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Abstract—Current web browsers are plagued with vulnerabil-
ities, providing hackers with easy access to computer systems
via browser-based attacks. Browser security efforts that retrofit
existing browsers have had limited success because the design of
modern browsers is fundamentally flawed. To enable more secure
web browsing, we design and implement a new browser, called
the OP web browser, that attempts to improve the state-of-the-art
in browser security. Our overall design approach is to combine
operating system design principles with formal methods to design
a more secure web browser by drawing on the expertise of both
communities. Our overall design philosophy is to partition the
browser into smaller subsystems and make all communication
between subsystems simple and explicit. At the core of our design
is a small browser kernel that manages the browser subsystems
and interposes on all communications between them to enforce
our new browser security features.

To show the utility of our browser architecture, we design and
implement three novel security features. First, we develop novel
and flexible security policies that allows us to include plugins
within our security framework. Our policy removes the burden
of security from plugin writers, and gives plugins the flexibility
to use innovative network architectures to deliver content while
still maintaining the confidentiality and integrity of our browser,
even if attackers compromise the plugin. Second, we use formal
methods to prove that the address bar displayed within our
browser user interface always shows the correct address for the
current web page. Third, we design and implement a browser-
level information-flow tracking system to enable post-mortem
analysis of browser-based attacks. If an attacker is able to
compromise our browser, we highlight the subset of total activity
that is causally related to the attack, thus allowing users and
system administrators to determine easily which web site lead to
the compromise and to assess the damage of a successful attack.

To evaluate our design, we implemented OP and tested
both performance and filesystem impact. To test performance,
we measure latency to verify OP’s performance penalty from
security features are be minimal from a users perspective. Our
experiments show that on average the speed of the OP browser is
comparable to Firefox and the audit log occupies around 80KB
per page on average.

I. INTRODUCTION

Current web browsers provide attackers with easy access

to modern computer systems. According to a recent report by

Symantec [48], over the last year Internet Explorer had 93 se-

curity vulnerabilities, Mozilla browsers had 74 vulnerabilities,

Safari had 29 vulnerabilities, and Opera had 9 vulnerabilities.

In addition to these browser bugs, there were also 301 reported

vulnerabilities in browser plugins over the same period of

time including high-profile bugs in the Java virtual machine

[10], the Adobe PDF reader [38], the Adobe flash player [8],

and Apple’s QuickTime [39]. Unfortunately, attackers actively

exploit these bugs according to several recent reports [50],

[36], [41], [48].

The flawed design and architecture of current web browsers

make this trend of exploitation likely to continue. Modern web

browser design still has roots in the original model of browser

usage where users viewed several different static pages and

the browser itself was the application. However, recent web

browsers have evolved into a platform for hosting web-based

applications, where each distinct page (or set of pages) repre-

sents a logically different application, such as an email client, a

calender program, an office application, a video client, a news

aggregate, etc. The single-application model provides little

isolation or security between these distinct applications hosted

within the same browser, or between different applications

aggregated on the same web page. A compromise occurring

on any part of the browser, including plugins, results in a total

compromise of all web-based applications running within the

browser.

Efforts to provide security in this evolved model of web

browsing have had limited success. The same origin1 policy –

which states that scripts and objects from one domain should

only be able to access other scripts and objects from the same

domain – is one security policy most browsers try to imple-

ment. However, different browsers have varying interpretations

of the same-origin policy [24], and the implementation of this

principle tends to be error prone due to the complexity of

modern browsers [12]. Furthermore, the same-origin policy is

too restrictive for use with browser plugins and as a result

browser plugin writers have been forced to implement their

own ad-hoc security policies [7], [47], [35]. Plugin security

policies can contradict a browsers overall security policy, and

create a configuration nightmare for users since they have to

manage each plugin’s security settings independently.

Current research efforts to retrofit today’s web browsers

help to improve security, but fail to address the fundamental

design flaws of current web browsers. One project, MashupOS
[49], proposes new abstractions to facilitate improved sharing

among multiple principles hosted in the same web page.

Another project, Script Accenting [12], encrypts scripts from

different domains to improve enforcement of the same-origin

policy. Both provide scripts with fine-grain isolation within

the same web page. However, these mechanisms both run

within current web browsers (Internet Explorer) and are only

as secure as the browser they run within, which currently

1An origin is defined as the domain, port, and protocol of a request.
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is not very secure. Sandboxing systems, such as Tahoma

[17], prevent browsers from making persistent changes to the

system and isolate distinct web-based applications using a

virtual machine monitor (VMM). This type of persistent-state

restriction can be problematic if users legitimately want to

store persistent state and allowing users to store and execute

downloaded files gives attackers an avenue into the system.

Plus, sandboxing at the web-application level can be too coarse

grained since it fails to isolate different scripts and objects

within the same web application. Combining current fine-

grained isolation techniques with sandboxing systems does not

provide a complete solution since it would still rely heavily

on the underlying browser itself.

This paper describes the design and implementation of the

OP2 web browser that attempts to address the shortcomings of

current web browsers to enable secure web browsing. In our

design we break the browser into several distinct and isolated

components, and we make all interactions between these

components explicit. At the heart of our design is a browser
kernel that manages each of our components and interposes

on communications between them. This model provides a

clean separation between the implementation of the browser

components and the security of the browser, and it allows us

to provide strong isolation guarantees and to implement novel

security features.

To show the utility of our browser architecture, we design

and implement three novel security features. First, we develop

a novel and flexible security policies that allows us to include

plugins within our security framework. Our policy removes

the burden of security from plugin writers, and gives plugins

the flexibility to use innovative network architectures to deliver

content while still maintaining the confidentiality and integrity

of our browser, even if attackers compromise the plugin.

Second, we use formal methods to prove that the address bar

displayed within our browser user interface always shows the

correct address for the current web page. Third, we design and

implement a browser-level information-flow tracking system to

enable post-mortem analysis of browser-based attacks. If an

attacker is able to compromise our browser, we highlight the

subset of total activity that is causally related to the attack,

thus allowing users and system administrators to determine

easily which web site lead to the compromise and to assess

the damage of a successful attack.

To the best of our knowledge, the contributions of this paper

are as follows:

• We present the design and implementation of a new

browser architecture that facilitates the development of

novel and flexible browser-level security policies.

• We are the first to enforce plugin security policies explic-

itly from the browser, and we are the first to cope with

compromised plugins while still maintaining a high-level

of overall browser security.

• We show how operating system principles can be com-

2OP comes from Opus Palladianum, which is one technique used in mosaic
construction where pieces are cut into irregular fitting shapes.

bined with formal methods as a practical methodology

for browser design and implementation.

• We are the first to develop techniques for performing

post-mortem analysis of browser-based attacks.

II. THE OP BROWSER DESIGN AND IMPLEMENTATION

This paper describes the design and implementation of the

OP web browser that improves the security of web browsing;

we have three primary goals. First, we should prevent browser-

based attacks from happening. Next, although we hope to

prevent many attacks, inevitably our browser will contain

vulnerabilities so we should contain these attacks and limit

the damage that can be done by a successful compromise.

Finally, even if we prevent some attacks and contain others,

attackers may be able to cause damage to infected systems,

so we should provide the ability to recover from successful

attacks.

In this section we describe the design of our OP web

browser that attempts to achieve these goals. First we discuss

our threat model and the principles that guide our design, then

we discuss our overall architecture, and finally we describe the

individual components that make up our browser. In Sections

III, IV, and V we describe in detail the specific security

features we implement within our browser that illustrate our

ability to achieve our overall security goals.

A. Threat model and assumptions

We designed the OP web browser to operate under malicious

influence. We consider attacks that originate from a web page

and could potentially target any part of the browser. We assume

that the attacker could have complete control over the content

being served to the web browser. A browser compromise could

be any sort of attack provided in this way; an attack that results

in code execution is the most capable form of attack.

We trust the layers upon which OP is built. Namely, we

trust the underlying operating system and Java virtual machine

(JVM) to enforce isolation for our subsystems. Like other

current browsers we trust DNS names for labeling our security

contexts. If an attacker compromises any of these entities the

security of our browser is at risk.

B. Design principles

Overall we embrace both operating system design principles

and formal methods techniques in our design. By drawing on

the expertise from both communities we hope to converge on

a better and more secure design. Four key principles guide the

design for our web browser:

1) Simple and explicit communication between components.
Clean separation between functionality and security

with explicit interfaces between components reduces the

number of paths that can be taken to carry out an action.

This makes reasoning about correctness, both manually

and automatically, much easier.

2) Strong isolation between distinct browser-level com-
ponents and defense-in-depth. Providing isolation be-

tween browser-level components reduces the likelihood
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Subsystem File system access Network access
UI allowed denied
Web page denied denied
Storage limited denied
Network denied allowed
Browser kernel allowed allowed

TABLE I
SUMMARY OF OS-LEVEL SANDBOXING FOR EACH OP SUBSYSTEM.

of unanticipated and unaudited interactions, and allows

us to make stronger claims about general security and

the specific policies we implement.

3) Design components to do the proper thing, but monitor
them to ensure they adhere to the design. Delegating

some of the security logic to individual components

makes the browser kernel simpler while still providing

enough information to verify that the components faith-

fully execute their design.

4) Maintain compatibility with current technologies. We try

to avoid imposing additional burdens on users or web

application developers, our goal is to make the current

browsing experience more secure.

C. OP browser architecture

Figure 1a shows the overall architecture of OP. Our browser

consists of five main subsystems: the web page subsystem,

a network component, a storage component, a user-interface

(UI) component, and a browser kernel. Each of these sub-

systems run within separate OS-level processes, and the web

page subsystem is broken into several different processes.

The browser kernel manages the communication between each

subsystem and between processes, and the browser kernel

manages interactions with the underlying operating system.

We use a message passing interface to support communica-

tions between all processes and subsystems (see the Appendix

for a listing of all messages). These messages have a semantic

meaning (e.g., fetch an HTML document) and are the sole

means of communication between different subsystems within

our browser. They must pass through the browser kernel, and

the browser kernel implements our access control mechanism

that can deny any messages that violate our access control

policy. We discuss our access control policy in detail in Section

III.

We use OS-level sandboxing techniques to limit the in-

teractions of each subsystem with the underlying operating

system. In our current design we use SELinux [33] to sandbox

our subsystems, but other techniques like AppArmor [21],

Systrace [40], or Janus [20], would have been suitable for

our purposes. Table I summarizes the limitations put on each

of our subsystems.

D. The browser kernel

The browser kernel is the base of our OP browser and it

has three main responsibilities: manage subsystems, manage

messages between subsystems, and maintain a detailed se-

curity audit log. To manage subsystems, the browser kernel

is responsible for creating and deleting all processes and

subsystems. The browser kernel creates most processes when

the browser first launches, but it creates web page instances

on demand whenever a user visits a new web page. Also,

the browser kernel multiplexes existing web page instances to

allow the user to navigate to previous web pages (e.g., the user

presses the “back” button).

All messages between subsystems and processes pass

through the browser kernel. The browser kernel implements

message passing using OS-level pipes, and it maintains a

mapping between subsystems and pipes. This mapping allows

the browser kernel to avoid source subsystem spoofing since

the browser kernel can accurately identify the subsystem

connected to a pipe when it receives a message.

To simplify our implementation, the browser kernel is a

single threaded, event-driven component and all messages have

a unique message ID and a global order. This global order

helps make reasoning about security properties easier and

reduces many possible race conditions.

The browser kernel maintains a full audit log of all browser

interactions. The browser kernel records all messages between

subsystems, which enables detailed forensic analysis of our

browser if an attacker is able to compromise our system.

E. The web page subsystem

Each web page instance represents an individual web page.

When a user clicks on a link or is redirected to a new page

the browser kernel creates a new web page instance. For each

web page instance we create a new set of processes to build

the web page. Each web page instance consists of an HTML

parsing and rendering engine, a JavaScript interpreter, plugins,

and an X server for rendering all visual elements included

within the page (Figure 1b). The HTML engine represents the

root HTML document for the web page instance. The HTML

engine delegates all JavaScript interpretation to the JavaScript

component, which communicates back with the HTML engine

to access any document object model (DOM) elements. We

run each plugin object in an OS-level process and plugin

objects also access DOM elements through the HTML engine.

All visual elements are rendered in an Xvnc server, which

streams the rendered content to the UI component where it is

displayed.

One design decision we make is to use an existing HTML

parsing and rendering engine instead of building our own.

In our first design iteration we built our own HTML parsing

and rendering engine based on classes provided in Sun’s Java

runtime. The advantage of this approach is that we could

use the type safety properties of Java to provide stronger

isolation between individual items within HTML documents

(e.g., DOM nodes). However, we found it was difficult to

render correctly even simple web pages because of buggy

HTML handling and cascading style sheets; thus, we decided

to use an existing HTML engine instead.
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(b) Overall architecture of a web page instance
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(a) Overall architecture of our OP web browser
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Fig. 1. Overall architecture of our OP web browser. Our web browser contains five main subsystems: browser kernel, storage subsystem, network subsystem,
user-interface subsystem, and web page instances; each of these subsystems run within separate OS-level processes. Within an individual web page instance
(b), each subsystem runs in a separate OS-level process, and each plugin instance runs within a separate OS-level process. All of the processes communicate
through the browser kernel, except for the HTML rendering engine and the plugins which communicate directly with a Xvnc server. The Xvnc server renders
the elements locally and streams them to the UI component, via the browser kernel, where they are displayed for the user.

In our current design we use the KHTML HTML parsing

and rendering engine [29]. It has the advantage of rendering

today’s web pages beautifully, but the disadvantage of be-

ing implemented in an unsafe programming language (C++).

Relying on an unsafe programming language for our HTML

engine is problematic because we rely on the HTML engine

to tag JavaScript code and browser plugins with the proper

source domain. We use domains in our security policies to

isolate different scripts and objects on the same web page; the

HTML engine sets the domain and the JavaScript component

and the browser kernel enforce isolation between different

entities. To lessen the impact of this shortcoming we still

allow KHTML to mark the source domain for JavaScript code

and browser plugins, but we check them using our Java-based

HTML parser. However, our HTML parser handles today’s

HTML poorly, so this check produces a silent warning in our

audit log rather than halting the web page instance or notifying

the user when OP detects a violation.

Determining how to include a JavaScript interpreter and

plugins was a relatively easy design decision. For JavaScript

we use the Rhino JavaScript interpreter [37]. Rhino is a high-

quality JavaScript interpreter written in Java, which gives us

strong isolation between different JavaScript instantiations.

Unlike the other components of the web page instance we use a

single OS-level process to handle all JavaScript interpretations.

We justify this decision since we rely on the Java Virtual

Machine (JVM) to provide the necessary level of isolation

between script objects. For browser plugins we use existing

plugins written in unsafe languages since there are too many

plugins for us to re-write them. Plugins already have well-

defined interactions with the rest of the browser so we break

each plugin instance into a separate OS-level process to

provide the necessary level of isolation.

F. The user interface, network, and storage subsystems

Our user-interface (UI) subsystem is designed to isolate

content that comes from web page instances. The UI is a Java

application and implements most typical browser widgets, but

it does not render any web-page content directly. Instead the

web page instance renders its own content and streams the

rendered content to the UI component using the VNC protocol

[44]. By using Java and having the web page instance render

its own content we enforce isolation and add an extra layer

of indirection between the potentially malicious content from

the network and the content being displayed on the screen.

This isolation and indirection allows us to have stronger

guarantees that potentially malicious content will not affect the

UI in unanticipated ways. The UI includes navigation buttons,

an address bar, a status bar, menus, and normal window

decorations.

The UI is the only component in our system that has

unrestricted access to the underlying file system. Any time

the web browser needs to store or retrieve a file, it is done

through the UI to make sure the user has an opportunity to

validate the action using traditional browser UI mechanisms.

This decision is justified since users need the flexibility to

access the file system to download or upload files, but our

design reduces the likelihood of a UI subsystem compromise.

Since other components cannot access the file system or

the network, we provide components to handle these actions.

The storage component stores persistent data, such as cookies,

in an sqlite database. Sqlite stores all data in a single file
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and handles many small objects efficiently, making it a good

choice for our design since it is nimble and easy to sandbox.

The network subsystem implements the HTTP protocol and

downloads content on behalf of other components in the

system.

III. SECURITY POLICY AND ENFORCEMENT

The OP browser is able to enforce different security policies

through flexible access control; we implement three different

security policies to explore the access controls that OP offers.

In addition to implementing the ubiquitous same origin policy,

we develop two novel policies designed to provide additional

flexibility to plugins, while still providing the required security

for the rest of the browser.

In this section we discuss the OP security policies. First we

discuss browser plugins and some of the problems with current

approaches, then the policies we implement with a focus on

how each policy improves the security of browser plugins. In

Section IV we describe how we use formal methods to show

that our access controls are correct and maintain the required

security policy through a compromised browser component.

A. Browser plugins

Browser plugins provide web browsers with the ability to

view additional types of content. Most web browsers have at

least one plugin installed (Adobe reports their Flash Player

has been installed on 99% of Internet users desktops [6]) and

the browser identifies which plugin to use for a particular type

of content by the corresponding MIME type. For example, the

MIME type “application/x-shockwave-flash” is handled by a

flash capable movie player such as Adobe Flash Player [4].

Other popular plugins include Windows Media Player, Adobe

Acrobat, Quicktime, RealPlayer and Java. Plugins provide a

variety of functionality from playing music to just-in-time

compilation of programming languages.

Web developers include plugins within in a web page by

using the OBJECT or EMBED HTML tags. Figure 2 presents

sample HTML used to include plugin content in a web page

and shows the specification of MIME types for the included

content. The first plugin referenced in Figure 2 includes a

flash movie from YouTube. The flash movie is executed by

the flash plugin and has the capability to play different video

content and interact with the user. The second plugin embeds

an instance of a Quicktime capable player to download and

play a video. We refer to the code that is responsible for

viewing a particular MIME type as the plugin and the content

being downloaded and viewed as the plugin content.
Plugins complicate browser security because they are given

unchecked access to browser internals, making it difficult for

the browser to enforce security policies on plugins. Plugins are

supplied to the browser in a binary format and usually loaded

as a dynamically loaded library. Though plugins are provided

with an API to interact with the browser [2], plugins run in the

same address space as the browser, so they are free to modify

browser structures as needed. Thus, a successful attack on a

single plugin leads to a full browser compromise.

Currently plugin providers implement their own ad-hoc

security mechanisms and policies for each different plugin,

which causes security problems even for uncompromised plu-

gins. Security policy goals for the browser are not necessarily

reflected by the plugin security policy resulting in inconsistent

accesses between the browser and and the plugin. Also, there

can be differences in plugin policy between plugin implemen-

tations for the same content type. For example, different Flash

players could allow different cross domain accesses based on

their developers interpretation of Flash security policy.

Another aspect of per-plugin security policy is the com-

plicated configuration presented to the user. For example, the

Adobe Flash Player provides two different security mecha-

nisms that require configuration. The first is the plugin’s local

security settings accessed through an in-browser menu [7].

The second is a server side XML manifest governing cross

domain accesses [5]. Since there are a large number of plugins

available for modern browsers, requiring the user to configure

each one separately is unlikely to be effective.

Providing a common security policy and policy decision

point between plugins and the whole browser is important to

address the security needs of plugins in modern web browsers.

B. Plugin security in OP

To address the shortcomings of current plugins, we design

and implement a plugin architecture to provide security for

plugins in the OP browser. The OP browser enforces security

policy in the browser kernel. Consistent with all other policy

decisions, any plugin related access control is done by the

same security mechanisms enforcing policy for the rest of the

browser.

To enforce security policy we interpose on message passing

in the browser kernel. Each browser process is labeled with a

security context (i.e. domain) depending on the security policy

being used. We run each instance of a plugin in a separate

process that is assigned its own label by the kernel. In order to

correctly label each plugin process the browser kernel inspects

messages that trigger the plugin to load content from a URL.

This security label is then used to make decisions for other

plugin and browser actions. The plugin can be denied access

to browser resources; similarly, the rest of the browser can

be denied access to plugin resources. Each pairwise commu-

nication channel between browser subsystems can have an

access control module operate on the messages. Any security

related state is maintained inside of the corresponding access

control module. Our implementation provides a simple API

for implementing different security policies.

C. Plugin security policies

In addition to developing a plugin architecture, we develop

two novel security policies that specifically address the needs

of plugin security while still providing enough flexibility to

support common plugin usage.

1) Provider domain policy: Provider domain policy allows

a plugin embedded in a page permissions associated with

the source of the plugin content. Media sharing from sites
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<object width="425" height="355">
<param name="movie" value="http://www.youtube.com/v/oNsCaVC4Z0o&rel=1"/>
<param name="wmode" value="transparent"/>

<embed src="http://www.youtube.com/v/oNsCaVC4Z0o&rel=1"
type="application/x-shockwave-flash" wmode="transparent" width="425" height="355"/>

</object>

<object
src="http://movies.apple.com/movies/paramount/iron_man/iron_man-tlr1_h.640.mov"
type="video/quicktime" width=640 height=288 autoplay="true"/>

Fig. 2. This HTML is an page excerpt downloaded from the www.uiuc.edu domain. OBJECT tags are handled by most web clients while EMBED tags are
interpreted by some Mozilla browsers. The URLs that each plugin loads are specified by the SRC attribute. Other parameters for the execution of the plugin
can be specified either with PARAM tags or attributes. The first set of tags references Flash content hosted at www.youtube.com while the second is a movie
hosted at movies.apple.com. The HTML also demonstrates how a page can include content from multiple different sources by specifying a URL in the SRC.

like YouTube allow one site to host the video content and

other content publishers to embed the video into their sites or

blogs. Advertisements are provided by an advertising company

and similarly embedded along with web page content. In

both cases the web page creator has little control over the

content inside an embedded area, especially if it includes

plugin content. Our policy is designed to reflect the intent that

a web page creator has when embedding videos and content

across domain boundaries.

The provider domain policy sets the origin of the plugin

to the site hosting the plugin content. When a page uses

the OBJECT tag to include plugin content, the plugin is

given permissions according to the domain of plugin con-

tent provider. If same-origin policy were applied instead, the

browser would associate the plugin content with the domain

of the page containing the OBJECT tag. The same HTML

from Figure 2 can help to illustrate the difference. Same-

origin policy would treat both plugins as if they came from

the www.uiuc.edu domain, since that is where the web page

is hosted containing the HTML. Our provider domain policy

labels the two plugins differently. The first movie would be

tagged with the domain www.youtube.com, and the second

with movies.apple.com. The page hosting the content is given

permissions according to the www.uiuc.edu domain. Label

differences force separation between the content and prohibits

the embedded content from altering the page or fetching any

resources associated with the www.uiuc.edu domain. Each

of the plugins embedded inside the page can access data

associated with the corresponding domains. For example, the

YouTube video can access cookies, make network connections

and use other resources from www.youtube.com. This example

shows how popular use of plugins can be met inside the

constraints of browser security policy.

The provider domain policy has important security impli-

cations. As content is shared between sites and included in

blogs and websites, the authors of the pages do not need to

be concerned with security when including cross domain con-

tent. Included content is isolated and users viewing websites

including cross domain plugin content are safe from malicious

and vulnerable plugins. This policy limits plugins included

across domains and prohibits plugin content included in this

way from accessing cookies, DOM elements and other browser

components.

2) Plugin freedom policy: The plugin freedom policy pro-

vides additional flexibility to plugins by allowing additional

outgoing network accesses while limiting access to page and

user information contained in the browser. This policy is

motivated by plugins such as Sopcast [3], a peer-to-peer video

player, that needs additional flexibility for outgoing network

connections.

The plugin freedom policy provides local plugin storage

and unlimited network access at the cost of access to DOM

elements and other browser components. To implement this

policy, using the OP browser access controls we simply

prohibit communication between the plugin and any browser

components, except the network and storage subsystem. The

storage subsystem provides a location for per-plugin storage

that is allowed by this policy. Per-plugin storage allows plugins

to have access to local settings and save files in a safe

environment. All network communications are also allowed.

Any other communications are prohibited in and out of the

plugin. The rest of the browser subsystems are able to interact

as normal and provided with standard same-origin protections.

The plugin freedom policy prevents some plugin con-

tent from functioning properly, though media sites such as

YouTube, Apple Movie Trailers and others continue to func-

tion. The plugin content on these pages does not need to

access any of the other browser components besides network

resources. This policy is similar to current plugin operation

in browsers with the scriptable API components removed. Re-

moving interactions with other browser components prevents

plugins from leaking client information across multiple sites if

the plugin is exploited or the plugin content is malicious. Any

plugins that interact with the content on pages will function

incorrectly since any attempted Javascript execution will be

prevented by the access controls.
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IV. FORMAL VERIFICATION

We designed he OP web browser to include the use of

formal methods to verify its correctness. To do better support

formal methods we use small, simple, and exposed APIs that

allow us to model our system and reason about it. Using formal

methods we are able to provide greater assurance that we

preserve our security goals during an attack and compromise.

We formulate the OP web browser within the logical

framework of rewriting logic and use formal reasoning tools

to verify model correctness, including the presence of attacks,

successful compromises and access control [15]. The reason-

ing engine we use is the Maude system [34]. We use the

term “Maude” to refer to both the Maude interpreter and the

language.

Once the browser model has been formally specified we

can use Maude’s search ability for model checking to verify

invariants over the finite state space we need to consider.

The invariants of a browser system fall into two categories:

program invariants and visual invariants. Program invariants

for OP consist of the goals of the access control policy.

These invariants are relatively easily gathered from the source

code and concise specification of security policy. The visual

invariants (e.g., preventing address bar spoofing) need extra

effort to be mapped into program invariants. In this paper,

we model these invariants and we also translate browser

compromise and built-in defenses into rewriting logic rules.

As we explain in the following, OP’s address bar logic and

same origin policy are specified by rewrite rules and equations

in Maude, and we use model checking to search for spoofing

and violation of same origin policy scenarios. The result of the

search is a list of states that are violations of the invariants

specified and the sequences of actions that lead to the invalid

state. States that are violations of security invariants can assist

in the development process by catching potential problems

before they are exploited.

In this section we discuss how we use formal methods

to improve the design of our browser. First we give a very

brief overview of Maude, then we discuss how we created our

model. Finally, we describe how we model check to prove the

absence of address bar spoofing attacks and to verify parts of

our same origin policy implementation.

A. Modeling using Maude

A simple example using Maude and model checking of

invariants is presented in the Maude Manual [16]. The example

involves the model of a clock and uses Maude to search the

state space for states with invalid hour values. The Maude

model for the clock example is presented in Figure 3. This

example illustrates a number of Maude features though we

only describe the ones relevant to the OP browser model we

present later.

Figure 3 shows the Maude model named SIMPLE-CLOCK.

The third line defines a sort, called Clock. A sort is similar to

the class keyword in C++ and simply defines a category for

later use. Line 4 in the figure contains the definition for an

operation called clock, operations act on a sort and generally

1 mod SIMPLE-CLOCK is
2 protecting INT .
3 sort Clock .
4 op clock : Int -> Clock [ctor] .
5 var T : Int .
6 rl clock(T) => clock((T+1) rem 24) .
7 endm

Fig. 3. A simple Maude example from the Maude Manual (Version 2.3).
This example describes a model for a 24 hour clock in Maude.

search in SIMPLE-CLOCK :
clock(0) =>* clock(T)
such that T < 0 or T >= 24 .

Fig. 4. The search statement from the Maude Manual (Version 2.3) showing
how to model check the SIMPLE-CLOCK model invariant using Maude’s
search functionality.

connect a sort (or sorts) to a different set of sorts. In the

SIMPLE-CLOCK model we connect the sort Int to the sort

Clock. Operations do not define how Maude connects the two

types, instead specifies the connection. Rewrite laws begin

with rl and describe transitions between states. The SIMPLE-

CLOCK model has one rewrite law. This rewrite law says that

the clock operation increments the clock variable T and then

takes the remainder after dividing by 24.

Once we define a model in Maude we can use the search

function to have Maude explore the state space and find

states that match our search criteria. For the SIMPLE-CLOCK

example we want to find states which violate an invariant, such

as the clock’s state being outside of the 0 to 24 range. Figure 4

shows the example search statement for the SIMPLE-CLOCK

model. This search statement defines an initial state, 0, and

the condition to match when searching.

The Maude model for the OP browser consists mostly of

definitions of types and state for each component by defining

sorts, operations and variables for each browser component.

To define browser behavior we use rewrite laws to show

transitions between different internal states in the browser. Our

invariants are specified as statements and we use the same

search functionality in Maude to find matching states.

B. Formal models and system implementations

There is often a gap between the formal model used to verify

properties and the system implementation. While we recognize

that this gap exists between our model and system, we feel that

for our uses of formal methods the difference is small enough

that we are able to use the results of model checking to iterate

on design and development. Since we implement each of the

browser components separately and use a compact API for

message passing, the model that we use to formally verify parts

of our browser is very similar to the actual implementation.

The model we create is focused on message passing between

components. We do not verify, for example, that the HTML

parsing engine is bug-free, instead we verify that even if
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<UI-ID : Frame | addrBar: URL, ... >
imsg(count, src, dst, IDENTIFIER, content)
< ... > ...

Fig. 5. The message specification in Maude. The first section of the
specification is a class-like structure, starting with < and ending in >. UI-ID
is the instance identifier of the type, Frame is the type, and after the pipe are
the members of the type. The next line begins with imsg and is the constructor
for the message type. The constructor takes the elements in parenthesis and
creates an object of a specific type. The imsg constructor creates an object of
type Message.

the HTML parsing engine had a bug, the messages that a

code execution attack could generate (potentially any message)

would not force the browser as a whole into a bad state. To

do this, each component is modeled in Maude and aspects of

every component’s internal state are included. Messages are

the means for the browser’s internal state to change.

Our application of formal methods helped us find bugs in

our initial implementation. By model checking our address

bar model we revealed a state that violated our specification

of one address-bar visual invariant. The resulting state was

actually due to a bug in our implementation, as we had

not properly considered the impact of attackers dropping

messages or a compromised component choosing to not send

a particular message. Our model gives an attacker complete

control over the compromised component including the ability

to selectively send some types of messages and not others. We

used the result to fix our access control implementation and

we updated our model accordingly.

In the interest of space we have not included the entire

Maude model. In the following sections we highlight parts

of our model that we use to model check same-origin and

visual invariants. We have not specified all browser invariants

in our model, as this is a first step in our venture into formally

verifying an entire web browser.

C. Modeling the OP browser

Component-based systems can be modeled in Maude as

multi-sets of entities, loosely coupled by a suitable commu-

nication mechanism. For OP, the entities are browser com-

ponents, each with a unique identity, and the communication

mechanism is the message passing API. In the Maude version

of our OP implementation, the states of OP are represented by

symbolic expressions, and the state transitions are specified by

rewrite rules describing the components communication with

each other and the state transformation. We discuss our model

for message passing and processing, user actions, and how

include browser compromise into this model.

Communication between components in OP is done through

the message passing interface, which is the communication

mechanism modeled in Maude. The messages are expressed

as entities in the multi-set of components. The message

specification in Maude is in Figure 5. The messages are tagged

with a count to make sure they are processed in the right

order. Message ordering is preserved by the browser kernel,

and in order to have ordering in the multi-set representation

in Maude, a count attribute is introduced. A simple example

illustrating our model of the message passing interface and

a corresponding state change is is in Figure 6. This rule is

responsible for updating the browser state including address

bar of the user interface.

The browser state as a whole is represented by the objects

corresponding to each of the components. This means that

Maude represents a state as a grouping of the UI, network,

plugin, and other subsystem states. Figure 6 shows an action

that sets the location bar in the UI. The first three lines of

Figure 6 are the current browser state and include the creation

of a message called MSG-SET-LOCATION-BAR using the

imsg constructor. The browser state is rewritten, including in

the UI a new address in the address bar (shown by new-URL)

and the results of the rewrite are the last two lines of the

figure. Rewrite rules such as these cause the Maude model to

change state. Model checking through search simply locates

states which are possible to have as a result of these rules and

satisfy an additional expression.

1) Modeling user actions: We also need to model the user

actions in the browser system, such as clicking the “GO”

button to request a new web page. The Maude model is very

similar to the Java source code we wrote to implement the

UI in the OP web browser. The Maude rule describing the

message generation as a result of the “GO” button being

clicked is listed in Figure 7. This Maude rule is especially

descriptive of the original Java source, as we can see the

message created has the source set to UI-ID, a destination

of KERNEL-ID, the message type of MSG-NEW-URL, and

the URL that is the content of the message. The first two lines

of Figure 7 are the current UI and message queue state, plus

the user action labeled “GO.” The three lines following the

=> marker are the new browser state, which include a new

message being generated by the imsg constructor.

2) Modeling browser component compromise: Our model

also includes potential attack paths. As an example of a

component-level compromise, the attacker could take control

of a web page subsystem instance and using the message

API, force the compromised component to send incorrect URL

information to the UI component, resulting in address bar

spoofing. Setting the address bar to a different location than

the page contents is primarily useful for phishing attacks, and

using access controls we prevent such attacks from being suc-

cessful. In Maude, we express the compromise of a component

as additional rules that generate messages and trigger message

passing and processing like ordinary rules.

D. Model checking address bar invariants

Determining cases that allow the address bar in the browser

to mismatch the page content was examined for Internet

Explorer in recent work by Chen et al. [11]. They search for

violations of invariants specified for GUI elements in Internet

Explorer under normal operation. We are able to verify a

similar result for the OP browser using our formal model of

the message passing interface and our security policy. The key
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< UI-ID : Frame | addrBar : URL, ... >
< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : M >
imsg(N, webAppId, UI-ID, MSG-SET-LOCATION-BAR, new-URL)
=>
< UI-ID : Frame | addrBar : new-URL, ... >
< MSG-ID : MsgCount | msg-to-process : s(N), msg-to-send : M >

Fig. 6. This is the Maude rule corresponding to the state change due to a SET-LOCATION-BAR message being received. Notation here is similar to that
of Figure 5, the first 3 lines are the current state and creation of the message to be processed. The remaining lines represent the state after the state change.
The full browser state includes other components besides the UI and message queue.

< UI-ID : Frame | addrBar: URL, ... > GO
< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : M >
=>
< UI-ID : Frame | addrBar : URL, ... >
imsg(M, UI-ID, KERNEL-ID, MSG-NEW-URL, URL)
< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : s(M) >

Fig. 7. Maude expression for the “GO” UI button causing a message to be sent. The first line represents the portion of the browser state for the Frame and
the user action being performed, which in turn causes produces a new Frame state and the message with type set to MSG-NEW-URL.

< UI-ID : Frame | AddrBar : S1:String, NavWebApp : WebApp1:Int , ... >
< WebApp2:Int : WebApp | Content : S2:String, ... >
such that (WebApp1:Int == WebApp2:Int) /\ (S1:String =/= S2:String)

Fig. 8. A Maude expression describing the condition checked for address bar spoofing. This condition is used as a test for bad browser states. The first line
is the current state of the browser, specifying the UI and ID for an instance of the web page subsystem. The last line is the comparison, which checks that
the URLs associated with the address bar and web page subsystem are different, indicating a state where the address bar is spoofed.

difference in our approach is that our proof holds even in the

presence of a fully compromised web page instance.

To model check and find cases of address bar spoofing, we

must define a good browser state. Once we have an expression

for good browser states, we can use Maude to search for

the bad ones. We define a good state as a state where the

content of the currently navigated web page matches with

the URL shown in the address bar. The Maude expression

describing spoofing is shown in Figure 8. When we use

the model checking search tool to search from an initial

state, consisting of all the components of OP and some user

actions, the results show there is no logic error leading to the

address bar spoofing scenarios. We also make sure that the

address bar cannot be spoofed once the web page subsystem

is compromised, showing that the access control logic can

defend against possible attack sequences. This result verifies

that if the browser kernel and UI are trusted, no sequence

of messages can violate our address bar invariant, even if an

attacker compromises a web page instance.

E. Model checking same origin policy

Our implementation of same origin policy for the OP

web browser controls access to all browser components. We

use model checking to verify that the same origin policy

cannot be violated by a single component being compromised.

Although our model focuses on interactions with plugins,

other components with similar interactive capabilities, such as

Javascript, benefit from the result. We model a compromised

web page subsystem and plugin, and verify that the access

control implemented in the browser kernel enforces the same

origin policy specified as invariants in our model.

Plugins and Javascript are able to interact with each other

through the the scriptable plugin extension to the Netscape

Plugin API, and we support such interaction in OP. Enforcing

same origin policy for these components is done in the same

manner as our other security policies for plugins in the browser

kernel. The simple message API keeps the state space small

enough for model checking to be tractable when considering

all the possible actions by different browser components. We

prove a few different invariants. For example we prove that a

plugin from one domain can not send a message to a plugin

(or web page subsystem) from another domain and vice versa.

Introducing binary compatibility for the Netscape Plugin

API would increase the size of the message API for plugins,

although our access controls still remain in the browser kernel.

Once OP is binary compatible with the Netscape Plugin API

we should be able to adapt the model and verify that same

origin policy is upheld with the added complexity.

V. ANALYZING BROWSER-BASED ATTACKS

Although we put significant effort into securing our OP web

browser, attacks may still occur. One class of attacks that

may occur are “social engineering” attacks where a user is

fooled into performing an action that violates the security of

the system. For example, researchers from Google found that

attackers fool users into downloading and executing malicious
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content from adult web sites by making them think they are

installing a new video codec in an attempt to view “free”

videos [41]. A second class of attacks that may occur are

web-based application bugs, such as cross-site request forgery

attacks [27]. In these attacks a malicious web site can coax

the browser into performing the actions of a site, such as

transferring money using a banking application, without the

users knowledge or consent. The problem with these classes of

attacks is that they adhere to the browsers security policy and

from the browsers perspective appear to be legitimate actions,

making these types of attacks difficult to prevent.

Our goal is to allow users and system administrator to

recreate the past to analyze browser-based attacks. To analyze

an attack, users and administrators may want to perform two

types of analysis. First, they may want to determine which

web site initiated the attack so they can blacklist the web site

and avoid visiting it again in the future. Second, they may

want to track the effects of known-malicious web sites that

they visited to determine if they were attacked, or to assess

the damage of a successful attack.

One difficulty in analyzing browser-based attacks is that the

activities of the attacker are intermingled with legitimate ac-

tions. Even if users and system administrators have a complete

security audit log that can recreate arbitrary past states and

events, most of the content in the audit log is from legitimate

web usage. Thus, it is difficult to highlight the subset of

browsing activity that is most likely to be part of the attack.

We designed our OP web browser to overcome these short-

comings to enable users and system administrators to better

understand browser-based attacks. To highlight the activities

of an attacker, we use browser-level dependency graphs to

help visualize the attack. Browser-level dependency graphs are

graphs of browser-level objects connected by causal events

within our browser. A causal event is defined as any event

where information flows from one object to another, thus

forming a dependency from the source object to the sink

object. For example, if a user clicks on a link, this forms

a causal link from the web page instance that hosts the link to

the new web page instance that the browser kernel creates in

response. Using these connections, we generate dependency

graphs of attacks to show where an attack came from and to

show what effects an attack had on our system.

To give a more concrete example of a dependency graph,

Figure 9a shows a graph for a successful browser-based attack

from a real web site. For this graph we assume that we (as

the user) know the web site videozfree.com is malicious (as

was pointed out in a recent paper from Google [41])we want to

check if we downloaded files from the site into our file system

anytime in the past. Our analysis starts with the videozfree.com
web page. From videozfree.com we clicked on a still image of

a video and were sent to clipsforadults.com, which displayed

an image that appeared to be a video plugin. When we clicked

on the “play” button, it automatically prompted us to download

a new codec to view the video, which we downloaded as the

file setup.exe. For this experiment the attack was in the middle

of several weeks worth of typical browsing, and our audit

log contained 349,313 events and 1218 different web page

instances, yet we were able to automatically extract this much

smaller subset of the total information available. Also, even

though videozfree.com was listed as the malicious web site, the

actual download came from a different site (zsvcompany.com),

and based on monitoring videozfree.com for several months

this download site changes periodically making it hard to track

using blacklists.

In this section we discuss our techniques for analyzing

browser-based attacks. First we describe the objects we track,

the dependency forming events that connect objects, and the

dependency graphs we generate to facilitate analysis. Then, we

describe an example that illustrates how analyze a cross-site

request forgery attack.

A. Intrusion analysis design

To track attacks using browser-level dependencies we need

to define the objects we monitor and the events that connect

these objects. When defining objects and events we have three

main design considerations. First, we must decide at what level

of granularity we should display our dependency graph. More

coarse-grained dependency graphs will be smaller and easier

to analyze manually, but may lack the fidelity to provide useful

information about the attack. Second, we must decide at what

level of granularity to track dependencies. In general more

coarse-grained dependency tracking will be more efficient

to implement, but could lead to false dependencies due to

excessive tainting. Third, we must decide which events give

the attacker the most direct control over the system and focus

our analysis on these events. For example, we do not track

the event where a web page instance sets the status bar in the

UI. Certainly an attacker could use this as part of an attack,

but is it likely to assist the attacker in fooling the user to do

something else – such as visit a malicious web site – that we

do track.

To strike a balance between analysis fidelity and the amount

of information displayed to the user, we track two primary

objects: web pages and files. Web page objects map directly

to the web page instance subsystem within our browser. Web

page objects are identified by the URL used to open the web

page and we consider different web page instances with the

same base URL to be different objects. Web page objects

consist of HTML documents, images, JavaScript, plugins, etc.

and even though we do record the interactions between these

entities we chose to display them all as a single object to

reduce the number of visual elements in our dependency

graphs. File objects are file system objects, and we track these

as they flow through our browser.

We track events that connect web pages together, and web

pages with files. Whenever a web page creates a new web page

(e.g., the user clicks on a link), the new web page depends on

the web page that initiated the action. When a user downloads

or uploads a file, we connect the file with the associated web

page.

Although we designed our browser to make dependency-

causing events explicit, we still have to put in effort to
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setup.exe:1034

http://zsvcompany.com/download.php?id=4080

http://www.clipsforadults.com/.../movie2.php?id=4080

http://www.videozfree.com/

(a) Forward dependency graph for videozfree attack

http://messages.financenews.com/message.html

http://tinyurl.com/XXXXXX

http://maliciousnews.com/news.html

https://banking.com/transfer.php

http://financenews.com

(b) Backward dependency graph for xsrf attack

Fig. 9. In our dependency graphs the squares are web pages, diamonds are files, ovals are URL requests, and the detection point is shaded. We show URL
requests only when they are the detection point or when the server automatically redirects our request resulting in a web page instance with a different URL
than the requested URL.

To File System
Network Web Page UI

Storage

(1)

(2)

(3)

(4)

(5)
(6)

(7)

Fig. 10. This figure shows how our browser subsystems interact to download
a file to the file system. First, the user clicks on a link which causes (1) the web
page to request the file and (2) the network subsystem returns the downloaded
content to the web page. Then (3) the web page stores the file in the storage
manager and (4) notifies the UI that there is a downloaded file waiting. The
UI then prompts the user and (5) retrieves the file from the storage manager
(6). Finally, (7) the UI saves the file in the file system.

achieve the fine-grained dependency tracking to support the

events we follow. For example, when a user downloads a file

and stores it in the file system the downloaded file travels

through many different subsystems (Figure 10), but we want

to make the connection directly between the web page and

the file without including the intermediate subsystems. When

a user downloads a file they usually initiate this action by

clicking on a link in a web page. The web page then makes a

network request and then stores the file as a persistent object

in our storage subsystem. Then, the web page notifies the

UI that a downloaded file is waiting the storage subsystem,

and the UI retrieves the file from the storage subsystem and

saves it in the file system. We designed the storage and UI

subsystems so that this data will pass through them without

being modified, but an attacker that compromises one of

these components could violate this assumption and result

in dependencies that we miss since the attacker was able to

affect data without using an explicit message. To prevent this

type of unaudited dependency we monitor the storage and

UI subsystems to verify that all objects and files that pass

through them are unmodified. This simple invariant allows us

to track these objects at a fine granularity without monitoring

the internals of each subsystem. An attacker can still leak

information using covert channels [32], but this would require

the attacker to compromise two components, not just one. In

our current implementation we do not perform this check for

the network subsystem, but adding the additional invariant to

verify network object integrity would be straightforward.

We apply the BackTracker [30] graph generation algorithm

to create dependency graphs. The BackTracker graph gener-

ation algorithm starts with a single object, called a detection
point and traverses the audit log to find the set of objects

that are causally connected to the detection point. We use the

backward graph generation algorithm [30] to find the origin

of an attack (e.g., malicious web site) and the forward graph

generation algorithm [31] to track the effects of an attack.

B. Example: cross-site request forgery

In this section we discuss an artificial cross-site request

forgery attack based on a real attack described by Stamos and

Lackey in their Black Hat presentation [46]. We show how

our analysis techniques can help users understand this type of

attack. Our example starts with a victim receiving a monthly

banking statement and noticing a spurious transfer of $5000

and our goal is to figure out how this transfer occurred.

The starting point for our analysis is the specific HTTP

request that resulted in the transfer of funds. We assume the

victim can identify the specific network request that lead to

the transfer (perhaps with the help of the bank). Starting with

this request, we work our way backward to figure out what

went wrong.
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Fig. 11. Loading latencies for OP and Firefox.

Figure 9b shows the dependency graph for this attack. The

request in question originated from the maliciousnews.com
site. The victim arrived at the maliciousnews.com site by

visiting a financial new site, financenews.com and going

to message boards (messages.financenews.com) to look for

“leaked news” about stocks of interest. The victim found a

story they were interested in and clicked on a tinyurl.com
link that redirected them to maliciousnews.com. The news

story on the maliciousnews.com site contained an invisible

inline HTML frame (iframe) that issued the request to transfer

funds. This action was possible because of a design flaw in a

banking application that made available to the iframe a login

cookie that was created when the user logged into the banking

application in a previous browsing session. This attack was not
the result of a browser bug, the browser correctly enforced

the same origin policy in this example. This type of attack

is commonly referred to as a cross-site request forgery (xsrf)

attack.

One omission from this dependency graph is the cookie

connecting the maliciousnews.com site with the banking ap-

plication. We filter out cookies because many web sites use

cookies to track users across multiple unrelated sites, and

including cookies results in large dependency graphs. We

could have created a list of well-known tracking cookies and

removed only these tracking cookies from our graphs, but we

did not explore this alternative technique for this paper.

VI. EVALUATION

In this section we evaluate the performance of OP and we

present a qualitative security analysis of our browser.

A. Performance evaluation

To evaluate the OP web browser performance we measure

page load times and to determine the file system impact from

the extensive logging we examine the size of the audit logs

for single page loads. Our goal when performing these eval-

uations is only to verify that the browser does not introduce

unreasonable delays that are noticeable by the user. We also

Site Audit Log Size (bytes)
live.com
google.com
craigslist.org
cs.uiuc.edu
wikipedia.org

25600

22528

20480

175104

156672

Fig. 12. Audit log size generated for a single visit.

aim to check that the logs for a running browser are reasonable

in size. All experiments were carried out on a 2.66GHz Intel

Core 2 Duo with 2GB of memory and a 250GB serial ATA

hard drive. The OS is Fedora Core 7, running the 64bit version

of the Linux kernel 2.6.22. We use Firefox 2.0.0.12 as a base

for performance comparisons.

To measure the latency introduced by our browser we

compare the load times of a few common pages with those

of Firefox. Figure 11 shows a list of the sites tested and the

loading latency times. Each page is loaded 5 times, and the

loading times are averaged. To measure the latency in Firefox

we use an extension that monitors internal Firefox events to

determine page load times. We monitor similar events inside

of the OP browsers web page subsystem. Caching is disabled

in Firefox for all tests. The results in Figure 11 indicate that

we have not introduced latency that would be detrimental to

a user using OP. The primary slowdown over Firefox is due

to our implementation of Javascript.

We also examine the footprint of the audit log that is

generated for each site. The audit log is stored as a single file

consisting of all the events recorded during a page load inside

of OP. After each test the audit log is cleared and the browser

restarted to provide a clean start. As can be seen in Figure

12 the amount of space needed to record events is small for a

single page. The size is largely dependent on the size of the

pages being downloaded rather than data introduced for audit

purposes. To quantify the likely storage needed for typical

browsing, one of the authors used OP for typical browsing

needs over several weeks. Over this period of time they created

over 1000 web page instances and accumulated an audit log

of 206MB, which is reasonable considering the low cost of

storage.

B. Security analysis

We designed OP to prevent browser-based attacks, but com-

promises are still possible. We make heavy use of type safe

programming languages to reduce the likelihood of memory

corruption attacks and we use formal methods to help us

reason about the security policies we implement. However,

our implementation could contain exploitable vulnerabilities;

in this section we discuss the impact of successful attacks

on OP subsystems. In our analysis we consider a successful

compromise of a single subsystem.

Successful attacks on the web page subsystem will have

limited impact on the overall security of our browser. A

413

Authorized licensed use limited to: Texas State University. Downloaded on October 17, 2008 at 12:17 from IEEE Xplore.  Restrictions apply.



compromised web page subsystem can only send messages

to other subsystems, and has limited interactions with the

local system. If the attack results in malicious messages being

sent inside the browser, the browser kernel enforces security

policy and forces the compromised subsystem to comply with

local security policy. As a result, a successful attack on a web

page subsystem only affects the single compromised web page

instance, the browser kernel protects other web page instances

being hosted by the browser.

Successful attacks on our UI, storage, and network subsys-

tems are more severe than successful attacks on the web page

subsystem. A compromised UI can tweak the user interface

and access the file system, a compromised storage subsys-

tem provides attackers with unchecked access to persistent

browser storage (e.g., cookies), and a compromised network

subsystem gives attackers the ability to make arbitrary network

connections and to interpose on network traffic from all

active web page instances. Attacks targeting these subsystems

require sophisticated sequences of messages to be sent out.

To mitigate this threat, our security policies maintain internal

state while parsing messages and prevent spurious and out

of order messages from being sent. Attacks may also be less

likely since we make extensive use of Java to prevent memory

corruption and the subsystems are simple and qualitatively

easier to reason about than the components of the web page

subsystem.

Successful attacks on the browser kernel are the most severe

and lead to a full browser compromise. Since the browser

kernel is trusted it can access all browser-level states and

events. However, our browser kernel is simple (only 1221 lines

of C++ code) and has limited functionality, which simplifies

reasoning about correctness.

VII. RELATED WORK

In addition to the projects we already discussed in this

paper, our work is related to previous studies in browser-based

security.

Our OP web browser introduces a new architecture for

building more secure web browsers. The most closely related

works are Tahoma [17], the Building a Secure Web Browser
project [22], and a recent position paper by Reis, et al. [43]

which all propose new browser architectures. Tahoma shares

many of the same design principles as OP, but our architecture

differs in two key ways. First, Tahoma uses VMMs to provide

isolation for different web-based applications, and they use

a manifest to help craft their network policy. In contrast,

we use OS-level mechanisms for isolation and we support

existing web-based applications, and we track interactions

at a more fine level of granularity, allowing us to explore

novel policies such as our plugin policy. However, these two

architectures are complementary: one could imagine OP using

Tahoma to provide even stronger isolation. In the Building

a Secure Web Browser project, the authors propose a new

browser architecture that relies on the underlying OS policies

(e.g., file system permissions) to enforce browser security. OP

handles security policies in the browser kernel, giving us more

flexibility. In a recent position paper by Reis, et al. the authors

share many design principles and philosophies with OP, but

this concurrent work is a position paper and does not include

an implementation or evaluation.

A number of recent projects develop techniques for securing

web-based applications [18], [14], [13], securing JavaScript

[42], [51], [26], [9], supporting mashups [25], protecting

privacy [24], [45], enforcing the same-origin policy [28],

[12], adding new abstractions for improved sharing [49], and

overcoming DNS rebinding attacks in browsers [23]. These

projects are orthogonal to OP, our goal is to provide a more

secure platform to implement these, and other, techniques.

The idea of sandboxing browsers was first introduced by

Goldberg [20], and GreenBorder is a recent commercial prod-

uct that sandboxes Internet Explorer [1]. We use this type

of sandboxing in our OP browser as the starting point for

our security, and we focus on more fine-grained interactions

within the browser itself. Plus, by breaking our browser into

different components we apply different sandboxing rules to

each subsystem, giving us even more control over our browsers

interactions with the underlying system.

We show how our browser can be used to analyze browser-

based attacks; current approaches for analyzing intrusions will

not work for browser-based attacks. Several recent projects

[30], [31], [19] use OS-level dependency graphs to highlight

the subset of activity on a system that is likely to be part

of an attack. These techniques are effective for server-style

workloads where servers isolate distinct sessions into different

OS-level processes, thus allowing them to track malicious

sessions using OS-level states and events. However, these

techniques fall short when there are long-lived processes that

handle multiple sessions because they taint conservatively

entire OS-level objects and cannot separate out unrelated

activities using OS-level events alone. In addition to OS-level

techniques, researchers have been able to analyze browser-

based attacks by using client-based honeypots [50], [36], [41]

to crawl the Internet looking for malicious sites. For example,

the HoneyMonkey project [50] batches many different sites

together, and when they detect a malicious site they re-process

each site in isolation to determine which one was responsible

for the attack. These techniques work well for automated

crawling experiments, but are not suitable for analyzing active

browsers since they fail to capture and integrate the interac-

tions of the user, something OP handles well.

VIII. CONCLUSIONS

We have described the OP web browser and the different

elements that make our browser secure. We have shown that

by using an architecture that is designed to be secure we can

enforce security policies that are flexible enough to apply to

browser plugins, while at the same time formally verifying

important security properties.

The OP web browser is responsive to user interaction and

implements features that make it compatible with current web

pages. We include two plugins, supporting Flash compatible

content as well as other multimedia content, Javascript and
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Source subsystem

Destination 

subsystem Message description

Includes return 

message

UI, HTML Kernel New web page.  Tells the kernel to open a new web page instance. No

HTML, JS, Plugin Network

Fetch URL.  Fetch an object from the network, return data, redirected URLs, and 

protocol metadata. Yes

Kernel HTML Set URL.  Sets the base URL for a newly created web page instance. No

HTML, Javascript UI Set status, location, title.  Sets the UI status bar, location address, and page title. No

UI, Xvnc Xvnc, UI

Raw VNC data.  Mechanism for transmitting VNC data between the UI and the current 

Xvnc server.  These are two separate one-way messages. No

UI Kernel

Set current web page instance.  Gives the UI the ability to navigate the browsing 

history. No

UI Kernel

Stop current page loading.  Notifies the kernel that the user wants to stop loading the 

current web page. No

Kernel UI

New web page instance notification.  Notifies the UI of each new web page instance, 

the UI uses this information to track browsing history. No

All Storage Store and retrieve object.  Allows all subsystems to store and retrieve persistant data. Yes

All Storage

Object acl add / remove user.  By default all objects are only accessable by the 

subsystem that created them, but owning subsystems can add additional readers to 

stored objects. No

HTML UI

Object ready for download.  Web pages notfiy the UI when downloaded content (e.g., 

downloaded PDF files) is ready to be saved. No

Network, HTML Storage

Store/retreieve/delete cookies.  Mechanism for the network and HTML (in response to 

Javascript) to manage cookies. Yes

HTML, Plugin Javascript Execute Javascript.  Mechanism for executing Javascript. Yes

HTML Javascript Set Javascript event handler.  Sets the event handling code for Javascript events. No

HTML Javascript

Invoke Javascript event handler.  Invokes the Javascript handling code for a particular 

event. Yes

HTML Plugin Set URL. Sets the base URL for a newly created plugin. No

Javascript HTML Access DOM element.  Provides access to DOM elements. Yes

HTML Plugin Call NPAPI function.  The browser makes a call into the plugin Yes

Plugin HTML Call NPAPI Function.  The plugin makes a call into the browser Yes

Fig. 13. Message API for OP subsystems. In this figure we list the origin (or source) of the message and the destination subsystem, as well as a text
description explaining the purpose of the message. Some messages include a separate return message that is a reply from the destination subsystem back to
the source.

basic web page support, giving us a functional browser ca-

pable of enforcing security policies. We have also included

plugins into our security model, which are difficult for cur-

rent browsers to control and enforce policy upon. Using the

system’s implementation we have created and shown a formal

model using Maude and model checked invariants describing

the security of our browser. We have also shown how the OP

web browser can assist in forensic examination of attacks that

we are unable to prevent.

All of these elements build up the OP web browser security,

creating a web client capable of withstanding attack. We have

demonstrated that by design it is not vulnerable to many forms

of browser attacks while not limiting the functionality of the

browser.

APPENDIX

In Figure 13 we list our full message passing API. All

messages include a header that lists the source ID, the desti-

nation ID, a global message ID, the message type, an optional

message value, and a field for the length of the payload. For

messages with a payload, the data follows directly after the

header. The message data contains the message-specific data,

such as a URL for a fetch URL message.
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