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Abstract. We introduce the notion of a convex measure of risk, an extension of the
concept of a coherent risk measure defined in Artzner et al. (1999), and we prove
a corresponding extension of the representation theorem in terms of probability
measures on the underlying space of scenarios. As a case study, we consider convex
measures of risk defined in terms of a robust notion of bounded shortfall risk. In
the context of a financial market model, it turns out that the representation theorem
is closely related to the superhedging duality under convex constraints.
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1 Introduction

There is a considerable interest, both from a theoretical and a practical point of view,
in a quantitative assessment of the risk involved in a financial position. If such a
position is described by the resulting discounted net worth at the end of a given
period, defined as a real-valued functi®&non some sef? of possible scenarios,
then a quantitativeneasure of risks given by a mapping from a certain space

X of functions onf? to the real line. Clearly, such a mapshould satisfy certain
conditions of consistency.
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Recently, Artzner et al. [1] have introduced the concept oblzerent measure
of risk It is defined by the following properties of the mappmgt’ — R:

Subadditivity:p(X +Y) < p(X) + p(Y). 1)
Positive Homogeneity: IA > 0, thenp(AX) = Ap(X). 2
Monotonicity: If X <Y, thenp(X) > p(Y). 3
Translation Invariance: ifn € R, thenp(Y + m) = p(Y) — m. 4)

Typically, a coherent measure of riglarises from some famil@ of probability
measures o2 by computing the expected loss undgre © and then taking the
worst result ag) varies overQ:

p(X) = sup Eq[—X|; (5)
Qeo

for the case wherg is a finite set see Artzner et al. [1] and, in a different context,
Huber [11].

In many situations, however, the risk of a position might increase in a nonlinear
way with the size of the position. For example, an additional liquidity risk may arise
if a position is multiplied by a large factor. This suggests to relax the conditions
of positive homogeneity and of subadditivity and to require, instead of (1) and (2),
the weaker property of

Convexity:p(AX + (1 = A)Y) < Ap(X) + (1 — A)p(Y) forany € [0, 1].
(6)
Convexity means that diversification does not increase the risk, i.e., the risk of a
diversified positionnX + (1 — \)Y is less or equal to the weighted average of
the individual risks. LettY be a convex set of functions on the setof possible
scenarios. We assume thate X and thatX is closed under the addition of
constants.

Definition 1 Amapp : X — Rwill be called a convex measure of risk if it satisfies
the condition of convexity (6), monotonicty (3), and translation invariance (4).

If the convex measure of riskis normalized in the sense that0) = 0, then
the quantityp(X) can be interpreted as a “margin requirement”, i.e., the minimal
amount of capital which, if added to the position at the beginning of the given period
and invested into a risk-free asset, makes the discounted po&itfasceptable”.

In Sect. 2 we prove a representation theorem for convex measures of risk. In
the case in whickk’ is the space of all real-valued functions on a finite8eany
convex measure of risk is of the form

p(X) = sup (EQ[ -X]- a(Q)) ,

where?P is the set of all probability measures 6h anda(-) is a certain “penalty
function” onP. Independently, this result was stated by D. Heath in [9]; see also
[10].In Theorem 6, we prove an appropriate extension of the representation theorem
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where the finite se@ is replaced by a general probability spdce 7, P), andX
is the spacd.> ({2, F, P) of bounded random variables.

An alternative representation in terms of probability measures, which does not
use a given reference measutgis discussed in [15].

A convex measure of risk can be characterized in terms of properties of the
associate@cceptance set

Ap:{XEX‘p(X)SO}.

Conversely, a given sed of “acceptable positions” defines a convex measure of
risk via
pa(X) ::inf{méR’m—i—XGA}

provided that4 satisfies itself certain axioms. Our two main case studies of convex
risk measures will be defined in terms of such acceptance sets.

In Sect. 3, we consider the situation where the acceptance set is defined in
terms of a (robust) notion of bounded shortfall risk, i.e., a position is acceptable if
its shortfall risk is bounded by some given level. In this case, the associated penalty
function can be described by a functional of the type of a dual Orlicz norm.

In Sect. 4, we consider a discrete-time financial market model with convex
trading constraints. As a first step, we define a4ef acceptable positions as the
class of functions{ € X' suchthatX +V > 0 whereV is the final portfolio value
which can be generated by an admissible trading strategy. Theorem 16 clarifies the
structure of the corresponding risk measpye In this case, the weight function
a(Q) can be described explicitly in terms of the increasing process which appears
in the construction of the optional decomposition under convex trading constraints
in Follmer and Kramkov [5].

2 Convex measures of risks
2.1 Acceptance sets
Let X be a linear space of functions on a given &bf possible scenarios. We

assume thaft’ contains all constant functions. Any risk measpre X — R
induces aracceptance sefl, defined as

A,={xex|px) <o}, (7)

Conversely, for a given clas$ of acceptable positions, we can introduce an asso-
ciated risk measurg,4 by defining

pA(X)::inf{meR‘m+X€.A}. 8)

The following two propositions summarize the relations between a convex measure
of risk and its acceptance sdf,. They are similar to the ones found for coherent
measures of risk; cf. [1], [4], [12].
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Proposition 2 Suppose : X — R is a convex measure of risk with associated
acceptance setl,. Then

PA, = P-
Moreover,A := A, enjoys the following properties.

1. Ais convex and non-empty.
2. If X e AandY € X satisfiesy’ > X, thenY € A.
3. If X € AandY € X, then

{Ae0,1]|AX+(1-NY € A}
is closed in[0, 1].

Proof To show thap 4, (X) = p(X) for all X, note that the translation invariance
of p implies that

pa,(X)=if{m|m+XeA,}=inf{m|pm+X)<0}
=inf{m|p(X) <m}=p(X).

The first two properties afl = A, are straightforward. As for the third one,
note that the function — p(AX + (1 — A)Y') is continuous, as it is convex and
takes only finite values. Hence, the seAaf [0, 1] suchthap(AX+(1-A\)Y) <0
is closed. O

Example 3 (Value at Riskjalue at Risk at level > 0,
VaR, (X) ::inf{m’P[X+m< 0] <7},

is not a convex measure of risk. This is shown by the example in [1], p. 218, since
the acceptance set is not convex.

Proposition 4 Assume thatl # 0 is a convex subset éf which satisfies property
2 of Proposition 2, and denote by, the functional associated td via (8). If
p4(0) > —oo, then

1. p4 is a convex measure of risk.
2. Aisasubsetofd, . Moreover, if A satisfies property 3 of Proposition 2, then
A=A, ,.

Proof 1. It is straightforward to verify that 4 satisfies translation invariance and
monotonicity. We show next that, takes only finite values. To this end, fix some
elementy” of the non-empty sell. For X € X given, there exists a finite number
mwithm+X > Y, becaus& andY are both bounded. Monotonicity, translation
invariance, and the fact thag (Y') < 0 give p4(X) < m. To show thap 4(X) >
—o0, we takem’ such thatX +m' < 0 and conclude thata(X) > pa(0)+m' >
—0Q.



Convex measures of risk and trading constraints 433

Astothe property of convexity, suppose that, X, € X andthatn,, ms € R
are such thatn, + X; € A. If X € [0,1], then the convexity ofd implies that
A(my + X1) 4+ (1= A)(ma + X2) € A. Thus, by the translation invariance of,,

0> pa(Am1 + X1) + (1 — A)(m2 + X2))
= pA()\Xl —+ (]. — )\)XQ) — (/\ml + (1 — )\)mg) y
and the convexity op 4 follows.
2. The inclusiond C A, , is obvious. Now assume that satisfies the third
property of Proposition 2. We have to show thatt A impliesthaip4(X) > 0.To

this end, taken > p_4(0). By property 3 of Proposition 2, there existszaa (0, 1)
such thatm + (1 — )X ¢ A. Thus,

em < pa((1—e)X) =pa(e-0+ (1-2)X)
<epa(0) +(1—e)pa(X).
Hence
e(m — pa(0))
1—c¢
and property 2 follows. O

pa(X) = >0,

2.2 The representation theorem for convex measures of risk

Now we prove the structure theorem for convex measure of risks. Let us first
consider the special case in whighis the space of all real-valued functions on
some finite sef?.

Theorem 5 SupposeY’ is the space of all real-valued functions on a finite Set
Thenp : X — R is a convex measure of risk if and only if there exists a “penalty
function” a. : P — (—o0, oo] such that

p(2) = sw (Eo[-2] - a(Q)). (10)

QeP

The functiony satisfies(Q)) > —p(0) for any@ € P, and it can be taken to be
convex and lower semicontinous Bn

Note that this theorem includes the structure theorem for coherent measures of
risk as a special case. Indeed, it is easy to seepthall possess the property of
positive homogeneity, i.eg will be a coherent measure of risk, if and only if the
particular penalty function,(-) constructed in the proof takes only the values 0 and
+o00. In this case, our theorem implies the representation (5) in terms of the set

Q:{QeP)Q(Q):o}.
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Proof of Theorem She “if"-part is straightforward: For eadl € P the functional
X = Eq[-X] - a(@)

is convex, monotone, and translation invariant. These three properties are preserved
under taking suprema.

For the proof of the converse implication, we need the following auxiliary
observation. Fo€) € P, definea(Q) by

a(Q) = sup (EQ[—X] - p(X)) : (11)
Then we claim that
a(Q) = sup Eq[-X]. (12)
X€eA,

For the moment denote the righthand sided§y)). By definition of A, we find
a(Q) > a(Q). To establish the converse inequality, take an arbitfarg X and
recall thatX”’ := p(X) + X € A,. Thus

8(Q) > Bq[-X'] = Bg[~X] — p(X).
This showsa(Q) = @(Q). Note that we did not yet use the assumption as

finite.
Now fix someY € X and takex(-) as in (11). Then we clearly have

pV) 2 sup (Eo[-Y]-a@).

To establish the reverse inequality, takes R such that

m > 51;1;)) (EQ[—Y] —a(Q)). (13)

We must show thatn > p(Y") or, equivalentlyyn +Y € A,. Suppose that, on
the contrarym + Y ¢ A,. Sincep is by definition a convex function on the
Euclidean spac®* taking only finite valuesp is already continuous; cf. [14,
Corollary 10.1.1]. Hencel,, = {p < 0} is a closed convex set. Therefore, we can
find a linear functional on R such that

Bi= sup LX) <l(m+Y)=:7<o0. (14)
XeA,

It follows that/ is a negative linear functional. Indeed, note first that the axioms of
normalization and monotonicity imply

p(X) < p(0) for X > 0. (15)
Thus, if X € X satisfiesX > 0, thenA\X + p(0) € A, forall A > 1, and hence

v > L(AX + p(0)) = A(X) + p(0).
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Taking A 1 oo yields that/(X) < 0. If we assume that applied to the constant
function1 gives—1, what we can do without loss of generality, then

QIA]:==1(( - IA)
defines a probability measuég € P. By (12) and (14) we find

(@) = sup Eo[-X]=p.

But
EQ[-Y]-m=Um+Y)=v>3=0a(Q),

which is a contradiction to our choice of. Therefore, we musthave +Y ¢ A,
and, thusm > p(Y). ]

In the previous proof, the assumption thatis finite was only used in order
to obtain the closedness of the acceptance4setin the case wherd’ is given
as the spacé.> ({2, F, P) of bounded functions on a general probability space
(2, F, P), we will have toassumehe closedness o4, in a suitable topology, but
then the previous argument goes through. Thus we obtain the following extension
of Delbaen’s representation theorem for coherent measures of risk on a general
probability space; see [4, Theorem 3.2].

Theorem 6 SupposeX = L ({2,F,P), P is the set of probability measures
Q < P,andp : X — R is a convex measure of risk. Then the following properties
are equivalent.

1. There is a “penalty function? : P — (—oo, oo] such that

p(X) = sup (EQ[—X] - a(Q)) forall X € X. (16)
QKP

2. The acceptance set, associated withp is weak-, i.e.,o(L>°(P), L*(P))-
closed.

3. p possesses the Fatou property: If the sequeii¢g),cn C X is uniformly
bounded, andX,, converges to som& € X in probability, thenp(X) <
lim inf,, p(X,,).

4. If the sequenceX,,),en C X decreases tX € X, thenp(X,,) — p(X).

Proof 1 = 2 holds, becausg given by (16) iso(L>°(P), L*(P))-lower semi-
continuous. For the converse implication, we can repeat the proof of Theorem
5 and apply the Hahn-Banach separation theorem in the locally convex space
(L°°(P),o(L>(P),L'(P))) in order to get a negative continuous linear func-
tional ¢ satisfying (14). By assumptiori,can be represented 887) = E[pX |
with somey € L!(P) yielding a probability measuréQ /dP = ¢/E[]. We
conclude the proof as in Theorem 5. The remaining implications follow as in [4].
O
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Proposition 7 Suppose : L>=(f2, F, P) — R is a convex measure of risk pos-
sessing a representation of the form (16) and t&kas in Theorem 6. Then the
representation (16) holds as well in terms of the penalty function

ap(Q) = sup (EQ[—X] — p(X)) = sup EQ[—X] . a7
XeLe XeA,
Moreover, it is minimal in the sense that(Q) < «(Q) for all @ € P if the
representation (16) holds far(-). In addition,

ap(Q) = sup Eg[—X] = sup Eg[—X| (18)
XeA XeA

P

if p is defined as in (8) via a given acceptance.det

Proof By (11) and (12) we already know that the two terms on the righthand side of
(17) coincide, and the proof of our representation theorem shows that we can take
ap(+) as in (17) once possesses of the form (16).d{-) is any other functional

with which we can represept then it follows readily that

a(Q) > Eg[—X ] — p(X) forall X.

Thusa(Q) > ap(Q) for all @ € P. This proves the first part of the assertion.
The second part follows by recalling thdtC A, and that + X € .4 whenever
X € A, ande > 0. O

Remark 8Equation (18) shows that the minmal penalty functigris lower semi-
continuous for the weaktopology onP considered as a subset bt (P). In
particular,«g is lower semicontinuous for the total variation distance.

Sometimes, it may be convenient to represent a convex measure of risk with a
penalty functiony(-) that is not the minimal one. This case occurs, for instance, in
the following situation.

Proposition 9 Suppose that for everyin some index set we are given a convex
measure of risl; on X := L*°(§2, F, P) with associated penalty functian (-).
We assume that

inf inf o —00. 19
debinfou@ > —oo 1)
Then
p(X) :=sup p;(X), Xex,
i€l

is a convex measure of risk that can be represented as in (16) with the penalty
function

(@) =ifai(Q), Q<P.
Proof Clearly,
pLX) = sup sup (EQ[*X] - oq(Q)) = sup (EQ[*X] fgrelgoq,(Q)) :

Hence the assertion follows. O
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3 Risk measures defined in terms of shortfall risk

Suppose that : R — R is an increasing convex loss function which is not identi-
cally constant. For a positioR € L>° ({2, F, P) we introduce the expected loss

Ep[(—X)].

If ¢ vanishes orf{—oc,0] thenEp[{(—X)| = Ep[£(X )] may be viewed as a

guantitative assessment of thlgortfall risk In view of examples such as Example

12, it will be convenient to formulate our results without this restrictiorf.on
Letz, be an interior point in the range 6fA positionX € L> ({2, F, P) will

be called acceptable if the expected loss is boundechbyhus, we consider the

class

A::{XGLOO(Q,]-',P)‘EP[E(—X)] Sxo}. (20)

of acceptable positions. The sdtsatisfies the first two properties of Proposition

2 and thus defines a convex measure of fisk= p 4. Since/ is continuous as a
finitely valued convex function oR, p possesses the Fatou property and, hence, a
representation of the form (16). The corresponding minimal penalty funetion

can be expressed in terms of the Fenchel-Legendre transform

0*(z) == 32§ (zz—l(z))

of ¢; note that the following formula may be viewed as an extension of a classical
result for Orlicz spaces; cf. [13, p. 91].

Theorem 10 Suppose thatl is the acceptance set given by (20). Then¢fox P,
the minimal penalty function gf = p 4 is given by

a0(Q) = sup Fol ~X] :i%%(f”U*EPV*(AZ%)D' (21)

For the convenience of the reader, we summarize below some basic properties
of the functions and¢*.

Lemma 11 The functiong and¢* enjoy the following properties.
1. ¢¢(0)=— igﬂf{ﬁ(m) and(*(z) > —¢(0) for all z.

2. ThesetV := {z € R|¢*(z) = —£(0) } is non-emptyz; := inf N > 0, and
0*(z) = sup (zz — {(x)) for z > z;. In particular, £* is non-decreasing on
x>0
[21, 00).
3. 2 ::inf{zER
(z)

0*(z) < o0} €10,00).

—> o0 asz T oo.
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Proof Assertion 1istrivial. As for the second claim, note that convexit§jiofplies
that the set of alk with za < ¢(x) — ¢(0) for all z € R is non-empty. For those
we clearly have*(z) < —¢(0). On the other hand;*(z) > —¢(0) by 1. Next, itis
clearthatzy > 0. If 2 > 2; andx < 0, thenzz — £(z) < x2; — l(x) < L*(z1) <
—£(0), where the latter inequality follows from the lower semicontinuityofBut
0*(z) > —¢(0) so that the supremum ¢tz — ¢(x)) must occur forr > 0.

3. By 2, ¢* is not identically+o0o and, thus,zy < oco. On the other hand,
*(z) = +ooforall z < 0.

4.Forz > z1,0*(2)/z = sup,>¢ (v — {(x)/z) by 2. Hence* () /z > x. — 1
if x, = sup { x | Uz) < z} . Since/ is increasing and takes only finite values, it
follows thatz, — oo asz 1 oc. a

Proof of Theorem 1(Fix Q <« P and let
_dQ
-~ dpP’

First, let us remark that it suffices to consider the case wherte ¢(0). Otherwise
we can find some € R such that’(—a) < z(, sincexy was assumed to be an

interior point of¢(R). Let¢(z) := ¢(x — a), and

@

A= {)? eLOO(Q,f,P)’EP[Z(—)?)} gxo}.

ThenAd = { X —a|X € A}, and hence

sup Eg[—X ] = sup Eg[—-X]+a. (22)
XeA XeA

The loss functiorf satisfies the assumptid(0) < . So if the assertion is estab-

lished in this case, we find that
> .o 1 - et
sup ol X1 =l 3 (w0t Br | F00)]) = fnt 5

sup (x0+Ep {K*(A@)D—ka,

where we have used that the Fenchel-Legendre trangfoof\’ satisfies’* (z) =
0*(z) + az. Together with (22), this proves that the reduction to the é&¥e<
is indeed justified.
Next, let I denote the right-continuous derivative 6f, and recall that for
x,z€R
xz < l(x) + " (2) with equality ifz = I(z); (23)

see, e.g., [14]. Thus, for any> 0 and X € A we have that
1 1 "
~Xe = 3 (-X)0) < 5 (U-X) + £ 00)).
Hence, for anyx > 0

(560 + EPV*()\SD)])

>

20(Q) < sup 5 (Br[(-3)] + Br [ (30)]) <
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Thus, it remains to prove that

20(@ = inf 5 (w0 + Ep[£000)]) (2

in case wherey(Q) < oo. This will be done first under the following two extra
conditions:

¥ < oo on(0,00) and there exists € R
such that?(x) = inf ¢ for all z < k. (25)
I is continuous orf0, o). (26)
Note that (25) implies that*(0) < oo and that/(0+) > «. Sincel*(z) >
—£(0) > —xo, it follows from (23) that

lziﬁ)lﬁ(l(z)) — 20 < lzlg)l <€(I(z)) +€*(z)) = lzlﬁ)lZI(z) =0.

Since/ is non-constant, convex, increasing, and takes only finite values, we may
conclude that the continuous functidfx) increases te-oo asz 1 oo, and hence
so doed(I(z)). Thus, there exits some. > 0 such that

EV(I(M’)I{%C}” -

for ¢ > 0 large enough. Let

X = —I(/\C@)I{wgc} .
ThenX¢ is bounded and contained j#. Moreover, by (23),
X = (XY ep) = 1 (I0R) + 1)),
Ae Ae {e<c}

It follows that

c 1 *
a0(Q) > Eg[-X°] = )\—C(xo —00)- Ple>c] + B[ () T, ])-
The right-hand side is bounded below by, — £(0))/\.. As we assumed that
ap(Q) < oo, we must have that the decreasing lithit, = lim .y A. iS strictly
positive. Thus, we obtain that

1
> limi Xl > — *
ap(Q) > hngolonfEQ[ X ] Z (:1:0 —i—Ep[E ()\OOQO)D ,
where we have used Fatou’s lemma together with the facttat > —¢(0). This
proves (24) and, hence, (21) in the case in whidk continuous and satisfies
(25).

If I is not continuous, then we can approximate the upper semicontinuous
function I arbitrarily close from above with an increasing continuous funcfion
such that

0*(z) := £*(0) + /Oz I(y)dy
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satisfies
*(z) < (z) < (1 +e)z) forz > 0.

Let? := ¢** denote the Fenchel-Legendre transformroBSincer** = ¢, it follows
that

z(lig) < 0(z) < (z).

Therefore,
A={XeX|Ep[l(-X)] <ao}C{1+)X|X A} = A..

Since we already know that the assertion hold<fave obtain that

ot 3 o+ e[ (VR) ) < ot 3 (v 22 [ (G5) )
= sup Eg[—X]

XeA
< sup Eg[—X]
XeA.

= (1+e)an(Q).

This proves (21) in case whefesatisfies (25).

If ¢ does not satisfy (25) we can find a sequeftg of convex loss functions
with £,,(0) = £(0) such that (25) holds for eachand such that,, “\, ¢ pointwise.
For instance, we can take

bn(2) = L(x) V Ky + %(ez -t

where(k,,) is a sequence such tha; < ¢(0) andky | inf . One checks that
0x(z) /S 4*(z) for all z and that the corresponding minimal penalty functiofjs
increase taxy. From the preceding, we know that

00> a0(@) > a§(Q) > 1= (vo + Br [ £050) | ) ~ ¢
n

for certainAZ, € (0, c0). The fourth assertion of Lemma 11 implies thap,, \5, <

oo if ap(Q) < oo. Moreover, we have for large enoughthat inf, % (z) =

—£,(0) = —£(0) > =xp. Hence,liminf, A% must be bounded away frof if

ap(Q) < oo. Hence, we may assume thgtconverges towards someé € (0, co).

Then

a0(@) += > lim nf Ai (w0 + Bo[ 60500 ]) 2 5 (v0 + Br [ 0%0)])

where we used again thé}(z) > —¢(0), uniformly in n andz. Lettinge | 0
completes the proof of the theorem. O
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Example 12For an exponential loss function, the penalty function can be described
in terms of relative entropy. Let us takér) = e® andz, = 1 so that

p(X) =inf{mER‘Ep[e_m_X] < 1} =logEp[e ¥].

Then (17) becomes the well-known variational formula for the relative entropy,
namely

a(@=_ sw (Bg[-X]-logEp[e*]) = HQIP),
XEeL>=(2,F,P)

where the relative entropy @j with respect taP is defined as

dQ . dQ .
— log —dP if P
H(Q|P) := /dP o8 p I Q< P,
+00 otherwise.
Example 13Take in (20)
1 .
TR
0 otherwise,

wherep > 1. ThenI(z) = 2*/®=Y and withq = p/(p — 1)

1 .
ry= s 120

+oo otherwise.
Thus, forzg > 0 the conditions of Theorem 10 are fulfilled. Thus@if< P with
v :=dQ/dP € L1(2,F, P), then the infimum in (21) is attained for

o Top 1/q
Hence we can identifg(Q) for any@ <« P as

dQ\a71/a

= 1/p. =

a(Q) = (pz0)* - Er | (55) | -

Together with Proposition 9, Theorem 10 yields the following result for risk

measures which are defined in terms of a robust notion of bounded shortfall risk.

Corollary 14 Suppose tha@ is a family of equivalent probability measures, and
that?, ¢*, andx, are as in Theorem 10. Of' := L*>°({2, F, P), foranyP € Q,
let

A= { X ex|Bp[t(-X)] <y foral Pc Q}. @7)

Then the corresponding convex risk measure can be represented in terms of the
penalty function

a(Q) = juf 5 (a0 + jut En [ (AG2) ).
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Example 15In the situation of Example 12, the corresponding robust problem as
in Corollary 14 leads to the following entropy minimization problem: For a given
@ and a set of equivalent probabilities, find

nf HQIP).

Note that this problem is different from the standard problem of minimizing
H(Q|P) with respect to the first variable as it appears, e.g., in the theory of large
deviations.

4 Risk measures arising in a financial market with convex constraints

We consider afiltered probability spa@e, F, (Fi)i=o,... 7, P) and amarket where
one bond and risky assets are traded. The price of the bond will be assumed to
be normalized ta, and the (correspondingly discounted) price process of the risky
assets is denoted by; = (X!,..., X2). We will assume that

X/ >0 fori=1,...,dandt=0,...,T. (28)

Any d-dimensional predictable processan be regarded as a self-financing trading
strategy;¢; is the number of shares held of tifeasset during the trading period
t—1~t,and

t
Vi=Vo+ Y & (X — Xp1)
k=1
is the associated value process for an initial endowriignt
Now consider a financial positiai € L>°(P). Z can be interpreted as “risk-
less” if Z > 0 or, more generally, if the “risky part” of can be hedged at no
additional cost. The latter means that we can find a suitable hedging pogfolio

such that
T

Z+Y & (X,—X,1)>0  P-as. (29)
t=1
Note that (29) is only possible §fis admissiblén the sense that there is a constant
¢ = ¢(£) such that the associated gains process satisfies

T
Gr(&) =) & (X, —X,.1)>—c  P-as, (30)
t=1

because the positia# is bounded.

If we think of Z being the value of a large portfolio, we should avoid to run
into the regime of illiquidity when hedging. For instance, one may want to
impose individual limits on the number of shares held of the risky assets. In this
case, each componetit is only allowed to take values in some intervaj, b;]
with a; < 0 < b;. Such constraints on the hedging portfolio were first suggested by
Cvitanic and Karatzas [2], [3]. Here we will work with the more general framework
introduced in the continuous-time setting b§llfer and Kramkov [5].

Thus, letS be a set of admissible trading strategies such that
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-0€eS.
— X is predictably convexlIf ¢!, £2 € S andh is a predictable process with
0 < h < 1,then alsa” € S wheret) := hy&} + (1 — hy)€2.

In a first step, we define the non-empty set

A= {Z € L>°(P) ‘there exist§ € S
T
with Z +3 & - (X, — Xi-1) 2 0 P-a.s.} . (31)
t=1

of acceptable positions which can be hedged with strategi&sanhno cost. By
Proposition 4,4 induces the convex measure of risk

p(Z)::pA(Z):inf{meR‘m—i-ZeA} (32)
provided that
pa(0) > —oco. (33)

Note that (33) holds, in particular,& does not contain arbitrage opportunities. We
will assume (33) throughout this section.
The following questions arise:

— When doeg permit a representation of the form (16)?
— If so, can one identify the minimal penalty functieg?

Let us first consider the second question.

Proposition 16 Suppose the convex measure of piskinduced by the setl of
(31) possesses a representation of the form (16). Then the minimal penalty function
ap(+) in the representation (16) is given by

ao(Q) = Eg[ A?] for Q < P. (34)
Here A< is the predictable increasing process defined by

AZ =0, A2, - AQ.= ezggup{gtﬂ . (EQ[XHl | 7] - Xt)} . (35)

Proof First note thatFg [ & - (X; — X;—1) | Fi—1 ] is well-defined and satisfies
Eqlé - (Xi— Xi1) | Fn] =& (Bo[ Xu| Fia ] = X
forevery¢ € S.Toseethis, observe firstthat by predictable convexityglsas S,

where
ggt) = {ft |f s = t:

0 otherwise.

By assumption every elementdhis admissible in the sense of (30), and thus there
is some constant with &, - (X; — X; ;) = G¢(¢W) > —¢ P-a.s. Using our
Assumption (28) that prices are non-negative, the claim follows.
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Next, if Z € A there existg € Swith —Z < >3, & - (X, — X;_,) P-as.
By using the above identity faf; - (Eq[ X¢ | Fi—1] — X;—1), we obtain that for
QKP

T
Eql-Z] < Eo[ Y& (X, — X, 1) | < B[ 42]. (36)

t=1
Hence, we conclude from Proposition 7 that

Ozo(Q) = sup EQ[—Z] < EQ[A%] .
ZcA

Now we turn to the proof of the converse inequality. To this end, we show first

that -
o = { 3ol (-l fees)
t=1

is directed upwards in the sense that{far ¢, € ¥ there isy3 € ¥ with 3 >
Yn Ve, FOre, € € S let

Ay = {EQ[ft (X = Xiq) ‘-7:75—1] > EQ[& (X — Xioq) |~7:t—1] } )
and defing’ € S by _
gé = gtIAt + gtIAf .
Then clearly
EQ[& (X — Xio1) ‘}—tq]
= EQ[ft (X — Xi1) |-7:t71] \/EQ[gt (X — Xi1) ‘-7:#1] )

and therefore is directed upwards. It follows thaﬁ? = eSS SUp is the limit of
an increasing sequencein Hence,

T
Eq[A?] = zlelgEQ [ ZEQ[& (X — Xeo1) | Fiea ]
t=1

= supsupEQ[GT(Q A k] .
£€S keN

Admissibility yields that— (G (&) A k) € A C A, and thus
EQ[Ag] =supsup Eq [ Gr(&) ANk] < ap(Q).
£€S keN

This concludes the proof. O

Letus now turn to the question of the existence of a representation (16)sLet
denote the class of all probability measufethat satisfy the following conditions
oD~ P,
e X, € L'(P)forallt, (37)
e the value process of every strategySris
a supermartingale undét.
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Theorem 17 Assume thab is closed under convergence in probability, anddet
denote the convex measure of riskn= L°(P) arising from the se# of (31).
Then the following conditions are equivalent.

1. pisrelevantin the sense thatX) > 0 wheneverX € X is non-positive and
satisfiesP[ X < 0] > 0.

2. There are no arbitrage opportunities &

3. The sefPs is non-empty.

If one of these conditions is fulfilled possesses a representation of the form (16)
where one can take(Q) as in (34) forQ ~ P anda(Q) = coif Q % P.

That the relevance gfis equivalent to the absence of arbitrage follows imme-
diately from the respective definitions. The proof of the remaining assertions uses
standard techniques for proving the fundamental theorem of asset pricing and the
superhedging duality theorem; for the details we refer to [8].

Remark 18In a continuous-time financial market model where the price process
X follows a special semimartingale undeyone can similarly define a predictably
convex setS of admissible integrands and a corresponding convex measure of
risk p. If one assumes in addition that the gef ¢ dX | ¢ € S} is closed in the
seminartingale oEmery topology, the optional decomposition theorem of [5] will
imply a representation (16) @f. The penalty functiory(Q)) can be described as
a(Q) = EQ[Ag] provided that) satisfies the following three conditions are
fulfilled. @ is equivalent toP, every process ¢ dX with ¢ € S is a special
semimartingale undep, and@ admits the upper variation proced$ for the set

{ [¢dX |¢ € S}. One can take(Q) = oo for measures) which do not fulfill

one of these conditions.

In a second step, we combine the results of this section with those of Sect. 3.
If £is a convex loss function ang, is an interior point in the range &f one can
call a positionX € X = L°°(P) acceptable if there exists € S such that the
expected loss oK + G (&) is bounded byzy, i.e.,

Ep[6(— X~ Gr(&) ] < 0. (38)

The risk measure arising from this class of acceptable positions is closely related to
the problem of efficient hedging or the problem of utility maximization; see, e.g.,
[6], [15]. Here we go one step further and replace the risk measure associated with
¢ by a general risk measup€ which possesses a representation (16). A position
X € X will be acceptable if there exisgse S such thatX + G (§) is acceptable

for p° in the sense that there existse A" := A, such thatX + G7(§) > Y

(note thatX + G (&) needs not be bounded):

X:z{XeX‘erSsuchthat?(+GT(§)ZonrsomeYer}. (39)

Letp := pz. According to Proposition 43 is a convex measure of risk provided
that
p(0) > —oc0. (40)
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Note that this condition (40) implies our Assumption (33).

Let us first consider the special case whdfeis defined in terms of a convex
loss function, and let us show thatoincides indeed with the risk measure which
arises from the acceptability criterion (38). For this identity, the condition (40) is
not needed.

Proposition 19 Suppose that the acceptance.détis of the form (20) for a convex
loss functior? and an interior pointz in the range of. Then

ﬁ(X):inf{meR‘HgeSsuchthatEp[é(—m—X—GT(f))] §x0}.
(41)

Proof Denote for the moment the right-hand side of (41)46y ). Clearly, p is
translation invariant, and every € A satisfies(X) < 0. Thus, we obtaim > p.
Conversely, ifX € X is arbitrary andn > p(X), then there exist§ € S such that

Ep[f(—m—X—GT(f))} < X0 .
If £ > 0islarge enough, then
EP[E(—m—XfGT(f)/\k)] <uxz.

It follows thatY := m + X + G7(£) A k € A°, which in turn implies that
m+ X € Aandp(X) < m. 0

For ageneral risk measys®, the following proposition shows how the resulting
risk measurg depends both op® and on the structure of the financial market.

Proposition 20 Assume (40) and let 4 and » be the convex measures of risk
associated with the acceptance sdtand. A of (31) and (39), respectively. If both
p.4 andp possess representations (16), then the minimal penalty furiggiarising

in the representation (16) ¢fis given by

®W(Q) =0p(@) + (@), Q< P, (42)
wherea is the minimal penalty function foi° and o, is given by (34).

Proof Let .4 be the acceptance set of (31). It is easy to prove that
A= {X0+X1‘X06A°, X! EA}.

Forinstance, ifX € A, thenthere existg € A% and¢ € S suchthatX +Gr(€) >
Y. Hence, X" is the sum ofX — Y € A and ofY € A°.
Now it follows from (18) that

a(Q) = suREQ[—X} = sup sup EQ[—XO—XW = ad(Q)+aj(Q).
XecA X0eA0 X1e AL

This proves the assertion. a
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