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Abstract
We perform an empirical study to better understand two
well-known vulnerability rewards programs, or VRPs,
which software vendors use to encourage community
participation in finding and responsibly disclosing soft-
ware vulnerabilities. The Chrome VRP has cost approx-
imately $580,000 over 3 years and has resulted in 501
bounties paid for the identification of security vulnerabili-
ties. The Firefox VRP has cost approximately $570,000
over the last 3 years and has yielded 190 bounties. 28%
of Chrome’s patched vulnerabilities appearing in secu-
rity advisories over this period, and 24% of Firefox’s,
are the result of VRP contributions. Both programs ap-
pear economically efficient, comparing favorably to the
cost of hiring full-time security researchers. The Chrome
VRP features low expected payouts accompanied by high
potential payouts, while the Firefox VRP features fixed
payouts. Finding vulnerabilities for VRPs typically does
not yield a salary comparable to a full-time job; the com-
mon case for recipients of rewards in either program is
that they have received only one reward. Firefox has far
more critical-severity vulnerabilities than Chrome, which
we believe is attributable to an architectural difference
between the two browsers.

1 Introduction
Some software vendors pay security researchers for the re-
sponsible disclosure of a security vulnerability. Programs
implementing the rules for this exchange are known as
vulnerability rewards programs (VRPs) or bug bounty
programs. The last couple of years have seen an upsurge
of interest in VRPs, with some vendors expanding their
existing programs [1, 19], others introducing new pro-
grams [3, 34, 38], and some companies offering to act as
an intermediary between security researchers and vendors
offering VRPs [53].

VRPs offer a number of potential attractions to software
vendors. Offering adequate incentives entices security re-
searchers to look for vulnerabilities, and this increased
attention improves the likelihood of finding latent vulner-
abilities.1 Second, coordinating with security researchers
allows vendors to more effectively manage vulnerability
disclosures, reducing the likelihood of unexpected and

1For instance, Linus’s Law suggests “Given enough eyeballs, all
bugs are shallow.” [48]

costly zero-day disclosures. Monetary rewards provide an
incentive for security researchers not to sell their research
results to malicious actors in the underground economy
or the gray world of vulnerability markets. Third, VRPs
may make it more difficult for black hats to find vulnera-
bilities to exploit. Patching vulnerabilities found through
a VRP increases the difficulty and therefore cost for mali-
cious actors to find zero-days because the pool of latent
vulnerabilities has been diminished. Additionally, expe-
rience gained from VRPs (and exploit bounties [23, 28])
can yield improvements to mitigation techniques and help
identify other related vulnerabilities and sources of bugs.
Finally, VRPs often engender goodwill amongst the com-
munity of security researchers. Taken together, VRPs
provide an attractive tool for increasing product security
and protecting customers.

Despite their potential benefits, there is an active de-
bate over the value and effectiveness of VRPs. A number
of vendors, notably Microsoft,2 Adobe, and Oracle, do
not maintain a VRP, with Microsoft arguing that VRPs
do not represent the best return on investment on a per-
bug basis [26]. Further, it is also not clear if the boun-
ties awarded are a sufficient attraction for security re-
searchers motivated by money—underground economy
prices for vulnerabilities are far higher than those offered
by VRPs [20, 37].

Given the emergence of VRPs as a component of the
secure development lifecycle and the debate over the effi-
cacy of such programs, we use available data to better un-
derstand existing VRPs. We focus on the Google Chrome
and Mozilla Firefox web browsers, both of which are
widely considered to have mature VRPs, as case studies.
We analyze these VRPs along several dimensions with
the intention of better understanding the characteristics,
metrics, and trajectory of a VRP.

We make the following contributions:

• We collect and analyze data on vulnerability rewards
over the last 3 years for the Google Chrome VRP
and the Mozilla Firefox VRP (Section 3).

• We assess the state of these VRPs along several
dimensions, including costs, benefits, popularity, and

2On June 19, 2013, during final preparation of this manuscript,
Microsoft announced a month-long VRP for the IE11 developer pre-
view [54].
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efficacy (Section 4), finding that these VRPs appear
both effective and cost-effective.

• We make concrete recommendations for software
vendors aiming to start or evolve their own VRP
(Section 5.2).

• We generate hypotheses, which identify opportuni-
ties for future research on VRPs and secure software
development.

2 Background
A secure software development lifecycle (SDLC) aims to
address software security throughout the entire software
development process, from before specifications are de-
veloped to long after software has been released [15]. A
vulnerability remediation strategy is any systematic ap-
proach whose goal is to reduce the number of software
vulnerabilities [57]. Vulnerability remediation strategies
are one important part of an SDLC, complemented by
things like incident response [32], operational security
considerations [46], and defense in depth [16].

Potential vulnerability remediation strategies include:

• Code reviews. These can range from informal, as-
needed requests for code review to systematized, for-
mal processes for mandatory code inspection. Typi-
cally, SDLCs also include an extra security review
for security critical features.

• Penetration testing. Software vendors may perform
in-house penetration testing or may hire external
companies who specialize in this service. Penetra-
tion testing ranges from manual to automated.

• Use of dynamic and static analysis tools. Special-
ized tools exist for catching a wide range of flaws,
e.g., memory safety vulnerabilities, configuration
errors, and concurrency bugs.

• Vulnerability rewards programs. The focus of
our study, VRPs have recently received increased
attention from the security community.

How such strategies are systematized and realized
varies widely between software vendors. One company
might require mandatory code reviews before code check-
in, while another might hire outside penetration testing
experts a month before product release. Vendors often
combine or innovate on existing strategies.

Vulnerability rewards programs (VRPs) appear to be
emerging as a viable vulnerability remediation strategy.
Many companies have them, and their popularity contin-
ues to grow [6,9]. But VRPs have gone largely unstudied.
For a company considering the use of a VRP in their
SDLC, guidance is limited.

By studying mature, high-profile VRPs, we aim to
provide guidance on the development of new VRPs and
the evolution and maturation of existing VRPs. Vendors
looking to grow their VRPs can benefit from an improved
understanding of those VRPs we study.

Toward this end, we measure, characterize, and dis-
cuss the Google Chrome and Mozilla Firefox VRPs. We
choose these VRPs in particular because browsers are a
popular target for malicious actors today. Their ubiqui-
tous nature and their massive, complex codebase with
significant legacy components make them especially vul-
nerable. Complex, high-performance components with a
large attack surface such as JavaScript JITs also provide
an alluring target for malicious actors. For the same rea-
sons, they are also widely studied by security researchers;
they therefore provide a large sample size for our study.
In addition, browser vendors were among the first to of-
fer rewards for vulnerabilities: Mozilla’s VRP started in
2004 and Google introduced the Chrome VRP in 2010,
before the security community at large adopted VRPs as
a vulnerability remediation strategy.

2.1 Goals

We intend to improve our understanding of the following
characteristics of a mature VRP: (1) Expected cost, (2)
expected benefits, (3) incentive levels effective for encour-
aging and sustaining community participation, and (4)
volume of VRP activity (e.g., number of patches coming
out of VRP reports).

We do so by studying available data coming out of two
exemplars of well-known, mature VRPs, that of Google
Chrome and Mozilla Firefox. Understanding these VRPs
will allow these vendors to evaluate and improve their
programs, and it will suggest targets for other vendors
to strive toward with their VRPs. At minimum, we hope
to arrive at a better understanding of the current state
of VRPs and how they have evolved. At best, we aim
to make concrete suggestions for the development and
improvement of VRPs.

2.2 Google Chrome VRP

The Google Chrome VRP3 is widely considered an ex-
emplar of a mature, successful VRP. When first intro-
duced in January 2010, the Google Chrome VRP offered
researchers rewards ranging from $500 for high- and
critical-severity bugs, with a special $1337 reward for
particularly critical or clever bugs. Over time, the typical
payout increased to a $1000 minimum with a maximum
payout of $3133.7 for high-impact vulnerabilities. Addi-
tionally, the Chrome team, has provided rewards of up to
$31,336 for exceptional vulnerability reports [21].

3The program is officially the Chromium VRP with prizes sponsored
by Google. We refer to it as the Google Chrome VRP for ease of
exposition.
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Google also sponsors a separate, semi-regular exploit
bounty called the “pwnium” competition [23]. This pro-
gram focuses on full exploits; a mere vulnerability is not
enough. In return, it awards higher bounties (as high as
$150,000) for these exploits [8]. Reliable exploits for
modern browsers typically involve multiple vulnerabili-
ties and significant engineering effort. For example, the
two winning entries in a recent “pwnium” contest required
six and ten vulnerabilities in addition to “impressive” en-
gineering in order to achieve a successful exploit [7, 45].
Our focus is on programs that provide bounties for vul-
nerabilities; we do not consider exploit bounties in this
work.

The severity of a vulnerability plays a key role in decid-
ing reward amounts. Google Chrome uses a clear guide-
line for deciding severity [12]. In short, a critical vulnera-
bility allows an attacker to run arbitrary native code on the
user’s machine; for instance, web-accessible memory cor-
ruption vulnerabilities that appear in the Chrome kernel4

are typically critical severity. A high-severity vulnerabil-
ity is one that allows an attacker to bypass the same-origin
policy, e.g., via a Universal XSS vulnerability (which en-
ables an attacker to mount an XSS attack on any web site)
or a memory corruption error in the sandbox. A vulner-
ability is of medium severity if achieving a high/critical
status requires user interaction, or if the vulnerability only
allows limited disclosure of information. Finally, a low-
severity vulnerability refers to all the remaining security
vulnerabilities that do not give the attacker control over
critical browser features. Medium-severity vulnerabili-
ties typically receive rewards of $500, and low-severity
vulnerabilities typically do not receive rewards.

2.3 Mozilla Firefox VRP

Mozilla’s VRP is, to the best of our knowledge, one of the
oldest VRPs in the industry. It was first started in 2004 and
based on a similar project at Netscape in 1995 [41]. The
Mozilla VRP initially awarded researchers $500 for high-
or critical-severity security bugs. Starting July 1, 2010
Mozilla expanded its program to award all high/critical
vulnerabilities $3000 [1].

Mozilla’s security ratings are similar to that of Chrome.
Critical vulnerabilities allow arbitrary code execution on
the user’s computer. Vulnerabilities that allow an attacker
to bypass the same-origin policy or access confidential
information on the user’s computer are high severity.
Due to the absence of privilege separation in the Fire-
fox browser, all memory corruption vulnerabilities are
critical, regardless of the component affected. Mozilla
is currently investigating a privilege-separated design for
Firefox [17, 36, 39].

Mozilla’s VRP also qualitatively differs from the

4Chrome follows a privilege-separated design [4]. The Chrome
kernel refers to the privileged component.

Google program. First, Mozilla awards bounties even
if the researcher publicly discusses the vulnerability
instead of reporting it to Mozilla.5 Second, Mozilla also
explicitly awards vulnerabilities discovered in “nightly”
(or “trunk”) versions of Firefox. In contrast, Google
discourages researchers from using “canary” builds and
only awards bounties in canary builds if internal testing
would miss those bugs [55].

3 Methodology
For both browsers, we collect all bugs for which rewards
were issued through the browser vendor’s VRP. To evalu-
ate the impact of the VRP as a component of the SDLC,
we also collected all security bugs affecting stable releases.
We chose to look only at bugs affecting stable releases to
ignore the impact of transient bugs and regressions caught
by internal testing.

For each bug in the above two datasets, we gathered
the following details: (1) severity of the bug, (2) reward
amount, (3) reporter name, (4) report date. For bugs
affecting stable releases, we also aimed to gather the date
a release patching the bug became available for download.
As we discuss below, we were able to gather this data for
only a subset of all bugs.

For all bugs, we mark a bug as internally or externally
reported via a simple heuristic: if a reward was issued,
the reporter was external, and otherwise the reporter was
internal. Because low and medium severity vulnerabil-
ities usually do not receive bounties, we only look at
critical/high vulnerabilities when comparing internal and
external bug reports. While all high/critical vulnerabilities
are eligible for an award, a researcher can still refuse an
award, in which case, our heuristic falsely marks the bug
“internal.” We are aware of a handful of such instances,
but there are not enough of these in our dataset to affect
our analysis.

We are also aware of some researchers who transitioned
from external to internal over the course of our study pe-
riod. Because our heuristic operates on a per-bug basis
(as opposed to marking each person as internal or exter-
nal), the same person may be (intentionally) considered
internal for one bug and external for another.

In this section, we present how we gathered this dataset
for Chrome and Firefox. We first discuss how we identify
the list of bugs affecting stable releases and bugs awarded
bounties, followed by a discussion on how we identified,
for each bug, other details such as severity. Finally, we
discuss threats to the validity of our measurement study.

3.1 Gathering the Google Chrome dataset

We gathered data from the official Chromium bug
tracker [13] after confirming with Google employees that

5But Mozilla reports that this was a rare occurrence over the period of
time we consider, possibly because the VRP became widely known [56].
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the bug tracker contained up-to-date, authoritative data
on rewards issued through their VRP. We search the bug
tracker for bugs marked with the special “Reward” label
to collect bugs identified through the VRP. Next, we
searched the bug tracker for bugs marked with the special
“Security-Impact: Stable” to collect bugs affecting stable
releases. Next, we remove the special Pwnium [23]
rewards from all datasets because Pwnium rewards
exploits instead of vulnerabilities as in the regular VRP.
This provides us with 501 bugs identified through the
VRP and 1347 bugs affecting stable releases.

The Chromium Bug tracker provides a convenient in-
terface to export detailed bug metadata, including severity,
reporter, and report date, into a CSV file, which we use
to appropriately populate our dataset. We identify the
reward amounts using the “Reward” label.

Unfortunately, the Chromium bug tracker does not in-
clude the release date of bug fixes. Instead, we gather
this data from the Google Chromium release blog [27].
For each stable release of the Chromium browser, Google
releases a blog post listing security bugs fixed in a release.
For the subset of bugs mentioned in these release notes,
we extract the release date of the stable version of Chrome
that patches the bug.

3.2 Gathering the Mozilla Firefox dataset

Similar to Google Chrome, we searched Bugzilla, the
Firefox bug tracker, for an attachment used to tag a bug
bounty.6 We identified 190 bugs via this search.

Unlike the Chrome bug tracker, Bugzilla does not pro-
vide a convenient label to identify bugs affecting stable
releases. Instead, Mozilla releases Mozilla Foundation
Security Advisories (MFSA) with every stable release of
Mozilla Firefox [40]. We scraped these advisories for
a list of bugs affecting stable releases. We also use the
MFSAs to identify the release date of a patched, stable
version of Firefox. We gathered 613 unique bugs from the
MFSA advisories dating back to March 22, 2010 (Firefox
3.6).

Similar to the Chromium Bug tracker, the Bugzilla
website provides a convenient interface to export detailed
bug data into a CSV file for further analysis. We used
Bugzilla to collect, for each bug above, the bug reporter,
the severity rating, and the date reported. The security
severity rating for a bug is part of the Bugzilla keywords
field and not Bugzilla’s severity field. We do not sep-
arately collect the amount paid because, as previously
discussed, Mozilla’s expanded bounty program awards
$3,000 for all critical/high vulnerabilities.

6The existence of this attachment is not always visible to the public.
We acknowledge the support of Mozilla contributor Dan Veditz for his
help gathering this data.

Severity Chrome Firefox
Stable Bounty Stable Bounty

Low 226 1 16 1
Medium 288 72 66 9
High 793 395 79 38
Critical 32 20 393 142
Unknown 8 13 59 0
Total 1347 501 613 190

Table 1: Number of observations in our dataset.

3.3 Dataset

Table 1 presents information about the final dataset we
used for our analysis. We have made our dataset available
online for independent analysis [33].

3.4 Threats to validity

In this section, we document potential threats to validity
so readers can better understand and take into account the
sources of error and bias in our study.

It is possible that our datasets are incomplete, i.e., there
exist patched vulnerabilities that do not appear in our
data. For example, for both Chrome and Firefox, we rely
heavily on the keyword/label metadata to identify bugs;
since this labeling is a manual process, it is possible that
we are missing bugs. To gather the list of bugs affecting
stable releases, we use the bug tracker for Chrome but
use security advisories for Mozilla, which could be in-
complete. Given the large number of vulnerabilities we
do have in our datasets, we expect that a small number of
missing observations would not materially influence the
conclusions we draw.

We treat all rewards in the Firefox VRP as $3,000
despite knowing that 8% of the rewards were for less
than this amount [56]. Data on which rewards were for
less money and what those amounts were is not publicly
available. Any results we present regarding amounts paid
out for Firefox vulnerabilities may therefore have as much
as 8% error, though we expect a far lower error, if any. We
do not believe this affects the conclusions of our analysis.

Parts of our analysis also compare Firefox and Chrome
VRPs in terms of number of bugs found, which assumes
that finding security vulnerabilities in these browsers re-
quires comparable skills and resources. It could be the
case that it is just easier to find bugs in one over the
other, or one browser has a lower barrier to entry for
vulnerability researchers. For example, the popular Ad-
dress Sanitizer tool worked only on Google Chrome until
Mozilla developers tweaked their build infrastructure to
enable support for the same [31]. Another confound is
the possibility that researchers target a browser based on
personal factors beyond VRPs. For example, researchers
could look for vulnerabilities only in the browser they
personally use.

Assigning bug severity is a manual process. While
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the severity assignment guidelines for both browsers are
similar, it is possible that vendors diverge in their actual
severity assignment practices. As a result, the bug severi-
ties could be incomparable across the two browsers.

We study only two VRPs; our results do not necessarily
generalize to any other VRPs. We caution the reader to
avoid generalizing to other VRPs, but instead take our
results as case studies of two mature, well-known VRPs.

4 Results
We study VRPs from the perspectives of three interested
parties: the software vendor, the independent security
researcher, and the security researcher employed full-time
by the software vendor.

4.1 Software vendor

We model the software vendor’s goal as follows: to in-
crease product security as much as possible while spend-
ing as little money as possible. There are many potential
strategies for working toward this goal, but in this paper
we consider the strategy of launching a VRP. We present
data on costs and benefits for two VRPs, and generate
hypotheses from this data. The software vendor’s motiva-
tion can also include publicity and engaging the security
research community. We do not measure the impact of
VRPs on these.

4.1.1 Number of vulnerabilities

The intended benefit of a VRP is to improve product se-
curity. A reduction in the number of latent vulnerabilities
is one way of improving product security. We find that
the Chrome VRP uncovers about 2.6 times as many vul-
nerabilities as that of Firefox (501 vs. 190), despite the
fact that Chrome’s total number of security vulnerabilities
in our dataset is only 2.2 times that of Firefox (Table 1).
27.5% of bugs affecting Chrome releases originate from
VRP contributions (371 of 1347), and 24.1% of bugs af-
fecting Firefox releases (148 of 613) result from VRP
contributions.

Discussion Both VRPs yield a significant fraction of
the total number of security advisories, which is a clear
benefit. Chrome is seeing approximately 1.14 times the
benefit of Firefox by our metric of fraction of advisories
resulting from VRP contributions. We only study bugs af-
fecting stable releases in this metric and caution the reader
from assuming that VRPs are competitive with internal
researchers. For both browsers, internal researchers find
far more bugs during the months of testing that precede
a typical browser release. For example, from January to
May 2013, across all release channels, Google researchers
found 140 high or critical vulnerabilities in Chrome, while
the Chrome VRP only found 40 vulnerabilities in the same
time period.
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Figure 1: Moving average over the current plus 5 previous
months of the percentage of vulnerabilities at each severity level
(low is blue solid line, medium is red long-dashed line, high is
green short-dashed line, and critical is yellow dash-dotted line).
In this and subsequent line graphs, the data are aggregated by
month to improve graph readability, and the x-axis represents
the open date of the bug.

4.1.2 Vulnerability severity

Another measure of improvement to product security is
change in vulnerability severity over time. It is a good
sign, for example, if the percentage of critical-severity
vulnerabilities has decreased over time.

Table 1 lists the total number of vulnerabilities by sever-
ity for Firefox and Chrome. Figure 1 plots the fraction of
vulnerabilities at each severity level over the current plus
5 previous months.

Discussion Firefox has a much higher ratio of criti-
cal vulnerabilities to high vulnerabilities than Chrome.
We expect that many of Firefox’s critical vulnerabilities
would instead be high severity if, like Chrome, it also had
a privilege-separated architecture. The lack of such an
architecture means that any memory corruption vulnera-
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bility in Firefox is a critical vulnerability. We therefore
hypothesize that:

Hypothesis 1 This architectural difference between
Chrome and Firefox—that the former is privilege-
separated and the latter is not—is the most influential
factor in causing such a large difference in vulnerability
severity classification.

The fraction of critical severity bugs has remained rela-
tively constant for Chrome. We also notice the start of a
trend in Chrome—the fraction of high severity vulnera-
bilities is declining and the fraction of medium severity
vulnerabilities is increasing.

Chrome’s privilege-separated architecture means that a
critical vulnerability indicates malicious code execution
in the privileged process. We see that there continue to
be new bugs resulting in code execution in the privileged
process. Further investigation into these bugs can help
understand how and why they continue to surface.

Low-severity vulnerabilities in Google Chrome make
up a significant fraction of all vulnerabilities reported.
In contrast, the fraction of low- and medium-severity
vulnerabilities in Firefox remains negligible.

Note that our dataset does not allow us to attribute
any change in vulnerability severity over time to the use
or success of a VRP. However, severity over time is a
metric worth tracking for a software vendor because it can
indicate trends in the overall efforts to improve product
security, of which a VRP may be one component.

4.1.3 Community engagement

One advantage of VRPs is engagement with the broader
security community. We studied this engagement along
two axes: (1) the contribution of internal and external
researchers towards identifying security vulnerabilities,
and (2) the number of external participants in each VRP.

Figure 2 depicts the cumulative number of high- and
critical-severity vulnerabilities patched and Figure 3 de-
picts the same, but for only critical vulnerabilities. Table 2
shows the distribution of the total number of vulnerabil-
ities reported by each external participant in each of the
two VRPs. Although a few external participants submit
many bugs, there is a clear long tail of participants in
both VRPs. Table 3 shows the same distribution, but for
internal (i.e., employee) reporters of vulnerabilities.

Discussion For both browsers, internal contributions
for high- and critical-severity vulnerabilities have consis-
tently yielded the majority of patches. The number of
external contributions to Chrome has nearly caught up
with the number of internal contributions (i.e., around
4/11 and 3/12, in Figure 2a) at various times, and as of
the end of our study, these two quantities are comparable.
Considering only critical-severity vulnerabilities, external
contributions have exceeded internal contributions as of
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Figure 2: Number of high- plus critical-severity vulnerabilities
reported over time, discovered internally (blue long-dashed line),
externally (red short-dashed line), and total (green solid line).

the end of our study. For Firefox, on the other hand, the
number of external contributions has consistently been
far lower than the number of internal contributions.

We observe an increase in the rate of external contri-
butions to Chrome starting around July 2010, six months
after the inception of the VRP. As seen in Figure 3a,
this is more pronounced when considering only critical-
severity vulnerabilities. We conjecture that this change
corresponds to increased publicity for the Chrome VRP
after Google increased reward amounts [19].

Linus’s Law, defined by Eric Raymond as “Given
enough eyes, all bugs are shallow,” suggests that it is
in the interests of the software vendor to encourage more
people to participate in the search for bugs. The distribu-
tions of bugs found by external participants indicate that
both VRPs have been successful in encouraging broad
community participation. The existence of a long tail
of contributors holds for internal contributors as well as
external contributors.
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Figure 3: Number of critical-severity vulnerabilities reported
over time, discovered internally (blue long-dashed line), exter-
nally (red short-dashed line), and total (green solid line).

4.1.4 Diversity

There is the potential benefit that the wide variety of
external participants may find different types of vulner-
abilities than internal members of the security team. A
few pieces of anecdotal evidence support this. Chrome
has awarded bounty amounts that include $1,337, $2,337,
$3,133.7, and $7,331 for bugs that they considered clever
or novel [21], and our dataset contains 31 such awards.
Additionally, one of PinkiePie’s Pwnium exploits led to
a full review of the Chrome kernel file API, which re-
sulted in the discovery of several additional vulnerabili-
ties [21, 51]. The Chrome security team missed all these
issues until PinkiePie discovered and exploited one such
issue [14]. We therefore hypothesize that:

Hypothesis 2 An increase in the number of researchers
looking for vulnerabilities yields an increase in the diver-
sity of vulnerabilities discovered.

# Bugs Freq.

1 45
3 2
4 1
6 1

10 1
12 2
13 3
16 1
17 1
22 1
24 1
27 1
35 1
48 1
92 1

Total 63

(a) Chrome

# Bugs Freq.

1 46
2 9
3 4
5 1
6 1
9 1

10 1
12 1
14 1
47 1

Total 66

(b) Firefox

Table 2: Frequency distribution of number of high- or critical-
severity vulnerabilities found by external contributors.

# Bugs Freq.

1 67
2 10
3 10
4 2
5 2

14 1
20 2
67 1

263 1
Total 96

(a) Chrome

# Bugs Freq.

1 43
2 10
3 7
4 3
5 2
6 2
7 1

12 1
13 1
15 1
17 2
18 1
21 1
23 1
44 1

Total 77

(b) Firefox

Table 3: Frequency distribution of number of high- or critical-
severity bugs found by internal contributors.

4.1.5 Cost of rewards

Though the number of bounties suggests that VRPs pro-
vide a number of benefits, a thorough analysis necessarily
includes an analysis of the costs of these programs. In
this section, we examine whether VRPs provide a cost-
effective mechanism for software vendors. We analyze
one ongoing cost of the VRP: the amount of money paid
to researchers as rewards for responsible disclosure. Run-
ning a VRP has additional overhead costs that our dataset
does not provide any insight into.

Figure 4 displays the total cost of paying out rewards
for vulnerabilities affecting stable releases. We find that
over the course of three years, the costs for Chrome and
Firefox are similar: approximately $400,000.
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Figure 4: Cumulative rewards paid out for Chrome (blue solid
line) and Firefox (red dashed line), excluding rewards for vul-
nerabilities not affecting stable versions.

Rewards for Development Releases Both Firefox and
Chrome issue rewards for vulnerabilities that do not af-
fect stable release versions, increasing the total cost of
the VRP beyond the cost of rewarding vulnerabilities af-
fecting stable releases. One potential drawback of such
rewards is that the VRPs awards transient bugs that may
never make their way into a user-facing build in the first
place. On the other hand, such rewards could catch bugs
earlier in the development cycle, reducing the likelihood
of expensive out-of-cycle releases.

Figure 5 shows the cumulative rewards issued by each
of the two VRPs for vulnerabilities affecting stable re-
leases, vulnerabilities not affecting stable releases, and
the sum of the two. We observe that the Chrome VRP has
paid out $186,839, 32% of its total cost of $579,605 over
the study period for vulnerabilities not affecting a stable
release. The Firefox VRP has paid out $126,000, 22% of
its total cost of $570,000, over the study period for such
vulnerabilities.

Discussion The total cost of each of the two VRPs is
remarkably similar. Both spend a significant fraction
of the total cost on vulnerabilities not present in stable
release versions.

4.1.6 Average daily cost

Figure 6 plots the average daily cost to date of each VRP
over time. We see that Chrome’s VRP has cost $485 per
day on average, and that of Firefox has cost $658 per day.

Discussion If we consider that an average North Amer-
ican developer on a browser security team (i.e., that of
Chrome or Firefox) would cost the vendor around $500
per day (assuming a $100,000 salary with a 50% over-
head), we see that the cost of either of these VRPs is
comparable to the cost of just one member of the browser
security team. On the other hand, the benefit of a VRP
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Figure 5: Cumulative rewards paid out for vulnerabilities affect-
ing a stable release (blue long-dashed line), vulnerabilities not
affecting any stable release (red short-dashed line), and the sum
of the two (green solid line).

far outweighs that of a single security researcher because
each of these VRPs finds many more vulnerabilities than
any one researcher is likely to be able to find. For bugs
affecting stable releases, the Chrome VRP has paid 371
bounties, and the most prolific internal security researcher
has found 263 vulnerabilities. For Firefox, these num-
bers are 148 and 48, respectively. Based on this simple
cost/benefit analysis, we hypothesize that:

Hypothesis 3 A VRP can be a cost-effective mechanism
for finding security vulnerabilities.

4.2 External security researcher

We model the goal of an external security researcher as
follows: to make as much money as possible in as lit-
tle time as possible.7 The researcher can contribute to

7Naturally, this does not reflect the reality of every security re-
searcher’s goal.
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Figure 6: Average daily cost to date since first reward.

any VRP he chooses, each of which pays out according
to some rewards distribution. The researcher has some
perception of security of each product, which reflects the
expected amount of time the researcher will have to spend
to find a vulnerability.

A rational strategy for the security researcher is to look
for products perceived to be insecure that also happen to
pay large bounties. This implies that a product with a
higher perceived security must pay relatively higher boun-
ties to encourage researchers to look for vulnerabilities in
it as opposed to in a different product that is perceived to
be less secure. We therefore hypothesize that:

Hypothesis 4 In an efficient market with many VRPs
and fluid reward structures, larger rewards reflect a
higher level of perceived security by the population of
researchers who contribute to VRPs.

4.2.1 Reward amounts

Our dataset provides insight into the distributions of re-
wards for two products. Firefox offers a standard reward
of $3,000 for all vulnerabilities. In contrast, the Chrome

Amount ($) Frequency (%)

500 24.75
1,000 60.08
1,337 3.59
1,500 2.99
2,000 2.99
2,337 0.60
2,500 0.60
3,000 0.20
3,133 1.80
3,500 0.20
4,000 0.20
4,500 0.20
5,000 0.20
7,331 0.20

10,000 1.40

Table 4: Percentage of rewards given for each dollar amount in
Chrome VRP.

VRP’s incentive structure provides different reward levels
based on a number of subjective factors like difficulty of
exploit, presence of a test case, novelty, and impact, all of
which is at the discretion of Google developers.

Table 4 depicts the reward amounts paid to external
researchers by the Chrome VRP. The majority of the
rewards are for only $500 or $1,000. Large rewards, such
as $10,000 rewards, are infrequent.

Discussion We hypothesize that high maximum rewards
entice researchers to participate, but low ($500 or $1,000)
rewards are typical, and the total cost remains low. The
median (mean) payout for Chrome bug bounty is $1,000
($1,156.9), suggesting that a successful VRP can be in-
expensive with a low expected individual payout. Much
like the lottery, a large maximum payout ($30,000 for
Chrome), despite a small expected return (or even nega-
tive, as is the case of anyone who searches for bugs but
never successfully finds any) appears to suffice in attract-
ing enough participants. Bhattacharyya and Garrett [5]
explain this phenomenon as follows:

Lotteries are instruments with negative ex-
pected returns. So when people buy lottery
tickets, they are trading off negative expected
returns for skewness. Thus, if a lottery game
has a larger prize amount, then a buyer will be
willing to accept a lower chance of winning
that prize.

4.2.2 VRPs as employment

Our dataset also allows limited insight into how much
money independent security researchers make. Table 5a
displays the total amounts of money earned by each exter-
nal contributor to the Chrome VRP. Only three external
contributors (out of eighty two) have earned over $80,000
over the lifetime of the VRP, and an additional five have
earned over $20,000.

9
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$ earned Freq.

500 26
1,000 25
1,337 6
1,500 2
2,000 1
3,000 2
3,133 1
3,500 2
4,000 1
5,000 1
7,500 1

11,000 1
11,500 1
11,837 1
15,000 1
17,133 1
18,337 1
20,633 1
24,133 1
28,500 1
28,633 1
37,470 1
80,679 1
85,992 1

105,103 1
Total 82

(a) Chrome

$ earned Freq.

3,000 46
6,000 12
9,000 4

12,000 1
15,000 1
21,000 1
27,000 1
30,000 1
36,000 1
42,000 1

141,000 1
Total 70

(b) Firefox

Table 5: Frequency distributions of total amounts earned by
external VRP contributors.

In contrast to Google Chrome, we see in Table 5b that a
single Firefox contributor has earned $141,000 ($47,000
per year) since the beginning of our study period. Ten
of this individual’s rewards, representing $30,000, were
for vulnerabilities that did not impact a stable release.
Six contributors have earned more than $20,000 via the
Mozilla VRP.

Discussion Based on the data from 2 VRPs, we hypoth-
esize that:

Hypothesis 5 Contributing to a single VRP is, in gen-
eral, not a viable full-time job, though contributing to
multiple VRPs may be, especially for unusually successful
vulnerability researchers.

4.2.3 Repeat contributors

Figure 7 shows the cumulative number of vulnerabilities
patched due to reports from first-time VRP participants
and repeat participants. For both programs, first-time
participant rewards are steadily increasing, and repeat
participant rewards are increasing even more quickly.

Discussion Both VRP incentive structures are evidently
sufficient for both attracting new participants and contin-
uing to entice existing participants, though we do note
differences between Chrome and Firefox. Until recently,
repeat participants in Firefox’s VRP represented a rel-
atively small fraction of the number of awards issued.
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Figure 7: Cumulative number of vulnerabilities rewarded, as
reported by (1) first-time VRP contributors (blue short-dashed
line), (2) repeat contributors (red long-dashed line), and (3) all
contributors (green solid line).

Chrome, on the other hand, has seen the majority of its
reports come from repeat participants for nearly the whole
lifetime of its VRP.

4.3 Internal security researcher

An internal security researcher is a full-time employee of
a software vendor who is paid a salary to find as many
vulnerabilities as possible. Google hired at least three re-
searchers who first came to light via the Chrome VRP [21]
and Mozilla hired at least three researchers as well [56].

Discussion A software vendor may choose to hire an
unusually successful independent security researcher. The
researcher’s past performance indicates how many vul-
nerabilities the vendor can expect them to find, and the
vendor may prefer to pay a fixed salary instead of a per-
vulnerability reward. The researcher may also prefer this;
the researcher trades a potentially higher amount of cash
for less compensation, but more benefits and job security.
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Median, Std. dev. Median, Std. dev.,
Severity Chrome Chrome Firefox Firefox

Low 58.5 110.6 114 256.1
Medium 45.5 78.9 106 157.6

High 28.0 35.3 62.5 85.7
Critical 20.0 26.6 76 116.5

Table 6: Median and standard deviation of number of days
between vulnerability report and release that patches the vulner-
ability, for each severity level.

Accordingly, we hypothesize that:

Hypothesis 6 Successful independent security re-
searchers bubble to the top, where a full-time job awaits
them.

4.4 Other factors

Our dataset provides an additional opportunity to better
understand the state of the SDLC (software development
lifecycle) at Mozilla and Google. In particular, we ana-
lyze (1) the elapsed time between a vulnerability report
and the release of a patched browser version that fixes the
vulnerability, and (2) how often vulnerabilities are inde-
pendently discovered, and what the potential implications
are of this rediscovery rate.

4.4.1 Time to patch

As previously discussed, we choose to study time to re-
lease a patched version, not time to commit a patch. Al-
though relying on time to release a patch means we an-
alyze only a subset of the data (Section 3), we believe
the time to release a patched version of the browser is the
more useful metric for end users. Mozilla Firefox and
Google Chrome both follow a rapid-release cycle, with a
new release every 6 or 7 weeks [11, 25]. In some cases,
browser vendors release an out-of-band (or “chemspill”)
release for vulnerabilities with active exploits in the wild.
Such out-of-band releases are one of the most expensive
incidents for software companies, with costs running into
millions of dollars [30]. Our metric awards the engineer-
ing and management commitment required in choosing
to release such versions.

Figure 8 depicts the time between initial report of a
vulnerability and the stable release that patches it. Table 6
gives summary statistics for these distributions.

Figure 9 is a scatter plot of the same data, which al-
lows us to see changes in time to patch over time. Fig-
ure 10 shows the change in standard deviation of time to
patch over time. More specifically, for a given release
date, the y-value is the standard deviation for all bugs
patched in that release or up to five prior releases. These
graphs indicate that the standard deviation in time to patch
critical vulnerabilities has slowly dropped for Firefox,
while Chrome’s time to patch critical vulnerabilities has
remained relatively constant over time.
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Figure 8: Box and whisker plots depicting the distributions of
time between vulnerability report and release that patches the
vulnerability, for each severity level.

Discussion For Chrome, both the median time to patch
and the variance are lower for higher severity vulnerabili-
ties. This is an important parameter for a VRP because
responsible disclosure depends critically on vendor re-
sponse time [22, 50]. If a vendor does not patch in a rea-
sonable time frame, security researchers are less likely to
exercise responsible disclosure. Accordingly, this may be
a contributing factor in Firefox’s lower degree of commu-
nity participation (as compared to Chrome), given that the
time to patch critical vulnerabilities in Firefox is longer
and has very high variance.

In Chrome, the time to patch is faster for critical vulner-
abilities than it is for high severity vulnerabilities. This
trend continues for medium- and low-severity vulnera-
bilities as well. This indicates correct prioritization of
higher-severity vulnerabilities by Chrome security en-
gineers. The same cannot be said for Firefox; high and
critical severity vulnerabilities tend to take about the same
amount of time to fix.
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Figure 9: Scatter plots depicting the time between vulnerability
report and release that patches the vulnerability vs. time, for
each severity level.

The high variance in Firefox’s time to patch critical
vulnerabilities may be partly attributable to the lack of
privilege separation in Firefox, since a larger TCB for
critical vulnerabilities means that there is a larger pool of
engineers owning code that might hold a critical vulnera-
bility. However, it is an encouraging sign that Firefox has
gradually reduced this variance. Nonetheless, the variance
in patch times and typical time to patch for Firefox both
remain far higher than we see for Chrome, suggesting the
need for a concerted effort at reducing this.

4.4.2 Independent discovery

Using the Chromium release blog, we manually coded
an additional variable independent. This variable
represents the number of times a vulnerability was inde-
pendently discovered. We coded it using the text of the
credit variable, which mentions “independent discov-
ery” of a vulnerability in the case of multiple independent
discoveries.
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Figure 10: Standard deviation of time to patch over time. For
a given release date, the y-value is the standard deviation of all
bugs patched in that release or up to five prior releases. The red
solid line is for Firefox, and the blue dashed line is for Chrome.

Our Chrome dataset indicates when a vulnerability was
independently discovered by multiple parties, identifies
the parties, and in some cases, gives an upper bound
on the time between discovery and rediscovery. Of the
668 vulnerabilities in our Chrome VRP dataset, fifteen
(2.25\%) of them had at least two independent discoveries,
and two of these had three independent discoveries. This
is a lower bound on the number of independent discover-
ies of these vulnerabilities, since it represents only those
known to the vendor.

Figure 11 displays the independent rediscovery rates
for individuals. Each dot represents an individual contrib-
utor in our dataset. Its x-value gives the number of vul-
nerabilities discovered by this individual, and its y-value
gives the number of these vulnerabilities independently
rediscovered by another contributor in our dataset. Of
those individuals who reported five or more vulnerabili-
ties, the highest rediscovery rate is 25\% and the mean is
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Figure 11: Independent vulnerability discoveries within the
Chrome VRP dataset. Each dot represents an individual con-
tributor in our dataset. Its x-value gives the number of vulnera-
bilities contributed by this individual, and its y-value gives the
number of these contributions that were independently discov-
ered by another contributor in our dataset.

4.6\%.
Our Firefox dataset does not indicate independent re-

discovery, but we have limited data from personal com-
munication with a Firefox security engineer [56]. He
indicated that there had been at least 4–7 vulnerabilities
reported through the VRP for which there had been two
independent discoveries, a rate of 2.7% to 4.7%, which is
consistent with what we see in our Chrome dataset.

Discussion Independent rediscovery rates can have im-
plications for estimating the number of latent bugs in
software [29] as well as understanding the expected decay
rate of a stash of zero-day vulnerabilities.

A zero-day loses its value when the vendor becomes
aware of it, which happens via independent discovery of
the vulnerability. Thus, a stash of zero-days will decay at
some rate. From the limited data available to us via our
study, we hypothesize that:

Hypothesis 7 The decay rate of a stash of zero-day vul-
nerabilities is low enough to be inconsequential as a result
of relatively low empirical independent rediscovery rates.

We encourage future studies that aim to confirm or refute
this hypothesis using larger, more appropriate datasets.

5 Discussion and recommendations
In this section, we synthesize what we have learned and
present concrete recommendations for software vendors
based on our data analysis.

5.1 Mozilla Firefox vs. Google Chrome

Despite costing approximately the same as the Mozilla
program, the Chrome VRP has identified more than three

times as many bugs, is more popular and shows simi-
lar participation from repeat and first-time participants.
There is a stark difference between the levels of external
participation in the two VRPs (Figure 2).

Despite having the oldest bounty program, external
contributions lag far behind internal contributions to Fire-
fox’s security advisories. In contrast, external contribu-
tions to Chrome’s security advisories closely rival internal
contributions. Investigating further, we find three key dif-
ferences between the two programs:

Tiered structure with large special rewards Mozilla’s
program has a fixed payout of $3,000, which is approxi-
mately equal to the normal maximum payout for Chrome
($3,1337). Nonetheless, Chrome’s tiered structure, with
even higher payouts (e.g., $10,000) possible for clever
bugs and special cases appears to be far more effective
in encouraging participation. This makes sense with an
understanding of incentives in lotteries: the larger the po-
tential prize amount, the more willing participants are to
accept a lower expected return, which, for VRPs, means
the program can expect more participants [5].

Time to patch We see a far higher variance in the
time-to-release-patch metric for critical vulnerabilities in
Mozilla Firefox. It is generally accepted that the viability
of responsible disclosure depends on a reasonable vendor
response time [50]. Thus, the high variance in Mozilla’s
response time could affect responsible disclosure through
the VRP.

Higher profile Chrome’s VRP has a higher profile, with
annual competitions like Pwnium providing particularly
high rewards (up to $150,000). Chrome authors also
provide extra reward top-ups for “interesting” bugs. We
believe this sort of “gamification” leads to a higher profile
for the Chrome VRP, which may help encourage partici-
pation, particularly from researchers interested in wider
recognition.

Our methodology does not provide insight into the mo-
tivations of security researchers and the impact of VRP
designs on the same—a topic we leave for future work.
Nevertheless, we hypothesize that these three factors com-
bined explain the disparity in participation between the
Firefox and Chrome VRPs. Accordingly, we recommend
Mozilla change their reward structure to a tiered system
like that of Chrome. We urge Mozilla to do whatever it
takes to continue to reduce the variance in time to release
a patch for critical vulnerabilities, though we also realize
the difficulty involved in doing so. Ongoing attempts at
privilege separation might enable reducing the variance in
time to patch critical vulnerabilities [17, 36, 39]. Mozilla
can also consider holding its own annual competitions or
otherwise increasing the PR surrounding its VRP.
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5.2 Recommendations for vendors

Our study of the Chrome and Firefox VRPs yield a num-
ber of observations that we believe can guide vendors
interested in launching or evolving their own VRPs.

We find that VRPs appear to provide an economically
efficient mechanism for finding vulnerabilities, with a rea-
sonable cost/benefit trade-off (Sections 4.1.1 and 4.1.6).
In particular, they appear to be 2-100 times more cost-
effective than hiring expert security researchers to find
vulnerabilities. We therefore recommend that more ven-
dors consider using them to their (and their users’) advan-
tage. The cost/benefit trade-off may vary for other types
of (i.e., non-browser) software vendors; in particular, the
less costly a security incident is for a vendor, the less
useful we can expect a VRP to be. Additionally, we ex-
pect that the higher-profile the software project is (among
developers and security researchers), the more effective a
VRP will be.

Response time, especially for critical vulnerabilities,
is important (Section 4.4.1). High variance in time-to-
patch is not appreciated by the security community. It can
reasonably be expected to reduce participation because it
makes responsible disclosure through the VRP a less at-
tractive option than the other options available to security
researchers.

VRP incentive design is important and should be care-
fully considered. Chrome’s tiered incentive structure ap-
pears more effective at encouraging community participa-
tion than Firefox’s fixed-amount incentive structure (Sec-
tion 4.2.1). Additionally, both Chrome and Firefox have
increased their rewards over time. Doing so increases
publicity, entices participants, and signals that a vendor
is betting that their product has become more secure over
time.

Our analysis demonstrates the impact of privilege sep-
aration on the Chrome VRP (Section 4.1.2). Privilege
separation also provides flexibility to the Chrome team.
For example, a simple way for Chrome to cut costs while
still increasing participation could be to reduce reward
amounts for high-severity vulnerabilities and increase re-
ward amounts for critical-severity vulnerabilities. Mozilla
does not have this flexibility. Vendors should consider
using their security architecture to their advantage.

6 Related Work
Mein and Evans share our motivation and present
Google’s experience with its vulnerability rewards
programs [35]. In contrast, our focus is on understanding
and comparing two popular VRPs run by competing
browser vendors. We also perform a number of analyses
not performed by the previous work as well as make
our data available for other researchers. We also
independently confirm that, for both Google and Mozilla,
VRPs are cost-effective mechanisms for finding security

vulnerabilities.

Development lifecycle datasets Many authors have
looked to large datasets, including code repositories, bug
trackers, and vulnerability databases, to gather and ana-
lyze data in an effort to better understand some aspect of
the development lifecycle. Rescorla gathered data from
NIST’s ICAT database (which has since been updated and
renamed to NVD [44]) to analyze whether vulnerability
rates tend to decrease over time [49]. He found no evi-
dence that it is in fact worthwhile for software vendors
to attempt to find vulnerabilities in their own software
because there is no evidence that such efforts are reducing
vulnerability rates.

Ozment and Schechter used the OpenBSD CVS reposi-
tory to ask and answer similar questions as Rescorla [47].
They find that the rate of discovery of what they call
foundational vulnerabilities—those present since the be-
ginning of the study period—had decreased over the study
period.

Neuhaus and Plattner use vulnerability reports for
Mozilla, Apache httpd, and Apache Tomcat to evalu-
ate whether vulnerability fix rates have changed over
time [42]. They conclude that the supply of vulnerabili-
ties is not declining, and therefore that attackers and/or
vulnerability researchers have not hit diminishing returns
in looking for vulnerabilities.

Neuhaus et al. use a dataset of Firefox security advi-
sories in combination with the Firefox codebase to map
vulnerabilities to software components and predict which
components are likely to contain vulnerabilities [43].

Scholte et al. use the NVD to evaluate how cross-site
scripting and SQL injection vulnerabilities have evolved
over time [52]. They find that the complexity of such vul-
nerabilities does not appear to have changed over time and
that many foundational cross-site scripting vulnerabilities
are still being discovered.

Evaluating vulnerability-finding techniques Other
work has focused specifically on evaluating the many
available techniques for finding vulnerabilities, though
we are unaware of any previous work that has considered
public-facing VRPs as one such technique.

Austin and Williams evaluated four different tech-
niques for vulnerability discovery on two health record
systems: “systematic and exploratory manual penetration
testing, static analysis, and automated penetration test-
ing” [2], finding that very few vulnerabilities are in fact
found by multiple techniques and that automated penetra-
tion testing is the most effective in terms of vulnerabilities
found per hour.

Finifter and Wagner compared manual source code
analysis to automated penetration testing on a web appli-
cation, with similar findings: the techniques are comple-
mentary, and manual analysis found more vulnerabilities,
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but took much more time than automated penetration test-
ing [24].

Edmundson et al. found that different reviewers tend
to find different vulnerabilities and, even in a small code-
base, it takes many reviewers to spot all or even a sig-
nificant fraction of the vulnerabilities present [18]. This
is consistent with our findings about the effectiveness of
crowdsourced VRPs.

A large body of work investigates defect prediction
using empirical techniques; we refer the reader to a survey
by Catal et al. [10].

7 Conclusion and future work
We examined the characteristics of well-known vulner-
ability rewards programs (VRPs) by studying two such
VRPs. Both programs appear economically efficient, com-
paring favorably to the cost of hiring full-time security
researchers. The Chrome VRP features low expected pay-
outs accompanied by high potential payouts, a strategy
that appears to be effective in engaging a broad commu-
nity of vulnerability researchers.

We hope that our study of these two VRPs serves as a
valuable reference for software vendors aiming to evolve
an existing VRP or start a new one. Potential future work
on understanding VRPs includes economic modeling of
VRPs; identifying typical patterns, trajectories, or phases
in a VRP; and studying failed or unsuccessful VRPs to
get a better sense of possible pitfalls in VRP development.
Gathering and analyzing data from more VRPs will surely
paint a more complete picture of their potential costs and
benefits.
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