
Stacked Training for Overfitting Avoidance in Deep Networks

Alexander Grubb agrubb@cmu.edu
J. Andrew Bagnell dbagnell@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

When training deep networks and other com-
plex networks of predictors, the risk of over-
fitting is typically of large concern. We ex-
amine the use of stacking, a method for train-
ing multiple simultaneous predictors in or-
der to simulate the overfitting in early lay-
ers of a network, and show how to utilize
this approach for both forward training and
backpropagation learning in deep networks.
We then compare this approach to overfit-
ting avoidance with the dropout method for
a number of common tasks.

1. Introduction

A deep network is composed of a sequence of layers, or
predictors, that are successively applied to inputs to
obtain final predictions. Each of these layers typically
takes weaker representations from previous layers and
then computes a more complex representation from
that, allowing for powerful overall representations that
are useful for solving difficult prediction problems.

Training these models, however, is a delicate matter,
as each layer relies on the accuracy of other layers
when optimizing its internal representation. At train-
ing time, small inaccuracies in other layers may be ex-
ploited to improve overall performance, but when run
on unseen test data these inaccuracies can compound
and create very different predictions and often poor
test set performance.

This problem is widely recognized in the deep networks
community, particularly due to the global fine-tuning
approaches that are used to train these networks, and
many strategies such as regularization have been em-
ployed to combat this problem. Other approaches in-
clude unsupervised learning techniques and methods

Appearing at the ICML 2013 Workshop on Representation
Learning. Copyright 2013 by the author(s).

for perturbing or manipulating the inputs to generate
more training data.

A recent development that has proven very success-
ful is the dropout approach (Hinton et al., 2012). In
this approach a neural network is trained by stochasti-
cally ignoring hidden units at each training iteration,
allowing the trained network to avoid relying on in-
teractions between multiple hidden units which are a
common source of overfitting. The performance im-
provement of this approach has led to a number of ex-
tensions, such as maxout networks (Goodfellow et al.,
2013), which are networks of hidden units specifically
designed to be used in tandem with dropout training.

One related approach to this problem from a differ-
ent domain is the concept of stacking (Wolpert, 1992;
Cohen & Carvalho, 2005). Essentially this method
trains multiple copies of a given predictor while hold-
ing out portions of the dataset, in a manner similar
to cross-validation. Each predictor is then run on the
held-out data, mitigating the impact of overfitting on
those predictions. This approach has proven to be
useful in structured prediction settings (Cohen & Car-
valho, 2005; Munoz et al., 2010) such as computer vi-
sion, where it is common to build sequential predictors
which use neighboring and previous predictions as con-
textual information to improve overall performance.

It is this stacking approach which we will examine and
extend to two common training scenarios for deep net-
work: forward training and backpropagation learning.

2. Stacked Forward Training

In forward training, a deep network is trained using a
sequential approach that trains each successive layer
iteratively using the outputs from previously trained
layers. This approach is common in structured pre-
diction tasks such as vision where iterated predictions
are used allow for smoothing of neighboring regions or
when the structure of lower level features is selected
apriori and trained independently of later layers. This
is also a common approach to pre-training many deep

Stacked Training for Overfitting Avoidance in Deep Networks

network architectures, such as the contrastive diver-
gence learning used in pre-training deep Boltzmann
machines (Salakhutdinov & Hinton, 2009).

Assume we are given a dataset S0 of examples and
labels {(xn, yn)}Nn=0.

We model a deep network of K layers as a sequence of
predictors f1, . . . , fK , with the output of layer k given
as

xkn = fk(xk−1n), (1)

with the initial input x0n = xn.

Assume that for each layer k, there is a learning algo-
rithm Ak(S) for generating the predictor fk for that
layer, using predictions from the previous layer xk−1n

and labels yn. That is, having trained the previous lay-
ers f1, . . . , fk−1, the next layer is trained by building
a dataset

Sk = {(xk−1n , yn}Nn=0, (2)

and then training the current layer

fk = Ak(Sk). (3)

This method is not robust to overfitting, however, as
errors in early predictors are re-used for training later
predictors, while unseen test data will likely generate
less accurate predictions or low level features. If early
predictors in the network overfit to the training set,
later predictors will be trained to rely on these overfit
inputs, potentially overfitting further to the training
set and leading to a cascade of failures.

The stacking method (Cohen & Carvalho, 2005) is a
method for reducing the overall generalization error
of a sequence of trained predictors, by attempting to
generate an unbiased set of previous predictions for
use in training each successive predictor. This is done
by training multiple copies of each layer on different
portions of the data, in a manner similar to cross-
validation, and using these copies to predict on unseen
parts of the data set.

More formally, we split the dataset S‖ in to J equal
portions Sk

1 , . . . ,Sk
J , and for each layer fk train an

additional J copies fkj . Each copy is trained on the
dataset excluding the corresponding fold, as in J-fold
cross-validation:

fkj = Ak(Sk \ Sk
j). (4)

Each of the copies is then used to generate predictions
on the held-out portion of the data which are used to
build the training dataset for the next layer:

Sk+1 = ∪J
j=1

{
(fkj (x), y) | |(x, y) ∈ Sk

j

}
. (5)

Algorithm 1 Stacked Forward Training

Given: initial dataset S0, training algorithms Ak,
number of stacking folds J .
for k = 1, . . . ,K do

Let fk = Ak(Sk).
Split Sk into equal parts Sk

1 , . . . ,Sk
J .

For j = 1, . . . , J let fkj = Ak(S \ Sk
j).

Let Sk+1 = ∪J
j=1

{
(fkj (x), y) | (x, y) ∈ Sk

j

}
.

end for
return

(
f1, . . . , fK

)
.

The predictor fk for the current layer is still trained
on the whole dataset Sk, as in (3) and returned in
the final model. The stacked copies are only used to
generate the predictions for training the next layer,
and are then discarded.

A complete description of stacked forward training is
given in Algorithm refalg:stacked-forward.

3. Stacked Backpropagation

In the previous section we detailed the stacking
method for forward training. Many deep networks do
not use a purely forward training algorithm, however,
as this prevents early stages of the representation from
being adjusted to improve overall performance.

In this section we extend the stacking method to the
most common approach to training whole networks si-
multaneously, backpropagation. We now assume that
we are given a loss function on the final output

L[f1, . . . , fk] =

N∑
n=1

l(xKn , yn). (6)

Define

hk(x) = fK(fK−1(. . . fk+1(x))) (7)

to be the result of evaluating everything after layer
k. Typical backpropagation learning, given a training
example (xn, yn) and a layer fk, computes the current
input xk−1n and the gradient

∇k =
∂

∂fk(xk−1n)
l(hk(fk(xk−1n)), yn), (8)

an then uses these values to update the current layer
fk. This is typically an activation function applied to
linear weights:

fk(xk−1n) = z(θk
T
xk−1n), (9)

Stacked Training for Overfitting Avoidance in Deep Networks

Algorithm 2 StackProp: Stacked Backpropagation
Update

Given: current estimates for fk, fkj , ∀j, k, training
example (xn, yn)
Let (xn, yn) ∈ Sj∗ .
for k = 1, . . . ,K do

Compute x̂k−1n from xn using f1j∗ , . . . , f
k−1
j∗ as in

(10).
Compute ∇k using fk+1, . . . , fK as in (11).
Similarly, compute ∇k

j for all j 6= j∗ as in (12).
end for
for k = 1, . . . ,K do

Update fk using x̂k−1n and ∇k.
Update fkj using x̂k−1n and ∇k

j , for all j 6= j∗.
end for

which is updated using gradient descent, but other ap-
proaches exist for updating networks of arbitrary func-
tions using gradient information (Grubb & Bagnell,
2010).

In the case of stacked backpropagation, we will again
attempt to generate unbiased inputs x̂k−1n for each
layer. Like before, we will train a copy of each layer
fkj for each of the J splits of the training set, and use
these copies on held-out data to generate the unbiased
inputs.

Split the initial dataset in to J partitions, S1, . . . ,SJ .
Letting the initial unbiased input x̂0n = xn, we can
define the unbiased input to each layer as

x̂kn = fkj (x̂k−1n), where (xn, yn) ∈ Sj (10)

The gradient is still computed using the normal,
i.e.unstacked predictors for each layer, with the only
modification being the use of the unbiased inputs:

∇̂k =
∂

∂fk(x̂k−1n)
l(hk(fk(x̂k−1n)), yn). (11)

For a given example in (xn, yn) ∈ Sj∗ , we also have to
update all the stacked layers in other partitions j 6= j∗,
using the input x̂k−1n and the gradient

∇̂k
j =

∂

∂fkj (x̂k−1n)
l(hk(fkj (x̂k−1n)), yn). (12)

Algorithm 2 gives the backpropagation update for a
single training example, but the same method can be
easily extended for other scenarios such as minibatch
training.

Baseline Stacking Dropout
SBD 80.49% 81.86% 80.54%

CamVid 83.53% 84.94% 83.25%

Table 1. Test set accuracy (average across 5 folds) on the
Stanford Background Dataset (SBD) and Cambridge Video
Dataset (CamVid) using the HIM (Munoz et al., 2010) ap-
proach combined with baseline forward training, stacking,
and dropout.

4. Experimental Results

We now present results comparing stacked learning to
both dropout and a baseline forward training of back-
propagation approach.

4.1. Forward Training for Structured
Prediction

We applied standard forward training, stacked train-
ing, and dropout to a structured prediction task in the
scene labeling domain. In this domain the goal is to la-
bel every pixel of an image with a label, e.g.car, build-
ing, sky. For this task, we used the sequential network
approach of Munoz, et al.(2010) known as Hierarchi-
cal Inference Machines (HIM). We use the same setup
and stacking approach as described in their previous
work, detailed briefly in Figure 1.

In this approach a number of predictors are trained in
a sequential manner on a hierarchy of segmentations
for each input image. Each layer takes as inputs fea-
tures of the image, along with predictions from the
previous layer on the current image region and neigh-
boring regions, and predicts the label for that portion
of the image.

For the dropout approach to this problem, we use the
same hierarchical network and training setup as in
(Munoz et al., 2010), but when building features based
off of previous predictions the predictions are dropped
out of the feature vector (by setting the feature to 0)
with probability p = 0.1. In the forward training set-
ting, larger values of p such as the p = 0.5 used in the
typical backpropagated dropout approach result in too
much noise being introduced in to the dataset, as the
features from the previous layer are only trained on
once, unlike the backpropagation approach where the
same example is sampled many times.

Table 1 gives the average test set accuracy for each of
the three forward training approaches on the Stanford
Background Dataset (SBD) (Gould et al., 2009) and
Cambridge Video Dataset (CamVid) (Brostow et al.,
2008).

Stacked Training for Overfitting Avoidance in Deep Networks

(a) (b)

Figure 1. Hierarchical Inference Machines (Munoz et al., 2010). (a) Input image. (b) The image is segmented multiple
times; predictions are made and passed between levels. Images courtesy of the authors’ ECCV 2010 presentation.

Figure 2. Number of test set errors for the MNIST dataset
for baseline backpropagation (red), StackProp (green)
and dropout (blue), using an 800 unit, 2 layer network.

4.2. Backpropagated Neural Networks

To analyze the performance of stacked backpropaga-
tion, we use it to train a number of standard feed-
forward networks for the MNIST dataset and two
datasets from the UCI Machine Learning Repository
(Frank & Asuncion, 2010), the ’letter’ and ’pendigits’
datasets.

We train all models and methods using stochastic gra-
dient descent on minibatches of 100 examples each.
The specific learning rate and momentum settings are
the same as those given in (Hinton et al., 2012) for all
models. Namely, the learning rate is decayed using

ηt = 0.998t (13)

and a momentum parameter that smoothly increases
from 0.5 to 0.99 over the first 500 training epochs. We
also use the same method of constraining the layer
weights using a hard L2 constraint of 15.0 for each
unit.

The stacked version uses 10 validation folds for train-

ing the stacked layers, and the dropout approach uses
a hidden unit dropout probability of 0.5. No dropout
is used on the input features for any model.

Figure 3 and Figure 4 give the results for UCI ’letter’
and ’pendigits’ datasets, respectively, using all three
methods with two different networks: a two layer and
three layer network, each with a width of 500 hidden
units.

Figure 2 gives the results for the MNIST dataset using
the three methods (baseline backpropagation, stacking
and dropout) with a two layer architecture with 800
hidden units.

5. Discussion

Overall, we see that stacked training has the most
benefit in forward training, where it substantially out-
performs the baseline and dropout approaches. This
comes as no surprise as stacking is originated as
method of overfitting avoidance in structured and se-
quential prediction problems.

In the backpropagation setting, stacking can some-
times improve the robustness of a network, but it is
almost always dominated by the dropout approach.
It also seems that the stacking approach to back-
propagation detailed here has substantial convergence
problems when dealing with deeper networks, as both
of the three layer networks results for stacking were
worse than their respective baseline approaches, while
dropout excelled when used with these networks.

The added complexity of stacked training, both in
terms of implementation overhead and added compu-
tational cost, coupled with the often poorer perfor-
mance than dropout, seemingly makes it a poor choice
currently for fine-tuning deep networks.

The large benefit seen in forward training leaves open
the possibility of future work examining the use of
stacking in other forward training settings commonly
used for training deep networks, such as in the pre-
training stages used for most deep networks. Fur-

Stacked Training for Overfitting Avoidance in Deep Networks

(a) (b)

Figure 3. Test set error rate for the UCI ’letter’ dataset for baseline backpropagation (red), StackProp (green) and
dropout (blue), using a (a) 500 unit, 2 layer network and (b) 500 unit, 3 layer network.

(a) (b)

Figure 4. Test set error rate for the UCI ’pendigits’ dataset for baseline backpropagation (red), StackProp (green) and
dropout (blue), using a (a) 500 unit, 2 layer network and (b) 500 unit, 3 layer network.

ther study of the impact of overfitting in these early
training stages, and whether stacking can alleviate this
overfitting, is a promising extension of this work.

Acknowledgements

We would like to thank Daniel Munoz and Stephane
Ross for their helpful discussions and feedback.

References

Brostow, Gabriel J., Shotton, Jamie, Fauqueur, Julien,
and Cipolla, Roberto. Segmentation and recognition

using structure from motion point clouds. In ECCV,
2008.

Cohen, William W. and Carvalho, Vitor. Stacked se-
quential learning. In IJCAI, 2005.

Frank, A. and Asuncion, A. UCI machine learning
repository, 2010. URL http://archive.ics.uci.

edu/ml.

Goodfellow, Ian J., Warde-Farley, David, Mirza,
Mehdi, Courville, Aaron C., and Bengio, Yoshua.
Maxout networks. CoRR, abs/1302.4389, 2013.

Gould, Stephen, Fulton, Richard, and Koller, Daphne.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Stacked Training for Overfitting Avoidance in Deep Networks

Decomposing a scene into geometric and semanti-
cally consistent regions. In ICCV, 2009.

Grubb, A. and Bagnell, J. A. Boosted backpropaga-
tion learning for training deep modular networks. In
Proceedings of the 27th International Conference on
Machine Learning, 2010.

Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky,
Alex, Sutskever, Ilya, and Salakhutdinov, Rus-
lan. Improving neural networks by prevent-
ing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

Munoz, D., Bagnell, J. A., and Hebert, M. Stacked
hierarchical labeling. In European Conference on
Computer Vision, 2010.

Salakhutdinov, Ruslan and Hinton, Geoffrey E. Deep
boltzmann machines. Journal of Machine Learning
Research - Proceedings Track, 5:448–455, 2009.

Wolpert, David H. Stacked generalization. Neural Net-
works, 5(2), 1992.

