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1. Summary of Results 

Dynamic data stNcture problems involve the representation of 
data in memory in such a way as to permit certain types of 
modifications of the data (updates) and certain types of questions 
about the data (queries). This paradigm encompasses many 
fimdamental problems in computer science. 

The purpose of this paper is to prove new lower and upper 
bounds on the tie per operation to implement solutions to some 
familiar dynamic data structure problems including list 
representation, subset ranking, partial sums, and the set union 
problem . The main features of our lower bounds are: 

(1) 

(2) 

(3) 

They hold in the cell probe model of computation (A. Yao 
[18]) in which the time complexity of a sequential 
computation is defined to be the number of words of 
memory that are accessed. (The number of bits b in a 
single word of memory is a parameter of the model). All 
other computations are free. This model is at least as 
powerful as a random access machine and allows for 
unusual representation of data, indirect addressing etc. This 
contrasts with most previous lower bounds which are 
proved in models (e.g., algebraic, comparison, pointer 
manipulation) which require restrictions on the way data is 
represented and manipulated. 

The lower bound method presented here can be used to 
derive amortized complexities, worst cast per operation 
complexities, and randomized complcxitics. 

The results occasionally provide (nearly tight) tradeoffs 
between the number R of words of memory that are read 
per operation, the number W of memory words rewritten 
per operation and the size b of each word. For the 
problems considered here thcrc is a parameter n that 
represents the size of the data set being manipulated and for 
these problems b = logn is a natural register size to 
consider. By letting b vary, our results illustrate the effect 
of register size on time complexity. For instance, one 
consequence of the resuhs is that for some of the problems 
considered here, increasing the 
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register size from logn to polylog(n) only reduces the time 
complexity by a constant factor. On the other hand, 
decreasing the register size from logn to 1 increases time 
complexity by a logn factor for one of the problems we 
consider and only a loglogn factor for some other 
problems. 

The first two specific data structure problems for which we 
obtain bounds are: 

List Representation. This problem concerns the represention of 
an ordered list of at most n (not necessarily distinct) elements 
from the universe U = (1, 2 ,..., n ). The operations to be 
supported are report(k). which returns the k” element of the list, 
insert(k, u) which inserts element u into the list between the 
elements in positions k - 1 and k, delete(k), which deletes the k’” 
item. 

Subset Rank. This problem concerns the representation of a 
subset S of CJ = [ 1, 2 ,..., n ]. The operations that must be 
supported are the updates “insert item j into the set” and 
“delete item j from the set” and the queries rank(j), which 
returns the number of elements in S that are less than or equal 
to j . 

The natural word size for these problems is b = logn, which 
allows an item of Cl or an index into the list to be stored in one 
register. One simple solution to the list representation problem is 
to maintain a vector v, whose k’” entry contains the kih item of 
the list. The report operation can bc done in constant time, but 
the insert and delete operations may take time linear in the length 
of the list. Alternatively, one could store the items of the list with 
each element having a pointer to its predecessor and successor in 
the list. This allows for constant time updates (given a pointer to 
the appropriate location), but requires linear cost for queries. 

This problem can be solved much more efticiently by use of 
balanced trees (such as AVL trees). When b = logn, the worst 
case cost per operation using AVL trees is O(logn). If instead 
b = 1, so that each bit access costs 1, then the AVL tree solution 
requires 0 (log2n ) per operation. 
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It is not hard to find similar upper bounds for the subset rank 
problem (the algorithms for this problem are actually simpler than 
AVL trees). 
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The question is: are these upper bounds best possible? Our 
results show that the upper bounds for the case of logn bit 
registers are within a loglogn factor of optimal. On the other 
hand, somewhat surprisingly, for the case of single bit registers 
there are implementations for both of these problems that run in 
time significantly faster than 0 (log2n) per operation. 

Let CPROBE(b) denote the cell probe computational model 
with register size b . 
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Theorem 1. If b 5 (logn)’ for some t, then any CPROBE(b) 
implementation of either list re.presentation or the subset rank 
requires R(logn/loglogn) amortized time per operation. 

Theorem 2. Subset rank and list representation have 
CPROBE(l) implementations with res active 
0 ((logn)(loglogn)) and 0 ((logn)(loglogn) P 

complexities 
) per operation. 

Paul Dietz (personal communication) has found an 
implementation of list representation with logn bit registers that 
requires only O(lognlloglogn) time per o:peration, and thus the 
result of theorem 1 is best possible. 

The lower bounds of theorem 1 are derived from lower 
bounds for a third problem: 

PartiaI sums mod k. An array A [l] ,..., A [N] of integers mod 
k is to be represented. Updates are add(i, 6) which implements 
A[i] t A [i] + 6; and queries are sum(j) which returns 
CA[il (modk ). 
iSj 

This problem is denoted PS(n, k). Our main lower bound 
theorems provide tradeoffs between the number of register 
rewrites and register reads as a function of n, k and b. Two 
corollaries of these results are: 

Theorem 3. Any CPROBE(b) implementation of PS(n, 2) 
(partial sums mod 2) requires R(logn /(loglogn + logb )) 
amortized time per operation, and for 6 2 logn, there is an 
implementation that achieves this. ln particular, if 
b = B((logn)‘) for some constant c, then the optimal time 
complexity of PS(n, 2) is B(logn lloglogn ). 

Theorem 4. Any CPROBE(l) implementation of PS(n, n) with 
single bit registers requires R((logn/loglogn)2) amortized time 
per operation, and there is an implementation that achieves 
0 (log%) time per operation. 

It can be shown that a lower bound on PS(n, 2) is also a lower 
bound for both list representation and subset rank (the details, 
which are not difficult, are omitted from this report), and thus 
theorem 1 follows from theorem 3. The results of theorem 4 
make an interesting contrast with those of theorem 2. For the 
three problems, list representation, subset rank and PS(n, k), there 
are standard algorithms that can be implemented on a 
CPROBE(logn) that use time 0 (logn) per operation, and their 
implementations on CPROBE( 1) require 0 (log*n) time. 
Theorem 4 says that for the problem PS(n, n) this algorithm is 
essentially best possible, while theorem 2 says that for list 
representation and rank, the algorithm can be significantly 
improved. In fact, the rank problem an be viewed as a special 
case of PS(n, n) where the variables take on values only (0, l), 
and apparently this specialization is enough to reduce the 
complexity on a CPROBE(l) by a factor of lognlloglogn, even 
though on a CPROBE(logn ) the complexities of the two problems 
differ by no more than a loglogn factor. 

The thiid problem we consider is the set union problem. This 
problem concerns the design of a data structure for the on-line 
manipulation of sets in the following setting. Initially, there are n 
singleton sets (1),{2) ,..., (n) with i chosen as the name of the 
set (i ). Our data structure is required to implement two 
operations, Find(j), and Union(A ,S .C). The operation Find(j) 
returns the name of the set containing j. The operation 
Union(A ,B ,C) combines the sets with names A and B into a new 
set named C, destroying the sets A and S The names of the 
existing sets at any moment must be unique and chosen to be 
integers in the range from 1 to 2n. The sets existing at any time 
are disjoint and define a partition of the elements into equivalence 
classes. 

A well known data structure for the set union problem 
represents the sets as trees and stores the name of a set in the root 
of its corresponding tree. A Union operation is performed by 
attaching the root of the smaller set as a child of the root of the 
larger set (weight rule). A Find operation is implemented by 
following the path from the appropriate node to the root of the 
tree containing it, and then redirecting to the root the parent 
pointers of the nodes encountered along this path (path 
compression). From now on we consider sequences of Union and 
Find operations consisting of n-l Union operations and m Find 
operations, with m 2 n. Tarjan [ 141 demonstrated that the above 
algorithm requires time e(ma(m ,n )), where a(m ,n) is an 
inverse to Ackermann’s function, to execute n-l Union and m 
Find operations. In particular, if m = O(n), then the running time 
is almost, but not quite, linear. Tarjan conjectured [14] that no 
linear time algorithm exists for the set union problem, and 
provided significant evidence in favor of this conjecture (which 
we discuss in the following section). We affirm Tarjan’s 
conjecture in the CPROBE( logn) model. 

Theorem 5. Any CPROBE(logn) implementation of the set 
union problem requires Q(ma(m,n)) time to execute m Find’s 
and n-l Union’s, beginning with n singleton sets. 

N. Blum [2] has given a lognlloglogn algorithm (worst case 
time per operation) for the set union problem. This algorithm is 
also optimal in the CPROBE(polylogn) model. 

Theorem 6. If 6 I (logn)’ for some f, then any implementation 
of the set union problem with CPROBE(b), starting with n 
singleton sets, requires worst case time L!(logn/loglogn) per 
operation. 

The following Section provides further discussion of these 
results, Section 3 outlines our lower bound method, and Section 4 
contains some proofs. 

2. Discussion 

This Section is devoted to a general discussion of our results 
and their relationship to previous results. The upper bounds of 
Theorem 2 will not be discussed further in this report. We 
mention, however, that the algorithms are “practical” in that they 
do not exploit the power of the cell probe model in any unnatural 
way. For the sake of this discussion, we introduce two additional 
problems for which our lower bounds do not apply. 

Dynamic Predecessor. The data is a subset of S = ( 1, 2 ,..., II ). 
The operations that must be supported are the updates “insert 
item j into the set” and “delete item j from the set” and the 
queries predecessor(j), which returns the largest element of S 
that is less than j _ 

Dynamic Dictionary. The data is a subset of S = ( 1, 2 ,..., n ). 
Each element of .S must be assigned its own location in memory 
and the queries are of the form “is element x in S and if so, to 
what location is it assigned?” The updates are “insert item j 
into the set” and “delete item j from the set”. 

Both of these problems have very fast RAM implementations. 
Van Emde Boas, et al. described an implementation of the 
dynamic predecessor problem that uses only 0 (loglogn ) time per 
operation. Recently, Dietzfelbinger, et al. found a randomized 
hashing scheme that implements the dynamic dictionary with 
constant expected time per operation. On the other hand, they 
also show that for a class of generalized hashing algorithms there 
is a R(logn) lower bound on the worst case time per operation. 

All of the above dynamic data structure problems have a static 
version, in which there are no updates to the data and the problem 
is to find the representation of the given data in memory that 
minimizes the time required to answer queries. If the only goal is 
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to minimize the cost per query then the solution is usually trivial: 
precompute the answers to all of the queries, and store the answer 
to each query in a memory location indexed by that query. Of 
course, such a solution is usually undesirable for two reasons, it 
requires a large amount of preprocessing and a large amount of 
memory. This suggests that for a given static data structure 
problem it is important to understand the tradeoffs between query 
time, preprocessing time and space required to implement a 
solution. Tradeoffs between preprocessing time and query time 
for the dictionary problem were analyzed in worst case by 
Borodin, et al. [3] and in average case by Mairson [lo], but their 
results assume that the algorithms used are “comparison based”. 
Time space trade-offs for the static predecessor problem were 
obtained in the cell probe model by Ajtai [I]. 

For dynamic data structure problems, the problem of 
minimizing time per operation often becomes nontrivial, even 
without considering the cost of preprocessing or space. If we try 
to minimize the costs of queries as in the static case by 
maintaining the answer to each query in memory, each update 
may change the answer to many queries and thus require many 
memory locations to be rewritten. On the other hand, the cost of 
updates can be minimized by simply recording each update in a 
list without doing any processing. Answering a query is typically 
very expensive, this entire history must be read. These two trivial 
solutions suggest that the intrinsic difficulty of dynamic problems 
may lie in the tradeoff between the number of memory locations 
that must be rewritten to record updates and the number of 
memory locations that must be read to perform queries. It is this 
tradeoff that we investigate in this paper. 

This tradeoff is not present for all dynamic problems. If, for 
instance. each update affects the answers to a bounded number of 
queries, then the data structure that stores the answers to each 
query can be updated quickly. This is the case. for instance, with 
the dynamic dictionary problem. Our lower bound techniques 
appIy in situations where “typical” updates may effect the 
answer to many queries. 

The results of Dietzfelbinger et al. mentioned above leave 
open the following important question: what is the worst 
complexity of the dynamic dictionary problem on a RAM whose 
space is bounded by, say, a polynomial in the size of the subset 
S? 

Our results point out an interesting contrast between the static 
and dynamic cases of the predecessor and subset rank problems. 
FOT both of these problems a subset S from a universe ZJ 
( ( u 1 = n). is maintained. h the static case, various researchers 
have considered the problem of implementing these problems 
using space that is linear in the size of S . The best known upper 
bound for the static predecessor problem was obtained by Willard 
[17] who gave a linear space implementation requiring 
0 (loglogn) time per query. Ajtai’s lower bound shows that this 
is best possible for a CPROBE(logn) implementation, even if the 
space used is polynomial in 1 S 1 . In fact, the same results hold 
for the static version of the rank problem because the static 
versions of these problems are computationally equivalent. For 
example a data smcture for predecessor qucrics can be used to 
compute Tank queries by precomputing the ranks of each element 
in S and storing them in a linear space pcrfcct hash table [6]; to 
compute the rank of an element it suffices to determine its 
predecessor and look up the rank of its predecessor in the hash 
table. 

In the dynamic case (with no space bound), however, the rank 
and predecessor problems have very different complexities. The 
lower bound of theorem 1 shows that, even relative to alllOTtiZed 

complexity, the dynamic subset rank problem requires 

R(lognlloglogn ) time per operation, yet the algorithm in [16] 
solves the predecessor problem in time loglogn per operation. 

We return now to the partial sum problem. This problem was 
previously considered by Fredman [5] and Yao [19] in two 
different algebraic models of computation. Fredman’s results 
assume that the values stored in the array A belong to an abstract 
commutative group S, and that a memory register can store a 
single value from S. Complexity is measured only in terms of the 
number of addition/subtraction operations performed, and no 
charge is assessed for computing memory addresses etc. With the 
imposition of an additional obliviousness constraint, algorithms 
having complexity logs,,+ per operation exist, and this 
complexity is optimal. Roughly speaking, the obliviousness 
constraint requires that the registers accessed by each operation 
depend only on the operation instance, and not on the prior history 
of operations that have been performed. Yao establishes a lower 
bound of Q(logn/loglogn) per operation (amortized worst case) 
without the obliviousness assumption, but his result requires that 
S be a commutative semigroup, and that the subtraction operation 
not be available. Yao f19] raised the question of whether the 
same lower bound holds in Fredman’s group model sans 
obliviousness. In one sense, this model is weaker than the cell 
probe model because of the restrictions in the way information 
can be represented and manipulated. In another sense, the model 
is more powerful since there is no charge for memory address 
computations. The techniques developed in this paper can be 
adapted to answer Yao’s question affirmatively. 

One other intriguing observation can be made. The oblivious 
logn upper bound for PS(n, 2), which can be implemented in 
CPROBE(l), and our lower bound in Theorem 3, together, show 
that the parallelism provided by logn bit registers does not 
significantly reduce time complexity. However, in a machine 
model which permits logn bit words that overlap (as opposed to 
words which are comprised of disjoint sets of bits), the oblivious 
algorithm can be implemented in constant time. This provides a 
separation in power between a RAh4 with disjoint bytes and a 
RAM with byte overlap (RAMBO 1121). 

Next. we turn to the set union problem. Tarjan showed that 
any algorithm belonging to a class of pointer machine algorithms, 
which he referred to as separable algorithms [15], requires 
Q(m c~(m ,II )) time [13]. Pointer machine algorithms encompass 
all data structures that represent the relevant objects as nodes of a 
directed graph (allowing at most one item or set name to be stored 
in any given node) with edges serving as pointers. The 
separability condition imposes the further requirement that no 
edge may join two nodes associated with different sets, so that 
distinct sets correspond to separate connected components of the 
graph. 

Because the class of separable algorithms do not utilize the 
full power of random access memory, Tarjan’s lower bound 
argument is not formally conclusive in the context of random 
access machines. Indeed, Tarjan has stated [15] that the existence 
of a linear time algorithm remains an open question. There are 
further reasons to speculate about the existence of a linear time 
algorithm, even within the confines of pointer machine algorithms 
(without the separability constraint). F&t, Mehlhom, Naher and 
Alt [ll] show that for a related data s&ucture problem (union- 
split-find) there exists a pointer machine algorithm with an 
0 (mloglogn) running time, and yet for which any separable 
algorithm requires R(mlogn) time. Secondly, regarding the 
lowest common ancestor problem for a static tree with n nodes, 
Hare1 and Tarjan [8] show that pointer machines require 
R(mloglogn) time to process m queries. But in addition, they 
describe a random access machine algorithm that, together with 
preprocessing, can accomplish the same in linear time. Thirdly, 

347 



and most tantalizing, Gabow and1 Tarjan [7]1 give a random access 
machine algorithm which runs in linear time and solves all 
instances of the set union problem for which knowledge of the 
Union operations (but not of the occurrences of the Find 
operations) is provided in advance. Interestingly, Tarjan’s lower 
bound analysis for separable algorithms applies even to this 
restricted type of set union problem. Thus, separable algorithms 
can be superceded for a restricted set union problem, suggesting 
the possibility that this may be the case for the general set union 
problem as well. However, Theorem 5 &utes this possibility. 
(All of the above mentioned random access machine algorithms 
fall within the CPROBE(logn ) mod.el.) 

N. Blum [2] demonstrated that his lognlloglogn upper bound 
on the worst case time per operation for the set union problem is 
likewise optimal for the class of separable algorithms. While, as 
Theorem 6 shows, Blurn’s result is optimal in the 
CPROBE(polylogn) model, we do not know whether the logn 
register size in Theorem 5 can be extended to polylogn. 
However, the ciass of “hard” union-find sequences considered in 
the proof of Theorem 5 can be executed in linear time with a 
CPROB E(log2n ) algorithm. 

All of our lower bound results also hold for the class of 
randomized algorithms of Dietzfelbinger etal. To summarize 
briefly, for our purposes a randomized algorithm can be regarded 
as a probability distribution defined on a set of deterministic cell 
probe algorithms; an adversary only gets to know the distribution 
and not the actual choice of algorithm in any instance. This 
notion has been shown to be useful for the dynamic dictionary 
problem, but we are claiming that it cannot be used to advantage 
for the problems considered here. The lower bound proofs given 
below require only small modification to establish this 
strengthening. 

3. Framework of Our Lower Bound Method 

A central notion used in our lower bound proofs is the labeling 
of memory registers with chronograms (time stamps). (This 
labeling is a tool for analysis, and does not actually take place by 
the class of algorithms under consideration.) During the 
execution of a hypothetical sequence of operations, each time a 
register r is modified by a write instTuction, we relabel r with the 
chronogram d, where d is the number of update operations that 
have been requested prior to the occurrence of this write 
instruction. In particular, a register which gets changed during the 
execution of the d” update operation will be relabeled with d at 
that time. All registers have the chronogram 0 initially. We use 
these chronograms to bound from below the expected number of 
registers which must be read during the execution of a query 
operation. This expectation is defined relative to a certain 
distribution defined on the possible values of the input parameter 
provided to the query. 

More precisely, starting at the point just before a given query 
operation and proceeding backwards in time, we partition the axis 
of time into intervals of increasing lengths referred to as epochs. 
Typically, a query will need to access from each epoch a certain 
expected number of registers with chronograms falling in that 
epoch. That this should be the case ge.ts argued as follows. 
Focusing our attention on a particular epoch E, the update events 
taking place following the beginning of this epoch will be too rich 
to be suitably reflected by the effects of the (usually) 
comparatively small number of write instructions that take place 
during the subsequent epochs. Of course, the write instructions 
takiig place during the prior epochs cannot reflect these events. 
Thus, in order to properly respond to our query, a certain number 
of registers with chronograms belonging to the E’” epoch require 
access. Finally, the expected cost of a query must exceed the total 

number of epochs multiplied by the expected required number of 
register accesses from each epoch. 

4. Some Proofs 

We prove. first the following theorem which gives, in 
essence, the lower bound portion of Theorem 3. This will 
be followed by a proof of Theorem 5. 

Theorem 3’. Any CPROBE(b) implementation of PS(n, 
2) (partial sums mod 2) requires n(logn l(loglogn + logb)) 
amortized time per opera&on. More precisely, given an 
algorithm A^ and m 2 2Jn , there exists a sequence of m 
operations for which A^ requires total time 
!2(m logn /(loglogn + logb )). 

The proof uses the following lemmas. 

Lemma 1. Let C be a sequence of m numbers o 1 ,. ..,‘a,, 
andletA =CUi. Foreacht,atleasthalfofthem -t + 1 
contiguous subsequences, aj, Uj+l ,..., Uj+t-1, of C satisfy 

j+r-1 

x Ui 52A tl(m -t + 1) 
i=j 

(Proof left to the reader) 

Lemma 2. Let += (1+ $2 (41-l = $ - 1). The 
numbers Xi = i $-’ modl, i 2 1, have the property that 
[Xi-Xjl 2 l/(31 i -jl),i #j. 

Proof. Xi -Xj = (i -i) 9-l mod 1 =Xi-j. Thus, 
I Xi -Xi I 2 min(x;-j, 1 - Xi-j). The Lemma now follows 
from the 3-distances theorem of Swierczkowski (see [9], 
pp. 511 and Exercise 9, pp. 543). 

Proof of Theorem 3’. Let A be an algorithm solving our 
problem in the cell probe model with b bit words. To 
prove the lower bound, we focus our attention on 
sequences of the form 

(1) utQ,u2Q2...u, Q,,, , m 22Jn, 

where each Qi is a partial sum query with arbitrary input, 
and Ui is an update of the form A [[i 4-9 mod n ] t 
(A[li e-9 modn]+xi)mod2, xi =Oor 1. (Note, if 
Xi = 0, then the update has no effect on subsequent query 
responses). Let W be the maximum number of write 
instructions performed by A^ while executing any sequence 
of the form (l), and let w = W/m. Similarly, let R denote 
the maximum number of memory probes performed by A^ 
for queries during the execution of any sequence of the 
form (l), and let r = R lm . Our goal is to establish the 
inequality 

(2) r = SZ(logn flog&v logn)) 

of which our Theorem is an immediate consequence. 

We use probabilistic reasoning to establish (2), and 
accordingly, we assume a uniform distribution on the 
sequences of the form (1). As described in the above 
framework discussion, for each query operation 
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Qj, j 2 &, we define a series of epochs proceeding 
backwards from Qi, so that the i most recent epochs 
contain Li = (cow )’ update operations, where a is a 
parameter to be chosen later. The number q of epochs 
within such a series is chosen so that the total number of 
u date operations among the q epochs does not exceed 
P n . Accordingly, we choose 

(3) q = llog Gllog(a w)] 

Now for a sequence cr of the form (l), let w (cr, j, i) denote 
the number of write instructions executed duping the i - 1 
most recent epochs preceding 

F 
. , j 2 dn . Applying 

Lemma 1 (and using the fact the II < m /2), we conclude 
that 

(4) w(cr,j,i)l 4WLi-lI 4LilCC 
for at least one half of the j’s, j 2 4, . 

Now fix i I q and j 2 4;. Let S denote the set of 
sequences Q of the form (1) such that 

(5) w(o,j,i)<4Lila 

For cr E S , let 6 denote the prefix of cr preceding the jr’ 
wry Qj. We may write 6 = z l.t, where p. denotes the 
operations which comprise the i most recent epochs 
preceding Qj. qondition (5) implies that the execution of 
that portion of Q subsequent to the ifh epoch entails no 
more than 4 L /ai write instructions. We now wish to fix 2, 
allowing only lo to vary. Accordingly, we define S (i , z) to 
be those l.t of length Li for which z lt E S. As discussed 
in our framework description, we wish to show that the 
write instructions taking place subsequent to epoch i are 
typically not sufficiently numerous to suitably encode the 
update events from the beginning of epoch i . Towards this 
end, we define equivalence classes on the various tt of 
S(i, z) to reflect the encoding induced by these write 
instructions. 

We say that a given memory register r is q-accessible 
provided that there exists a memory state w and an input x 
for which the execution of sum(x), from memory state w, 
encounters register r among its first q probes. Let y denote 
the number of q-accessible registers. Then 

(6) yin 2qb 

This follows from the fact that the possible probe 
sequences for each of the sum(k) operations, 1 I k In, 
can be modeled in terms of a 2’-ary tree; each internal 
node is labeled with the address of the associated register 
being probed, and its 2’ children correspond to the possible 
values of the contents of that register. 

At the moment immediately preceding the execution of 
Qj each register has a chronogram as described in our 
framework discussion. A register whose chronogram lies 
in epoch i is referred to as an epoch i register. With i 
fixed as above, we refer to the registers with chronograms 
subsequent to epoch i as recent registers. It is important to 

realize that the set of recent registers may vary with ~1. We 
say that ltl, ltL2 ES (i, 2) are equivalent provided that for 
& = 7 ccl and & = z pz the respective sets of recent q- 
accessible registers and their contents are identical. Using 
(5) and (6), the number Ei,c of these equivalence classes is 
bounded by 

(7) Ei = c (?I pi 5 p+ Ov+qbYa 
jSKifa J 

Now we consider the execution of Qj = sum(x) following 
the operations z lt. with l.t E S(i, I$. Without loss of 
generality, we may assume that whenever a query is 
executed, a sequence of register probes is performed to 
determine the appropriate answer, followed by a sequence 
of register writes to record new information. Now roughly 
speaking, if no register from epoch i is probed during this 
execution, then the outcome depends primarily on the 
equivalence class to which lt belongs. More precisely, 
consider a modified computation in which each register 
probed with an epoch i chronogram reports its contents to 
be the value that was stored at the conclusion of the 
previous epoch (namely, the value present upon completion 
of the operations in 7). If this computation proceeds for at 
most q probes, then we define J(z&x) to be the resulting 
output. Otherwise, we define J(~,p.,x) = 00. We observe 
that if sum(x) # J(z,l,t,x) then either the computation for 
sum(x) involves more than q probes, or a register with an 
epoch i chronogram gets probed. 

Now let J(z,p) denote the R dimensional vector of 
J(z,p,x) values. We claim that if ltl and lr.2 belong to the 
same equivalence class, then J(z,pI) = J (z,p2) since the 
respective computations proceed identically for the first q 
probes. Accordingly, with each equivalence class 
Cj, llj5&;,Z, of S (i ,T) we associate an n dimensional 
vector Vj = J (7,~) for l.t E Cj . 

Given l.t E Cj let F (z,@ denote the vector of correct 
query responses (sum(l) 7.q-9 sum(n )). The Hamming 
distance S(T,~) between Vj and F (2,l.t.) represents the 
contribution of epoch i to the average complexity of 
sum(x) following 6 = 7l.t. More precisely, consider the 
computation of sum(x) following o. We claim that the 
number of probes performed is at least the number of 
epochs i for which the conditions 
(**) d = 0l.t with l.t E S (i ,z) and J (~,l.t,x) # sum(x) 
are satisfied. First, if the computation for sum(x) proceeds 
for more than q probes, then the claim is immediate since 
there are only q epochs. So ‘we may assume that for each 
epoch i satisfying (**), there is a register with an epoch i 
chronogram that gets probed by the sum(x) computation, 
thereby implying our claim. We conclude that the expected 
complexity Ej of Qj satisfies (Zj denotes the number of 
distinct prefixes of sequences of the form (l), preceding 
Qj> 
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We now proceed to bound C 6(~, r-l). Intuitively, 
ILSS(i,T) 

for each equivalence class Cj, we show that there cannot 
be very many query response vectors F’ (2,l.t) that are close 
t0 Vj. By Lemma 2, the j at which updates 
A Gl t A u] +x take place during the i most recent 
epochs are separated by gaps d at least n l(3L;). 

Lemma 3. The query response vectors F (7, p) with t.t 
chosen in all possible ways consistent with (l), form an 
affine space spanned by Li mutually orthogonal 
(orthogonal in the sense of I\’ “1) 0, 1 basis vectors, where 
each basis vector (except Imssibly one) has Hamming 
weight at least n/(3 Li). The number of such vectors 
within distance n/30 of any fixed vector V does not exceed 
2$2.95L). (Proof left to the reader.) 

Now let Ti denote the set of all possible choices for l.t 
consistent with (l), and let 8i = 1 Ti 1 . Applying Lemma 3, 
the number of l.t satisfying 6(z, p) I n /30 is bounded by 
2 Ei Bj 2-.05L (ei bounds the number of Vi)- Accordingly, 
we obtain 

Since x 9i = zj , we conclude (upon combining (8) and 

(9)) ‘c 

(10) Ej 2 f C ~1 S (i ,2)] /Zj - 2 Ei 2-.0sL’ 
rSg z 1 1 

Now let pi”’ = prob(w (o, j, 
have that 

i) I4 Lila). From (4) we 

(11) 

NOW (10) becomes Ej 2 $ ‘& (pi”’ - 2 Ei 2y05L). 
1% 

Summing over j and applying (7) and (1 I), we obtain 

-- l\ cm + 1 _ dn) c ptG3Rw f +)/a- .05) 

i% 

Referring to the right hand side of (12), we can choose c( so 
that the second term is less than haIf the first term. In 
particular, if we choose c1= 4OO.b .logn we obtain 

. 

This completes our proof. 

We briefly indicate how the above argument is 
modified to obtain Theorem 4. This is accomplished by 
showing that a typical query requires access to (almost) 
logarithmically many bits from each epoch (as opposed to 
just a constant number). Observing that the space of query 
responses is nary, we show that even when the operation 
sequences are subdivided into equivalence classes on the 
basis of recent write instructions, the entropy of the query 
responses remains, on average, Q(logn). The number of 
bit probes (from the appropriate epoch) is then related to 
this entropy. To both estimate query response entropy and 
relate the number of bit probes to the entropy of a query 
response, we use the well known fact that the entropy of a 
joint distribution is bounded by the sum of the individual 
entropies. 

Proof of Theorem 5. We consider the case of n Find’s 
and n-l Union’s, beginning with n singleton sets. (See 
the remark following the Proof for a discussion of the 
general case with m 2 n Find operations.) We concentrate 
our attention on Union-Find sequences that build up the 
sets evenly; n/2k sets of size 2k are paired to form 
n /2k+’ sets of size 2k+1 during what is referred to as union 
round k, k 20. We use the notation x&j), 1 Ij ln/2k, 
to name the sets that exist at the beginning of union round 
k.Thesetx(k+lj)isaunionofsetsx(k,p)andx(k,p’), 
where the p.p’ choices constitute arbitrary pairings 
performed during round k . The Union-Find s 

7 
Il_ences we 

consider do not create sets of size larger than n , so that 
no more than 1/2.1ogzn union rounds take place. 
Moreover, all Find operations take place between rounds or 
after the last round. Our proof uses an adversary which, 
given a proposed algorithm A, constructs a sequence over 
the letters U and F consisting of at most 1/2.10g2n U’s and 
at most n F’s. Let S denote the sequence obtained. In 
terms of S we define the family R(S) of all Union-Find 
operation sequences obtained by substituting for each U in 
S an arbitrary round of unions (the kth U corresponds to 
union round k-l), and substituting for each F in S an 
arbitrary Find operation. For the sake of definiteness, 
assume that the Union operations taking place in round 
k-l create sets in the order, x(k ,l), x(k ,2), etc. It will be 
the case that, when averaging over the sequences in R(S), 
the expected execution cost required by algorithm A to 
perform a sequence in R(S) will be large. 

Our adversary uses a parameter 4 2 2, which will be 
appropriately chosen later (and will be proportional to the 
average cost of a Union or Find operation in the 
constructed sequences). The sequence S is constructed by 
the adversary one letter at a time, the first letter being a U. 
Let S’ denote the prefix of S constructed so far by our 
adversary. According to the rule given below, the 
adversary maintains a partition of S’ into at most 4 
contiguous subsequences referred to as epochs. The first 
letter of each epoch is always a U. For the initial case 
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when S’ = U, there is one epoch consisting of U. In executing these sequences, where g,(n) is an unbounded 
general, if S’ has q epochs, then the next letter added by function of n . 
the adversary to S’ is an F. On the other hand, if S’ has 
fewer than q epochs, then the next letter is chosen to be a 
U. Now if the next letter chosen happens to be an F, then 
this letter is tentatively absorbed into the rightmost epoch. 
If the next letter chosen is a U, then it tentatively 
constitutes a new epoch consisting of one letter. We now 
describe a rule by which the adversary adjusts the tentative 
subdivision into epochs existing at this point. 

Given S’, let R(S) denote the family of all union-find 
operation sequences obtained from S’ by performing 
substitutions as described above in the definition of R(S). 
The tentative subdivision of S’ into epochs induces, in the 
obvious manner, a subdivision of the operation sequences 
in R(S) into epochs. Now suppose that a given epoch e 
(other than the rightmost) begins with the k th U, 
corresponding to union round k-l. We say that this epoch 
e is compressed provided that, upon averaging over all 
sequences in R(S’), the average number of register writes 
performed by algorithm A strictly after the completion of 
epoch e is at least n /(lOO.q *2’-‘). Observe that more than 
one epoch may become compressed. The tentative epoch 
subdivision is then adjusted by extending the right 
boundary of the leftmost compressed epoch to the end of 
S’, absorbing into this epoch all of the epochs to its right. 
Note that this adjustment leaves no compressed epochs. If 
there are no compressed epochs in the tentative 
subdivision, then no adjustment takes place. The process 
of extending S’ then begins anew. This continues until S’ 
can no longer be extended according to our rules without 
violating the limitations on the numbers of U’s and F’s 
permitted ( l/2-log2n and n respectively), yielding S. 

Observe that during the construction of S, if the 
leftmost epoch (for which k-l = 0) gets compressed m 
times, then A performs on average at least mn/(lOOq) 
register writes when executing the sequences in R(S). This 
follows from the fact that each sequence within R(S) 
uniformly appears as a prefix among the sequences in R(S), 
so that the average number of register writes taking place 
during a particular interval of operations, when averaging 
over the sequences in R(S’), is the same as when averaging 
over the sequences in R(S). Thus, we may sum the cost 
n/(lOOq) associated with each of the m compressions. 
The assertion (*) is therefore a consequence of the 
following Lemma. 

Lemma 5. There exists a function hq(m) such that if our 
adversary generates at least h,(m) U’s, then before the 
next U is generated, the leftmost epoch will have been 
compressed in total at least m times. (Proof given below.) 

Combining Lemmas 4 and 5, we conclude that if 
h, (q2) I 1/2.10g2n then A performs either an average of 
Q(qn) register probes or an average of SI(qn) register 
writes when executing the sequences in R(S). Our lower 
bound for the set union problem becomes G(zn) where 
z =max(qI h,(q2)I 1/210g2n). 

Our use of the term “compressed” is deliberately 
chosen to evoke consideration of the use of path 
compression within Union-Find algorithms. Intuitively, 
until an epoch is compressed, a Find operation typically 
needs to follow a membership chain which touches upon 
sets created during that epoch. If sufficiently many register 
writes have taken place subsequent to that epoch, then they 
may encode sufficiently many membership links that 
transcend the sets created during that epoch, so that we 
may consider the epoch to be compressed. 

Lemma 4. Assume that n 2 lo5 . For each F in the 
sequence S, algorithm A performs, upon averaging over 
the sequences in R(S), at least q/10 probes for the 
corresponding Find operation in these sequences. (Proof 
given below.) 

Thus, if our adversary constructs a sequence S having 
n F’s, then upon averaging over R(S) we conclude that the 
expected time required by A to execute these sequences is 
Q(qn). Now suppose that, instead, the sequence S 
constructed has l/2-log2n U’s. Then we argue that 
(*) A performs on average ng,(n) register writes when 

Comment: The above Lemmas show, in fact, that the 
following simpler adversary would suffice to prove our 
lower bound. Pick q as above. If the average complexity 
of the next operation, if chosen to be a Find, exceeds q/10, 
then perform a Find: otherwise, perform another round of 
Unions. 

Proofs of the Lemmas. 

First we prove Lemma 5, followed by the proof of 
Lemma 4. 

Proof of Lemma 5: Let h,(m) be given by 

1 

1, if m = 0, 

h,(m) = m+l, if r = 2, 

h,(m-1) + hr-l(2h’(m-1)), if r > 2 and m > 0. 

Let r satisfy 2 < r I q . Assume at a given moment that 
epoch q+l-r (from the left) contains exactly one U and 
only q+l-r epochs are currently present. We show that 
before the adversary generates h,(m) more U’s, either a 
compression of one of the first q-r epochs will take place 
or at least m subsequent compressions of epoch q+l-r 
will take place. Our Lemma then follows by choosing 
r = q, We proceed by induction on m and r. When 
m = 0, the assertion is immediate. Now assume that the 
assertion holds when r = 2 and m = k. Unless a 
compression of one of the q -2 leftmost epochs has already 
occurred, when the (k+l)st subsequent U is generated, it 
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will tentatively constitute epoch q. 13efore the next 
((k+2)nd) U is generated, either epoch q--l or an epoch to 
its left will be compressed one more time. This justifies 
our assertion when r = 2 and m = k+l. 

Now assume that the assertion holds whenever r < r’ , 
and when r = r’ and m = k, where r’ > 2. This assertion 
implies that unless a compression of one of the leftmost 
q -r’ epochs has already occurred, when the pth 
subsequent U is generated (for some p I h,*(k)), it will 
tentatively constitute epoch 9+2:-r’= q+l-(r’-l), and 
epoch q+l-r’ will have been compressed k times and will 
contain p Us. Applying the case r = r ‘-1 and m = 2J’ 
of our assertion, we conclude that before another h+i(2J’) 
U’s are generated, either (a) epoch q +1-(r ‘-1) will have 
been compressed another 2p times, or (b) an epoch to the 
left of epoch q+l-(r’-1) will have been compressed. 
Considering case (b) first, if this compressed epoch is also 
to the left of epoch q+l-r’, then we conclude that before a 
total of p + h,*-1(2P) I h&) + h,*-1(2h’9 = h&+1) 
subsequent U’s have been genewtcd, an epoch to the left of 
epoch q+l-r ’ will have been compressed. Otherwise, we 
conclude that before a total of h&+1) subsequent U’s 
have been generated, epoch q+l-r’ will have been 
compressed for the (k+l)st time. Now consider case (a). 
Summing the compression condition for epoch q+l-(r’-1) 
existing prior to each of its 2p compressions, we find that 
the average number of register writes taking place, after 
epoch q+l-(r’-1) was established (when the p th U .was 
generated), is sufficient to satisfy the condition for another 
((k+l)st) compression of epoch q+l-r ’ (since epoch 
q+l-r ’ contains p U’s). In other words, case (a) reduces 
to case (b). This justifies our assertion when r = r’ and 
m = k+l. By double induction our assertion follows 
generally, completing the proof. 

Proof of Lemma 4: This is very similar to the proof of 
Theorem 3’. Again, we assign to each register a 
chronog-ram which get updated whenever a write 
instruction changes the contents of that register. In this 
instance a chronogram designates the corresponding 
position in S of the Union or Find operation in progress 
when the write instruction takes place. We demostrate 
below that, upon averaging over all sequences in R(S’) and 
all n input choices for a Find operation, the average cost 
required by A to execute a Find operation, after having 
executed the operations corresponding to S’, exceeds q /lO 
probes. From the structure of R(S), the corresponding 
average cost of this Find operation among the sequences in 
R(S) must also exceed q/10. 

Because S’ precedes an F in S, the adversary has S’ 
partitioned into q epochs. As in the proof of Theorem 3’ 
we argue that each epoch contributes at least l/10 to the 
expected cost of a Find operation at this point. Given one 
of these epochs, say epoch e, because epoch e is not 
compressed, the number of register writes taking place 

subsequent to epoch e is, on averaging over R(S), less 
than n /(lOO.q ~2’~‘) where 2’-’ is the size of the sets 
existing as epoch e commences. Thus, for at least one half 
of the sequences in R(S’), the actual number of register 
writes taking place subsequent to epoch e is less than 
n/(ZiO.q 02’~~). Let 8, denote the set of these sequences, so 
that 

(13) Ieel 2 +(s?l. 

For o E 0, we may write CT = rp, where p. denotes the 
operations proceeding from the beginning of epoch e. 
Now fix 2, allowing only l.t to vary, and let S(e ,2) denote 
the set of lt such that zl.t E 6,. We now proceed to 
subdivide S (e ,z) into equivalence classes, reflecting the 
information encoded by the write instructions taking place 
subsequent to epoch e . 

We say that ~1, ~2 E S (e ,z) are equivalent provided 
that for crl = zpl and o2 = zpz, the respective sets of q- 
accessible memory registers with chronograms subsequent 
to epoch e , and their respective contents, are identical. We 
have that 7, the number q-accessible registers, is bounded 
by 

(14) y 5 nq+‘. 

From the definition of 8, and using (14), we conclude that 
the number E, ,% of these equivalence classes is bounded by 

(1% 

E, = jti,cgqym,, (:I .i 5 nk+2)~Wq2a~‘) s n~K25~2t~‘) 

Now reasoning as in the proof of Theorem 3’, and using 
analogous notation, we conclude that the expected 
complexity E of our Find operation satisfies 

substitute the following Lemma for Lemma 3. 

Lemma 6. The query response vectors F (7,~) with l.t 
chosen in all possible ways consistent with the suffix of S’ 
beginning with the eth epoch, correspond to arbitrary 
groupings of the sets of size 2L-’ existing at the conclusion 
of 2 into sets of the size existing at the conclusion of S’. As 
lt varies, these groupings occur with uniform frequency. 
The fraction of these groupings for which F (2,~) is within 
distance n/4 of any fixed assignment vector Vj does not 
exce& 8” (e $4 )‘2 where n (e ) = n /2’-’ denotes the 
number of sets existing as epoch e commences, and 
n^( 2 4s denotes the number of sets existing at the 
conclusion of S’. 

Proof: Because of the convention we have chosen 
above for naming sets, the descriptions of the union 



operations taking place in the various rounds can chosen 
independently of one another. Thus, we can meaningfully 
discuss the the effect of varying the union operations in a 
given round while fixing the union operations taking place 
in other rounds, which we now proceed to do. 

Upon fixing the unions taking place in the rounds 
subsequent to round k-l, if any, we find that the unions of 
round k-l, done in all possible ways, induce an 
equidistribution of the possible groupings. The uniform 
frequency statement of Lemma 3 is an immediate 
consequence. The number of distinct groupings under 
consideration is given by 

(17) 
I 

n(e) 

I 

$44 

n(e)/i,. . . ,n(e)li 
2- 4”(L) 

NOW given Vi let Vj be an n (e ) dimensional vector 
obtained by assigning to each of the n (e ) sets existing 
when epoch e commences, a value obtained with greatest 
frequency by the set’s members under the assignment Vi. 
Observe that if the Hamming distance between any 
assignment a of the n (e ) sets and fj is 8, then the 
corresponding distance 6 between Vj and and the n 
dimensional vector of set memberships induced by a 
satisfies 

(18) 6 2 &/(2n(e)) 

Now the number of assignments a of the n(e) sets within 
distance n (e)/2 of r?i does not exceed 

Combining (17), (18), and (19), the fraction of the 
groupings of the n(e) sets for which F (z,cl> is within 
distance n /4 of Vi does not exceed 

completing the proof of Lemma 6. 

Now let Z, denote the number of choices for p 
corresponding to the appropriate suffix of S’. Applying 
Lemma 6, the number of 

Y 
satisfying 8(2,p) I n/4 is 

bounded by &,Z, 8”‘“‘~-“(’ ‘*. (Recall E, bounds the 
number of equivalence classes.)_ Accordingly, we obtain 
from (15) and the fact that n^ 2 Jn 

(20) 

x 6(z,p) 2 a 1 S(e ,T)l - Zenn(e)(‘-a)8”(e’ 
pE s cc .e 1 

Since C Ze = t W?I and 

XIs(e,@l = l%I’ 2 I R(S’)I /2, we obtain (upon 

c:mbining (16) and (20)) 

E2 

2 

1 
4R(S’) c 

c 

n(e )(&-$’ 
8 n(c) 

1 1 
“(“(~-33”‘“) > x - 

10 

for n 2 10’. This completes the proof of Lemma4. 

Remark 1: The above argument is easily modified to 
show that for m 2 n, the set union problem requires time 
n(2.m) where z = max[q 1 hp[4%lnl ) I 1/2log2n) to 
execute m Find’s and n-l Unions. This is accomplished 
by limiting the number of F’s permitted in S to m instead 
of n , and by noting that rq2m lnf compressions of the 
leftmost epoch account for an average of Q(4 -m ) register 
writes. A routine argument shows that z = SZ(a(m ,n)), 
where a(m ,n) is the inverse to Ackermann’s function 
defined by Tarjan [ 141. 
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