to the com-

putation of a finite sum of the form

(7.1) ﬁ(%\I!(a;a:,)\) +ZRe\I’(J+ikh;m, )\)),

™
k=1

where U(s; z, \) = e****/2251n({(s))/s. Given the complexity of known meth-
ods for computing ((s), it is clear that the computations of (o + it) will be
the dominant component of the complexity of computing (7.1).

In this chapter we propose a method for computing ((s) which uses a
variation on the Riemann-Siegel formula [Sie66, Edw74, Gab79] for ((s). For
fixed o, the classical Riemann-Siegel formula gives an asymptotic expansion
of ((o+it) as t — oo. This expansion is derived by applying the saddle point
method to an integral closely related to ((s). Our variation differs from the
classical formula in that it uses numerical quadrature to evaluate the integral
to arbitrary accuracy.

We will first present our “quadrature method” for computing ((s), and
in Section 7.6 we will estimate its computational complexity. In Section 7.7
we will comment further on the advantages of the quadrature method over
the classical Riemann-Siegel formula. This chapter is quite informal, with

only outlines of proofs given.

7.2 An integral representation for ((s)

We begin by relating ((s) to the integral (7.2), below. Although this rep-
resentation is due to Riemann, he applied the saddle point method to a
different integral representation in his development of the Riemann-Siegel
formula (see [Sie66] or [Edw74, Chapter 7]).
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As is standard, we define z~* to be exp(—s1n(z)), with a branch cut along

the negative real axis of the z-plane. Let

—s imz2
2 SelT2

eZﬂ'Z i e—Zﬂ'Z

f(zs) =

Given N € Zj, define the integral Iy(s) by

(7.2) In(s) == / f(z;s)dz,

where for 2, z; € C we write 2y " 21 for the path z = (20 +21)/2 + e 3™/4q,

o0 < o< 0.

Let arg(z) := Im Ln(z), so that —7 < arg(z) < w. The path of integration
in Equation (7.2) avoids the poles of the integrand at z € Z. It follows that
along this path, for any € > 0, we have

(7.3) Flz;8) < |27 et@)=2may=mlyl  o(=m+)0”  5q o 5 400,

where z =: x + 1y defines x and y as functions of a. It follows from the
bound (7.3) that the integral of (7.2) converges to give Iy(s) as an entire

function of s.

Let

x(s) == w712 F((;(;_/;))ﬁ) = 25"!1%sec(ms/2) /T (s).

It is well-known that ((s) satisfies the functional equation ((s) = x(s){(1—s).
Furthermore, Riemann showed ([Sie66, §3|, [EdwT74, §7.9]) that

(7.4) C(s) = To(s) + x(s) Io(1 —5).

This representation converges for s € C with the exception of the pole at
s = 1 and removable singularities at s = 2k + 3, k € Z, arising from poles of
X(s) at these points. Outside these singular points, algorithms for computing

x(s) and Iy(s) yield an algorithm for computing ((s).
The computation of x(s) is easily reduced to the task of computing I'(s),

which is a well-understood special function. Without further analysis, we
note that the formula of Spouge [Spo94| for I'(s), presented in [Cra96, Sec-
tion 2.4], can be used to find I'(s), and thus x(s), with a relative error

bounded by ¢, using O(In(1/¢)) operations.
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Turning to the computation of I(s), we observe that when we shift the
path for Iy(s) to N " N +1 and apply the Cauchy residue formula, we have

(7.5) Io(s) =Y n™" + Iy(s).

To ensure that Iy (s) is a numerically tractable integral, we choose N so
that the path passes near the saddle point of f(z;s). (See Figure 7.1 on the
next page.) For fixed o, we will have N ~ \/W as t — 00.

Wolfgang Gabcke [Gab79] has applied the saddle point method to In(s)

to derive and analyze the Riemann-Siegel expansion for
Z(t) = x(1/2 +it) M2¢(1/2 + it).

This expansion is asymptotic as t — oo.

For t € R, Z(t) satisfies the properties Z(t) € R, |Z(t)| = |¢(1/2 + it)|.
For this reason, Z(t) is preferred over ((s) in studies of zeros of ((s) along
the critical line, s = 1/2 + it, since the location of zeros can be reduced to
the task of locating sign changes of Z(t). However, for analytic computation

of m(z) we need a formula for {(s), so we will only consider that task here.

7.3 A quadrature formula for I(s)

Instead of applying the saddle point method to give an asymptotic expansion,
we note that the integral (7.2) defining Iy (s) is well suited to numerical
quadrature when N lies near the saddle point of f(z;s). (Other examples of
special functions computed by quadrature of saddle point integrals are given
in [Tem77].)

After some intial results, along with analysis and commentary, this sec-
tion culminates in the quadrature formula for Iy(s), Formula (7.9), given in
Theorem 7.3 on page 146. The results of this section follow easily from the
Cauchy residue formula, so we will not include their proofs. (See [Hen88,
§4.9] for a discussion of how sums may be expressed in terms of residues

arising from integrals of the form used below.)

Theorem 7.1 Let L be the path z = z, + e 3"/, and let R be the path
z = 25 + e 34, parameterized by o, —0o < a < oo. Further, let L
intersect R in the open interval (N, N +1/2), and R intersect R in the open
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-5 o 5 10 15 20

Figure 7.1: Contour plot of log,, | f(z;s)|, where f(z;s) is the integrand for
In(s), s =1.5+1000¢. The paths 0, 1 and 12 /13 are shown. The contour
interval is 100, larger values are lighter. White dots are placed where 2z € Z;
the poles of f(z;s) are not apparent at the scale used.

For reference: above the branch cut along z < 0, at z = —5.5+0.1%, we have
|f(z; 8)| & 101356-55 while below the branch cut, at z = —5.5 — 0.14, we have
|f(z;8)| = 107135941 On the path 12 /13, f(2;s) takes a maximum value
of ~ 0.0117.
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interval (N + 1/2, N +1). Let H(w) = 1/(1 — €*™). Given h € C with
arg(h) = —3m /4, and given z, lying on the path N ./ N + 1, we have

=h>_ f(z1+mh;s)
(76) MmEZ

+/£f(z;s)H(Z_hzl>dz+/7€f(z;s)H(Zli:Z) dz.

We think of the “side-integrals” along the “side-paths”, £ and R, as error
terms. We may bound these terms by noting |H (w)| < e?7m®) /(1 — 2m Im(w))
when Im(w) < 0. Writing A for the distance between the paths £ and
N /" N + 1, this gives

Z1 o 2n /A
)dz S _ZWA/|h|/|fz s)| |dz|

= OA(e_Q”A/W) as |h| — 0.

flzs)H (>
L

(7.7)

Similarly, writing A for the distance between the paths R and N /" N + 1,
we have
) dz| =

For fixed A, the side-integrals decrease exponentially in 1/ |h|. Shifting

(7.8) = Oa(e~2™8/1M)  as |h| — 0.

the side-paths away from the central path increases A, and may decrease
these error terms. The optimal choices for £ and R should lie near saddle
points of the integrands in (7.7) and (7.8), respectively. We illustrate the
new paths in Figure 7.2 on the next page. In Section 7.4 we give heuristics
for finding points 2, and 2z which are near the desired saddle points.
Shifting the side-paths introduces “side-sums”, arising from residues picked

up from the poles of f(z;s). Corollary 7.2 gives the resulting formula.

Corollary 7.2 Given Ny, N, N € Zy, 0 < N < N < Ng, let L be a path
between Ny — 1 and N, parallel to and traveling in the same direction as
N/ N+1, and let R be a similar path between Nr and Ngr + 1. Then

N Ng

) =h3 o tmhis) = 3o n H(TE) + 30w H(R)

MEZL n=Ng n=N+1

—l—/l:f(z;s)H(z;lZl)dz+/Rf(Z;8)H<Z1,:Z) dz.
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Figure 7.2: Paths and parameters related to Formula (7.9). Note that the
left and right paths are shifted from the locations specified in Theorem 7.1.

Combining Corollary 7.2 with Equation (7.5) gives our quadrature for-

mula for Ip(s):

Theorem 7.3 Given Ny, N, Ng € Zo, 0 < Ny < N < Ng, let L and R
denote the paths defined in the statement of Corollary 7.2. Then

N M

Iy(s) = Zn_s +h Z f(z1 +mh;s)
n=1 m=0

Ng

- S H(UE) e 3 wen ()

n=Ng n=N+1

+& + &,

(7.9)

where Ey, is the error due to truncating Y f(z1 +mh;s) to a finite sum,

(7.10) Es, ::hZf(zl—i-mh;s)—i-h Z f(z1 +mh;s),

m<0 m>M

and where

(7.11) £ ::/Lf(z;s)H(z_hzl)dz+/Rf(z;s)H<Z1}:z)dz.
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(Note that the & defined by Equation (7.10) is completely unrelated to
the &, defined in Chapter 3.)

Remark The side-sums in Formula (7.9) serve to “smooth” the truncated
Dirichlet series, 22’:1 n~?, giving a more accurate result, as discussed below.
This is similar to a parameterized family of expansions for ((s) studied by
Berry and Keating [BK92|, which are analogous to the classical Riemann-
Siegel formula but more accurate, and which use a sum ) a,n~* where a,

drops “smoothly” to zero as n — oo. O

7.4 Heuristics for choosing parameters

Using the functional equation for ¢(s) and the fact that ¢(3) = ((s), we can
reduce the problem of computing ((s) to the case where o > 1/2, ¢ > 0, so
throughout the rest of this chapter we will assume that these conditions hold
when computing ((s).

Referring to Equation (7.4), we see that to compute ((s) with an error
bounded by ¢ > 0 it suffices to compute Iy(s) with an error bounded by &/2
and to compute Io(1—3) with an error bounded by |x(s)| " /2. With an ob-
vious change of variables we need only consider the problem of approximating
Iy(o +it), o € R, t > 0, with an error bounded by & > 0.

In this section we give heuristics for choosing the parameters in For-
mula (7.9), focusing only on truncation errors and ignoring the issue of round-
off error. The choice of parameters suggested by our analysis are suitable for
the analytic algorithm for computing 7(x), since they apply for “moderate”
o, “large” t, and an error bound ¢ which is not “too small”. Since we have
not completly analyzed Formula (7.9) we ensure only that our error is O(¢),
uniformly under restrictions spelled out below.

We begin by sketching a computational procedure for determining our
parameters, rather than giving analytic expressions for them. Figure 7.2 on
the facing page illustrates the paths and most of the parameters used in our
analysis.

In part, our task is to bound [Ey| + |£;|, where & and &, are the error
terms in Formula (7.9). We also want to choose our parameters to minimize
the number of operations. To simplify our analysis, we assume that this

is equivalent to minimizing the number of terms in Formula (7.9), i.e., to
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minimizing N + M + Nr — N,. Since N must lie within a limited range
to yield a tractable integrand, and to further simplify our analysis, we then
assume that minimizing the number of terms is equivalent to minimizing
M. In Section 7.6 we will see that M typically dominates Nz — N, so this

assumption is reasonable.

Let g(z;s) := 27%¢™"  s0 f(z;5) = g(2;5)/(e"™ — e~™*), and note that
(7.12) f(z:5) = O5(g(z; 8)e™™ ™) < g(2;5),

where § is the distance from z to the nearest integer. Of the two saddle

points of g(z;s), we find that the saddle point, z,, with Rez, > 0 is

zs = /s/(2ir).

Given z,, we set N = |Re z; — Im 2z, |, which ensures that N ,/ N + 1 passes

near z.

To bound the error terms in Formula (7.9), we focus on the magnitude
of f(z;s) and g(z;s) at four key points. Two of these points, z; and z, lie
on N /' N +1 and denote the endpoints of the sum >, f(z1 +mh;s). The
other two points, z,, 2z, lie on the paths £ and R. They are chosen to
lie near the maximum along these paths of the integrands appearing in the
integrals [,.--- and [, ---, respectively, of Equation (7.11).

We may parameterize our paths as z = e ™/*R+e 3"/*q, —00 < a < 00,
where R measures the signed distance from the path to the origin. (We
have R < 0 if the path intersects R to the left of the origin.) With this

parameterization, we have

2ra® + (2rR* + o)a + Rt

d
(713) —ln\g(z, 8)‘ = - a? + R2

da

An analysis of (7.13) shows that taking R > \/|o| /7 suffices to ensure that

lg(z; s)| as a function of « is both unimodal and has a “sharp” maximum
along a path parameterized as above.

With this in mind, assume that N / N + 1 is sufficiently far from the

origin, e.g., that N + 1/2 > /2o /m. We then bound &, by choosing z,

29, to lie on the path N N + 1, subject to the restrictions that they lie

on opposite sides of the point where |g(z; s)| reaches its maximum along this



7.4. Heuristics for choosing parameters 149
path, and to satisfy the four additional conditions: Im z; > 0, Im 25 < 0,

(7.14) |f(z158)| <,
(7.15) | f(z258)| <e.

An analysis of (7.13) and the bound (7.12) shows that these conditions
ensure that [Ex| < |f(21;8)| + |f(22;8)] < &. Of course, to avoid an un-
necessarily long interval of summation, the ideal choice for z; and 2z would
satisfy (7.14) and (7.15) with equality holding—unless this choice violated
our conditions that Im z; > 0, Im 29 < 0.

Turning to the analysis of £;, we begin by examining the “left” side-

integral appearing in Equation (7.11):

/Lf(z;s)H ‘ Zl)dz.

As outlined in Section 7.3, if £ lies a distance A to the left of z;, and if

z lies on L, we have

H((Z . 2’1)/h) — ef2i7r(zfz1)/h + OA(6747rA/\h,|)’

where the O-term is uniform provided A is bounded away from zero. In
other words, if z lies well to the left of N,/ N+1 then H((z—z1)/h) is well
approximated by e~27(2=21)/h _ For this reason, for fixed A > 0, we let £ pass
through 2., where we define z, to be the saddle point of g(z;s)e 2m(z—=1)/h

having positive real part:

(7.16) 2 '+ V/(2h) 2 + s/(2im).

Again, if R denotes the distance from £ to the origin, and if R > /|o| /7,
then |g(z;s)| assumes a single maximum along £, at z = z,. Under the
additional condition that £ is bounded a distance ¢ from the singularities of

f(z;s), we can show that

) dz < |g 2z 8)e” 2mecma)/h|

(7.17) /f z;8)H

with an O-constant depending on ¢ and A.
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By deforming £ to a region where the integrand is well behaved, we
believe that the bound (7.17) can be made to hold uniformly in , even when
the original path passes near or through a pole of f(z;s). Since z, is a saddle
point, we expect our choice of £ to be nearly optimal, again provided A is
bounded away from zero, and that R is sufficiently large.

A similar analysis applies to the “right” side-integral along R. Thus,
we let R pass through 2z, where we define z; to be the saddle point of

g(z; 5)e?™(z=21)/h with positive real part:

(7.18) 2 = '+ V/(2h) 2 + s/ (2im).

Given z, and zj as defined above, the requirement that £ passes between
Ny —1 and Ng, and that R passes between Ni and Nx + 1 imply that

Ne=[Rez;, —Imz,],
Nr = |Rezgy —Imzg] .

We conclude, given fixed A > 0, that if £ is sufficiently far to the right
of the origin, and if £ and R are bounded away from N /' N + 1, then the
choices for £, R outlined above should be nearly optimal and that

‘gf‘ < |g(2£;8 —2im(2,—21 /h‘ + |g Zn; S ) 2mr(zR—z1)/h| .

With z, and z5 determined as functions of h by Equations (7.16) and (7.18),
we determine h and M by letting h := (22 —21)/M, so that h, 2z, and z5 can
be treated as functions of M. Finally, we choose M to be the least integer
with M > 0 and

(7.19) ‘g(zﬁ; s)e‘Qi“(zﬂ_zl)/h| <eg,
(7.20) ‘g(zR; s)eQi“(zR’Zl)/h| <e.

7.5 Examples

Table 7.2 on page 153 illustrates the parameters found by using the heuris-
tics of Section 7.4. These heuristics were implemented using the PARI/GP
calculator, version 2.1.0 using the 32-bit MicroSparc kernel.

In rough outline, we used the following procedure to find z; satisfying the
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condition (7.14). With the parameterization z = N+1/2—e%"/4q we began
with an initial guess for « and then repeatedly doubled o until |f(z;s)| < e.
Similarly, we repeatedly halved « until |f(z;s)|] > e. This process gives
values bracketing a solution to |f(z;s)| = . Given these bracketing values,
we then we used PARI’s solve function to find the solution to |f(z;s)| = €.
Only limited accuracy is needed for this solution, so we implemented this
procedure using 19 digits of precision.

Similar techniques were used to find z, satisfying (7.15); and to find
h, z;, and z; defined as functions of M with z, satisfying (7.19), and 2
satisfying (7.20). Although the use of PARI’s solve function is somewhat
computationally expensive, we found this method to be quite practical, and
as t — oo or ¢ — 0 the cost of determining parameters is dominated by the
cost of evaluating Formula (7.9).

Table 7.1 illustrates the accuracy achieved when using these parameters.
To collect the data summarized in that table, we computed ((so + imd),
0 < m < 100, starting at s = o +ity. When ¢, is sufficiently large compared
to o, our analysis in Section 7.4 suggests that N should increase by unity
as t increases from tg to ¢y + 2v/27ty. For this reason, we used a step value
of d = \/2mIm(s)/5, which ensured that N increased by a few units, and
which made it more likely that for some values of s the saddle point z; lay

near a singularity of f(z;s).

So € min max mean

107% |/ 2.87-107%2 | 1.45-1072® | 3.03-107%°
1/2+10% | 10750 || 1.49-107°¢ | 7.89-107>* | 2.30-10~%*
107100 || 3.37-1071% | 5.36-10"1%* | 1.95- 10104
107% [/ 6.91-107%0 | 2.02-10~2® | 5.07-10"2°
5410% | 10750 || 4.02-107% | 6.12-107%* | 2.95.10"%
107190 |1 1.93-107105 | 4.71-1071°% | 2.00- 10~1%4

Table 7.1: Minimum error, maximum error, and mean error in computations

of ((so + 2ik+/2mIm(sy)/5), 0 < k < 100.

For a given “error goal”, ¢, and for each value of s, we found Iy(s) us-
ing parameters selected for an error goal of £/2, while we found Iy(1 —3)
using parameters selected for an error goal of |x(s)| ™ /2, and finally ((s)
was computed using Equation (7.4). These values were compared against
the values returned by PARI’s zeta function, which uses Euler-Maclaurin

summation to find ((s).
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All computations were performed using 10 extra digits of precision. For
example, when € = 102 the computations were done using at least 35 digits
of precision, using the PARI/GP construct default(realprecision,35).
Note that Table 7.1 shows results well within the error goal.

7.6 Complexity of the quadrature method

To summarize the results of Section 7.4: provided t is sufficiently large and
¢ is not too small, the parameters chosen by the heuristics outlined in that
section ensure an error in the computation of Iy(s) that is uniformly O(e).
This is certainly the case if these heuristics give N > 1/2 + /20| /7. In
contrast, when ¢ or € are small enough, and especially when Re(s) is negative,
this choice of parameters may cause the path £ to pass too near the origin
to ensure the validity of our analysis. (It is even possible that the procedure
above will give a nonsensical result with Nz < 0.)

For fixed o and €, as t — 00, we can give estimates of our parameters
which are more analytically tractable than the characterization given in Sec-
tion 7.4. Table 7.3 on the next page shows the parameter values based on
these estimates. Those values can be contrasted against those found using
the procedures of Section 7.4—which are shown in Table 7.2.

Recall that we set N = |Rez, — Im 2,| with z, := \/s/(2ir). Provided
t > 2]o], it is easy to show that z, = \/t/(27) + (1/v/27)O(c /\/1). It follows
that N = \/t/(27) + 1.50(1) provided ¢ > max(c?,2 |o|).

Taking the Taylor expansion of In g(z; s) about z,, we find that provided

|z — z5| < |zs| /2 we have
(7.21)  Ing(z;s) = im2? — sIn(z,) + 2im(z — 2,)* + O ((z —2)%// |s|) .

Dropping the O-term and exponentiating both sides of (7.21) gives a
sufficiently accurate approximation to both g(z; s) and to f(z;s) to estimate

our remaining parameters. Setting

(7.22) A= \/max (0, In(N—7/e)/(2m)),

we find that z; and 2z, lie near N + 1/2 & €"™/*A respectively; N and Ny lie
near N+1/2F1/2A respectively; and M = 4A2. The case A = 0 corresponds
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S 9 M |ZQ—21| NL N NR
1072 36 5.64 9 12 17
1/2 4+ 10% 1079 75 8.18 7 12 19
10100 155 11.80 6 12 23
1072 37 558 | 395 | 398 | 403
1/2 4 105 10759 75 812 | 393 | 398 | 405
107100 149 11.69 | 390 | 398 | 408
1072 33 5.46 | 12612 | 12615 | 12619
1/2 +10% 10~% 70 8.04 | 12610 | 12615 | 12621
10100 143 11.64 | 12607 | 12615 | 12624
1072 7 2.25 | 12614 | 12615 | 12617
5+ 10% 10759 43 6.24 | 12611 | 12615 | 12620
10100 116 10.45 | 12608 | 12615 | 12623

—1I00
—4 4 10% 10—. 116 10.45 | 12608 | 12615 | 12623

Ix(5 4+ 10%)|

Table 7.2: Data on parameters for computing ((s) by quadrature, as func-
tions of s and €. These parameters were found using the heuristics of Sec-
tion 7.4.

S 9 M ‘22 — Zl| Nﬁ N N’R

10~ 36 5.97 8 12 16

1/2 4 10% 10~%0 72 8.51 6 12 18
10100 146 12.07 4 12 20

10~ 35 5.89 394 398 402

1/2 + 105 1050 71 8.45 393 398 403
10100 145 12.03 390 398 406

10~ 34 5.80 | 12611 | 12615 | 12619

1/2 +10% 10750 70 3.38 | 12610 | 12615 | 12620
10100 144 11.93 | 12607 | 12615 | 12623

10~ 7 2.57 | 12614 | 12615 | 12616

54 10% 1050 43 6.58 | 12611 | 12615 | 12619
10100 117 10.79 | 12608 | 12615 | 12622

0. 10—100
4 4+10% G 10%) 117 10.79 | 12068 | 12615 | 12622

Table 7.3: Data on alternate choice of parameters for computing ((s) by
quadrature, as functions of s and €. These parameters were found using
the estimates of Section 7.6—see the discussion near Equation (7.22) on the
preceding page.
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to the situation where Io(s) is well approximated by S~ n~*  which is the
case for t > 2m(e?"e)~%/? roughly speaking.

As illustrated in the last lines of Tables 7.2 and 7.3, nearly identical
parameters suffice to compute Iy(1 —35) with an error bounded by |x(s)| "¢,
since |x (o + it)| ~ (t/(27))"/?7° as t — oo [Tit86, Eq. 4.12.3].

We now briefly consider the more intractable case where ¢ may be small, or
where € may be very small. The quadrature method can be used to compute
((s) to arbitrary accuracy provided s is bounded away from points of the
form s = 2k + 1, k € Zy, corresponding to the poles of x(s). To accomplish
this, we again set zs := 1/s/(2iw) and N = |Rezs; — Imzs|. Although it
might not be the optimal choice, set N = N + 1 and Ng = N, so that the
two side-sums of Formula (7.9) are empty sums. In this case, we take L to
be N,/N+1/2and R tobe N+1/2, N +1.

As outlined on page 145, in the discussion of the bounds (7.7) and (7.8),
we can choose h so that [£;| < /2 and so that 1/In(1/¢) = O4(h). By the
bound (7.3), we can also choose z; and 2z, = 21 + Mh so that |Es| < e/2 and
21 — 21| = O,(y/In(1/¢)), which implies that M = Os(ln3/2(s/2)).

It is clear from the analyses above that for fixed ¢ and large ¢ the time re-
quired to find a single value of ((o+1it) using Formula (7.9) will be dominated
by the O(tl/ 21¢) operations required to compute the truncated Dirichlet se-
ries: Zivzl n~°, assuming that the sum is implemented in the form in which
it is written.

However, Odlyzko and Schénhage have developed an algorithm that com-
putes this truncated Dirichlet series with an average cost of O(t¢) operations,
provided o is fixed and that ¢ runs through many values within a limited

range. More precisely, their theorem can be paraphrased as:

Theorem 7.4 (Theorem 1.1 of [OS88]) Given any positive constants e,
o, and ¢y, there is an effectively computable constant co = c5(€,0,¢1) and an
algorithm that for every T > 0 will perform < ¢;TY/?t€ arithmetic operations
on numbers of < coIn(T) bits using < cs T4 bits of storage, and will then
be capable of computing any value ((o +it), T < t < T + T2, to within

+T7 in < cT¢ operations using the precomputed values.

Although their paper is based on computing ((s) using the classical Riemann-

Siegel formula, the same result holds when we use our quadrature method.
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7.7 Remarks and conclusions

We must resolve several remaining issues in order to complete the analysis
given in Section 7.4. To begin, we need a more careful analysis to find explicit
O-constants. There should be constants C; and Cy such that

€5l < CLllF (213 9)] + | (215 9) )
1&5] < Ca[g(ag; s)e 2] 4 |g(a; s)e* G0/ ).

Given (4, Cy, we could then modify the conditions (7.14), (7.15), (7.19)
and (7.20) to ensure |Es| + ‘Ef| < e. As it is, € serves more as an “error
goal” than an error bound, and we only have experimental evidence that the
rough analysis of Section 7.4 yield parameters for Formula (7.9) which give
satisfactory accuracy (see Table 7.1).

Secondly, we have ignored the computational cost of determining the
parameters used in Formula (7.9). This cost will depend largely on the
method used to ensure conditions such as (7.14).

Finally, our analysis ignores roundoff error and it also assumes that x(s)
in Equation (7.4) and all values in Formula (7.9) are computed exactly. A
complete analysis would determine error bounds required of x(s), and of the
subexpressions in Formula (7.9), to ensure a total error bounded by e.

We expect that the evaluation of 25:1 n~*® will always be the dominant
component of computing Formula (7.9). However, provided 3% 7n~* can be
computed efficiently enough, it may be worth noting that many of the other
quantities in Formula (7.9) can be calculated infrequently and then reused
many times. For large ty, with ¢ roughly within the interval [to, tg + 2v/27t],
the parameters z;, N, M, N;, Nr can stay fixed as t varies, and the quantities
H(...) in the side-sums need be calculated only once. Many subexpressions
in Formula (7.9)—such as In(z; +mh), implicitly calculated while evaluating
an/fzo f(z1 + mh; s)—may be reused so long as N stays constant. However,
in this case a more complicated error analysis than given in Section 7.4 would
be required to ensure a given error bound.

As noted following Equation (7.4), the quadrature method is not appro-
priate for computing ((2k + 3), k € Zy. More generally, for large o and t
near 0 the analysis of the quadrature method is difficult, largely because in

this situation a path passing near z; also passes near the branch cut along
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z < 0. In these situations, the Euler-Maclaurin summation formula is prob-
ably preferable for computing ((s).

The quadrature method has several strengths. These include its ability
to find ((s) to arbitrary accuracy (for most values of s), and the simplic-
ity of its error analysis. This analysis, outlined in Section 7.4, is relatively
insensitive to our choice of ¢ and to our error bound . In contrast, the
classical Riemann-Siegel formula gives limited accuracy; good error bounds
for the Riemann-Siegel formula are available only when o = 1/2; and the
error analysis becomes significantly more complicated with each additional
term included in the expansion [GabT79].

The integral representation for ((s) used here may be generalized to
Dirichlet L-functions. Deuring has used these representations to develop
analogues of the Riemann-Siegel formula for L-functions [Deu67]. In a simi-
lar manner, it should be possible to generalize the quadrature method to the
computation of L-functions.

Several other promising methods for computing ((s) have been proposed
recently. These include the work of Berry and Keating mentioned above,
methods discussed in the survey article by Borwein, Bradley, and Cran-
dall [BBCO00], and a method given in the Ph.D. dissertation of Michael Rubin-
stein [Rub98]. Rubinstein’s dissertation considers the problem of computing
values of a very general family of L-functions—his results apply to ((s) and

to Dirichlet L-functions as special cases.
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:=, expr, := expr, denotes equality, defining the left side, 4
contrasted with <, 72

=:, expr; =: expr, denotes equality, defining the right side, 4

V, gradient vector, 99

A, unconditional conjunction (logical and), 6

~, f(z) ~g(z) as z = 20, b

&&, conditional conjunction of boolean expressions, 6

++, x++ is shorthand for “z <~ x + 17, 6

(u, v),, generalized inner product of vectors, 99

a(x), B(x), functions that characterize complexity of algorithms for enumer-
ating primes, 50, 85
['(s), formulas for computing, 142
A, distance between paths of integration, 145
A(z; A) :==7(z) — 7*(x; N), 37
Algorithm 3.2 (Delta), 48
g, € O(1), denotes an error bound, 4, 5, 8
C(s), 17
branch of In((s), 17, 71
Euler’s product formula for, 17, 66
Euler-Maclaurin formula for, 151
functional equation for, 142
integral representation for, 142
Odlyzko-Schonhage algorithm for, 1, 79, 154
A, see Length parameter
v(¢), multiplicative order of 2 mod ¢, 126
7(x), prime-counting function, 1
7(x; ¢, a), counting function for primes = a mod ¢, 129
(x), 17
integral representation for, 17
relationship to 7 (z), 18
7 (x; N), 28
Algorithm 3.3 (QuadPiStar), 72
bounds on, 53
0,4, abscissa of absolute convergence for a Dirichlet series, 15
T-cut, see Cutting line
®(p), auxiliary function used in definition of ¢(u; z, A), 23
é(u; x, ), kernel function based on complementary error function, 23
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formulas for computing, 30
(s), denotes Mellin transform of ¢(u), 14
(s;x,A), Mellin transform of ¢(u;x, \), 26
formulas for computing, 29
¢(n), Euler’s totient function, 129
X(s), function appearing in functional equation for ((s), 142
X(u; z), step-function kernel, 16, 24, 33
X(s;z) = x° /s, Mellin transform of x(u;x), 16
(s) :==V(s;z, A), integrand in integral representation of 7*(z; A), 54
a(w), dth cyclotomic polynomial, 131

¢
5

), total number of prime divisors of n, 126
), number of distinct prime divisors of n, 126
C, set of “candidate” pseudoprimes, 126
FEi(z), exponential integral, 67
E (u;z,N), 40
closed forms for, 43
solutions to £, (u;x,A) =€, 45
£, 146
Ex (T, M 0), 67
F(r), the Farey sequence of order r, 100
he(z; A, 0,¢), 56
hg(z; A, 0,¢€), 56
I.(z; M 0,h), 55
Iy(z; M, 0,h), 55
£, unless stated otherwise, £ denotes a prime number, 4
M4, slope of a bounding line in the DissectedSieve algorithm, 108
M(n), time to multiply two numbers of n bits, 12, 78, 90
N, the set of strictly positive integers, 4
P, the set of prime numbers, 4
p, unless stated otherwise, p denotes a prime number, 4
Q, the set of rational numbers, representation of, 7
Ra, 112
S(z; A, 0,h), Riemann sum approximating integral for 7*(z; A), 55
§, indicates a section number in citations, 4
U,, set of y-unsieved numbers, 125
Zy, the set of non-negative integers, 4

abscissa of absolute convergence for a Dirichlet series, o,, 15
Adleman, Leonard M., 89
Agrawal, Manindra, 89
Aho, Alfred V., 12
Algorithms, see also the index entry for each algorithm
APix: Find 7(z) using analytic algorithm, 38
AtkinBernsteinSieve: Atkin-Bernstein sieving algorithm, 95
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CandidatePSPs: Return set that includes y-unsieved pseudoprimes in an

interval, 127

Delta: Approximate A(x;\) := w(z) — 7*(x; \), 48

DemoSieve: “Demonstration version” of the sieve of Eratosthenes, 87

DissectedSieve: Dissected sieve of order r, 101
ExampleErfc: Approximate erfc(z), 10

HybridSieve: Enumerate primes using “hybrid” method, 138
PartialSieve: Find y-unsieved numbers, 136

QuadPiStar: Approximate 7*(x; \) by quadrature, 72
ScanPiece: Process lattice points within a piece, 105

SegmentedDissectedSieve: Segmented version of dissected sieve, 119

SegmentedSieve: Segmented sieve of Eratosthenes, 87

SquareFreeSieve: Sieve out numbers with square factors, 106
AllocateBitVector(B), create a bit vector of size B, 84
allocation of memory, see AllocateBitVector(B)
analytic algorithm for computing 7 (z)

final version: Algorithm 3.1 (APix), 37

first formulation, 19

parallel implementation, 13

second formulation, 29
Anderson, D. John, viii

APix: Find 7(z) using analytic algorithm, 38

Apostol, Tom M., 17

APR (Adleman, Pomerance, and Rumely) primality test, 89

APRCL primality test, 89, 140
arithmetic operation, 13, 83
assert statement, 6

Atkin, A. O. L. (Oliver), 89, 93

AtkinBernsteinSieve: Atkin-Bernstein sieving algorithm, 95

cost analysis, 96
Augustin, Volker, 115

Bailey, David H., ix
balanced tree, 134, 139
Basney, Jim, 135, 140

Bays, Carter, 85

Belebas, Karim, viii
Bennett, Michael A., ix
Bennion, Robert, ix, 121
Bergvelt, Maarten J., ix, 124
Berndt, Bruce C., vii, 124
Bernstein, Daniel J., viii, 93, 124
Berry, Michael V., 147
bilinear form, 99
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bit complexity, 12

bit vector, 84

BitSizeOf (v), number of bits required to represent v, 13
Boca, Florin P., 115

Borwein, Jonathan M., ix, 12, 156
Borwein, Peter B., ix, 12

Bradley, David M., ix, 156

branch of In((s), 17, 71

branch of natural logarithm, 4, 142
Brent, Richard P., ix, 85

Bronski, Jared C., ix, 124
Brun-Titchmarsh Theorem, 49, 129
Buchstab, A. A. (A. A. Buhstab), 125

C and C++ computer languages, 6
cache memory, 121
CandidatePSPs: Return set that includes y-unsieved pseudoprimes in an
interval, 127

cost analysis, 127, 134

parallel implementation, 135
Cauchy residue formula, 143
Center for Reliable and High Performance Computing (CRHC), viii
Chen, Imin, ix
Chiarella, Carl, 30
Choi, Stephen Kwok-Kwong, ix
circle problem, 97, 124
Cobeli, Cristian, 115
Cohen, Henri, viii, 89, 99, 128
complementary error function, see erfc(z)
complexity measures, 12
conditionally convergent sums and integrals, 5
Condor, system for distributed computing, ix, 135, 140
conjunction of expressions, conditional and unconditional conjunction, 6
convolution of 7*(z) with approximation to Dirac delta function, 28
cost per unit subinterval for a sieve, 84
Crandall, Richard E., viii, 30, 142, 156
crossing points, 103, 104, 110
Cutting line corresponding to vector 7, T-cut, 99
cyclotomic polynomial, 131
cyclotomy primality proving, 89

declaration of variable type, 7

Deléglise, Marc, 2

Delta: Approximate A(x;\) :=w(z) — 7*(z; A), 48
cost analysis, 49
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DemoSieve: “Demonstration version” of the sieve of Eratosthenes, 87
cost analysis, 87

deterministic primality testing algorithm, 89

Deuring, Max, 156

diagonal (quadratic) form, 99, 101, 104, 113

Diamond, Harold G., vii, 124, 156

Diamond, Nancy A., vii

Dirac delta function, 28

Dirichlet divisor problem, 97

Dirichlet series, 15, 79

Dirichlet’s hyperbola method, 105, 123

DissectedSieve: Dissected sieve of order r, 101
cost analysis, 106, 116

Doud, Darrin, ix

dsieve, C implementation of SegmentedDissectedSieve, 119

Edwards, Harold M., 17, 141
elementary transcendental functions, 13, 29
elliptic curve primality proving (ECPP), 89
Enumerate(n), denotes the act of passing n to another activity, 88
enumerate, to name one by one; to list, 83
erfc(z), complementary error function, 10, 23
formulas for computing, 10, 30
Euler’s product formula, 17, 66
Euler’s totient function, ¢(n), 129
Euler-Maclaurin formula for {(s), 151
evenly-stepped function, 14
ExampleErfc: Approximate erfc(z), 10
cost analysis, 30
exponential integral, Fy(z), 67
extended Meissel-Lehmer method, 2

Farey sequence, 100

Ferguson, Helaman R. P.; ix

Fermat’s little theorem, 126

floating point numbers, 7

for statement, 6

Fourier transform, 33, see also Discrete Fourier transform, Poisson summa-
tion formula

functional equation for ((s), 142

Gabcke, Wolfgang, 22, 141

Galway, William F., 121, 124, 128, 156

Gaussian kernel function, see ¢(u;z, \)

GMP, GNU Multiple Precision arithmetic library (GNU MP), 91, 140
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Gologan, Radu N., 115
Gosseyn, Gilbert, ix, 124
Gourdon, Xavier, 2
gradient vector, V, 99
Granlund, Torbjorn, 140

Halberstam, Heini, 125, 137

Harcos, Gergely, ix, 131, 140

Hardy, G. H., 33, 100, 131

Hennessy, John L., 122

Henrici, Peter, 14, 55, 143

Hildebrand, Adolf, vii, 46, 140

Hopcroft, John E., 12

Hudson, Richard H., 85

Huxley, Martin N., ix, 97, 124

Hwu, Sabrina, viii

HybridSieve: Enumerate primes using “hybrid” method, 138
cost analysis, 139

hyperbola method, see Dirichlet’s hyperbola method

inner product, (u,v),, 99
inverse Mellin transform, 14
Ivi¢, Aleksandar, 124

Johnson, Teresa L., viii

Kayal, Neeraj, 89

Keating, Jonathan P., 147

kernel function, function satisfying certain technical conditions, 14
x(u; z), step-function, 16, 24
é(u; xz, \) based on complementary error function, 23
é(u; x,y, k) of Lagarias and Odlyzko, 19

Knuth, Donald E., 12, 79

Lagarias, Jeffrey C., vii, 1, 2
Lehman, R. Sherman, 24
Lehmer, Derrick H., 124
Lehmer, Emma, 124
length parameter, A, 25, 28, 80
as a “balancing parameter”, 34
Lenstra, Hendrik W., Jr., 89
Livny, Miron, 135, 140
Ln(z), principal branch of the natural logarithm, 4, 70, 142
logarithmic complexity, see bit complexity

macro definition, expr, := expr, used as a macro definition, 72
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Mathematica® software system, viii, 71
McGeoch, Catherine C., 13
mediant-line, 102

Meissel-Lehmer method, see extended Meissel-Lehmer method
Mellin transform, 14

Mellin transform pair, 14

Mihailescu, Preda, 89

Miller, Victor S., vii, 2

Model of computation, 12

Mobius inversion formula, 115
Montgomery, Hugh L., 49, 129

Morain, Francois, ix, 89

Newton’s method, 48, 71
notational conventions, 3
for algorithms, 6

O-notation, 3
nonstandard notation, C O(g(z)), 3, 8
Odlyzko, Andrew M., vii, 1, 2, 154
Odlyzko-Schonhage algorithm for computing ((s), 1, 79, 154
operation, see arithmetic operation
order of dissection, 101

Pacific Institute for Mathematical Sciences (PIMS), viii
parallel implementation
of Algorithm 6.1 (CandidatePSPs), 135
of analytic algorithm for 7 (x), 13
Parameters for analytic 7(z) algorithm, 37
K, truncation point for sum of “quadrature correction terms”, 57, 63
T, truncation point for integral, 65
A, see Length Parameter
o, real part of path of integration, 76
h, step size for quadrature, 56
Z1, T9, truncation points for sum over prime powers, 39
PARI/GP software package, viii, 71, 150
partial sieve, 91
PartialSieve: Find y-unsieved numbers, 136
cost analysis, 137
Paschetto, Miriam G., viii
Patterson, David A., 122
Perron’s formula, 17
“Piece” for the dissected sieve, 101, 105
Pinch, Richard G. E., ix, 127, 140

Poisson summation formula, 55
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Pomerance, Carl, viii, 89, 126, 127, 140

primality tests, 89

prime number theorem, 17, 50, 128

principal branch of the natural logarithm, Ln(z), 4

Pritchard, Paul, 85

probable prime, a number n satisfying 2"~' =1 (mod n), 89, 125
prp(n), n is probably prime, 125

prp-test, a test that 2"! =1 (mod n), 126

pseudoprime, a composite probable prime, 125

psp(n), n is a pseudoprime, 125

QuadPiStar: Approximate 7*(x; \) by quadrature, 72
quadratic form, Qa(u), 99

diagonal form, 99, 101, 104, 113
quadrature correction terms, 56, 76

RAM (Random Access Machine) model of computation, 12
rational numbers, see Q

Reichel, A., 30

Richert, H.-E., 125, 137

Riemann, Bernhard, 17, 142
Riemann-Siegel formula for (s), 141
Riemann-Stieltjes integrals, 5

Riesel, Hans, 125, 126

Rivat, Joel, 2

roundoff error, 8, 37

Rubinstein, Michael Oded, 156
Rumely, Robert S., 89

running time, 13

Saxena, Nitin, 89

ScanPiece: Process lattice points within a piece, 105

Schonhage, Arnold, 1, 154

scope of variables and names used in algorithms, 6

segmented version of a sieving algorithm, 85

SegmentedDissectedSieve: Segmented version of dissected sieve, 119
cost analysis, 118

SegmentedSieve: Segmented sieve of Eratosthenes, 87
cost analysis, 88

Selfridge, John L., 126, 127

sgn(z), “sign” or “signum” function, 4

Siegel, C. L., 141, 142

Sierpinski, Wactaw, 97, 120

sieve of Eratosthenes, 86, 123, 128, 136

sieved number, see y-sieved
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signum function, see sgn(x)

Simon Fraser University, viii

sinc methods, vii, 63

size of an interval [z1, x5], 47, 84

smooth number, see y-smooth

solve_for, find solution to equation, 48

Sorenson, Jonathan P., 83

Spouge, John L., 142

SquareFreeSieve: Sieve out numbers with square factors, 106
cost analysis, 110

Stenger, Frank, vii, 63

subdivision of error amongst various sources, 37

sublinear sieve, 85, 86

suitable kernel function (for the analytic algorithm), 18, 27

swath, a set of points bounded between quadratic forms and lines, 95

symmetric bilinear form, 99

Taylor’s Theorem, 11, 45, 114

Temme, Nico M., 143

Tenenbaum, Gérald, 105, 125, 129

Titchmarsh, E. C., see also Brun-Titchmarsh Theorem, 154
trapezoidal rule, 63

truncation error, 8, 37

type (o, §), 14

type of a variable, 7

u-space, 103

Ullman, Jeffrey, D., 12

unconditional conjunction of expressions, exprl A expr2, 6
unit subinterval, 84

unsegmented version of a sieving algorithm, 85

unsieved number, see y-unsieved

v-space, 102, 103

van der Corput, Johannes G., 97, 106
Vaughan, Robert C., 49, 129

Vetter, Ekkehart, ix, 2, 15, 21, 37
Vorhauer, Ulrike M. A., ix, 124
Voronoi, Georges, 97, 123
Voronoi-Pfeiffer region, 107

Wagstaff, Samuel S., Jr., 126, 127
wheel sieve, 85, 86

Williams, Hugh C., 124

Wolfram Research, viii

Wright, E. M., 100, 131
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y-sieved number, 125
y-smooth number, 125
y-unsieved number, 125

Zaharescu, Alexandru, ix, 115
zeta function, see ((s)
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