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Abstract. We introduce the notion of a convex measure of risk, an extension of the
concept of a coherent risk measure defined in Artzner et al. (1999), and we prove
a corresponding extension of the representation theorem in terms of probability
measures on the underlying space of scenarios. As a case study, we consider convex
measures of risk defined in terms of a robust notion of bounded shortfall risk. In
the context of a financial market model, it turns out that the representation theorem
is closely related to the superhedging duality under convex constraints.
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1 Introduction

There is a considerable interest, both froma theoretical and apractical point of view,
in a quantitative assessment of the risk involved in a financial position. If such a
position is described by the resulting discounted net worth at the end of a given
period, defined as a real-valued functionX on some setΩ of possible scenarios,
then a quantitativemeasure of riskis given by a mappingρ from a certain space
X of functions onΩ to the real line. Clearly, such a mapρ should satisfy certain
conditions of consistency.
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Recently, Artzner et al. [1] have introduced the concept of acoherent measure
of risk. It is defined by the following properties of the mappingρ : X → R:

Subadditivity:ρ(X + Y ) ≤ ρ(X) + ρ(Y ). (1)

Positive Homogeneity: Ifλ ≥ 0, thenρ(λX) = λρ(X). (2)

Monotonicity: IfX ≤ Y , thenρ(X) ≥ ρ(Y ). (3)

Translation Invariance: Ifm ∈ R, thenρ
(
Y + m

)
= ρ(Y ) −m. (4)

Typically, a coherent measure of riskρ arises from some familyQ of probability
measures onΩ by computing the expected loss underQ ∈ Q and then taking the
worst result asQ varies overQ:

ρ(X) = sup
Q∈Q

EQ[−X ] ; (5)

for the case whereΩ is a finite set see Artzner et al. [1] and, in a different context,
Huber [11].

In many situations, however, the risk of a position might increase in a nonlinear
way with the size of the position. For example, an additional liquidity risk may arise
if a position is multiplied by a large factor. This suggests to relax the conditions
of positive homogeneity and of subadditivity and to require, instead of (1) and (2),
the weaker property of

Convexity:ρ
(
λX + (1 − λ)Y

) ≤ λρ(X) + (1 − λ)ρ(Y ) for anyλ ∈ [0, 1].
(6)

Convexity means that diversification does not increase the risk, i.e., the risk of a
diversified positionλX + (1 − λ)Y is less or equal to the weighted average of
the individual risks. LetX be a convex set of functions on the setΩ of possible
scenarios. We assume that0 ∈ X and thatX is closed under the addition of
constants.

Definition 1 Amapρ : X → Rwill be called a convexmeasure of risk if it satisfies
the condition of convexity (6), monotonicty (3), and translation invariance (4).

If the convex measure of riskρ is normalized in the sense thatρ(0) = 0, then
the quantityρ(X) can be interpreted as a “margin requirement”, i.e., the minimal
amount of capital which, if added to the position at the beginning of the given period
and invested into a risk-free asset, makes the discounted positionX “acceptable”.

In Sect. 2 we prove a representation theorem for convex measures of risk. In
the case in whichX is the space of all real-valued functions on a finite setΩ, any
convex measure of risk is of the form

ρ(X) = sup
Q∈P

(
EQ[−X ] − α(Q)

)
,

whereP is the set of all probability measures onΩ, andα(·) is a certain “penalty
function” onP. Independently, this result was stated by D. Heath in [9]; see also
[10]. InTheorem6,weproveanappropriate extensionof the representation theorem
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where the finite setΩ is replaced by a general probability space(Ω,F , P ), andX
is the spaceL∞(Ω,F , P ) of bounded random variables.

An alternative representation in terms of probability measures, which does not
use a given reference measureP , is discussed in [15].

A convex measure of risk can be characterized in terms of properties of the
associatedacceptance set

Aρ =
{
X ∈ X

∣∣∣ ρ(X) ≤ 0
}
.

Conversely, a given setA of “acceptable positions” defines a convex measure of
risk via

ρA(X) := inf
{
m ∈ R

∣∣∣m + X ∈ A
}

provided thatA satisfies itself certain axioms. Our two main case studies of convex
risk measures will be defined in terms of such acceptance sets.

In Sect. 3, we consider the situation where the acceptance set is defined in
terms of a (robust) notion of bounded shortfall risk, i.e., a position is acceptable if
its shortfall risk is bounded by some given level. In this case, the associated penalty
function can be described by a functional of the type of a dual Orlicz norm.

In Sect. 4, we consider a discrete-time financial market model with convex
trading constraints. As a first step, we define a setA of acceptable positions as the
class of functionsX ∈ X such thatX +V ≥ 0 whereV is the final portfolio value
which can be generated by an admissible trading strategy. Theorem 16 clarifies the
structure of the corresponding risk measureρA. In this case, the weight function
α(Q) can be described explicitly in terms of the increasing process which appears
in the construction of the optional decomposition under convex trading constraints
in Föllmer and Kramkov [5].

2 Convex measures of risks

2.1 Acceptance sets

Let X be a linear space of functions on a given setΩ of possible scenarios. We
assume thatX contains all constant functions. Any risk measureρ : X → R

induces anacceptance setAρ defined as

Aρ :=
{
X ∈ X

∣∣∣ ρ(X) ≤ 0
}
. (7)

Conversely, for a given classA of acceptable positions, we can introduce an asso-
ciated risk measureρA by defining

ρA(X) := inf
{
m ∈ R

∣∣∣m + X ∈ A
}
. (8)

The following two propositions summarize the relations between a convex measure
of risk and its acceptance setAρ. They are similar to the ones found for coherent
measures of risk; cf. [1], [4], [12].
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Proposition 2 Supposeρ : X → R is a convex measure of risk with associated
acceptance setAρ. Then

ρAρ = ρ.

Moreover,A := Aρ enjoys the following properties.

1. A is convex and non-empty.
2. IfX ∈ A andY ∈ X satisfiesY ≥ X, thenY ∈ A.
3. IfX ∈ A andY ∈ X , then{

λ ∈ [0, 1]
∣∣λX + (1 − λ)Y ∈ A}

is closed in[0, 1].

Proof To show thatρAρ(X) = ρ(X) for all X, note that the translation invariance
of ρ implies that

ρAρ(X) = inf
{
m

∣∣m + X ∈ Aρ

}
= inf

{
m

∣∣ ρ(m + X) ≤ 0
}

= inf
{
m

∣∣ ρ(X) ≤ m
}

= ρ(X) .

The first two properties ofA = Aρ are straightforward. As for the third one,
note that the functionλ 
→ ρ

(
λX + (1 − λ)Y

)
is continuous, as it is convex and

takes only finite values.Hence, the set ofλ ∈ [0, 1] such thatρ
(
λX+(1−λ)Y

) ≤ 0
is closed. ��

Example 3 (Value at Risk)Value at Risk at levelγ > 0,

VaRγ(X) := inf
{
m

∣∣∣P [
X + m < 0

] ≤ γ
}
,

is not a convex measure of risk. This is shown by the example in [1], p. 218, since
the acceptance set is not convex.

Proposition 4 Assume thatA �= ∅ is a convex subset ofX which satisfies property
2 of Proposition 2, and denote byρA the functional associated toA via (8). If
ρA(0) > −∞, then

1. ρA is a convex measure of risk.
2. A is a subset ofAρA . Moreover, ifA satisfies property 3 of Proposition 2, then

A = AρA .

Proof 1. It is straightforward to verify thatρA satisfies translation invariance and
monotonicity. We show next thatρA takes only finite values. To this end, fix some
elementY of the non-empty setA. ForX ∈ X given, there exists a finite number
mwithm+X > Y , becauseX andY are both bounded. Monotonicity, translation
invariance, and the fact thatρA(Y ) ≤ 0 giveρA(X) ≤ m. To show thatρA(X) >
−∞, we takem′ such thatX+m′ ≤ 0 and conclude thatρA(X) ≥ ρA(0)+m′ >
−∞.
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As to theproperty of convexity, suppose thatX1, X2 ∈ X and thatm1, m2 ∈ R

are such thatmi + Xi ∈ A. If λ ∈ [0, 1], then the convexity ofA implies that
λ(m1 +X1) + (1− λ)(m2 +X2) ∈ A. Thus, by the translation invariance ofρA,

0 ≥ ρA
(
λ(m1 + X1) + (1 − λ)(m2 + X2)

)
= ρA

(
λX1 + (1 − λ)X2

) − (
λm1 + (1 − λ)m2

)
,

and the convexity ofρA follows.
2. The inclusionA ⊆ AρA is obvious. Now assume thatA satisfies the third

property of Proposition 2. We have to show thatX /∈ A implies thatρA(X) > 0. To
this end, takem > ρA(0). By property 3 of Proposition 2, there exists anε ∈ (0, 1)
such thatεm + (1 − ε)X /∈ A. Thus,

εm ≤ ρA
(
(1 − ε)X

)
= ρA

(
ε · 0 + (1 − ε)X

)
≤ ερA(0) + (1 − ε)ρA(X) .

Hence

ρA(X) ≥ ε
(
m− ρA(0)

)
1 − ε

> 0 ,

and property 2 follows. ��

2.2 The representation theorem for convex measures of risk

Now we prove the structure theorem for convex measure of risks. Let us first
consider the special case in whichX is the space of all real-valued functions on
some finite setΩ.

Theorem 5 SupposeX is the space of all real-valued functions on a finite setΩ.
Thenρ : X → R is a convex measure of risk if and only if there exists a “penalty
function” α : P → (−∞,∞] such that

ρ(Z) = sup
Q∈P

(
EQ

[−Z ] − α(Q)
)
. (10)

The functionα satisfiesα(Q) ≥ −ρ(0) for anyQ ∈ P, and it can be taken to be
convex and lower semicontinous onP.

Note that this theorem includes the structure theorem for coherent measures of
risk as a special case. Indeed, it is easy to see thatρ will possess the property of
positive homogeneity, i.e.,ρ will be a coherent measure of risk, if and only if the
particular penalty functionα(·) constructed in the proof takes only the values 0 and
+∞. In this case, our theorem implies the representation (5) in terms of the set

Q =
{
Q ∈ P

∣∣∣α(Q) = 0
}
.
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Proof of Theorem5The “if”-part is straightforward: For eachQ ∈ P the functional

X 
→ EQ

[−X ] − α(Q)

is convex, monotone, and translation invariant. These three properties are preserved
under taking suprema.

For the proof of the converse implication, we need the following auxiliary
observation. ForQ ∈ P, defineα(Q) by

α(Q) := sup
X∈X

(
EQ

[−X ] − ρ(X)
)
. (11)

Then we claim that
α(Q) = sup

X∈Aρ

EQ

[−X ]
. (12)

For the moment denote the righthand side byα̂(Q). By definition ofAρ we find
α(Q) ≥ α̂(Q). To establish the converse inequality, take an arbitraryX ∈ X and
recall thatX ′ := ρ(X) + X ∈ Aρ. Thus

α̂(Q) ≥ EQ

[−X ′ ] = EQ

[−X ] − ρ(X) .

This showsα(Q) = α̂(Q). Note that we did not yet use the assumption thatΩ is
finite.

Now fix someY ∈ X and takeα(·) as in (11). Then we clearly have

ρ(Y ) ≥ sup
Q∈P

(
EQ

[−Y ] − α(Q)
)
.

To establish the reverse inequality, takem ∈ R such that

m > sup
Q∈P

(
EQ

[−Y ] − α(Q)
)
. (13)

We must show thatm ≥ ρ(Y ) or, equivalently,m + Y ∈ Aρ. Suppose that, on
the contrary,m + Y /∈ Aρ. Sinceρ is by definition a convex function on the
Euclidean spaceRΩ taking only finite values,ρ is already continuous; cf. [14,
Corollary 10.1.1]. HenceAρ = {ρ ≤ 0} is a closed convex set. Therefore, we can
find a linear functional� onR

Ω such that

β := sup
X∈Aρ

�(X) < �
(
m + Y

)
=: γ < ∞ . (14)

It follows that� is a negative linear functional. Indeed, note first that the axioms of
normalization and monotonicity imply

ρ(X) ≤ ρ(0) for X ≥ 0 . (15)

Thus, ifX ∈ X satisfiesX ≥ 0, thenλX + ρ(0) ∈ Aρ for all λ ≥ 1, and hence

γ > �
(
λX + ρ(0)

)
= λ�(X) + ρ(0) .
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Takingλ ↑ ∞ yields that�(X) ≤ 0. If we assume that� applied to the constant
function1 gives−1, what we can do without loss of generality, then

Q[A ] := �
( − I

A

)
defines a probability measureQ ∈ P. By (12) and (14) we find

α(Q) = sup
X∈Aρ

EQ

[−X ]
= β .

But

EQ

[−Y ] −m = �(m + Y ) = γ > β = α(Q) ,

which is a contradiction to our choice ofm. Therefore, we must havem+Y ∈ Aρ

and, thus,m ≥ ρ(Y ). ��
In the previous proof, the assumption thatΩ is finite was only used in order

to obtain the closedness of the acceptance setAρ. In the case whereX is given
as the spaceL∞(Ω,F , P ) of bounded functions on a general probability space
(Ω,F , P ), we will have toassumethe closedness ofAρ in a suitable topology, but
then the previous argument goes through. Thus we obtain the following extension
of Delbaen’s representation theorem for coherent measures of risk on a general
probability space; see [4, Theorem 3.2].

Theorem 6 SupposeX = L∞(Ω,F , P ), P is the set of probability measures
Q � P , andρ : X → R is a convex measure of risk. Then the following properties
are equivalent.

1. There is a “penalty function”α : P → (−∞,∞] such that

ρ(X) = sup
Q�P

(
EQ[−X ] − α(Q)

)
for all X ∈ X . (16)

2. The acceptance setAρ associated withρ is weak∗-, i.e.,σ(L∞(P ), L1(P ))-
closed.

3. ρ possesses the Fatou property: If the sequence(Xn)n∈N ⊂ X is uniformly
bounded, andXn converges to someX ∈ X in probability, thenρ(X) ≤
lim infn ρ(Xn).

4. If the sequence(Xn)n∈N ⊂ X decreases toX ∈ X , thenρ(Xn) → ρ(X).

Proof 1 ⇒ 2 holds, becauseρ given by (16) isσ(L∞(P ), L1(P ))-lower semi-
continuous. For the converse implication, we can repeat the proof of Theorem
5 and apply the Hahn-Banach separation theorem in the locally convex space(
L∞(P ), σ(L∞(P ), L1(P ))

)
in order to get a negative continuous linear func-

tional � satisfying (14). By assumption,� can be represented as�(Z) = E[ϕX ]
with someϕ ∈ L1(P ) yielding a probability measuredQ/dP = ϕ/E[ϕ]. We
conclude the proof as in Theorem 5. The remaining implications follow as in [4].

��
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Proposition 7 Supposeρ : L∞(Ω,F , P ) → R is a convex measure of risk pos-
sessing a representation of the form (16) and takeP as in Theorem 6. Then the
representation (16) holds as well in terms of the penalty function

α0(Q) = sup
X∈L∞

(
EQ

[−X ] − ρ(X)
)

= sup
X∈Aρ

EQ

[−X ]
. (17)

Moreover, it is minimal in the sense thatα0(Q) ≤ α(Q) for all Q ∈ P if the
representation (16) holds forα(·). In addition,

α0(Q) = sup
X∈Aρ

EQ

[−X ]
= sup

X∈A
EQ

[−X ]
(18)

if ρ is defined as in (8) via a given acceptance setA.
Proof By (11) and (12) we already know that the two terms on the righthand side of
(17) coincide, and the proof of our representation theorem shows that we can take
α0(·) as in (17) onceρ possesses of the form (16). Ifα(·) is any other functional
with which we can representρ, then it follows readily that

α(Q) ≥ EQ

[−X ] − ρ(X) for all X.

Thusα(Q) ≥ α0(Q) for all Q ∈ P. This proves the first part of the assertion.
The second part follows by recalling thatA ⊆ Aρ and thatε + X ∈ A whenever
X ∈ Aρ andε > 0. ��
Remark 8Equation (18) shows that the minmal penalty functionα0 is lower semi-
continuous for the weak∗ topology onP considered as a subset ofL1(P ). In
particular,α0 is lower semicontinuous for the total variation distance.

Sometimes, it may be convenient to represent a convex measure of risk with a
penalty functionα(·) that is not the minimal one. This case occurs, for instance, in
the following situation.

Proposition 9 Suppose that for everyi in some index setI we are given a convex
measure of riskρi onX := L∞(Ω,F , P ) with associated penalty functionαi(·).
We assume that

inf
Q∈Q

inf
i∈I

αi(Q) > −∞ . (19)

Then
ρ(X) := sup

i∈I
ρi(X) , X ∈ X ,

is a convex measure of risk that can be represented as in (16) with the penalty
function

α(Q) := inf
i∈I

αi(Q) , Q � P .

Proof Clearly,

ρ(X) = sup
i∈I

sup
Q�P

(
EQ[−X ] − αi(Q)

)
= sup

Q�P

(
EQ[−X ] − inf

i∈I
αi(Q)

)
.

Hence the assertion follows. ��
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3 Risk measures defined in terms of shortfall risk

Suppose that� : R → R is an increasing convex loss function which is not identi-
cally constant. For a positionX ∈ L∞(Ω,F , P ) we introduce the expected loss

EP

[
�(−X)

]
.

If � vanishes on(−∞, 0] thenEP

[
�(−X)

]
= EP

[
�(X−)

]
may be viewed as a

quantitative assessment of theshortfall risk. In view of examples such as Example
12, it will be convenient to formulate our results without this restriction on�.

Letx0 be an interior point in the range of�. A positionX ∈ L∞(Ω,F , P ) will
be called acceptable if the expected loss is bounded byx0. Thus, we consider the
class

A :=
{
X ∈ L∞(Ω,F , P )

∣∣∣EP

[
�(−X)

] ≤ x0

}
. (20)

of acceptable positions. The setA satisfies the first two properties of Proposition
2 and thus defines a convex measure of riskρ := ρA. Since� is continuous as a
finitely valued convex function onR, ρ possesses the Fatou property and, hence, a
representation of the form (16). The corresponding minimal penalty functionα0(·)
can be expressed in terms of the Fenchel-Legendre transform

�∗(z) := sup
x∈R

(
zx− �(x)

)
of �; note that the following formula may be viewed as an extension of a classical
result for Orlicz spaces; cf. [13, p. 91].

Theorem 10 Suppose thatA is the acceptance set given by (20). Then, forQ � P ,
the minimal penalty function ofρ = ρA is given by

α0(Q) = sup
X∈A

EQ[−X ] = inf
λ>0

1
λ

(
x0 + EP

[
�∗

(
λ
dQ

dP

) ])
. (21)

For the convenience of the reader, we summarize below some basic properties
of the functions� and�∗.

Lemma 11 The functions� and�∗ enjoy the following properties.

1. �∗(0) = − inf
x∈R

�(x) and�∗(z) ≥ −�(0) for all z.

2. The setN :=
{
z ∈ R

∣∣ �∗(z) = −�(0)
}
is non-empty,z1 := inf N ≥ 0, and

�∗(z) = sup
x≥0

(
xz − �(x)

)
for z ≥ z1. In particular, �∗ is non-decreasing on

[z1,∞).
3. z0 := inf

{
z ∈ R

∣∣ �∗(z) < ∞} ∈ [0,∞).

4.
�∗(z)
z

−→ ∞ asz ↑ ∞.
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Proof Assertion 1 is trivial. As for the second claim, note that convexity of� implies
that the set of allz with zx ≤ �(x) − �(0) for all x ∈ R is non-empty. For thosez
we clearly have�∗(z) ≤ −�(0). On the other hand,�∗(z) ≥ −�(0) by 1. Next, it is
clear thatz1 ≥ 0. If z ≥ z1 andx < 0, thenxz − �(x) ≤ xz1 − �(x) ≤ �∗(z1) ≤
−�(0), where the latter inequality follows from the lower semicontinuity of�∗. But
�∗(z) ≥ −�(0) so that the supremum of(xz − �(x)) must occur forx ≥ 0.

3. By 2, �∗ is not identically+∞ and, thus,z0 < ∞. On the other hand,
�∗(z) = +∞ for all z < 0.

4. Forz ≥ z1, �∗(z)/z = supx≥0
(
x− �(x)/z

)
by 2. Hence�∗(z)/z ≥ xz − 1

if xz = sup
{
x

∣∣ �(x) ≤ z
}

. Since� is increasing and takes only finite values, it
follows thatxz → ∞ asz ↑ ∞. ��
Proof of Theorem 10Fix Q � P and let

ϕ :=
dQ

dP
.

First, let us remark that it suffices to consider the case wherex0 > �(0). Otherwise
we can find somea ∈ R such that�(−a) < x0, sincex0 was assumed to be an
interior point of�(R). Let �̃(x) := �(x− a), and

Ã :=
{
X̃ ∈ L∞(Ω,F , P )

∣∣∣EP

[
�̃(−X̃)

] ≤ x0

}
.

ThenÃ =
{
X − a |X ∈ A}

, and hence

sup
X̃∈Ã

EQ[−X̃ ] = sup
X∈A

EQ[−X ] + a . (22)

The loss functioñ� satisfies the assumptioñ�(0) < x0. So if the assertion is estab-
lished in this case, we find that

sup
X̃∈Ã

EQ[−X̃ ] = inf
λ>0

1
λ

(
x0+EP

[
�̃∗(λϕ)

])
= inf

λ>0

1
λ

(
x0+EP

[
�∗(λϕ)

])
+a ,

where we have used that the Fenchel-Legendre transform�̃∗ of �̃ satisfies̃�∗(z) =
�∗(z)+az. Together with (22), this proves that the reduction to the case�(0) < x0
is indeed justified.

Next, let I denote the right-continuous derivative of�∗, and recall that for
x, z ∈ R

xz ≤ �(x) + �∗(z) with equality ifx = I(z); (23)

see, e.g., [14]. Thus, for anyλ > 0 andX ∈ A we have that

−Xϕ =
1
λ

(−X)(λϕ) ≤ 1
λ

(
�(−X) + �∗(λϕ)

)
.

Hence, for anyλ > 0

α0(Q) ≤ sup
X∈A

1
λ

(
EP

[
�(−X)

]
+ EP

[
�∗(λϕ)

]) ≤ 1
λ

(
x0 + EP

[
�∗(λϕ)

])
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Thus, it remains to prove that

α0(Q) ≥ inf
λ>0

1
λ

(
x0 + EP

[
�∗(λϕ)

])
(24)

in case whereα0(Q) < ∞. This will be done first under the following two extra
conditions:

�∗ < ∞ on (0,∞) and there existsκ ∈ R

such that�(x) = inf � for all x ≤ κ. (25)

I is continuous on(0,∞). (26)

Note that (25) implies that�∗(0) < ∞ and thatI(0+) ≥ κ. Since�∗(z) ≥
−�(0) > −x0, it follows from (23) that

lim
z↓0

�(I(z)) − x0 < lim
z↓0

(
�(I(z)) + �∗(z)

)
= lim

z↓0
zI(z) = 0 .

Since� is non-constant, convex, increasing, and takes only finite values, we may
conclude that the continuous functionI(z) increases to+∞ asz ↑ ∞, and hence
so does�(I(z)). Thus, there exits someλc > 0 such that

E
[
�
(
I(λcϕ)I{ϕ≤c}

) ]
= x0

for c > 0 large enough. Let

Xc := −I(λcϕ)I{ϕ≤c} .

ThenXc is bounded and contained inA. Moreover, by (23),

−Xcϕ =
1
λc

(−Xc)(λcϕ) =
1
λc

(
�
(
I(λcϕ)

)
+ �∗(λcϕ)

)
I{ϕ≤c} .

It follows that

α0(Q) ≥ EQ

[−Xc
]

=
1
λc

(
x0 − �(0) · P [

ϕ > c
]
+ E

[
�∗(λcϕ) · I{ϕ≤c}

])
.

The right-hand side is bounded below by(x0 − �(0))/λc. As we assumed that
α0(Q) < ∞, we must have that the decreasing limitλ∞ = limc↑∞ λc is strictly
positive. Thus, we obtain that

α0(Q) ≥ lim inf
c↑∞

EQ

[−Xc
] ≥ 1

λ∞

(
x0 + EP

[
�∗(λ∞ϕ)

])
,

where we have used Fatou’s lemma together with the fact that�∗(z) ≥ −�(0). This
proves (24) and, hence, (21) in the case in whichI is continuous and� satisfies
(25).

If I is not continuous, then we can approximate the upper semicontinuous
function I arbitrarily close from above with an increasing continuous functionĨ
such that

�̃∗(z) := �∗(0) +
∫ z

0
Ĩ(y) dy
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satisfies

�∗
(
z
) ≤ �̃∗(z) ≤ �∗

(
(1 + ε)z

)
for z ≥ 0.

Let �̃ := �̃∗∗ denote the Fenchel-Legendre transform of�̃∗. Since�∗∗ = �, it follows
that

�
( x

1 + ε

)
≤ �̃(x) ≤ �(x) .

Therefore,

Ã :=
{
X ∈ X ∣∣EP

[
�̃(−X)

] ≤ x0
} ⊆ {

(1 + ε)X
∣∣X ∈ A}

=: Aε .

Since we already know that the assertion holds for�̃, we obtain that

inf
λ>0

1
λ

(
x0 + EP

[
�∗

(
λ
dQ

dP

) ])
≤ inf

λ>0

1
λ

(
x0 + EP

[
�̃∗

(
λ
dQ

dP

) ])
= sup

X∈Ã
EQ[−X ]

≤ sup
X∈Aε

EQ[−X ]

= (1 + ε)α0(Q) .

This proves (21) in case where� satisfies (25).
If � does not satisfy (25) we can find a sequence(�n) of convex loss functions

with �n(0) = �(0) such that (25) holds for eachn and such that�n ↘ � pointwise.
For instance, we can take

�n(x) := �(x) ∨ κn +
1
n

(ex − 1)+ ,

where(κn) is a sequence such thatκn ≤ �(0) andκN ↓ inf �. One checks that
�∗n(z) ↗ �∗(z) for all z and that the corresponding minimal penalty functionsαn

0
increase toα0. From the preceding, we know that

∞ > α0(Q) ≥ αn
0 (Q) ≥ 1

λεn

(
x0 + EP

[
�∗n(λεnϕ)

])
− ε

for certainλεn ∈ (0,∞). The fourth assertion of Lemma 11 implies thatsupn λ
ε
n <

∞ if α0(Q) < ∞. Moreover, we have for large enoughn that infz �∗n(z) =
−�n(0) = −�(0) > x0. Hence,lim infn λεn must be bounded away from0 if
α0(Q) < ∞. Hence, we may assume thatλεn converges towards someλε ∈ (0,∞).
Then

α0(Q) + ε ≥ lim inf
n↑∞

1
λεn

(
x0 + EP

[
�∗n(λεnϕ)

])
≥ 1

λε

(
x0 + EP

[
�∗(λεϕ)

])
,

where we used again that�∗n(z) ≥ −�(0), uniformly in n andz. Letting ε ↓ 0
completes the proof of the theorem. ��
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Example 12For an exponential loss function, the penalty function can be described
in terms of relative entropy. Let us take�(x) = ex andx0 = 1 so that

ρ(X) = inf
{
m ∈ R

∣∣∣EP

[
e−m−X

] ≤ 1
}

= logEP

[
e−X

]
.

Then (17) becomes the well-known variational formula for the relative entropy,
namely

α(Q) = sup
X∈L∞(Ω,F,P )

(
EQ

[−X ] − logEP

[
e−X

])
= H(Q|P ) ,

where the relative entropy ofQ with respect toP is defined as

H(Q|P ) :=


∫

dQ

dP
log

dQ

dP
dP ifQ � P ,

+∞ otherwise.

Example 13Take in (20)

�(x) :=

{
1
px

p if x ≥ 0,

0 otherwise,

wherep > 1. ThenI(z) = z1/(p−1), and withq = p/(p− 1)

�∗(z) :=

{
1
q z

q if x ≥ 0,

+∞ otherwise.

Thus, forx0 > 0 the conditions of Theorem 10 are fulfilled. Thus, ifQ � P with
ϕ := dQ/dP ∈ Lq(Ω,F , P ), then the infimum in (21) is attained for

λQ =
( x0p

EP [ϕq ]

)1/q
.

Hence we can identifyα(Q) for anyQ � P as

α(Q) = (px0)1/p · EP

[ (dQ
dP

)q ]1/q
.

Together with Proposition 9, Theorem 10 yields the following result for risk
measures which are defined in terms of a robust notion of bounded shortfall risk.

Corollary 14 Suppose thatQ is a family of equivalent probability measures, and
that �, �∗, andx0 are as in Theorem 10. OnX := L∞(Ω,F , P ), for anyP ∈ Q,
let

A :=
{
X ∈ X

∣∣∣EP

[
�(−X)

] ≤ x0 for all P ∈ Q
}
. (27)

Then the corresponding convex risk measure can be represented in terms of the
penalty function

α(Q) = inf
λ>0

1
λ

(
x0 + inf

P∈Q
EP

[
�∗

(
λ
dQ

dP

) ])
.
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Example 15In the situation of Example 12, the corresponding robust problem as
in Corollary 14 leads to the following entropy minimization problem: For a given
Q and a setQ of equivalent probabilities, find

inf
P∈Q

H(Q|P ) .

Note that this problem is different from the standard problem of minimizing
H(Q|P ) with respect to the first variable as it appears, e.g., in the theory of large
deviations.

4 Risk measures arising in a financial market with convex constraints

Weconsider a filteredprobability space(Ω,F , (Ft)t=0,...,T , P )andamarketwhere
one bond andd risky assets are traded. The price of the bond will be assumed to
be normalized to1, and the (correspondingly discounted) price process of the risky
assets is denoted byXt = (X1, . . . , Xd

t ). We will assume that

Xi
t ≥ 0 for i = 1, . . . , d andt = 0, . . . , T . (28)

Any d-dimensional predictable processξ can be regarded as a self-financing trading
strategy;ξit is the number of shares held of theith asset during the trading period
t− 1 ❀ t, and

Vt = V0 +
t∑

k=1

ξk · (Xk −Xk−1)

is the associated value process for an initial endowmentV0.
Now consider a financial positionZ ∈ L∞(P ). Z can be interpreted as “risk-

less” if Z ≥ 0 or, more generally, if the “risky part” ofZ can be hedged at no
additional cost. The latter means that we can find a suitable hedging portfolioξ
such that

Z +
T∑
t=1

ξt · (Xt −Xt−1) ≥ 0 P -a.s. (29)

Note that (29) is only possible ifξ isadmissiblein the sense that there is a constant
c = c(ξ) such that the associated gains process satisfies

GT (ξ) :=
T∑
t=1

ξt · (Xt −Xt−1) ≥ −c P -a.s., (30)

because the positionZ is bounded.
If we think of Z being the value of a large portfolio, we should avoid to run

into the regime of illiquidity when hedgingZ. For instance, one may want to
impose individual limits on the number of shares held of the risky assets. In this
case, each componentξi is only allowed to take values in some interval[ai, bi]
with ai ≤ 0 ≤ bi. Such constraints on the hedging portfolio were first suggested by
Cvitanic and Karatzas [2], [3]. Here we will work with the more general framework
introduced in the continuous-time setting by Föllmer and Kramkov [5].

Thus, letS be a set of admissible trading strategies such that
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– 0 ∈ S.
– X is predictably convex: If ξ1, ξ2 ∈ S andh is a predictable process with

0 ≤ h ≤ 1, then alsoξh ∈ S whereξht := htξ
1
t + (1 − ht)ξ2

t .

In a first step, we define the non-empty set

A :=
{
Z ∈ L∞(P )

∣∣∣ there existsξ ∈ S

with Z +
T∑
t=1

ξt · (Xt −Xt−1) ≥ 0 P -a.s.
}
, (31)

of acceptable positions which can be hedged with strategies inS at no cost. By
Proposition 4,A induces the convex measure of risk

ρ(Z) := ρA(Z) = inf
{
m ∈ R

∣∣∣m + Z ∈ A
}

(32)

provided that
ρA(0) > −∞ . (33)

Note that (33) holds, in particular, ifS does not contain arbitrage opportunities. We
will assume (33) throughout this section.

The following questions arise:

– When doesρ permit a representation of the form (16)?
– If so, can one identify the minimal penalty functionα0?

Let us first consider the second question.

Proposition 16 Suppose the convex measure of riskρA induced by the setA of
(31) possesses a representation of the form (16). Then theminimal penalty function
α0(·) in the representation (16) is given by

α0(Q) = EQ

[
AQ
T

]
for Q � P . (34)

HereAQ is the predictable increasing process defined by

AQ
0 := 0 , AQ

t+1 −AQ
t := ess sup

ξ∈S

[
ξt+1 ·

(
EQ

[
Xt+1

∣∣Ft

] −Xt

) ]
. (35)

Proof First note thatEQ

[
ξt · (Xt −Xt−1)

∣∣ Ft−1
]

is well-defined and satisfies

EQ

[
ξt · (Xt −Xt−1)

∣∣Ft−1
]

= ξt ·
(
EQ

[
Xt

∣∣Ft−1
] −Xt−1

)
for everyξ ∈ S. To see this, observe first that bypredictable convexity alsoξ(t) ∈ S,
where

ξ(t)
s :=

{
ξt if s = t,

0 otherwise.

By assumption every element inS is admissible in the sense of (30), and thus there
is some constantc with ξt · (Xt − Xt−1) = GT (ξ(t)) ≥ −c P -a.s. Using our
Assumption (28) that prices are non-negative, the claim follows.
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Next, if Z ∈ A there existsξ ∈ S with −Z ≤ ∑T
t=1 ξt · (Xt −Xt−1) P -a.s.

By using the above identity forξt ·
(
EQ

[
Xt

∣∣Ft−1
] −Xt−1

)
, we obtain that for

Q � P

EQ[−Z ] ≤ EQ

[ T∑
t=1

ξt · (Xt −Xt−1)
]
≤ EQ

[
AQ
T

]
. (36)

Hence, we conclude from Proposition 7 that

α0(Q) = sup
Z∈A

EQ[−Z ] ≤ EQ

[
AQ
T

]
.

Now we turn to the proof of the converse inequality. To this end, we show first
that

Ψ :=
{ T∑

t=1

EQ

[
ξt · (Xt −Xt−1)

∣∣Ft−1
] ∣∣∣∣ ξ ∈ S

}
is directed upwards in the sense that forψ1, ψ2 ∈ Ψ there isψ3 ∈ Ψ with ψ3 ≥
ψ1 ∨ ψ2. Forξ, ξ̃ ∈ S let

At :=
{
EQ

[
ξt · (Xt −Xt−1)

∣∣Ft−1
]
> EQ

[
ξ̃t · (Xt −Xt−1)

∣∣Ft−1
]}

,

and defineξ′ ∈ S by
ξ′
t := ξtIAt

+ ξ̃tIAc
t

.

Then clearly

EQ

[
ξ′
t · (Xt −Xt−1)

∣∣Ft−1
]

= EQ

[
ξt · (Xt −Xt−1)

∣∣Ft−1
] ∨ EQ

[
ξ̃t · (Xt −Xt−1)

∣∣Ft−1
]
,

and thereforeΨ is directed upwards. It follows thatAQ
T = ess supΨ is the limit of

an increasing sequence inΨ . Hence,

EQ

[
AQ
T

]
= sup

ξ∈S
EQ

[ T∑
t=1

EQ

[
ξt · (Xt −Xt−1)

∣∣Ft−1
] ]

= sup
ξ∈S

sup
k∈N

EQ

[
GT (ξ) ∧ k

]
.

Admissibility yields that−(GT (ξ) ∧ k) ∈ A ⊆ Aρ, and thus

EQ

[
AQ
T

]
= sup

ξ∈S
sup
k∈N

EQ

[
GT (ξ) ∧ k

] ≤ α0(Q) .

This concludes the proof. ��
Let us now turn to the question of the existence of a representation (16). LetPS

denote the class of all probability measuresP̃ that satisfy the following conditions

• P̃ ≈ P ,

• Xt ∈ L1(P̃ ) for all t, (37)

• the value process of every strategy inS is

a supermartingale under̃P .
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Theorem 17 Assume thatS is closed under convergence in probability, and letρ
denote the convex measure of risk onX = L∞(P ) arising from the setA of (31).
Then the following conditions are equivalent.

1. ρ is relevant in the sense thatρ(X) > 0 wheneverX ∈ X is non-positive and
satisfiesP [X < 0 ] > 0.

2. There are no arbitrage opportunities inS.
3. The setPS is non-empty.

If one of these conditions is fulfilled,ρ possesses a representation of the form (16)
where one can takeα(Q) as in (34) forQ ≈ P andα(Q) = ∞ if Q �≈ P .

That the relevance ofρ is equivalent to the absence of arbitrage follows imme-
diately from the respective definitions. The proof of the remaining assertions uses
standard techniques for proving the fundamental theorem of asset pricing and the
superhedging duality theorem; for the details we refer to [8].

Remark 18In a continuous-time financial market model where the price process
X follows a special semimartingale underP , one can similarly define a predictably
convex setS of admissible integrands and a corresponding convex measure of
risk ρ. If one assumes in addition that the set

{ ∫
ξ dX

∣∣ ξ ∈ S }
is closed in the

seminartingale oŕEmery topology, the optional decomposition theorem of [5] will
imply a representation (16) ofρ. The penalty functionα(Q) can be described as
α(Q) = EQ

[
AQ
T

]
provided thatQ satisfies the following three conditions are

fulfilled. Q is equivalent toP , every process
∫
ξ dX with ξ ∈ S is a special

semimartingale underQ, andQ admits the upper variation processAQ for the set{ ∫
ξ dX

∣∣ ξ ∈ S }
. One can takeα(Q) = ∞ for measuresQ which do not fulfill

one of these conditions.

In a second step, we combine the results of this section with those of Sect. 3.
If � is a convex loss function andx0 is an interior point in the range of�, one can
call a positionX ∈ X = L∞(P ) acceptable if there existsξ ∈ S such that the
expected loss ofX + GT (ξ) is bounded byx0, i.e.,

EP

[
�
( −X −GT (ξ)

) ]
≤ x0 . (38)

The risk measure arising from this class of acceptable positions is closely related to
the problem of efficient hedging or the problem of utility maximization; see, e.g.,
[6], [15]. Here we go one step further and replace the risk measure associated with
� by a general risk measureρ0 which possesses a representation (16). A position
X ∈ X will be acceptable if there existsξ ∈ S such thatX +GT (ξ) is acceptable
for ρ0 in the sense that there existsY ∈ A0 := Aρ0 such thatX + GT (ξ) ≥ Y
(note thatX + GT (ξ) needs not be bounded):

A :=
{
X ∈ X

∣∣∣ ∃ ξ ∈ S such thatX + GT (ξ) ≥ Y for someY ∈ A0
}
. (39)

Let ρ := ρA. According to Proposition 4,ρ is a convex measure of risk provided
that

ρ(0) > −∞ . (40)
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Note that this condition (40) implies our Assumption (33).
Let us first consider the special case whereA0 is defined in terms of a convex

loss function, and let us show thatρ coincides indeed with the risk measure which
arises from the acceptability criterion (38). For this identity, the condition (40) is
not needed.

Proposition 19 Suppose that the acceptance setA0 is of the form (20) for a convex
loss function� and an interior pointx0 in the range of�. Then

ρ(X) = inf
{
m ∈ R

∣∣∣ ∃ ξ ∈ S such thatEP

[
�
( −m−X −GT (ξ)

) ] ≤ x0

}
.

(41)

Proof Denote for the moment the right-hand side of (41) byρ̂(X). Clearly, ρ̂ is
translation invariant, and everyX ∈ A satisfieŝρ(X) ≤ 0. Thus, we obtainρ ≥ ρ̂.
Conversely, ifX ∈ X is arbitrary andm > ρ̂(X), then there existsξ ∈ S such that

EP

[
�
( −m−X −GT (ξ)

) ]
< x0 .

If k > 0 is large enough, then

EP

[
�
( −m−X −GT (ξ) ∧ k

) ] ≤ x0 .

It follows that Y := m + X + GT (ξ) ∧ k ∈ A0, which in turn implies that
m + X ∈ A andρ(X) ≤ m. ��

For ageneral riskmeasureρ0, the followingproposition showshow the resulting
risk measureρ depends both onρ0 and on the structure of the financial market.

Proposition 20 Assume (40) and letρA and ρ be the convex measures of risk
associated with the acceptance setsA andA of (31) and (39), respectively. If both
ρA andρ possess representations (16), then theminimal penalty functionα0 arising
in the representation (16) ofρ is given by

α0(Q) = α0
0(Q) + α1

0(Q) , Q � P , (42)

whereα0
0 is the minimal penalty function forρ

0 andα1
0 is given by (34).

Proof LetA be the acceptance set of (31). It is easy to prove that

A =
{
X0 + X1

∣∣∣X0 ∈ A0 , X1 ∈ A
}
.

For instance, ifX ∈ A, then there existsY ∈ A0 andξ ∈ S such thatX+GT (ξ) ≥
Y . Hence,X0 is the sum ofX − Y ∈ A and ofY ∈ A0.

Now it follows from (18) that

α0(Q) = sup
X∈A

EQ

[−X ]
= sup

X0∈A0
sup

X1∈A1
EQ

[−X0 −X1 ]
= α0

0(Q)+α1
0(Q) .

This proves the assertion. ��
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