
Michael L. Fredmarl ’

Bellcore and
U.C. San Diego

1. Summary of Results

Dynamic data stNcture problems involve the representation of
data in memory in such a way as to permit certain types of
modifications of the data (updates) and certain types of questions
about the data (queries). This paradigm encompasses many
fimdamental problems in computer science.

The purpose of this paper is to prove new lower and upper
bounds on the tie per operation to implement solutions to some
familiar dynamic data structure problems including list
representation, subset ranking, partial sums, and the set union
problem . The main features of our lower bounds are:

(1)

(2)

(3)

They hold in the cell probe model of computation (A. Yao
[18]) in which the time complexity of a sequential
computation is defined to be the number of words of
memory that are accessed. (The number of bits b in a
single word of memory is a parameter of the model). All
other computations are free. This model is at least as
powerful as a random access machine and allows for
unusual representation of data, indirect addressing etc. This
contrasts with most previous lower bounds which are
proved in models (e.g., algebraic, comparison, pointer
manipulation) which require restrictions on the way data is
represented and manipulated.

The lower bound method presented here can be used to
derive amortized complexities, worst cast per operation
complexities, and randomized complcxitics.

The results occasionally provide (nearly tight) tradeoffs
between the number R of words of memory that are read
per operation, the number W of memory words rewritten
per operation and the size b of each word. For the
problems considered here thcrc is a parameter n that
represents the size of the data set being manipulated and for
these problems b = logn is a natural register size to
consider. By letting b vary, our results illustrate the effect
of register size on time complexity. For instance, one
consequence of the resuhs is that for some of the problems
considered here, increasing the

The Cell Probe Complexity of Dynamic Data Structures

Michael E. Sak>. 2

U.C. San Diego,
Bellcore and

Rutgers University

register size from logn to polylog(n) only reduces the time
complexity by a constant factor. On the other hand,
decreasing the register size from logn to 1 increases time
complexity by a logn factor for one of the problems we
consider and only a loglogn factor for some other
problems.

The first two specific data structure problems for which we
obtain bounds are:

List Representation. This problem concerns the represention of
an ordered list of at most n (not necessarily distinct) elements
from the universe U = (1, 2 ,..., n). The operations to be
supported are report(k). which returns the k” element of the list,
insert(k, u) which inserts element u into the list between the
elements in positions k - 1 and k, delete(k), which deletes the k’”
item.

Subset Rank. This problem concerns the representation of a
subset S of CJ = [1, 2 ,..., n]. The operations that must be
supported are the updates “insert item j into the set” and
“delete item j from the set” and the queries rank(j), which
returns the number of elements in S that are less than or equal
to j .

The natural word size for these problems is b = logn, which
allows an item of Cl or an index into the list to be stored in one
register. One simple solution to the list representation problem is
to maintain a vector v, whose k’” entry contains the kih item of
the list. The report operation can bc done in constant time, but
the insert and delete operations may take time linear in the length
of the list. Alternatively, one could store the items of the list with
each element having a pointer to its predecessor and successor in
the list. This allows for constant time updates (given a pointer to
the appropriate location), but requires linear cost for queries.

This problem can be solved much more efticiently by use of
balanced trees (such as AVL trees). When b = logn, the worst
case cost per operation using AVL trees is O(logn). If instead
b = 1, so that each bit access costs 1, then the AVL tree solution
requires 0 (log2n) per operation.

1 Supported in parr by NSF @-ant DCR85042~S

2 Su[m,rIci! !” CL? 5.” 4 SF <r--;t I)‘.!S57 I,?!.:! .‘,i* ! z.2 Force Office of

Scientific Rese~ch grylt AFOSR-oZi t

It is not hard to find similar upper bounds for the subset rank
problem (the algorithms for this problem are actually simpler than
AVL trees).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1989 ACM O-89791-307-8/89/0005/0345 $1.50

The question is: are these upper bounds best possible? Our
results show that the upper bounds for the case of logn bit
registers are within a loglogn factor of optimal. On the other
hand, somewhat surprisingly, for the case of single bit registers
there are implementations for both of these problems that run in
time significantly faster than 0 (log2n) per operation.

Let CPROBE(b) denote the cell probe computational model
with register size b .

345

Theorem 1. If b 5 (logn)’ for some t, then any CPROBE(b)
implementation of either list re.presentation or the subset rank
requires R(logn/loglogn) amortized time per operation.

Theorem 2. Subset rank and list representation have
CPROBE(l) implementations with res active
0 ((logn)(loglogn)) and 0 ((logn)(loglogn) P

complexities
) per operation.

Paul Dietz (personal communication) has found an
implementation of list representation with logn bit registers that
requires only O(lognlloglogn) time per o:peration, and thus the
result of theorem 1 is best possible.

The lower bounds of theorem 1 are derived from lower
bounds for a third problem:

PartiaI sums mod k. An array A [l] ,..., A [N] of integers mod
k is to be represented. Updates are add(i, 6) which implements
A[i] t A [i] + 6; and queries are sum(j) which returns
CA[il (modk).
iSj

This problem is denoted PS(n, k). Our main lower bound
theorems provide tradeoffs between the number of register
rewrites and register reads as a function of n, k and b. Two
corollaries of these results are:

Theorem 3. Any CPROBE(b) implementation of PS(n, 2)
(partial sums mod 2) requires R(logn /(loglogn + logb))
amortized time per operation, and for 6 2 logn, there is an
implementation that achieves this. ln particular, if
b = B((logn)‘) for some constant c, then the optimal time
complexity of PS(n, 2) is B(logn lloglogn).

Theorem 4. Any CPROBE(l) implementation of PS(n, n) with
single bit registers requires R((logn/loglogn)2) amortized time
per operation, and there is an implementation that achieves
0 (log%) time per operation.

It can be shown that a lower bound on PS(n, 2) is also a lower
bound for both list representation and subset rank (the details,
which are not difficult, are omitted from this report), and thus
theorem 1 follows from theorem 3. The results of theorem 4
make an interesting contrast with those of theorem 2. For the
three problems, list representation, subset rank and PS(n, k), there
are standard algorithms that can be implemented on a
CPROBE(logn) that use time 0 (logn) per operation, and their
implementations on CPROBE(1) require 0 (log*n) time.
Theorem 4 says that for the problem PS(n, n) this algorithm is
essentially best possible, while theorem 2 says that for list
representation and rank, the algorithm can be significantly
improved. In fact, the rank problem an be viewed as a special
case of PS(n, n) where the variables take on values only (0, l),
and apparently this specialization is enough to reduce the
complexity on a CPROBE(l) by a factor of lognlloglogn, even
though on a CPROBE(logn) the complexities of the two problems
differ by no more than a loglogn factor.

The thiid problem we consider is the set union problem. This
problem concerns the design of a data structure for the on-line
manipulation of sets in the following setting. Initially, there are n
singleton sets (1),{2) ,..., (n) with i chosen as the name of the
set (i). Our data structure is required to implement two
operations, Find(j), and Union(A ,S .C). The operation Find(j)
returns the name of the set containing j. The operation
Union(A ,B ,C) combines the sets with names A and B into a new
set named C, destroying the sets A and S The names of the
existing sets at any moment must be unique and chosen to be
integers in the range from 1 to 2n. The sets existing at any time
are disjoint and define a partition of the elements into equivalence
classes.

A well known data structure for the set union problem
represents the sets as trees and stores the name of a set in the root
of its corresponding tree. A Union operation is performed by
attaching the root of the smaller set as a child of the root of the
larger set (weight rule). A Find operation is implemented by
following the path from the appropriate node to the root of the
tree containing it, and then redirecting to the root the parent
pointers of the nodes encountered along this path (path
compression). From now on we consider sequences of Union and
Find operations consisting of n-l Union operations and m Find
operations, with m 2 n. Tarjan [141 demonstrated that the above
algorithm requires time e(ma(m ,n)), where a(m ,n) is an
inverse to Ackermann’s function, to execute n-l Union and m
Find operations. In particular, if m = O(n), then the running time
is almost, but not quite, linear. Tarjan conjectured [14] that no
linear time algorithm exists for the set union problem, and
provided significant evidence in favor of this conjecture (which
we discuss in the following section). We affirm Tarjan’s
conjecture in the CPROBE(logn) model.

Theorem 5. Any CPROBE(logn) implementation of the set
union problem requires Q(ma(m,n)) time to execute m Find’s
and n-l Union’s, beginning with n singleton sets.

N. Blum [2] has given a lognlloglogn algorithm (worst case
time per operation) for the set union problem. This algorithm is
also optimal in the CPROBE(polylogn) model.

Theorem 6. If 6 I (logn)’ for some f, then any implementation
of the set union problem with CPROBE(b), starting with n
singleton sets, requires worst case time L!(logn/loglogn) per
operation.

The following Section provides further discussion of these
results, Section 3 outlines our lower bound method, and Section 4
contains some proofs.

2. Discussion

This Section is devoted to a general discussion of our results
and their relationship to previous results. The upper bounds of
Theorem 2 will not be discussed further in this report. We
mention, however, that the algorithms are “practical” in that they
do not exploit the power of the cell probe model in any unnatural
way. For the sake of this discussion, we introduce two additional
problems for which our lower bounds do not apply.

Dynamic Predecessor. The data is a subset of S = (1, 2 ,..., II).
The operations that must be supported are the updates “insert
item j into the set” and “delete item j from the set” and the
queries predecessor(j), which returns the largest element of S
that is less than j _

Dynamic Dictionary. The data is a subset of S = (1, 2 ,..., n).
Each element of .S must be assigned its own location in memory
and the queries are of the form “is element x in S and if so, to
what location is it assigned?” The updates are “insert item j
into the set” and “delete item j from the set”.

Both of these problems have very fast RAM implementations.
Van Emde Boas, et al. described an implementation of the
dynamic predecessor problem that uses only 0 (loglogn) time per
operation. Recently, Dietzfelbinger, et al. found a randomized
hashing scheme that implements the dynamic dictionary with
constant expected time per operation. On the other hand, they
also show that for a class of generalized hashing algorithms there
is a R(logn) lower bound on the worst case time per operation.

All of the above dynamic data structure problems have a static
version, in which there are no updates to the data and the problem
is to find the representation of the given data in memory that
minimizes the time required to answer queries. If the only goal is

346

to minimize the cost per query then the solution is usually trivial:
precompute the answers to all of the queries, and store the answer
to each query in a memory location indexed by that query. Of
course, such a solution is usually undesirable for two reasons, it
requires a large amount of preprocessing and a large amount of
memory. This suggests that for a given static data structure
problem it is important to understand the tradeoffs between query
time, preprocessing time and space required to implement a
solution. Tradeoffs between preprocessing time and query time
for the dictionary problem were analyzed in worst case by
Borodin, et al. [3] and in average case by Mairson [lo], but their
results assume that the algorithms used are “comparison based”.
Time space trade-offs for the static predecessor problem were
obtained in the cell probe model by Ajtai [I].

For dynamic data structure problems, the problem of
minimizing time per operation often becomes nontrivial, even
without considering the cost of preprocessing or space. If we try
to minimize the costs of queries as in the static case by
maintaining the answer to each query in memory, each update
may change the answer to many queries and thus require many
memory locations to be rewritten. On the other hand, the cost of
updates can be minimized by simply recording each update in a
list without doing any processing. Answering a query is typically
very expensive, this entire history must be read. These two trivial
solutions suggest that the intrinsic difficulty of dynamic problems
may lie in the tradeoff between the number of memory locations
that must be rewritten to record updates and the number of
memory locations that must be read to perform queries. It is this
tradeoff that we investigate in this paper.

This tradeoff is not present for all dynamic problems. If, for
instance. each update affects the answers to a bounded number of
queries, then the data structure that stores the answers to each
query can be updated quickly. This is the case. for instance, with
the dynamic dictionary problem. Our lower bound techniques
appIy in situations where “typical” updates may effect the
answer to many queries.

The results of Dietzfelbinger et al. mentioned above leave
open the following important question: what is the worst
complexity of the dynamic dictionary problem on a RAM whose
space is bounded by, say, a polynomial in the size of the subset
S?

Our results point out an interesting contrast between the static
and dynamic cases of the predecessor and subset rank problems.
FOT both of these problems a subset S from a universe ZJ
((u 1 = n). is maintained. h the static case, various researchers
have considered the problem of implementing these problems
using space that is linear in the size of S . The best known upper
bound for the static predecessor problem was obtained by Willard
[17] who gave a linear space implementation requiring
0 (loglogn) time per query. Ajtai’s lower bound shows that this
is best possible for a CPROBE(logn) implementation, even if the
space used is polynomial in 1 S 1 . In fact, the same results hold
for the static version of the rank problem because the static
versions of these problems are computationally equivalent. For
example a data smcture for predecessor qucrics can be used to
compute Tank queries by precomputing the ranks of each element
in S and storing them in a linear space pcrfcct hash table [6]; to
compute the rank of an element it suffices to determine its
predecessor and look up the rank of its predecessor in the hash
table.

In the dynamic case (with no space bound), however, the rank
and predecessor problems have very different complexities. The
lower bound of theorem 1 shows that, even relative to alllOTtiZed

complexity, the dynamic subset rank problem requires

R(lognlloglogn) time per operation, yet the algorithm in [16]
solves the predecessor problem in time loglogn per operation.

We return now to the partial sum problem. This problem was
previously considered by Fredman [5] and Yao [19] in two
different algebraic models of computation. Fredman’s results
assume that the values stored in the array A belong to an abstract
commutative group S, and that a memory register can store a
single value from S. Complexity is measured only in terms of the
number of addition/subtraction operations performed, and no
charge is assessed for computing memory addresses etc. With the
imposition of an additional obliviousness constraint, algorithms
having complexity logs,,+ per operation exist, and this
complexity is optimal. Roughly speaking, the obliviousness
constraint requires that the registers accessed by each operation
depend only on the operation instance, and not on the prior history
of operations that have been performed. Yao establishes a lower
bound of Q(logn/loglogn) per operation (amortized worst case)
without the obliviousness assumption, but his result requires that
S be a commutative semigroup, and that the subtraction operation
not be available. Yao f19] raised the question of whether the
same lower bound holds in Fredman’s group model sans
obliviousness. In one sense, this model is weaker than the cell
probe model because of the restrictions in the way information
can be represented and manipulated. In another sense, the model
is more powerful since there is no charge for memory address
computations. The techniques developed in this paper can be
adapted to answer Yao’s question affirmatively.

One other intriguing observation can be made. The oblivious
logn upper bound for PS(n, 2), which can be implemented in
CPROBE(l), and our lower bound in Theorem 3, together, show
that the parallelism provided by logn bit registers does not
significantly reduce time complexity. However, in a machine
model which permits logn bit words that overlap (as opposed to
words which are comprised of disjoint sets of bits), the oblivious
algorithm can be implemented in constant time. This provides a
separation in power between a RAh4 with disjoint bytes and a
RAM with byte overlap (RAMBO 1121).

Next. we turn to the set union problem. Tarjan showed that
any algorithm belonging to a class of pointer machine algorithms,
which he referred to as separable algorithms [15], requires
Q(m c~(m ,II)) time [13]. Pointer machine algorithms encompass
all data structures that represent the relevant objects as nodes of a
directed graph (allowing at most one item or set name to be stored
in any given node) with edges serving as pointers. The
separability condition imposes the further requirement that no
edge may join two nodes associated with different sets, so that
distinct sets correspond to separate connected components of the
graph.

Because the class of separable algorithms do not utilize the
full power of random access memory, Tarjan’s lower bound
argument is not formally conclusive in the context of random
access machines. Indeed, Tarjan has stated [15] that the existence
of a linear time algorithm remains an open question. There are
further reasons to speculate about the existence of a linear time
algorithm, even within the confines of pointer machine algorithms
(without the separability constraint). F&t, Mehlhom, Naher and
Alt [ll] show that for a related data s&ucture problem (union-
split-find) there exists a pointer machine algorithm with an
0 (mloglogn) running time, and yet for which any separable
algorithm requires R(mlogn) time. Secondly, regarding the
lowest common ancestor problem for a static tree with n nodes,
Hare1 and Tarjan [8] show that pointer machines require
R(mloglogn) time to process m queries. But in addition, they
describe a random access machine algorithm that, together with
preprocessing, can accomplish the same in linear time. Thirdly,

347

and most tantalizing, Gabow and1 Tarjan [7]1 give a random access
machine algorithm which runs in linear time and solves all
instances of the set union problem for which knowledge of the
Union operations (but not of the occurrences of the Find
operations) is provided in advance. Interestingly, Tarjan’s lower
bound analysis for separable algorithms applies even to this
restricted type of set union problem. Thus, separable algorithms
can be superceded for a restricted set union problem, suggesting
the possibility that this may be the case for the general set union
problem as well. However, Theorem 5 &utes this possibility.
(All of the above mentioned random access machine algorithms
fall within the CPROBE(logn) mod.el.)

N. Blum [2] demonstrated that his lognlloglogn upper bound
on the worst case time per operation for the set union problem is
likewise optimal for the class of separable algorithms. While, as
Theorem 6 shows, Blurn’s result is optimal in the
CPROBE(polylogn) model, we do not know whether the logn
register size in Theorem 5 can be extended to polylogn.
However, the ciass of “hard” union-find sequences considered in
the proof of Theorem 5 can be executed in linear time with a
CPROB E(log2n) algorithm.

All of our lower bound results also hold for the class of
randomized algorithms of Dietzfelbinger etal. To summarize
briefly, for our purposes a randomized algorithm can be regarded
as a probability distribution defined on a set of deterministic cell
probe algorithms; an adversary only gets to know the distribution
and not the actual choice of algorithm in any instance. This
notion has been shown to be useful for the dynamic dictionary
problem, but we are claiming that it cannot be used to advantage
for the problems considered here. The lower bound proofs given
below require only small modification to establish this
strengthening.

3. Framework of Our Lower Bound Method

A central notion used in our lower bound proofs is the labeling
of memory registers with chronograms (time stamps). (This
labeling is a tool for analysis, and does not actually take place by
the class of algorithms under consideration.) During the
execution of a hypothetical sequence of operations, each time a
register r is modified by a write instTuction, we relabel r with the
chronogram d, where d is the number of update operations that
have been requested prior to the occurrence of this write
instruction. In particular, a register which gets changed during the
execution of the d” update operation will be relabeled with d at
that time. All registers have the chronogram 0 initially. We use
these chronograms to bound from below the expected number of
registers which must be read during the execution of a query
operation. This expectation is defined relative to a certain
distribution defined on the possible values of the input parameter
provided to the query.

More precisely, starting at the point just before a given query
operation and proceeding backwards in time, we partition the axis
of time into intervals of increasing lengths referred to as epochs.
Typically, a query will need to access from each epoch a certain
expected number of registers with chronograms falling in that
epoch. That this should be the case ge.ts argued as follows.
Focusing our attention on a particular epoch E, the update events
taking place following the beginning of this epoch will be too rich
to be suitably reflected by the effects of the (usually)
comparatively small number of write instructions that take place
during the subsequent epochs. Of course, the write instructions
takiig place during the prior epochs cannot reflect these events.
Thus, in order to properly respond to our query, a certain number
of registers with chronograms belonging to the E’” epoch require
access. Finally, the expected cost of a query must exceed the total

number of epochs multiplied by the expected required number of
register accesses from each epoch.

4. Some Proofs

We prove. first the following theorem which gives, in
essence, the lower bound portion of Theorem 3. This will
be followed by a proof of Theorem 5.

Theorem 3’. Any CPROBE(b) implementation of PS(n,
2) (partial sums mod 2) requires n(logn l(loglogn + logb))
amortized time per opera&on. More precisely, given an
algorithm A^ and m 2 2Jn , there exists a sequence of m
operations for which A^ requires total time
!2(m logn /(loglogn + logb)).

The proof uses the following lemmas.

Lemma 1. Let C be a sequence of m numbers o 1 ,. ..,‘a,,
andletA =CUi. Foreacht,atleasthalfofthem -t + 1
contiguous subsequences, aj, Uj+l ,..., Uj+t-1, of C satisfy

j+r-1

x Ui 52A tl(m -t + 1)
i=j

(Proof left to the reader)

Lemma 2. Let += (1+ $2 (41-l = $ - 1). The
numbers Xi = i $-’ modl, i 2 1, have the property that
[Xi-Xjl 2 l/(31 i -jl),i #j.

Proof. Xi -Xj = (i -i) 9-l mod 1 =Xi-j. Thus,
I Xi -Xi I 2 min(x;-j, 1 - Xi-j). The Lemma now follows
from the 3-distances theorem of Swierczkowski (see [9],
pp. 511 and Exercise 9, pp. 543).

Proof of Theorem 3’. Let A be an algorithm solving our
problem in the cell probe model with b bit words. To
prove the lower bound, we focus our attention on
sequences of the form

(1) utQ,u2Q2...u, Q,,, , m 22Jn,

where each Qi is a partial sum query with arbitrary input,
and Ui is an update of the form A [[i 4-9 mod n] t
(A[li e-9 modn]+xi)mod2, xi =Oor 1. (Note, if
Xi = 0, then the update has no effect on subsequent query
responses). Let W be the maximum number of write
instructions performed by A^ while executing any sequence
of the form (l), and let w = W/m. Similarly, let R denote
the maximum number of memory probes performed by A^
for queries during the execution of any sequence of the
form (l), and let r = R lm . Our goal is to establish the
inequality

(2) r = SZ(logn flog&v logn))

of which our Theorem is an immediate consequence.

We use probabilistic reasoning to establish (2), and
accordingly, we assume a uniform distribution on the
sequences of the form (1). As described in the above
framework discussion, for each query operation

348

Qj, j 2 &, we define a series of epochs proceeding
backwards from Qi, so that the i most recent epochs
contain Li = (cow)’ update operations, where a is a
parameter to be chosen later. The number q of epochs
within such a series is chosen so that the total number of
u date operations among the q epochs does not exceed
P n . Accordingly, we choose

(3) q = llog Gllog(a w)]

Now for a sequence cr of the form (l), let w (cr, j, i) denote
the number of write instructions executed duping the i - 1
most recent epochs preceding

F
. , j 2 dn . Applying

Lemma 1 (and using the fact the II < m /2), we conclude
that

(4) w(cr,j,i)l 4WLi-lI 4LilCC
for at least one half of the j’s, j 2 4, .

Now fix i I q and j 2 4;. Let S denote the set of
sequences Q of the form (1) such that

(5) w(o,j,i)<4Lila

For cr E S , let 6 denote the prefix of cr preceding the jr’
wry Qj. We may write 6 = z l.t, where p. denotes the
operations which comprise the i most recent epochs
preceding Qj. qondition (5) implies that the execution of
that portion of Q subsequent to the ifh epoch entails no
more than 4 L /ai write instructions. We now wish to fix 2,
allowing only lo to vary. Accordingly, we define S (i , z) to
be those l.t of length Li for which z lt E S. As discussed
in our framework description, we wish to show that the
write instructions taking place subsequent to epoch i are
typically not sufficiently numerous to suitably encode the
update events from the beginning of epoch i . Towards this
end, we define equivalence classes on the various tt of
S(i, z) to reflect the encoding induced by these write
instructions.

We say that a given memory register r is q-accessible
provided that there exists a memory state w and an input x
for which the execution of sum(x), from memory state w,
encounters register r among its first q probes. Let y denote
the number of q-accessible registers. Then

(6) yin 2qb

This follows from the fact that the possible probe
sequences for each of the sum(k) operations, 1 I k In,
can be modeled in terms of a 2’-ary tree; each internal
node is labeled with the address of the associated register
being probed, and its 2’ children correspond to the possible
values of the contents of that register.

At the moment immediately preceding the execution of
Qj each register has a chronogram as described in our
framework discussion. A register whose chronogram lies
in epoch i is referred to as an epoch i register. With i
fixed as above, we refer to the registers with chronograms
subsequent to epoch i as recent registers. It is important to

realize that the set of recent registers may vary with ~1. We
say that ltl, ltL2 ES (i, 2) are equivalent provided that for
& = 7 ccl and & = z pz the respective sets of recent q-
accessible registers and their contents are identical. Using
(5) and (6), the number Ei,c of these equivalence classes is
bounded by

(7) Ei = c (?I pi 5 p+ Ov+qbYa
jSKifa J

Now we consider the execution of Qj = sum(x) following
the operations z lt. with l.t E S(i, I$. Without loss of
generality, we may assume that whenever a query is
executed, a sequence of register probes is performed to
determine the appropriate answer, followed by a sequence
of register writes to record new information. Now roughly
speaking, if no register from epoch i is probed during this
execution, then the outcome depends primarily on the
equivalence class to which lt belongs. More precisely,
consider a modified computation in which each register
probed with an epoch i chronogram reports its contents to
be the value that was stored at the conclusion of the
previous epoch (namely, the value present upon completion
of the operations in 7). If this computation proceeds for at
most q probes, then we define J(z&x) to be the resulting
output. Otherwise, we define J(~,p.,x) = 00. We observe
that if sum(x) # J(z,l,t,x) then either the computation for
sum(x) involves more than q probes, or a register with an
epoch i chronogram gets probed.

Now let J(z,p) denote the R dimensional vector of
J(z,p,x) values. We claim that if ltl and lr.2 belong to the
same equivalence class, then J(z,pI) = J (z,p2) since the
respective computations proceed identically for the first q
probes. Accordingly, with each equivalence class
Cj, llj5&;,Z, of S (i ,T) we associate an n dimensional
vector Vj = J (7,~) for l.t E Cj .

Given l.t E Cj let F (z,@ denote the vector of correct
query responses (sum(l) 7.q-9 sum(n)). The Hamming
distance S(T,~) between Vj and F (2,l.t.) represents the
contribution of epoch i to the average complexity of
sum(x) following 6 = 7l.t. More precisely, consider the
computation of sum(x) following o. We claim that the
number of probes performed is at least the number of
epochs i for which the conditions
(**) d = 0l.t with l.t E S (i ,z) and J (~,l.t,x) # sum(x)
are satisfied. First, if the computation for sum(x) proceeds
for more than q probes, then the claim is immediate since
there are only q epochs. So ‘we may assume that for each
epoch i satisfying (**), there is a register with an epoch i
chronogram that gets probed by the sum(x) computation,
thereby implying our claim. We conclude that the expected
complexity Ej of Qj satisfies (Zj denotes the number of
distinct prefixes of sequences of the form (l), preceding
Qj>

349

We now proceed to bound C 6(~, r-l). Intuitively,
ILSS(i,T)

for each equivalence class Cj, we show that there cannot
be very many query response vectors F’ (2,l.t) that are close
t0 Vj. By Lemma 2, the j at which updates
A Gl t A u] +x take place during the i most recent
epochs are separated by gaps d at least n l(3L;).

Lemma 3. The query response vectors F (7, p) with t.t
chosen in all possible ways consistent with (l), form an
affine space spanned by Li mutually orthogonal
(orthogonal in the sense of I\’ “1) 0, 1 basis vectors, where
each basis vector (except Imssibly one) has Hamming
weight at least n/(3 Li). The number of such vectors
within distance n/30 of any fixed vector V does not exceed
2$2.95L). (Proof left to the reader.)

Now let Ti denote the set of all possible choices for l.t
consistent with (l), and let 8i = 1 Ti 1 . Applying Lemma 3,
the number of l.t satisfying 6(z, p) I n /30 is bounded by
2 Ei Bj 2-.05L (ei bounds the number of Vi)- Accordingly,
we obtain

Since x 9i = zj , we conclude (upon combining (8) and

(9)) ‘c

(10) Ej 2 f C ~1 S (i ,2)] /Zj - 2 Ei 2-.0sL’
rSg z 1 1

Now let pi”’ = prob(w (o, j,
have that

i) I4 Lila). From (4) we

(11)

NOW (10) becomes Ej 2 $ ‘& (pi”’ - 2 Ei 2y05L).
1%

Summing over j and applying (7) and (1 I), we obtain

-- l\ cm + 1 _ dn) c ptG3Rw f +)/a- .05)

i%

Referring to the right hand side of (12), we can choose c(so
that the second term is less than haIf the first term. In
particular, if we choose c1= 4OO.b .logn we obtain

.

This completes our proof.

We briefly indicate how the above argument is
modified to obtain Theorem 4. This is accomplished by
showing that a typical query requires access to (almost)
logarithmically many bits from each epoch (as opposed to
just a constant number). Observing that the space of query
responses is nary, we show that even when the operation
sequences are subdivided into equivalence classes on the
basis of recent write instructions, the entropy of the query
responses remains, on average, Q(logn). The number of
bit probes (from the appropriate epoch) is then related to
this entropy. To both estimate query response entropy and
relate the number of bit probes to the entropy of a query
response, we use the well known fact that the entropy of a
joint distribution is bounded by the sum of the individual
entropies.

Proof of Theorem 5. We consider the case of n Find’s
and n-l Union’s, beginning with n singleton sets. (See
the remark following the Proof for a discussion of the
general case with m 2 n Find operations.) We concentrate
our attention on Union-Find sequences that build up the
sets evenly; n/2k sets of size 2k are paired to form
n /2k+’ sets of size 2k+1 during what is referred to as union
round k, k 20. We use the notation x&j), 1 Ij ln/2k,
to name the sets that exist at the beginning of union round
k.Thesetx(k+lj)isaunionofsetsx(k,p)andx(k,p’),
where the p.p’ choices constitute arbitrary pairings
performed during round k . The Union-Find s

7
Il_ences we

consider do not create sets of size larger than n , so that
no more than 1/2.1ogzn union rounds take place.
Moreover, all Find operations take place between rounds or
after the last round. Our proof uses an adversary which,
given a proposed algorithm A, constructs a sequence over
the letters U and F consisting of at most 1/2.10g2n U’s and
at most n F’s. Let S denote the sequence obtained. In
terms of S we define the family R(S) of all Union-Find
operation sequences obtained by substituting for each U in
S an arbitrary round of unions (the kth U corresponds to
union round k-l), and substituting for each F in S an
arbitrary Find operation. For the sake of definiteness,
assume that the Union operations taking place in round
k-l create sets in the order, x(k ,l), x(k ,2), etc. It will be
the case that, when averaging over the sequences in R(S),
the expected execution cost required by algorithm A to
perform a sequence in R(S) will be large.

Our adversary uses a parameter 4 2 2, which will be
appropriately chosen later (and will be proportional to the
average cost of a Union or Find operation in the
constructed sequences). The sequence S is constructed by
the adversary one letter at a time, the first letter being a U.
Let S’ denote the prefix of S constructed so far by our
adversary. According to the rule given below, the
adversary maintains a partition of S’ into at most 4
contiguous subsequences referred to as epochs. The first
letter of each epoch is always a U. For the initial case

350

when S’ = U, there is one epoch consisting of U. In executing these sequences, where g,(n) is an unbounded
general, if S’ has q epochs, then the next letter added by function of n .
the adversary to S’ is an F. On the other hand, if S’ has
fewer than q epochs, then the next letter is chosen to be a
U. Now if the next letter chosen happens to be an F, then
this letter is tentatively absorbed into the rightmost epoch.
If the next letter chosen is a U, then it tentatively
constitutes a new epoch consisting of one letter. We now
describe a rule by which the adversary adjusts the tentative
subdivision into epochs existing at this point.

Given S’, let R(S) denote the family of all union-find
operation sequences obtained from S’ by performing
substitutions as described above in the definition of R(S).
The tentative subdivision of S’ into epochs induces, in the
obvious manner, a subdivision of the operation sequences
in R(S) into epochs. Now suppose that a given epoch e
(other than the rightmost) begins with the k th U,
corresponding to union round k-l. We say that this epoch
e is compressed provided that, upon averaging over all
sequences in R(S’), the average number of register writes
performed by algorithm A strictly after the completion of
epoch e is at least n /(lOO.q *2’-‘). Observe that more than
one epoch may become compressed. The tentative epoch
subdivision is then adjusted by extending the right
boundary of the leftmost compressed epoch to the end of
S’, absorbing into this epoch all of the epochs to its right.
Note that this adjustment leaves no compressed epochs. If
there are no compressed epochs in the tentative
subdivision, then no adjustment takes place. The process
of extending S’ then begins anew. This continues until S’
can no longer be extended according to our rules without
violating the limitations on the numbers of U’s and F’s
permitted (l/2-log2n and n respectively), yielding S.

Observe that during the construction of S, if the
leftmost epoch (for which k-l = 0) gets compressed m
times, then A performs on average at least mn/(lOOq)
register writes when executing the sequences in R(S). This
follows from the fact that each sequence within R(S)
uniformly appears as a prefix among the sequences in R(S),
so that the average number of register writes taking place
during a particular interval of operations, when averaging
over the sequences in R(S’), is the same as when averaging
over the sequences in R(S). Thus, we may sum the cost
n/(lOOq) associated with each of the m compressions.
The assertion (*) is therefore a consequence of the
following Lemma.

Lemma 5. There exists a function hq(m) such that if our
adversary generates at least h,(m) U’s, then before the
next U is generated, the leftmost epoch will have been
compressed in total at least m times. (Proof given below.)

Combining Lemmas 4 and 5, we conclude that if
h, (q2) I 1/2.10g2n then A performs either an average of
Q(qn) register probes or an average of SI(qn) register
writes when executing the sequences in R(S). Our lower
bound for the set union problem becomes G(zn) where
z =max(qI h,(q2)I 1/210g2n).

Our use of the term “compressed” is deliberately
chosen to evoke consideration of the use of path
compression within Union-Find algorithms. Intuitively,
until an epoch is compressed, a Find operation typically
needs to follow a membership chain which touches upon
sets created during that epoch. If sufficiently many register
writes have taken place subsequent to that epoch, then they
may encode sufficiently many membership links that
transcend the sets created during that epoch, so that we
may consider the epoch to be compressed.

Lemma 4. Assume that n 2 lo5 . For each F in the
sequence S, algorithm A performs, upon averaging over
the sequences in R(S), at least q/10 probes for the
corresponding Find operation in these sequences. (Proof
given below.)

Thus, if our adversary constructs a sequence S having
n F’s, then upon averaging over R(S) we conclude that the
expected time required by A to execute these sequences is
Q(qn). Now suppose that, instead, the sequence S
constructed has l/2-log2n U’s. Then we argue that
(*) A performs on average ng,(n) register writes when

Comment: The above Lemmas show, in fact, that the
following simpler adversary would suffice to prove our
lower bound. Pick q as above. If the average complexity
of the next operation, if chosen to be a Find, exceeds q/10,
then perform a Find: otherwise, perform another round of
Unions.

Proofs of the Lemmas.

First we prove Lemma 5, followed by the proof of
Lemma 4.

Proof of Lemma 5: Let h,(m) be given by

1

1, if m = 0,

h,(m) = m+l, if r = 2,

h,(m-1) + hr-l(2h’(m-1)), if r > 2 and m > 0.

Let r satisfy 2 < r I q . Assume at a given moment that
epoch q+l-r (from the left) contains exactly one U and
only q+l-r epochs are currently present. We show that
before the adversary generates h,(m) more U’s, either a
compression of one of the first q-r epochs will take place
or at least m subsequent compressions of epoch q+l-r
will take place. Our Lemma then follows by choosing
r = q, We proceed by induction on m and r. When
m = 0, the assertion is immediate. Now assume that the
assertion holds when r = 2 and m = k. Unless a
compression of one of the q -2 leftmost epochs has already
occurred, when the (k+l)st subsequent U is generated, it

351

will tentatively constitute epoch q. 13efore the next
((k+2)nd) U is generated, either epoch q--l or an epoch to
its left will be compressed one more time. This justifies
our assertion when r = 2 and m = k+l.

Now assume that the assertion holds whenever r < r’ ,
and when r = r’ and m = k, where r’ > 2. This assertion
implies that unless a compression of one of the leftmost
q -r’ epochs has already occurred, when the pth
subsequent U is generated (for some p I h,*(k)), it will
tentatively constitute epoch 9+2:-r’= q+l-(r’-l), and
epoch q+l-r’ will have been compressed k times and will
contain p Us. Applying the case r = r ‘-1 and m = 2J’
of our assertion, we conclude that before another h+i(2J’)
U’s are generated, either (a) epoch q +1-(r ‘-1) will have
been compressed another 2p times, or (b) an epoch to the
left of epoch q+l-(r’-1) will have been compressed.
Considering case (b) first, if this compressed epoch is also
to the left of epoch q+l-r’, then we conclude that before a
total of p + h,*-1(2P) I h&) + h,*-1(2h’9 = h&+1)
subsequent U’s have been genewtcd, an epoch to the left of
epoch q+l-r ’ will have been compressed. Otherwise, we
conclude that before a total of h&+1) subsequent U’s
have been generated, epoch q+l-r’ will have been
compressed for the (k+l)st time. Now consider case (a).
Summing the compression condition for epoch q+l-(r’-1)
existing prior to each of its 2p compressions, we find that
the average number of register writes taking place, after
epoch q+l-(r’-1) was established (when the p th U .was
generated), is sufficient to satisfy the condition for another
((k+l)st) compression of epoch q+l-r ’ (since epoch
q+l-r ’ contains p U’s). In other words, case (a) reduces
to case (b). This justifies our assertion when r = r’ and
m = k+l. By double induction our assertion follows
generally, completing the proof.

Proof of Lemma 4: This is very similar to the proof of
Theorem 3’. Again, we assign to each register a
chronog-ram which get updated whenever a write
instruction changes the contents of that register. In this
instance a chronogram designates the corresponding
position in S of the Union or Find operation in progress
when the write instruction takes place. We demostrate
below that, upon averaging over all sequences in R(S’) and
all n input choices for a Find operation, the average cost
required by A to execute a Find operation, after having
executed the operations corresponding to S’, exceeds q /lO
probes. From the structure of R(S), the corresponding
average cost of this Find operation among the sequences in
R(S) must also exceed q/10.

Because S’ precedes an F in S, the adversary has S’
partitioned into q epochs. As in the proof of Theorem 3’
we argue that each epoch contributes at least l/10 to the
expected cost of a Find operation at this point. Given one
of these epochs, say epoch e, because epoch e is not
compressed, the number of register writes taking place

subsequent to epoch e is, on averaging over R(S), less
than n /(lOO.q ~2’~‘) where 2’-’ is the size of the sets
existing as epoch e commences. Thus, for at least one half
of the sequences in R(S’), the actual number of register
writes taking place subsequent to epoch e is less than
n/(ZiO.q 02’~~). Let 8, denote the set of these sequences, so
that

(13) Ieel 2 +(s?l.

For o E 0, we may write CT = rp, where p. denotes the
operations proceeding from the beginning of epoch e.
Now fix 2, allowing only l.t to vary, and let S(e ,2) denote
the set of lt such that zl.t E 6,. We now proceed to
subdivide S (e ,z) into equivalence classes, reflecting the
information encoded by the write instructions taking place
subsequent to epoch e .

We say that ~1, ~2 E S (e ,z) are equivalent provided
that for crl = zpl and o2 = zpz, the respective sets of q-
accessible memory registers with chronograms subsequent
to epoch e , and their respective contents, are identical. We
have that 7, the number q-accessible registers, is bounded
by

(14) y 5 nq+‘.

From the definition of 8, and using (14), we conclude that
the number E, ,% of these equivalence classes is bounded by

(1%

E, = jti,cgqym,, (:I .i 5 nk+2)~Wq2a~‘) s n~K25~2t~‘)

Now reasoning as in the proof of Theorem 3’, and using
analogous notation, we conclude that the expected
complexity E of our Find operation satisfies

substitute the following Lemma for Lemma 3.

Lemma 6. The query response vectors F (7,~) with l.t
chosen in all possible ways consistent with the suffix of S’
beginning with the eth epoch, correspond to arbitrary
groupings of the sets of size 2L-’ existing at the conclusion
of 2 into sets of the size existing at the conclusion of S’. As
lt varies, these groupings occur with uniform frequency.
The fraction of these groupings for which F (2,~) is within
distance n/4 of any fixed assignment vector Vj does not
exce& 8” (e $4)‘2 where n (e) = n /2’-’ denotes the
number of sets existing as epoch e commences, and
n^(2 4s denotes the number of sets existing at the
conclusion of S’.

Proof: Because of the convention we have chosen
above for naming sets, the descriptions of the union

operations taking place in the various rounds can chosen
independently of one another. Thus, we can meaningfully
discuss the the effect of varying the union operations in a
given round while fixing the union operations taking place
in other rounds, which we now proceed to do.

Upon fixing the unions taking place in the rounds
subsequent to round k-l, if any, we find that the unions of
round k-l, done in all possible ways, induce an
equidistribution of the possible groupings. The uniform
frequency statement of Lemma 3 is an immediate
consequence. The number of distinct groupings under
consideration is given by

(17)
I

n(e)

I

$44

n(e)/i,. . . ,n(e)li
2- 4”(L)

NOW given Vi let Vj be an n (e) dimensional vector
obtained by assigning to each of the n (e) sets existing
when epoch e commences, a value obtained with greatest
frequency by the set’s members under the assignment Vi.
Observe that if the Hamming distance between any
assignment a of the n (e) sets and fj is 8, then the
corresponding distance 6 between Vj and and the n
dimensional vector of set memberships induced by a
satisfies

(18) 6 2 &/(2n(e))

Now the number of assignments a of the n(e) sets within
distance n (e)/2 of r?i does not exceed

Combining (17), (18), and (19), the fraction of the
groupings of the n(e) sets for which F (z,cl> is within
distance n /4 of Vi does not exceed

completing the proof of Lemma 6.

Now let Z, denote the number of choices for p
corresponding to the appropriate suffix of S’. Applying
Lemma 6, the number of

Y
satisfying 8(2,p) I n/4 is

bounded by &,Z, 8”‘“‘~-“(’ ‘*. (Recall E, bounds the
number of equivalence classes.)_ Accordingly, we obtain
from (15) and the fact that n^ 2 Jn

(20)

x 6(z,p) 2 a 1 S(e ,T)l - Zenn(e)(‘-a)8”(e’
pE s cc .e 1

Since C Ze = t W?I and

XIs(e,@l = l%I’ 2 I R(S’)I /2, we obtain (upon

c:mbining (16) and (20))

E2

2

1
4R(S’) c

c

n(e)(&-$’
8 n(c)

1 1
“(“(~-33”‘“) > x -

10

for n 2 10’. This completes the proof of Lemma4.

Remark 1: The above argument is easily modified to
show that for m 2 n, the set union problem requires time
n(2.m) where z = max[q 1 hp[4%lnl) I 1/2log2n) to
execute m Find’s and n-l Unions. This is accomplished
by limiting the number of F’s permitted in S to m instead
of n , and by noting that rq2m lnf compressions of the
leftmost epoch account for an average of Q(4 -m) register
writes. A routine argument shows that z = SZ(a(m ,n)),
where a(m ,n) is the inverse to Ackermann’s function
defined by Tarjan [141.

References

[II

PI

[31

[41

[51

161

171

WI

[91

1101

M. Ajtai, A lower bound for finding predecessors in
Yao’s cell probe model, Combinatorics, to appear.

N. Blum, On the single operation worst-case time
complexity of the disjoint set union problem, SIAM
J. on Computing, 15(1986), 1021-1024.

A. Borodin, L. Guibas, N. Lynch, and A. Yao,
Efficient searching using partial ordering, Inf. Proc.
Letters 12 (1981), 71-75.

M. Dietzfelbinger, A. Karlin, K. Mehlhom, F.
Meyer auf der Heide, H. Rohnhert and R. Tarjan,
Dynamic perfect hashing: upper and lower bounds,
Proc. 29th IEEE, Symp. on Foundations of
Computer Science (1988).

M.L. Fredrnan, The complexity of maintaining an
array and computing its partial sums, JACM 29
(1982) 250-260.

M. Fredman, 3. Komlos, and E. Szemeredi, Storing
a sparse table with O(1) worst case access time, J.
ACM, 31,3(1984), 538-544.

H.N. Gabow and R.E. Tarjan, A linear-time
algorithm for a special case of disjoint set union. J.
Comput. Sys. Sci. 30(1985), 209-221.

D. Hare1 and R.E. Tarjan, Fast algorithms for
finding nearest common ancestors. SIAM J.
Comput. 13(1984), 338-355.

D. E. Knuth, Sorting and Searching, Addison
Wesley (1973).

H. Mairson, Average case lower bounds on the
construction and searching of partial orders, Proc.
26th IEEE Symp, on Foundations of Computer
Science (1988), 303-311.

353

Ml3

WI

r131

(141

u51

H61

u71

U81

u91

K. Mehlhom, S. Naher and H. Alt, A lower bound
on the complexity of .the union,-split-find problem.
SIAM J. Comput. 17,6(1988), 1093-1102.

S. Stallone, First blood, United Artists (1982).

R.E. Tarjan, A class of algorithms which requre
nonlinear time to maintain disjoint sets. J. Comput.
Sys. Sci. 18(1979), 110-127.

R.E. Tarjan, Efficiency of a good but not linear set
union algorithm. J. ACM 22,2(X975), 215-225.

R.E. Tarjan and J. Van Leeuwen, Worst-case
analysis of set union algorithms. J. ACM,
31,2(1984), 245-281.

P. Van Emde Boas, R. Kaas and E. Zijlstra, Design
and implementation of an efficient priority queue,
Math. Systems Theory 10 (1977), 99-127.

D.E. Willard, Logarithmic worst case range queries
are possible in space O(n), Inf. Proc. Letters 17
(1983), 81-89.

A. C. Yao, Should tables be sorted?, JACM 28
(1981), 615-628.

A. C. Yao, On the complexity of maintaining partial
sums, SIAM J. on Computing 14 (1985), 277-289.

354

