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Abstract. This paper shows a generic and simple conversion from weak
asymmetric and symmetric encryption schemes into an asymmetric en-
cryption scheme which is secure in a very strong sense | indistinguisha-
bility against adaptive chosen-ciphertext attacks in the random oracle
model. In particular, this conversion can be applied eÆciently to an
asymmetric encryption scheme that provides a large enough coin space
and, for every message, many enough variants of the encryption, like the
ElGamal encryption scheme.
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1 Introduction

Suppose that an asymmetric encryption scheme is secure in a very weak sense |
an adversary can't entirely decrypt the encryption of a random plaintext. Sup-
pose that a symmetric encryption scheme is secure in the following weak sense
| for all possible messages, m1 and m2, in the indicated message space, an ad-
versary can't distinguish the encryption of m1 from the encryption of m2 (where
the adversary is not given the ability to encrypt or decrypt desired strings). From
these schemes, we construct a new asymmetric encryption scheme. The (hybrid)
encryption of a plaintext m is

Ehypk (m) = Easympk (�;H(�;m)) jj Esym
G(�)(m);

where

{ � is a random string chosen from an appropriate domain,

{ Easympk (message; coins) indicates the asymmetric encryption of the indicated
message using the indicated coins as random bits,

{ Esyma (messgage) indicates the symmetric encryption of the indicated message
using the indicated string a, and

{ G and H denote hash functions.
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In the random oracle model (namely, G and H are modeled as random ora-
cles), this hybrid encryption scheme is secure in a very strong sense | indistin-
guishability against adaptive chosen-ciphertext attacks.

We will provide the concrete security reduction in the exact security manner
[3]. The security of this hybrid encryption scheme depends only on those of
asymmetric and symmetric encryption primitives and the following property of
the asymmetric encryption primitive | given an appropriate message space, for
any message in the space, the variants of the encryption occur in a large enough
number, provided the coins are chosen uniformly from the coin space of the
encryption scheme. We will de�ne the exact de�nition later and will also show,
for any encryption scheme, a slightly modi�ed scheme can provide an enough
number of the variants. In particular, this conversion can be eÆciently applied
to an asymmetric encryption scheme with a large coin space, like the ElGamal
encryption scheme.

1.1 Related Works

To create a practical and provably secure encryption scheme is one of impor-
tant goals in cryptography. Although theoretical works have been done in many
literatures [18, 13, 14, 19, 10], there are not so many schemes that satisfy both
provable security and eÆciency. In this section, we will refer to several schemes
that are practical and provably secure in a very strong sense, such as [23, 3, 8, 1,
12], and will discuss these schemes (including ours) in the following terms.

Conversion A promising way to construct a practical and provably-secure en-
cryption scheme is to convert it from primitives which are secure in a weaker
sense.

In CRYPTO'94, Bellare and Rogaway presented a generic and simple con-
version from a one-way trapdoor permutation (OWTP) such as the RSA prim-
itive into an asymmetric encryption scheme which is secure in a very strong
sense in the random oracle model [3]. A scheme created in this way is called
OAEP (Optimal Asymmetric Encryption Padding). The strong security notion
is indistinguishability against adaptive chosen-ciphertext attacks (IND-CCA), as
described in [19]. However, the method in [3] was not applied to asymmetric en-
cryption schemes. Therefore, several (practical) asymmetric encryption schemes
lie outside the range of OAEP conversion, e.g., the ElGamal, Blum-Goldwasser,
and Okamoto-Uchiyama encryption schemes [11, 6, 17].

Before their proposal, Zheng and Seberry had also proposed some practi-
cal schemes [23] aiming at chosen-cipher security, and, according to [3], in the
random oracle model at least one of their schemes enjoys the same security as
OAEP. That scheme too is, however, applied only to OWTPs.

The current authors recently presented a generic conversion from an asym-
metric encryption scheme into an asymmetric one that is secure in the IND-CCA
sense in the random oracle model [12]. However the security requirement of the
primitive encryption scheme is stronger than that of [3] | the OAEP conver-
sion starts from a OWTP while the conversion in [12] does from an asymmetric
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encryption scheme which is secure in the sense of indistinguishability against
chosen-plaintext attacks (IND-CPA).
Other conversion have been reported, such as [1, 22, 21]. However their schemes

depend strongly on the primitive encryptions, they don't work for generic meth-
ods.

To the best of our knowledge, there has up to now not been proposed any
generic (and eÆcient) method to convert an asymmetric encryption scheme into
an IND-CCA secure one.

Hybrid Encryption An asymmetric encryption scheme is usually employed
only for distributing a secret-key of a symmetric encryption scheme for message
encryption. Actually, the hybrid usage of asymmetric and symmetric encryption
schemes is very common in practice. On the other hand, hybrid usage is insecure
in general, even if both the asymmetric and symmetric encryption schemes are
secure in very strong senses. In spite of the fact that hybrid usage is common and
that, in general, this is insecure, there has been little research on this subject;
see [1, 8].

In [1], Abdalla, Bellare, and Rogaway present a hybrid encryption scheme,
called DHAES, and prove that hybrid usage is secure in the IND-CCA sense in
the random oracle model (or a strong assumption in the standard (not random
oracle) model). The main di�erence from our work is that they use one more
cryptographic primitive | message authentication code (MAC). In addition,
their scheme depends on the DiÆe-Hellman key-distribution scheme. DHAES is
composed of the DiÆe-Hellman key-distribution, a hash function, a symmetric
encryption, and a message authentication code (MAC).

Cramer and Shoup brie
y mentioned in their work that their scheme can be
applied to hybrid usage with a symmetric encryption scheme [8].

1.2 Our Results

The contributions of this paper are twofold: One is to show a generic conversion
from a very weak asymmetric encryption to an asymmetric encryption scheme
which is secure in a very strong sense (IND-CCA in the random oracle model).
The other is to exhibit a generic hybrid conversion of asymmetric and symmetric
encryption schemes, proving the security explicitly. Our conversion starts from
arbitrary encryption schemes and each scheme so obtained is approximately as
eÆcient as, or more eÆcient than, the previously proposed schemes [1, 8, 22, 21].

2 Preliminary

We begin with some notations.

De�nition 1. Let A be a probabilistic algorithm and let A(x1; : : : ; xn; r) be the
result of running A on input (x1; : : : ; xn) and random coins r. We denote
by y  A(x1; : : : ; xn) the experiment of picking r at random and letting y be
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A(x1; : : : ; xn; r) (i:e:; y = A(x1; : : : ; xn; r)). If S is a �nite set, let y  R S be the
operation of picking y at random and uniformly from S. When S; T; : : : , denote
probability spaces, Pr[x S; y  T ; � � � : p(x; y; : : : )] denotes the probability that
the predicate, p(x; y; : : : ), is true after the experiments, x  S; y  T; � � � , are
executed in that order. Moreover, jxj denotes the bit length of string x and #S
denotes the cardinality of set S.

Here we de�ne asymmetric and symmetric encryption schemes, basically fol-
lowing [13, 3].

De�nition 2. [Asymmetric Encryption] An asymmetric encryption scheme,
� = (K; E ;D; COINS; MSPC), is a triple of algorithm, associated with �nite sets,
COINS(k) and MSPC(k), � f0; 1g�, for k 2 N, where

{ K, called the key-generation algorithm, is a probabilistic algorithm which on
input 1k (k 2 N) outputs a pair of strings, (pk; sk) K(1k).

{ E, called the encryption algorithm, is a probabilistic algorithm that takes a
pair of strings, pk and x, and a string r  COINS(k), and produces a string
y = Epk(x; r).

{ D, called the decryption algorithm, is a deterministic algorithm that takes a
pair of strings, sk and y, and returns a string x Dsk(y).

We require that, for any k 2 N, if (pk; sk) K(1k), x 2 MSPC, and y  Epk(x),
then Dsk(y) = x.

De�nition 3. [Symmetric Encryption] A symmetric encryption scheme, � =
(E ;D; KSPC; MSPC), is a pair of algorithms associated with �nite sets, KSPC(k) and
MSPC(k), � f0; 1g�, for k 2 N, where

{ E, called the encryption algorithm, is a deterministic algorithm that takes a
pair of strings, a and x, and produces y = Ea(x).

{ D, called the decryption algorithm, is a deterministic algorithm that takes a
pair of strings, a and y, and outputs a string x = Da(y).

We require that, for any k 2 N, if a 2 KSPC(k), x 2 MSPC, and y = Ea(x), then
Da(y) = x.

3 Basic Conversion

In this section, we present our conversion.
Let �asym = (Kasym; Easym;Dasym; COINSasym; MSPCasym) be an asymmetric

encryption scheme and let �sym = (Esym;Dsym; KSPCsym; MSPCsym) be a sym-
metric encryption scheme. Let G : MSPCasym ! KSPC

sym and H : MSPCasym �
MSPC

sym ! COINS
asym be hash functions.

From these primitives, we present a new asymmetric encryption scheme,
�hy= (Khy; Ehy;Dhy; COINShy; MSPChy), (where COINhy = MSPC

asym and MSPChy =
MSPC

sym) as follows:
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{ Encryption

Ehypk (m;�) = Easympk (�;H(�;m)) jj Esym
G(�)(m):

{ Decryption

Dhy
sk (c1jjc2) =

�
Dsym
G(�̂)(c2) if c1 = E

asym
pk (�̂;H(�̂; m̂)),

? otherwise.

where �̂ := Dasym
sk (c1) and m̂ := Dsym

G(�̂)(c2). (If there isn't Dasym
sk (c1) or

Dsym
G(�̂)(c2), then D

hy
sk (c1jjc2) =?.)

Key-Generation Khy(1k) Encryption Ehypk (m) Decryption Dhy
sk (c1; c2)

(pk; sk) Kasym(1k). �  R MSPCasym. �̂ := Dasym
sk (c1).

r1 := H(�;m). r̂2 := G(�̂).
r2 := G(�). m̂ := Dsym

r̂2
(c2).

c1 := E
asym
pk (�; r1). r̂1 := H(�̂; m̂).

c2  Esymr2
(m). If c1 == E

asym
pk (�̂; r̂1)

then m := m̂, else m :=?.
return (pk; sk). return (c1; c2). return m.

Fig. 1. Hybrid encryption scheme

4 Security De�nitions

4.1 Asymmetric Encryption

In this section we de�ne security notions for asymmetric encryption.

One-way Encryption In the following, we give a very weak security notion
(one-wayness) for an asymmetric encryption. Let � = (K; E ;D; COINS;MSPC)
be an asymmetric encryption. For � , we consider an algorithm, A, called an
adversary, that, taking a public-key, pk, outputted by K, and an encryption, y,
of a random plaintext in MSPC tries to decrypt y. The probability of A's success,
denoted by the advantage of A, depends on A, � , and the random choice of a
plaintext from MSPC. A doesn't have any decryption oracle (while an encryption
oracle doesn't matter because chosen-plaintext attacks are clearly unavoidable
in an asymmetric encryption scheme).

De�nition 4. [OWE] Let � = (K; E ;D; COINS; MSPC) be an asymmetric en-
cryption scheme. Let A be an adversary. For k 2 N, de�ne the advantage of A
by AdvoweA;�;MSPC(k) =

Pr[(pk; sk) K(1k);x MSPC(k); y  Epk(x) : A(pk; y) = Dsk(y)]:
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We say that adversary A (t; �)-breaks � in the sense of OWE if A runs in
at most time t and achieves AdvoweA;�(k) � �. We say that � is (t; �)-secure in
the sense of OWE if there is no adversary that (t; �)-breaks � in that sense.


-uniformity We introduce a property of asymmetric encryption in the follow-
ing de�nition.

De�nition 5. [
-uniformity] Let � = (K; E ;D; COINS; MSPC) be an asymmet-
ric encryption scheme. For given (pk; sk) 2 K(1k), x 2 MSPC and y 2 f0; 1g�,
de�ne


(x; y) = Pr[h R COINS : y = Epk(x;h)]:

We say that � is 
-uniform (for k 2 N), if, for any (pk; sk) 2 K(1k), any
x 2 MSPC and any y 2 f0; 1g�, 
(x; y) � 
.

Example 6. Let k be a security parameter. De�ne by ((y; g; p; q); x) a pair of
public-key and secret-key where y = gx mod p, x 2 Z=qZ, q = # < g > and k =
jqj. The ElGamal encryption scheme, associated with 1k, is then 2�k-uniform.

Strong Security Notions We recall a classical and stronger security notion
for an asymmetric encryption, called indistinguishability (IND), following [13, 4].

In this security notion, we consider an adversary, A, that takes two stages,
�nd and guess. In the �nd stage, A takes public-key pk and returns two distinct
messages, x0; x1, and a string, s, to use in the next mode, and then, in the guess
stage, takes the encryption of xb, where b R f0; 1g, and the above information,
and tries to guess b. The advantage of A is meant by how well she can guess the
value b. If A has the decryption oracle, Dsk(�), we say that this experiment is an
adaptive chosen-ciphertext attack (CCA), while, if A doesn't have it, we call it
a chosen-plaintext attack (CPA).

The random oracle version of this security notion is de�ned by allowing A
to make access to a random oracle (or plural oracles), which depends on � .
We de�ne by 
 the map family from an appropriate domain to an appropriate
range. The domain and range depend on the underlying encryption scheme, � .
Even if we choose two random functions that have distinct domains and distinct
ranges respectively, we just write the experiment, for convenience, as G;H  
,
instead of preparing two map families.

In the following de�nition, we de�ne simultaneously indistinguishability with
regard to CCA and CPA in the random oracle model.

De�nition 7. [Indistinguishability] Let � = (K; E ;D; COINS; MSPC) be an
asymmetric encryption scheme and let A be an Adversary. For k 2 N, de�ne the
following two advantages:

{ Advind�cpaA;� (k) =

2 � Pr[G;H  
; (pk; sk) K(1k); (x0; x1; s) AG;H(�nd; pk);

b R f0; 1g; y E
G;H
pk (xb) : A

G;H(guess; s; y) = b]� 1
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{ Advind�ccaA;� (k) =

2 � Pr[G;H  
; (pk; sk) K(1k); (x0; x1; s) AG;H;Dsk(�nd; pk);

b R f0; 1g; y E
G;H
pk (xb) : A

G;H;Dsk(guess; s; y) = b]� 1:

We require that, for (x0; x1) that A outputs, x0 6= x1 and x0; x1 2 MSPC.
We say that adversary A (t; qg ; qh; �)-breaks � in the sense of IND-CPA in

the random oracle model if A runs in at most time t, asks at most qg queries to

G(�), asks at most qh queries to H(�), and achieves Advind�cpaA;� (k) � �.
Similarly, we say that adversary A (t; qg ; qh; qd; �)-breaks � in the sense of

IND-CCA in the random oracle model if A runs in at most time t, asks at most
qg queries to G(�), asks at most qh queries to H(�), asks at most qd queries to

Dsk(�), and achieves Advind�ccaA;� (k) � �.
We say that � is (t; qg ; qh; �)-secure (or (t; qg; qh; qd; �)-secure) in the sense

of IND-CPA (or IND-CCA) if there is no adversary that (t; qg ; qh; �)-breaks (or
(t; qg ; qh; qd; �)-breaks) � in the corresponding sense.

Knowledge Extractor The notion of knowledge extractor for an asymmetric
encryption scheme is de�ned in [3, 4]. We recall the de�nition, following [4]. Let
� = (K; E ;D; COINS; MSPC) be an asymmetric encryption scheme. Let B and K
be algorithms, called an adversary and a knowledge extractor, respectively. They
work in the random oracle model as follows:

{ Adversary B takes public-key pk and asks two kinds of queries, queries for
random oracles, G and H , and queries for an encryption oracle, EG;Hpk , and,
after taking the answers from those oracles, �nally outputs a string y, where

� TG denotes the set of all pairs of B's queries and the corresponding
answers from G,
� TH denotes the set of all pairs of B's queries and the corresponding
answers from H ,
� Y denotes the set of all answers recieved as ciphertexts from EG;Hpk (�).
� y (output of B) is not in Y .

We write the experiment above as (TG; TH ;Y ; y) BG;H;Epk(pk).
Here we insist that neither any query of B's to Epk is in Y , nor any query of

EG;Hpk 's to random oracles, G and H , is in TG and TH .
{ Knowledge extractor K takes (TG; TH ;Y ; y; pk) and outputs a string x.

De�nition 8. [Knowledge Extractor] Let � = (K; E ;D; COINS; MSPC) be an
asymmetric encryption scheme, let B be an adversary, and let K be a knowledge
extractor. De�ne the following advantage: For k 2 N, let SucckeK;B;�(k) =

Pr[G;H  
; (pk; sk) K(1k); (TG; TH ;Y ; y) BG;H;Epk(pk) :

K(TG; TH ;Y ; y; pk) = Dsk(y)]:

We say that B is a (qg ; qh; qe)-adversary if B takes pk, makes at most qg
queries to G, at most qh queries to H and at most qe queries to Epk respectively,
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and �nally produces a string y. We say that K is a (t; �)-knowledge extractor
for B if K takes (T ;Y ; y), runs in at most time t, and achieves SucckeK;B;�(k)
� �.

4.2 Symmetric Encryption

We prepare a security notion for symmetric encryptions, called �nd-guess. This
notion is the symmetric encryption version of indistinguishability, following [5].

Let � = (E ;D; KSPC; MSPC) be a symmetric-key encryption scheme and let A
be a probabilistic algorithm (called an adversary). In the �nd stage, adversary
A outputs two distinct messages, x0; x1, and some information, s, to use in the
next mode, then, in the guess stage, takes the encryption of xb where b R f0; 1g
and the above information, and tries to guess b. The advantage of A is meant by
how well she can guess the value b. In our de�nition, unlike [5], A doesn't have
any encryption oracle.

De�nition 9. [Find-Guess] Let � = (E ;D; KSPC; MSPC) be a symmetric-key
encryption scheme and let A be an adversary. For k 2 N, de�ne the advantage
of A, by AdvfgA;�(k) =

2 � Pr[a R KSPC(k); (x0; x1; s) A(�nd); b R f0; 1g;

y = Ea(xb) : A(guess; s; y) = b]� 1:

We require that, for (x0; x1) that A outputs, x0 6= x1 and x0; x1 2 MSPC.

We say that adversary A (t; �)-breaks � in the sense of FG in the random

oracle model if A runs in at most time t and achieves AdvfgA;�(k) � �. We say
� is (t; �)-secure in the sense of FG if there is no adversary that (t; �)-breaks �
in that sense.

5 Security

This section shows the concrete security reduction.

5.1 Basic Conversion

Lemma 10. (Chosen-Plaintext Security) Suppose �asym is (t1; �1)-secure
in the sense of OWE and �sym is (t2; �2)-secure in the sense of FG. Let l1 and
l2 be the sizes of MSPCasym and MSPC

sym, respectively. Then �hy is (t; qg ; qh; �0)-
secure in the sense of IND-CPA in the random oracle model, where

t = min(t1; t2)�O(l1 + l2) and �0 = 2(qg + qh)�1 + �2:

The proof is described in Appendix.
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Lemma 11. (Knowledge Extractor) Suppose �asym is 
-uniform and (t1; �1)-
secure in the sense of OWE. Suppose �sym is (t2; �2)-secure in the sense of FG.
Let l1 and l2 be the sizes of MSPCasym and MSPC

sym, respectively. Suppose B is a
(qg ; qh; qe)-adversary for �hy. Then, there exist a (t; �)-knowledge extractor, K,
for B such that

t = O((qg + qh) � (l1 + l2)) and � = 1� qe � �1 � 2�2 � 
 � 2�l2 :

The proof is described in Appendix.
Next is our main theorem. We omit the proof here since, due to the result

of [4], it is straightforwards, provided lemmas 10 and 11 hold true (see [4]) (The
proof will be described in the full paper version).

Theorem 12. (Chosen-Ciphertext Security) Suppose �asym is 
-uniform
and (t1; �1)-secure in the sense of OWE. Suppose �sym is (t2; �2)-secure in the
sense of FG. Let l1 and l2 be the sizes of MSPCasym and MSPC

sym, respectively.
Then �hy is (t; qg ; qh; qd; �)-secure in the sense of IND-CCA in the random oracle
model where

t = min(t1; t2)�O((qg + qh) � (l1 + l2)) and

� = (2(qg + qh)�1 + �2 + 1)(1� 2�1 � 2�2 � 
 � 2�l2)�qd � 1:

5.2 A Variant: Symmetric Encryption is One-Time Padding

When a symmetric encryption, �sym, is one-time padding, we can relax the
security condition.

Here de�ne a symmetric encryption scheme by Esyma (m) = a � m (and
Dsym
a (c) = a�c). De�ne the key space KSPCsym = f0; 1gl2 and the message space

MSPC
sym = f0; 1gl2. Then G : MSPCasym ! f0; 1gl2 and H : MSPCasym�f0; 1gl2 !

f0; 1gl2 .
In �hy = (Khy; Ehy;Dhy; COINShy; f0; 1gl2), the encryption of a plaintext m

is then

Ehypk (m) = Easympk (�;H(�;m)) jj G(�) �m:

Then we can show the following results:

Corollary 13. (Knowledge Extractor) Suppose �asym is 
-uniform. Let l1
be the size of MSPCasym. Suppose B is a (qg ; qh; qe)-adversary for �hy. Then,
there exist a (t; �)-knowledge extractor, K, for B such that

t = O((qg + qh) � (l1 + l2)) and � = 1� 
 � 2�l2 :

Theorem 14. (Chosen-Ciphertext Security) Suppose �asym is 
-uniform
and (t1; �1)-secure in the sense of OWE. Let l1 be the size of MSPC

asym. Then �hy

is (t; qg; qh; qd; �)-secure in the sense of IND-CCA in the random oracle model
where

t = t1 �O((qg + qh) � (l1 + l2)) and

� = (2(qg + qh)�1 + 1)(1� 
 � 2�l2)�qd � 1:

These proofs will be written in the full paper version.
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6 Implementation

6.1 Implementation for the ElGamal Encryption Scheme

Let Gq be an Abelian group of the order q, where the group law is expressed by
addition. We assume that the DiÆe-Hellman problem de�ned over the underlying
group is diÆcult. Let g be a generator of Gq , and (y; x) denote a pair of a public
and secret keys such that y = x � g, where x 2 Z=qZ. Let [0; 1; : : : ; q � 1] �
MSPC

sym be an encoding of Gq . Let hash1 : [0; 1; : : : ; q � 1] �! KSPC
sym and

hash2 : [0; 1; : : : ; q � 1]� MSPC
sym �! [0; 1; : : : ; q � 1] be hash functions.

Encryption Ehypk (m) Decryption Dhy
sk (c1; c2; c3)

�  R [0; 1; : : : ; q � 1], �̂ := c1 � x � c2,
c1 := � + hash2(�;m) � y, m̂ := Dsym

hash1(�̂)
(c3),

c2 := hash2(�;m) � g, If c1 = �̂ + hash2(�̂; m̂) � y
c3 := E

sym
hash1(�)

(m). then m := m̂ else m :=?.

return (c1; c2; c3). return m.

Note 15. Let k = jqj be a security parameter. The ElGamal encryption primitive,
associated with 1k, is 2�k-uniform.

For an application to the elliptic curve encryption system, see [15].

6.2 Implementation for the Okamoto-Uchiyama Scheme

Let n = p2q be a large positive integer such that p and q are both primes of
the same size, i.e., jpj = jqj = k + 1. Let Z=nZ and (Z=nZ)� be the integer ring
modulo n and the multiplicative group of Z=nZ. We assume that the factoring of
n is diÆcult. For g; h0 2 (Z=nZ)�, let gp = gp�1 mod p2 and let h = hn0 mod n.
De�ne L(x) = x�1

p
for x 2 Z. Let hash1 : f0; 1gk �! KSPC

sym and hash2 :

f0; 1gk � MSPC
sym �! f0; 1g3k be hash functions. Let pk = (n; g; h; k) be the

public-key and let sk = (p; q; gp; L(gp)) be the secret-key.

Encryption Ehypk (m) Decryption Dhy
sk (c1; c2)

�  R f0; 1gk, c1;p := cp�11 mod p2,

c1 := g�hhash2(�;m) mod n, �̂ := L(c1;p) � L(gp)
�1 mod p,

c2 := E
sym
hash1(�)

(m). m̂ := Dsym
hash1(�̂)

(c2),

If c1 = g�̂hhash2(�̂;m̂) (mod n)
then m := m̂ else m :=?.

return (c1; c2). return m.

Note 16. This Okamoto-Uchiyama encryption primitive, associated with 1k, is
2�2k-uniform (22k � �(pq)).

For more detailed information of this implementation, see [16].
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7 Notes on 
-uniformity

As described in theorem 12, the security (IND-CCA) of our proposed scheme
depends only on the security of the asymmetric and symmetric encryption prim-
itives (OWE and FG, respectively) and 
-uniformity of the asymmetric encryp-
tion primitive. As 
 increases to 1 (the variants of the encryption decrease), the
security parameter �, described in theorem 12, become larger (become worse).
Since 
 is evaluated at the worst point in the message space, one should choose
MSPC

asym very carefully, not including a singular point at which 
 gets very close
to 1. If 
 = 1, then � doesn't make sense any more (e.g., the asymmetric en-
cryption primitive is a deterministic encryption scheme). Thus this conversion
can't directly apply to such an asymmetric encryption scheme as the RSA en-
cryption primitive. However, one can easily modify it and decrease parameter 
,
as follows:

Êasympk (m; (rjjr0)) = Easympk (m; r) jj r0

where Easympk (m; r) is an encryption algorithm in an asymmetric encryption scheme.
Clearly the new asymmetric encryption scheme still meets the security notion
of OWE if the original one meets the security notion. In particular, suppose
the asymmetric encryption primitive is a OWTP and the symmetric encryption
primitive is one-time padding. We then have, for a OWTP, f ,

Ehypk (m) = (f(�)jjH(�;m)) jj (G(�) �m):

This coincides with the encryption scheme presented in [2] as a chosen-ciphertext
secure encryption scheme (IND-CCA).
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A Proof of Lemma 10

Suppose for contradiction that there exists an adversary, A0, that (t; qg ; qh; �0)-
breaks �hy in MSPC

asym in the sense of IND-CPA in the random oracle model.
We can then show that there exist adversaries, B1 and B2, such that B1 (t1; �1)-
breaks�asym in MSPCasym in the sense of OWF and B2 (t2; �2)-breaks�

sym in the
sense of FG, where t1 = t+O(l1+l2), t2 = t+O(l1+l2), and �0 � 2�(qg+qh)��1+�2.

We show how to construct B1 and B2, which take advantage of A0 as an
oracle. Here, when utilizing A0 as an oracle, B1 and B2 should make, by them-
selves, the answers for A0's queries instead of random oracles, G and H , i.e., B1

and B2 have to simulate the random oracles. We describe the procedure, which
is shared with B1 and B2, of the simulation in the following.

[The procedure of making TG and TH ] Recall that G and H are ideal
random functions speci�ed by G : MSPCasym ! KSPC

sym, and H : MSPCasym �
MSPC

sym ! COINS
asym. At �rst we prepare empty lists, TG and TH and a counter,

count 0.

How to make TG For a query, �, if it hasn't been entered as an entry in TG,
choose g random and uniformly from KSPC

sym, answer g to adversary A0,
increase count by 1, set (�count; gcount) := (�; g), and put it on TG, otherwise
answer gi such that �i = � and (�i; gi) 2 TG.

How to make TH For a query, (�;m), if it hasn't been entered as an entry in
TH , choose h random and uniformly from COINS

asym, answer h to adversary
A0, increase count by 1, set (�count;mcount; hcount) := (�;m; h), and put it
on TH , otherwise answer hi such that (�i;mi) = (�;m) and (�i;mi; gi) 2
TH .

[Adversary B1] We explain the speci�cation of adversary B1. Recall that
B1 is an algorithm that on input (pk; y) outputs some string, and the advantage
is speci�ed by AdvcpaB1;�asym(k) = Pr[(pk; sk)  Kasym(1k);x  MSPC

asym; y  

Easympk (x) : B1(pk; y) = D
asym
sk (y)]. B1 runs A0 as follows:

Step 1 Input pk to A0 (originally inputted to B1) and run A0 in the �nd
mode. If A0 asks oracles, G and H , then follow the above procedure.
Finally A0 would output (x0; x1; s).

Step 2 Choose b  R f0; 1g and ĝ  R KSPC
sym. Then set c1 := y and c2 :=

Esymĝ (xb).

Step 3 Input (x0; x1; s; (c1; c2)) to A0 and run A0 in the guess mode. If A0

asks oracles, G and H , then follow the above procedure. After asking
at most (qg + qh) queries to the random oracles or running in at most
time t, A0 would output bit b0. However if it is still running, abort it.

Step 4 Choose a number i  R f1; : : : ; countg and output �i as the answer
to y (originally inputted to B1).

[Adversary B2] We now describe the speci�cation of adversary B2. Re-
call that B2 is an algorithm that has two modes: At �rst in the �nd mod-
e it executes and outputs two distinct messages and some information used
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in the next mode. In the guess mode, it runs on input ciphertext as well as
the above information, and outputs one bit. The advantage is speci�ed by
AdvfgB2;�sym(k) = 2 � Pr[a  KSPC

sym; (x0; x1; s)  B2(�nd); b  R f0; 1g; y =
Esyma (xb) : B2(guess; x0; x1; s; y) = b]� 1. B2 runs A0 as follows:

Step 1 (B2 is set in the �nd mode.) Run Kasym on input 1k and let K output
(pk; sk). Do the same thing as in the �rst step in the case of adversary
B1. Finally A0 outputs (x0; x1; s), then output (x0; x1; s) as his own
output.

Step 2 (B2 is inputted y = Esyma (xb) where a  R KSPC
sym, b  R f0; 1g, and

enter the guess mode.) Choose �  R MSPC
asym and ĥ  R COINS

asym.

Then set c1 := Easym(�; ĥ) and c2 := y.
Step 3 (B2 is still in the guess mode.) Do the same thing as in the third step

in the case of adversary B1.
Step 4 (B2 is still in the guess mode.) Finally, A0 outputs b

0. Then output b0

as his own answer.

From the speci�cations of B1 and B2, their running times are t+O(l1 + l2).
Here we de�ne, for shorthand, the following experiment:

AskA0 = [ A0 asks G or H a query that includes Dasym
sk (c1).]

SuccA0 = [G;H  
; (pk; sk) Kasym(1k); (x0; x1; s) A0
G;H(�nd; pk);

b R f0; 1g; y E
hy
pk (xb) : A0

G;H(guess; x0; x1; s; y) = b]

SuccB1 = [(pk; sk) Kasym(1k);x MSPC
asym; y  Easympk (x) :

B1(pk; y) = D
asym
sk (y)]

SuccB2 = [sk2  R KSPC
sym; (x0; x1; s) B2(�nd); b R f0; 1g;

y = Esyma (xb) : A0
G;H(guess; x0; x1; s; y) = b]

In addition, let p0 = Pr[AskA0], so we can write

Pr[SuccA0] = Pr[SuccA0jAskA0] � p0 +Pr[SuccA0jAskA0] � (1� p0);

Pr[SuccB2] = Pr[SuccB2jAskA0] � p0 +Pr[SuccB2jAskA0] � (1� p0):

Then, from the speci�cation of adversaries, B1 and B2, it holds

Pr[SuccB1] � (qg + qh)
�1 � p0 and Pr[SuccB2] � Pr[SuccA2jAskA0] � (1� p0):

This is because: if A0 asks at least one query including Dasym
sk (y) to either G or

H , then B1 can output the correct answer with probability at least 1=(qg + qh).
Otherwise, Pr[SuccA0jAskA0] �(1�p0) = Pr[SuccB2jAskA0] �(1�p0). Therefore,

Pr[SuccA0] � (qg + qh) � Pr[SuccB1] + Pr[SuccB2]: (1)

Then, from the assumption (for contradiction), we can write

�0 � 2Pr[SuccA0]� 1; �1 = Pr[SuccB1]; �2 = 2Pr[SuccB2]� 1: (2)

Hence, �0 � 2(qg + qh) � �1 + �2. ut
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B Proof of Lemma 11

Let B be a (qg ; qh; qe)-adversary that, on input pk, asks queries to G and H ,

asks queries to the encryption oracle, Ehypk (�), and �nally outputs (c1; c2), where

(c1; c2) 62 Y . Recall we write the experiment as (TG; TH ;Y ; y)  BG;H;Ehy
pk (pk).

The knowledge extractor,K, is an algorithmwhich, on input (TG; TH ;Y ; (c1; c2); pk),
outputs a string. Recall for k 2 N, SucckeK;B;�hy(k) =

Pr[G;H  
; (pk; sk) K(1k); (TG; TH ;Y ; y) BH;Ehy
pk (pk) :

K(TG; TH ;Y ; y; pk) = D
hy
sk (y)]:

[Knowledge Extractor] Here, let TG = f(�i; gi)ji = 1; : : : ; qgg and TH =
f(�0j ;mj ; hj)jj = 1; : : : ; qhg. We then give the speci�cation of the knowledge
extractor K as follows:

Step 1 Set two empty lists, S1 and S2.
Step 2 Find all elements in TH such that c1 = Easympk (�0j ; hj) and put them

into list S1. If S1 = ;, then output ?, otherwise
Step 3 For every (�0j ;mj ; hj) in S1, �nd all elements in TG such that �i = �0j

and put them (i.e., (�0j ;mj ; hj)jj(�i; gi)'s) into S2. If S2 = ;, then

output ?, otherwise
Step 4 Check in S2 if there exists a (�0j ;mj ; hj)jj(�i; gi) such that c2 =

Esymgi
(mj). If it exists in S2, then output mj otherwise output ?.

This protocol runs in time O((qg + qh)k).
Next we examine the advantage of the knowledge extractor. We de�ne the

following events:

{ Inv is true if there exists (c�1; c
�
2) 2 Y and (�i; gi) 2 TG or (�j ;mj ; hj) 2 TH

such that �i = Dasym
sk (c�1) or �j = Dasym

sk (c�1).
{ p(S1) is true if S1 6= ;.
{ p(S2) is true if S2 6= ;.
{ Find is true if there exists a (�0j ;mj ; hj)jj(�i; gi) in S2 such that c2 =
Esymgi

(mj).

{ Fail is true if \the output of knowledge extractor K" 6= Dhy
sk (c1; c2).

We further de�ne the following events:

`10 = Inv:
`000 = :Inv ^ :p(S1):
`0100 = :Inv ^ p(S1) ^ :p(S2):
`01100 = :Inv ^ p(S1) ^ p(S2) ^ :Find:
`01110 = :Inv ^ p(S1) ^ p(S2) ^ Find:

Then the following equation holds

Pr[Fail] = Pr[Failj1] � Pr[1] + Pr[Failj00] � Pr[00] + Pr[Failj010] � Pr[010] +

Pr[Failj0110] � Pr[0110] + Pr[Failj0111] � Pr[0111]:
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Hence,

Pr[Fail] � Pr[1] + Pr[Failj00] + Pr[Failj010] + Pr[Failj0110] + Pr[Failj0111]:

Here we can easily �nd that Pr[Failj0110] = Pr[Failj0111] = 0. In addition, we
claim the following inequalities hold true:

Claim. Pr[1] � qe � �1.

Proof. Remember that the interaction between adversary B and encryption or-
acle Ehypk (�): When B make access to EG;Hpk with query m, Ehypk takes random coins

�  R COINS
asym and answer to B with (Easympk (�;H(�;m)) jj Esym

G(�)(m)). B

makes at most qe queries to E
hy
pk .

Therefore, Pr[1] = Pr[Inv] � qe � �1. ut

Claim. Pr[Failj00] � 


Proof. Given the event 00, we can identify B with an adversary B0 which on
input pk outputs a string, y, to guess the random coins in y. The advantage of
B0 is AdvB0;�asym(k) =

Pr[(pk; sk) Kasym(1k);h R COINS
asym; y  B0(pk);

x Dasym
sk (y) : y = Easympk (x;h)]

Then

Pr[Failj00] � AdvB0;�asym(k)

= Pr[(pk; sk) Kasym(1k); y  B0(pk);x Dasym
sk (y);

h R COINS
asym : y = Easympk (x;h)]:

Recall, for (pk; sk) 2 Kasym(1k), x 2 MSPC
asym and y 2 f0; 1g�,


(x; y) = Pr[h R COINS
asym : y = Easympk (x;h)] � 
:

Hence Pr[Failj00] � 
. ut

Claim. Pr[Failj010] � 2�2 + 2�l2 .

Proof. Given the event 010, we can identify B with an adversary B0 that out-
puts a pair of strings to guess the secret-key of �sym. The advantage of B0 is
AdvB0;�sym(k) =

Pr[g  R KSPC
sym; (x; y) B0(�nd) : y = Esymg (x)]:

Since the event, Failj010, means that B0 outputs valid (x; y) (extractor K
outputs ?), Pr[Failj010] = AdvB0;�sym(k).

[Adversary A] Suppose there exists B0 with Æ := AdvB0;�sym(k). We then
construct adversary A against �sym as follows:
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Step 1 (A starts in the �nd mode.) Run B0 and �nally B0 outputs (x0; y0).

Step 2 Choose b0  R f0; 1g and x00  R f0; 1gjx
0j. Then set xb0 := x0 and

x�b0 := x00 (where �b0 denotes the complement of b0). Finally output
(x0; x1).

Step 3 (A is inputted y = Esymg (xb) where g  R KSPC
sym and b  R f0; 1g

and enters the guess mode.) If y = y0 then output b0 else 
ip a coin
again and output the result (namely, after b00  R f0; 1g output b00).

De�ne SuccA =

[g  R KSPC
sym; (x0; x1) A(�nd); b f0; 1g; y = Esymg (xb) : A(guess; s; y) = b]:

Then,

Pr[SuccA] = Pr[SuccAjy = y0] � Pr[y = y0] + Pr[SuccAjy 6= y0] � Pr[y 6= y0]:

De�ne X = (x; y), QX = PrB [(x; y)  B0(�nd], and PX =
#fgjy=Esymg (x)g

#KSPCsym
.

We then have
Æ =

X
X

QXPX :

To evaluate Pr[SuccA], let X 0 := (x0; y0) and X 00 := (x00; y0). Here note that
QX0 = QX00 . First we evaluate the conditional probability of Pr[SuccA] given
X 0; X 00 (outputs of B and A); we write the probability as PrX0;X00 [SuccA].

Pr
X0;X00

[y = y0] =
1

2
� Pr
X0;X00

[y0 = Esymg (x0)] +
1

2
� Pr
X0;X00

[y0 = Esymg (x00)]

=
1

2
(PX0 + PX00);

Pr
X0;X00

[SuccAjy = y0] =
#fg j y0 = Esymg (x0)g

#fg j y0 = Esymg (x0) _ y0 = Esymg (x00)g
=

PX0

PX0 + PX00

;

PrX0;X00 [SuccAjy 6= y0] = 1
2 ; and PrX0;X00 [y 6= y0] = 1 � PrX0;X00 [y = y0] =

1� 1
2 (PX0 + PX00). Therefore,

Pr
X0;X00

[SuccA] =
1

2
+

1

4
(PX0 � PX00):

We then evaluate Pr[SuccA] (Here note that QX0 is taken over B0's coin 
ips
and Pr[x00  A(�nd)] = 2�l2 is taken over A's coin 
ips.)

Pr[SuccA] =
�1
2

�l2X
X0

X
X00

QX0(
1

2
+

1

4
(PX0 � PX00))

=
1

2
+

1

4
Æ �

1

4

X
X0

X
X00

QX0PX00 ;
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since
P

X0 QX0PX0 = Æ,
P

X0 QX0 = 1, and
P

x00

�
1
2

�l2
= 1.

By combining with the assumption that�sym is (t2; �2)-secure, i.e., Pr[SuccA] �
1
2 +

�2
2 (that is, 1

2 +
1
4Æ �

1
4

P
X0

P
X00 QX0PX00 � 1

2 +
�2
2 ), we have the following

inequality,

Æ � 2�2 +
X
X0

X
X00

QX0PX00 ;

We then evaluate
P

X0

P
X00 QX0PX00 .

X
X0

X
X00

QX0PX00 =
X
X0

QX0

��1
2

�l2X
x00

#fg j y0 = Esymg (x00)g

#KSPC
sym

�
:

Since fg j y0 = Esymg (x001 )g should be disjoint from fg j y0 = Esymg (x002 )g (with
x001 6= x002) in order to uniquely decrypt y

0 with key g,
P

x00 #fg j y0 = Esymg (x00)g �
#KSPC

sym. Hence,

X
X0

X
X00

QX0PX00 �
�1
2

�l2X
X0

QX0 =
�1
2

�l2
:

Thus, (Æ =)AdvB0;�sym(k) � 2�2 + 2�l2 . ut

From the claims above, Pr[Fail] � qe � �1 + 
 + 2�2 + 2�l2 .
Therefore,

� = 1� Pr[Fail] � 1� (qe � �1 + 2�2 + 2�l2 + 
):

ut
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