Compressing Pattern Databases

Ariel Felner and Ram Meshulam
Computer Science Department
Bar-Ilan University
Ramat-Gan, Israel 92500
Email: {felner,meshulrl}@cs.biu.ac.il

Abstract

A pattern database is a heuristic function stored as a
lookup table which stores the lengths of optimal solu-
tions for instances of subproblems. All previous pat-
tern databases had a distinct entry in the table for each
subproblem instance. In this paper we investigate com-
pressing pattern databases by merging several adjacent
entries into one, thereby allowing the use of pattern
databases that exceed available memory in their uncom-
pressed form. We show that since adjacent entries are
highly correlated, much of the information is preserved.
Experiments on the sliding tile puzzles and the 4-peg
Towers of Hanoi puzzle show that, for a given amount
of memory, search time is reduced by up to 3 orders of
magnitude by using compressed pattern databases.

I ntroduction

Heuristic search algorithms such as A* and IDA* are guided
by the cost function f(n) = g(n) + h(n), where g(n) is the
actual distance from the initial state to state » and h(n) is a
heuristic function estimating the cost from n to a goal state.
If h(s) is “admissible” (i.e. is always a lower bound) then
these algorithms are guaranteed to find optimal paths.

Pattern databases are heuristics in the form of lookup ta-
bles. They have proven very useful for finding lower bounds
for combinatorial puzzles and other problems(Culberson &
Schaeffer 1998; Korf 1997; Korf & Felner 2002).

The domain of a search space is the set of constants used
in representing states. A subproblem is an abstraction of
the original problem defined by only considering some of
these constants. A pattern is a state of the subproblem. The
pattern space for a given subproblem is a state space con-
taining all the different patterns connected to one another
using the same transition rules (“operators™) that connect
states in the original problem. The pattern space is an ab-
straction of the original space in the sense that the distance
between two states in the original space is greater than or
equal to the distance between the corresponding patterns. A
pattern database (PDB) stores the distance of each pattern
to the goal pattern. A PDB is built by running a breadth-
first search backwards from the goal pattern until the whole
pattern space is spanned. A state S in the original space

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Robert C. Holte
Computing Science Department
University of Alberta
Edmonton, Alberta, T6G 2E8, Canada
Email: holte@cs.ualberta.ca

Richard E. Korf
Computer Science Department
University of California
Los Angeles, CA 90095
Email: korf@cs.ucla.edu

is mapped to a pattern S’ by ignoring details in the state
description that are not preserved in the subproblem. The
value stored in the PDB for S’, i.e., the distance in the pat-
tern space from S’ to the goal pattern, is a lower bound on
the distance of S to the goal state in the original space.

The size of a pattern space is the number of patterns it
contains. As a general rule, the speed of search is inversely
related to the size of the pattern space used (Hernadvolgyi
& Holte 2000). Larger pattern spaces take longer to gen-
erate but that is not the limiting factor. The problem is the
memory required to store the PDB. In all previous studies,
the amount of memory needed for a PDB was equal to the
size of the pattern space, because the PDB had one entry for
each pattern. In this paper, we present a method for com-
pressing a PDB so that it uses only a fraction of the memory
that would be needed to store the PDB in its usual, uncom-
pressed form. This permits the use of patterns spaces that
are much larger than available memory, thereby reducing
search time. We limit the discussion to a memory capac-
ity of 1 gigabyte, which is reasonable in today’s technology.
The question we address in this paper is how to best use this
amount of memory with compressed pattern databases. Ex-
periments on the sliding tile puzzles and the 4-peg Towers of
Hanoi puzzle show that search-time is significantly reduced
by using compressed pattern databases.

The 4-peg Tower s of Hanoi Problem

2l |

Figure 1: Five-disk four-peg Towers of Hanoi problem

The well-known 3-peg Towers of Hanoi problem consists
of three pegs. The task is to transfer all the disks to the
goal peg. Only the top disk on any peg can be moved and a
larger disk can never be placed on top of a smaller disk. For
the 3-peg problem, there is a simple recursive determinis-
tic algorithm that provably returns an optimal solution. The
4-peg Towers of Hanoi problem (TOH4)(Hinz 1999) shown
in Figure 1, is more interesting. There exists a determinis-
tic algorithm for finding a solution, and a conjecture that it

generates an optimal solution, but the conjecture remains un-
proven. Thus, systematic search is currently the only method
guaranteed to find optimal solutions, or to verify the conjec-
ture for problems with a given number of disks.

The domain of TOH4 has many small cycles, meaning
there are many different paths between the same pair of
states. For example, if we move a disk from peg A to peg B,
and then another disk from peg C to peg D, applying these
two moves in the opposite order will generate the same state.
Therefore, any depth-first search, such as IDA*, will gener-
ate many nodes more than once and be hopelessly inefficient
in this domain. Thus, only a search that prunes duplicate
nodes will be efficient in this domain. We used frontier-A*
(FA*), a modification of A* designed to save memory (Korf
& Zhang 2000). FA* only saves the open list and deletes
nodes from memory once they have been expanded. In or-
der to keep from regenerating closed nodes, with each node
on the open list the algorithm stores those operators that lead
to closed nodes, and when expanding a node those operators
are not used. FA* also uses a special method to reconstruct
the solution path (Korf & Zhang 2000).

Pattern databases for TOH4

PDB heuristics are applicable to TOH4. Consider a 16-disk
problem. We can build a PDB for the largest 10 disks by
having an entry for each of the 41° legal patterns of these
10 disks. The value of an entry is the minimum number of
moves required to move all the disks in this 10-disk group
from the corresponding pattern to the goal peg, assuming
there are no other disks in the problem. Since there are ex-
actly 4™ states for the n-disk problem, indexing this PDB is
particularly easy, since each disk position can be represented
by two bits, and any pattern of n disks can be uniquely rep-
resented by a binary number 2n bits long. Given a state
of the 16-disk problem, we compute the pattern for the 10-
disk group and lookup the value for this configuration in the
PDB. This value is an admissible heuristic for the complete
16-disk problem because a solution to the 16-disk problem
must at least move the largest 10 disks to the goal.

A similar PDB can be built for the smallest 6 disks. Val-
ues from the 10-disk PDB and the 6-disk PDB can be added
together to get an admissible heuristic value for the com-
plete state since a complete solution must include a solution
to the largest 10 disks problem as well as to the smallest 6
disks problem. This sum is a lower bound because the two
groups are disjoint and their solutions only count moves of
disks within their own group. The idea that costs of disjoint
subproblems can be added was first used in (Korf & Felner
2002) for the tile puzzles and inspired this formalization.

Note that a PDB based on . disks will contain exactly the
same values for the largest n disks or the smallest n disks or
any other n disks. The reason is that only the relative sizes of
the disks matter, and not their absolute sizes. Furthermore, a
PDB for n disks also contains a PDB for m disks, if m < n.
To look up a pattern of m disks, we simply assign the n —m
largest disks to the goal peg, and then look up the resulting
pattern in the n-disk PDB. Thus, in practice we only need
a single PDB for the largest number of disks of any group
of our partition. In our case, a 10-disk PDB contains both

Heuristic | Path | Avgh Nodes | Seconds

Static 13-3 | 161 | 75.78 | 134,653,232 48.75

Static 14-2 | 161 | 89.10 | 36,479,151 14.34

Dynamic 14-2 | 161 | 9552 | 12,827,732 21.56

Table 1: Results for the 16-disk problem

a PDB for the largest 10 disks and a PDB for the smallest
6 disks. In general, the most effective heuristic is based on
partitioning the disks into the largest groups that we can,
thus building the largest PDB that will fit in memory. The
largest PDB we can use with a gigabyte of memory is of 14
disks. This has 4'* entries and needs 256 megabytes at one
byte per entry. The rest of the memory is needed for the
open-list of FA*,

Given a PDB of 14 disks, there are two methods to use it
for the 16-disk problem. The first is called statically parti-
tioned PDB. In this method, we statically partition the disks
into the largest 14 disks and the smallest 2 disks. This par-
tition remains static for all the nodes of the search. The
other method is called dynamically partitioned PDB. For
each state we compute all 240 different ways of dividing the
disks into groups of 14 and 2, look-up the database value for
each, and return the maximum of these as the final heuristic
value. Here, the exact partitioning to disjoint disks is dy-
namically determined for each state of the search on the fly.
Table 1 has results for the standard initial state of the 16-
disk problem. A 14-2 split is much better than a 13-3 split
since the large PDB of 14 is more informed than the PDB
of 13. For the 14-2 split, a dynamically partitioned heuristic
is more accurate and the search generates fewer nodes (and
therefore FA* requires less memory). Statically partitioned
heuristics are much simpler to calculate and thus consume
less overall time but generate more nodes. The static and
dynamic partitioning methods can be applied in any domain
where additivity of disjoint PDBs is applicable.

Compressing cliquesin pattern databases

Pattern databases in all previous studies have had one entry
for each pattern in the pattern space. In this section, we de-
scribe methods for compressing pattern databases by merg-
ing the entries stored in adjacent positions of the lookup ta-
ble. This obviously reduces the size of the pattern database,
but the key to making this successful is that the merged en-
tries should be very similar values. While this cannot be
guaranteed in general, we show in this paper that it is the
case for the state spaces and indexing functions that are used
in our experiments.

Suppose that K nodes of the pattern space form a clique.
This means that all these nodes are reachable from each
other by one edge. Thus, the PDB entries for these nodes
will differ from one another by no more than 1, some will
have a value IV and the rest will have value NV + 1.

In permutation problems such as TOH4 or the tile puzzles
where the operators move one object at a time, cliques usu-
ally exist where all objects are in the same location except
one, which is often in a nearby location. Therefore, such

cliques usually have nearby entries in the PDB. If we can
identify a general structure of K adjacent entries in the pat-
tern database which store a clique of size K, we can squeeze
the PDB as follows. Instead of storing K entries for the dif-
ferent K nodes we can have all these K nodes mapped into
one entry. This can be done in the following two ways:

lossy compression - Store the minimum of these K
nodes, N. The admissibility of the heuristic is preserved
and the loss introduced is at most 1.

lossless compression - Store the minimum value for these
K nodes, N. Store also K additional bits, one for each node
of the clique, that will indicate whether the node’s value is
N or N +1. This version will preserve the entire knowledge
of the large PDB but will usually require less memory.

The existence of cliques in the pattern space is domain
dependent. Furthermore, when cliques exist, their adjacency
in the PDB depends on the indexing function used. Finally,
in order for this technique to be applicable there must exist
an efficiently computable indexing function into the com-
pressed PDB. We do not assert that these conditions can
be satisfied in all domains, but we believe they hold quite
broadly, at least for the permutation-type domains that we
study here. Note that with lossy compression, any block of
nearby entries can be compressed and admissibility is still
kept. With cliques, however, we are guaranteed that the loss
of data will be at most 1.

For TOH4, the largest clique is of size 4. Consider a
PDB based on a subproblem of P disks, for example, the
10-disk PDB described above. Assume that the location of
the largest P — 1 disks is fixed and focus on the smallest
disk which can be placed in 4 different locations. These
4 states form a clique of size 4 since the smallest disk can
move among these 4 states in only 1 move. Thus, we can
store a PDB of P disks in a table of size 47~ (instead of
4F) by squeezing the 4 states of the smallest disk into one
entry. If the PDB is built as a multi-dimensional array with
P indices where the last index corresponds to the smallest
disk, then the only difference between these 4 states is their
last index with the position of the smallest disk. Thus, they
are stored in 4 adjacent entries.

In the compressed PDB, we will have P — 1 indices for
the largest P — 1 disks and only one entry for the small-
est disk instead of 4 entries in the original database. Lossy
compression would store the minimum of these 4 entries and
lose at most 1 for some of the entries. Alternatively, lossless
compression can store 4 additional bits in each entry of the
compressed database which will indicate for each location
of the smallest disk whether the value is N or N + 1.

This idea can be generalized to a set of K nodes with a
diameter of D, i.e, each pair of nodes within the set have
at least one connecting path consisting of D or fewer edges
(Note that a clique is a special case where D = 1). We
can compress the set of nodes into only one entry by taking
the minimum of their entries and lose at most D. Alter-
natively, for the lossless compression we need an additional
K xlog(D+1) bits to indicate the exact value. If the size of
an entry is M bits then it will be beneficial (memory-wise)
to use this compression mechanism for sets of nodes with
diameter of D as long as log(D + 1) < M.

TOH | h(s) | Avgh | D Nodes | Time | Mem
1657 | 119 | 89.10 | 0 | 36,479,151 | 14.34 | 256
16{* | 118 | 88.55 | 1 | 37,964,227 | 14.69 64
165* | 116 | 87.74 | 3 | 40,055,436 | 15.41 16
16 | 114 | 86.53 | 5 | 44,996,743 | 16.94 4
165 | 110 | 84.80 | 9 | 45,808,328 | 17.36 1
16 | 107 | 82.91 | 13 | 61,132,726 | 23.78 1/4
16;7 | 119 | 89.10 | 0 | 36,479,151 | 15.87 96

Table 2: Solving 16-disks with a pattern of 14 disks

For example for TOH4 this generalization applies as fol-
lows. We fix the position of largest P — 2 disks and focus on
the 16 different possibilities of the two smallest disks. These
possibilities form a set of nodes with diameter 3, and it is
easy to see that they are placed in 16 adjacent entries. Thus,
we can squeeze these 16 entries to one entry and lose at most
3 for any state. Alternatively, we can add 2 x 16 = 32 bits
to the one byte for the entry (for a total of 5 bytes) and store
the exact values. This is instead of 16 bytes in the simple
uncompressed database.

Experiments on the 4-peg Tower s of Hanoi

As a first step we compressed the 14-disk PDB to a smaller
size. Define a compression degree of z to denote a PDB
that was compressed by storing all different positions of the
smallest z disks in one entry given that the rest of the disks
are fixed. The amount of memory saved with a lossy com-
pression degree of z is 4*. We define TOHzY to denote a
4-peg Towers of Hanoi problem with z disks that was solved
by a PDB with y disks compressed by a degree of z. For the
16-disk problem we define our PDBs by statically dividing
the disks into two groups. The largest fourteen disks (disks
1-14) define the 14-disk PDB. The smallest two (disks 15
and 16) are in their own group and have a separate, uncom-
pressed PDB with 42 = 16 entries. To compute the heuristic
for a state, the values for the state from the small PDB and
the 14-disk PDB are added. Notice the difference between a
14-2 split where two separate PDBs are built (14 and 2) and
a PDB of 14 compressed by a degree of 2 where the specific
14-disk PDB is compressed.

Table 2 presents results of solving the standard initial state
(where all disks are initially located on one peg) of the 16-
disk problem, which has an optimal solution of 161 moves.
Different rows of the table correspond to different compres-
sion degrees of the 14-disk PDB. All but the last row repre-
sent lossy compression. The first row of Table 2 is for the
complete 14-disk database with no compression while row
6 has a compression degree of 5. The third row for example,
has a compressing degree of 2. In that case, the PDB only
contains 4'2 entries which correspond to the different possi-
bilities of placing disks 1-12. For each of these entries, we
take the minimum of all the 16 possibilities for disks 13 and
14 and have only one entry for them instead of 16.

The last column gives the size of the PDB in megabytes.
The most important result here is that when compressing the
PDB by a factor of 4> = 1024, most of the information is not

TOH | Type Avg h Nodes | Time M

175% | static 90.5 | >393,887,912 | >421 | 256
175 | dynam 95.7 238,561,590 | 2501 | 256

171° | static 103.7 155,737,832 83 | 256
1756 | static 123.8 17,293,603 7 | 256

181° | static 123.8 380,117,836 463 | 256

Table 3: Solving larger versions of TOH4

lost. Such a large compression increased the search effort by
less than a factor of 2 for both the number of generated nodes
and for the time to solve a problem.

The last row represents lossless compression of the full
14-disk database by a degree of 1 where we stored 1 addi-
tional bit for each position of the smallest disk in the 14-disk
group (#14). This needed 12 bits per 4 entries instead of the
32 bits in the uncompressed PDB (row 1). While the num-
ber of generated nodes is identical to row 1, the table clearly
shows that it is not worthwhile to use lossless compression
for TOH4 since it requires more time and more memory than
lossy compression by a degree of both 1 and 2.

The maximum possible loss of data for lossy compression
with a degree of z — the diameter D — is presented in column
D of Table 2. This is the length of the optimal solution for a
problem with z disks, because the two farthest states with z
disks are those that have all disks on one different peg. The
Avg h column with the average heuristic on all possible en-
tries shows that on average, the loss was half the maximum.
Note that the loss for the heuristic of the standard initial state
is shown in the h(s) column is exactly the maximum, D.

Larger versions of the problem

With lossy compression we also solved the 17- and 18-disk
problems. The shortest paths from the standard initial state
are 193 and 225 respectively. Results are presented in Ta-
ble 3. An uncompressed statically partitioned PDB of the
largest 14 disks and the smallest 3 disks cannot solve the 17-
disk problem since memory is exhausted before reaching the
goal after 7 minutes (row 1). With an uncompressed PDB of
14 disks we were only able to solve the 17-disk problem
with dynamically partitioned PDB (row 2).

The largest database that we could precompute when per-
forming a breadth-first search backwards from the goal con-
figuration was for 16 disks. Our machine has 1 gigabyte
of memory. Thus, when tracking nodes with a bit map we
need 416 = 4 gigabits, half the size of our memory. Given
the same amount of memory as the full 14-disk database,
256MB, we solved the 17-disk problem in 83 seconds with a
15-disk PDB compressed by a degree of 1, and in 7 seconds
with a 16-disk PDB compressed by a degree of 2. This is
an improvement of at least 2 orders of magnitude compared
to row 1. The improvement is almost 3 orders of magnitude
compared to the dynamic partitioning heuristic of the 14-
disk PDB row 2. While a PDB of 16 disks compressed by
a degree of 2 consumes exactly the same amount of mem-
ory as an uncompressed PDB of 14 disks it is much more
informed as it includes almost all the data about 16 disks.

With a 16-disk database compressed by a degree of 2 we
were also able to solve the 18-disk problem in a number
of minutes. Note that (Korf 2004) solved this problem in
16 hours when using the delayed duplicate detection (DDD)
breadth-first search algorithm.

The system that we described here is able to find a short-
est path for any possible initial state of TOH4. However, one
can do much better if a shortest path is only needed from
the standard initial state where all disks are located on one
peg (Hinz 1999). For this special initial state, one can only
search half way to an intermediate state where the largest
disk can move freely from its initial peg to the goal peg. In
such a state all the other n — 1 disks are distributed over
the other two pegs. To complete the solution we apply the
moves to reach such an intermediate state in the reverse or-
der and interchange the initial and goal pegs. Based on this
symmetry, (Korf 2004) was able to obtain a shortest path for
the standard initial state with a DDD breadth-first search for
TOH4 with up to 24 disks. However, this symmetry doesn’t
apply to arbitrary initial and goal states where a complete
search must be performed to the goal state as our system
does. Furthermore, his system needed tens of gigabytes and
took 19 days.

Experiments on the Sliding Tile Puzzles

5-5-5 partitioning 7-7-1 partitioning 7-8 partitionig

Figure 2: Different disjoint databases for the Fifteen Puzzle

The best existing method for solving the tile puzzles uses
disjoint pattern databases (Korf & Felner 2002). The tiles
are partitioned into disjoint sets (subproblems) and a PDB
is built for each set. The PDB stores the cost of moving
the tiles in the given subproblem from any given arrange-
ment to their goal positions. If for each set of tiles we only
count moves of tiles from the given set, values from differ-
ent disjoint PDBs can be added and are still admissible. An
x — y — z partitioning is a partition of the tiles into disjoint
sets with cardinalities of =, y and z. Figure 2 shows a 5-5-5,
a 7-7-1 and a 7-8 disjoint partitioning of the 15-puzzle.

Taking advantage of simple heuristics

In many domains there exists a simple heuristic, such as
Manhattan distance (MD) for the sliding tile puzzles, that
can be calculated very quickly. In these domains, a PDB
can store just the addition above that heuristic. During the
search we add values from the PDB to the simple heuristic.

For the tile puzzles we can therefore store just the addi-
tion above MD which correspond to conflicts and internal
interactions between the tiles. These conflicts come in units
of 2 moves, since if a tile moves away from its Manhattan-
distance path it must return to that path again with a total

of 2 additional moves to its MD. Compressing PDBs can
greatly benefit from this idea. Consider a pair of adjacent
entries in the PDB. While their MD is always different by
one, the addition above the MD is most of the time exactly
the same. Thus, much of the data is preserved when taking
the minimum. In fact, for the 7-7-1 partition in Figure 2,
we have found that more than 80% of the pairs we grouped
stored exactly the same value.

0
0
0

oolo|©

Figure 3: One pattern of the Fifteen puzzle

For example, consider the subproblem of {3,6,7,10,11}
shown in Figure 3. Suppose that all these tiles except tile 6
are located in their goal position and that tile 6 is not in its
goal position. The values in Figure 3 written in location x
correspond to the number of steps above MD that the tiles
of the subproblem must move in order to properly place tile
6 in its goal location given that its current location is x. For
example, suppose that tile 6 is placed below tile 10 or tile
11. In that case tile 6 is in linear conflict with tiles 10 or
11 and one of them must move at least two more moves
above MD. Thus we write the number 2 in these locations.
For other locations we write 0 as no additional moves are
needed. Locations where other tiles are placed are treated as
don’t-care as tile 6 cannot be placed at these locations. Note
that most adjacent positions have the same value.

For TOH4, one can create a simple heuristic (similar to
MD) concentrating on the number of moves that each disk
must move. However, this heuristic is very inaccurate and
proved ineffective in conjunction with PDBs.

Storing PDB for the Tile Puzzles

While a multi-dimensional array of size 4° is the obvious
way to store a PDB for TOH4, there are two ways to store
PDBs for the tile puzzles. Suppose for example, that we
would like to store a PDB of 7 tiles for the 15-puzzle. There
are 16 x 15 x ... x 10 different possible configurations to
place these 7 tiles in 16 locations. A simple way would be
to store a 7-dimensional array. This will need 167 different
entries but the access time is very fast. The other idea is to
have a simple one-dimensional array of exactly 16 x 15 x
... x 10 entries, but use a complex mapping function in order
to retrieve the exact entry of a given permutation. This is
done as follows. The first tile can be located in 16 positions.
The next tile can only be positions in 15 locations etc, The
mapping function should calculate all these possibilities and
return a unique value for each configuration. We refer to
the first option as simple mapping and the second method as
packed mapping.

For the simple mapping, there are 16 different entries for
the last tile which correspond to the 16 different possible

H{P|C Nodes | Time Mem | Avh

17-8 | P | -1 136,288 | .081 | 576,575 | 44.75
1+7-8 | P| -| 36,710 | .034 | 576,575 | 45,63
17-7-1 | P | - | 464977 | .232 | 57,657 | 43.64
17-7-1 | S| - | 464,977 | .058 | 536,870 | 43.64
17-7-1|S | | |565881 | .069 | 268,435 | 43.02
17-7-1 | S| s | 487,430 | .070 | 268,435 | 43,59
27-7-1 | S| || 147,336 | .021 | 536,870 | 43.98
2+7-7-1 | S | | 66,692 | .016 | 536,870 | 44.92

Table 4: 15-puzzle results.

locations of the 15-puzzle. We divide the 16 locations into
8 pairs: (0,1), (2,3) ...(14,15). Instead of storing 16 entries
for the last tile, we can store just 8 entries, one for each of
these pairs. Thus, the size of the PDB will be 16¢ x 8 which
is half the size of the original database. Since a legal move
can only move one tile to a nearby location the largest clique
in this puzzle is of size 2. By pairing neighboring locations
of the last tile we take advantage of such cliques?.

For the packed mapping it is a little more complicated. If
the PDB is based on k tiles, there are only 16 — k + 1 entries
for the last tile. For example, if £ = 7 there are only 10 legal
positions to place the last tile. If we use the same pairing
mechanism described above then we can compress these 10
entries to 8 entries. This method will only be effective if the
number of tiles is considerably smaller than half the size of
the puzzle. For example, in the 24-puzzle, it will be efficient
to compress 6 tiles even with the packed mapping.

Results on the Fifteen puzzle

Table 4 presents results on the 15-puzzle. All the values in
the table are the average over the 1000 random initial states
that were used in (Korf & Felner 2002). We used a 2.4GH
pentium 4 with 1 gigabyte of main memory. The first col-
umn defines the heuristic. 1 7-7-1 means that we used only
one 7-7-1 partitioning. 2 7-7-1 means that we used 2 dif-
ferent 7-7-1 partitionings and took their maximum as the
heuristic. A + means that we also took the same partitioning
and reflected it about the main diagonal. The second column
indicates whether we used simple mapping (S) or packed
mapping (P) and the next column indicates whether we used
no compression (-), lossy compression (I) or lossless com-
pression (s). The next columns present the number of nodes
generated by IDA*, the average time in seconds, the amount
of memory in K bytes (at one byte per entry) and the average
initial heuristic. The time needed to precompute the PDB is
traditionally omitted since one only needs to precompute it
once and then solve as many problem instances as needed.
The first two rows present the same results of a 7-8 par-
titioning that was obtained by (Korf & Felner 2002) but on
our current machine. Note that while (Korf & Felner 2002)
report a running time of 0.027 seconds, exactly the same

There are rare cases which only occur in 2.5% of the cases,
where the above pairs are not a clique. This is due to the location of
the blank tile (details are omitted). However, taking a minimum of
any two values (even if they are not a clique) is always admissible.

software took 0.034 seconds on our current machine which
has a faster CPU. The reason is that hardware abilities of a
given machine such as cache performance, memory-cpu data
exchange rate and internal hardware structure have a lot of
influence on the actual overall running time.

The third and fourth rows present the results of the 7-7-1
database from Figure 2 but with the different mapping sys-
tems. Notice the time versus memory tradeoff here.

The fifth row gives the results of the 7-7-1 PDB after com-
pressing each pair of entries described above into one entry
with lossy compression. While the size of the PDB was re-
duced by a factor of 2, the overall effort was increased by no
more than 20% in both the number of generated nodes and in
the overall time. The next row presents results of the same 7-
7-1 partitioning when we used lossless compression. While
the number of generated node decreased by 15% from the
lossy compression, the overall time increased a little. This
is due to the additional constant time complexity of the bit
handling of the lossless compression2. We have also tried
to compress 4 adjacent entries of the PDB into one but this
proved inefficient on the 15-puzzle as much data was lost.

The last two rows show the benefit of compression. The
seventh row presents results when we took two different 7-7-
1 partitionings, compressed them and took their maximum.
This configuration uses the same amount of memory as one
7-7-1 partitioning of row 4 but solves the problem almost
three times faster. It is also faster and uses less memory
than the 7-8 partitioning (row 1). Finally, the last row also
computes the reflection about the main diagonal of these two
compressed databases and takes the maximum of the 4 dif-
ferent partitionings. This further reduced the running time
and we now solve a problem in only 16 milliseconds. This
is faster by a factor of two, and uses less memory, than the
best 7-8 partitioning used in (Korf & Felner 2002) (row 2).

Results on the 24-puzzle

The best existing heuristic for 24-puzzle is the 6-6-6-6 parti-
tioning and its reflection about the main diagonal from (Korf
& Felner 2002). We compressed the same 6-6-6-6 partition-
ing and found that like the 15-puzzle the lossy compression
generated nearly 20% more nodes. However, with adding
another 6-6-6-6 partitioning we could not achieve any sig-
nificant reduction in the overall time. Due to geometrical
attributes of the puzzle, the 6-6-6-6 partitioning and its re-
flection from (Korf & Felner 2002) are so good that adding
another 6-6-6-6 partitioning (even without compressing any-
thing) only achieves a small reduction in node generations
which is not compensated by the time overhead.

We have also tried A 7-7-5-5 partitioning (and its refec-
tion) on this domain which could be stored in 1 gigabyte
of memory if the 7-tile databases are compressed. Even
without compressing, the number of generated nodes was
not significantly different from the best 6-6-6-6 partitioning.

2The reason that the number of generated nodes was not iden-
tical to the complete 7-7-1 partitioning is because as described
above, in rare cases, two nearby entries are not a clique and dif-
fer by more than one. Thus, data is lost even with the lossless
compression that we used.

The 6-6-6-6 partitioning of (Korf & Felner 2002) is probably
the best 4-way partitioning of the 24-puzzle.

The only way to obtain a speedup in this domain is to
compress larger databases such as an 8-8-8 partitioning.
However, we need much more than 1 gigabyte to generate
this database with breadth-first search, and that is beyond
the scope of the current set of experiments.

Conclusions and Future Work

We introduced a method that better utilizes memory by com-
pressing PDBs and showed applications on the tile puzzles
and on TOH4. In both domains significant compression
was achieved, allowing larger pattern spaces to be used and
search time to be considerably reduced. For the 15-puzzle
and for TOH4 with arbitrary initial states we have the state
of the art solvers. Our experiments confirm that given a spe-
cific amount of memory, M, it is better to compress larger
PDBs into M entries than to use an uncompressed PDB with
M entries. We have also showed two methods (i.e., static
and dynamic) for partitioning disjoint patterns.

The memory limits imposed by using ordinary breadth-
first search to generate very large pattern databases that
are subsequently compressed might be overcome by using
delayed duplicate detection (DDD)(Korf 2004). This is a
method for performing best-first search which stores the
open and/or closed lists on the disk. With DDD, one can run
a breadth-first search on pattern spaces that are much larger
than the available memory. Values from this breadth-first
search can then be compressed to a database that can fit in
memory. For example, one can run a breadth-first search for
subproblems of 8 tiles for the 24-puzzle and then compress
the values into 1 gigabyte of memory.

Future work will continue these ideas as follows. Ad-
vanced data structures (like a trie for the tile puzzles) might
perform better than simple tables as they will have more
flexibility with regards to what entries to compress. An-
other interesting approach would be to feed a learning sys-
tem like a neural network with values from the PDB. Also,
other ideas for having a selective PDBs which only keep im-
portant values can be developed.

References

Hinz, A. 1999. The Tower of Hanoi, Algebras and Combina-
torics: Proceedings of ICAC’97. 277-289

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases. Com-
putational Intelligence 14(3):318-334.

Hernadvdlgyi, 1. T., and Holte, R. C. 2000. Experiments with au-
tomatically created memory-based heuristics. Proc. SARA-2000,
Lecture Notes in Artificial Intelligence 1864:281-290.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database heuris-
tics. Artificial Intelligence 134:9-22.

Korf, R., and Zhang, W. 2000. Divide-and-conquer frontier
search applied to optimal sequence alignment,. Proc. AAAI-2000,
910-916.

Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. Proc. AAAI-97, 700-705.

Korf, R. E. 2004. Best-first search with delayed duplicate detec-
tion Proc. AAAIO4, San-Jose, Ca.

