
50 communications of the acm | october 2008 | vol. 51 | no. 10

practice

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 D
R

E
W

 F
L

A
H

E
R

T
Y

T2, and increasingly multicore x86 sys-
tems from Intel and AMD, differentiate
themselves from traditional CPU de-
signs by prioritizing high-throughput
processing of many parallel operations
over the low-latency execution of a sin-
gle task.

GPUs assemble a large collection of
fixed-function and software-program-
mable processing resources. Impressive
statistics, such as ALU (arithmetic logic
unit) counts and peak floating-point
rates often emerge during discussions
of GPU design. Despite the inherently
parallel nature of graphics, however, ef-
ficiently mapping common rendering
algorithms onto GPU resources is ex-
tremely challenging.

The key to high performance lies in
strategies that hardware components
and their corresponding software in-
terfaces use to keep GPU processing
resources busy. GPU designs go to great
lengths to obtain high efficiency and
conveniently reduce the difficulty pro-
grammers face when programming
graphics applications. As a result, GPUs
deliver high performance and expose
an expressive but simple programming
interface. This interface remains largely
devoid of explicit parallelism or asyn-
chronous execution and has proven to
be portable across vendor implementa-
tions and generations of GPU designs.

At a time when the shift toward
throughput-oriented CPU platforms is
prompting alarm about the complexity
of parallel programming, understand-
ing key ideas behind the success of
GPU computing is valuable not only for
developers targeting software for GPU
execution, but also for informing the
design of new architectures and pro-
gramming systems for other domains.
In this article, we dive under the hood of
a modern GPU to look at why interactive
rendering is challenging and to explore
the solutions GPU architects have de-
vised to meet these challenges.

the Graphics Pipeline
A graphics system generates images
that represent views of a virtual scene.
This scene is defined by the geometry,

a closer
Look at
GPus

Doi:10.1145/1400181.1400197

As the line between GPUs and CPUs
begins to blur, it’s important to understand
what makes GPUs tick.

By kayVon fatahaLian anD mike houston

A GAMER WANDERS through a virtual world rendered
in near-cinematic detail. Seconds later, the screen
fills with a 3D explosion, the result of unseen enemies
hiding in physically accurate shadows. Disappointed,
the user exits the game and returns to a computer
desktop that exhibits the stylish 3D look-and-feel
of a modern window manager. Both of these visual
experiences require hundreds of gigaflops of computing
performance, a demand met by the GPU (graphics
processing unit) present in every consumer PC.

The modern GPU is a versatile processor that
constitutes an extreme but compelling point in
the growing space of multicore parallel computing
architectures. These platforms, which include GPUs,
the STI Cell Broadband Engine, the Sun UltraSPARC

52 communications of the acm | october 2008 | vol. 51 | no. 10

practice

an application-programmable stage.
PO (pixel operations). PO uses each

fragment’s screen position to calculate
and apply the fragment’s contribution
to output image pixel values. PO ac-
counts for a sample’s distance from the
virtual camera and discards fragments
that are blocked from view by surfaces
closer to the camera. When fragments
from multiple primitives contribute to
the value of a single pixel, as is often the
case when semi-transparent surfaces
overlap, many rendering techniques
rely on PO to perform pixel updates
in the order defined by the primitives’
positions in the PP output stream. All
graphics APIs guarantee this behavior,
and PO is the only stage where the order
of entity processing is specified by the
pipeline’s definition.

shader Programming
The behavior of application-program-
mable pipeline stages (VP, PP, FP) is
defined by shader functions (or shaders).
Graphics programmers express vertex,
primitive, and fragment shader func-
tions in high-level shading languages
such as NVIDIA’s Cg, OpenGL’s GLSL,
or Microsoft’s HLSL. Shader source is
compiled into bytecode offline, then
transformed into a GPU-specific binary
by the graphics driver at runtime.

Shading languages support complex
data types and a rich set of control-flow
constructs, but they do not contain
primitives related to explicit parallel
execution. Thus, a shader definition is
a C-like function that serially computes
output-entity data records from a single
input entity. Each function invocation is
abstracted as an independent sequence
of control that executes in complete
isolation from the processing of other
stream entities.

As a convenience, in addition to data
records from stage input and output
streams, shader functions may access
(but not modify) large, globally shared
data buffers. Prior to pipeline execu-
tion, these buffers are initialized to con-
tain shader-specific parameters and tex-
tures by the application.

characteristics and challenges
Graphics pipeline execution is charac-
terized by the following key properties.

Opportunities for parallel processing.
Graphics presents opportunities for
both task- (across pipeline stages) and

orientation, and material properties of
object surfaces and the position and
characteristics of light sources. A scene
view is described by the location of a vir-
tual camera. Graphics systems seek to
find the appropriate balance between
conflicting goals of enabling maximum
performance and maintaining an ex-
pressive but simple interface for de-
scribing graphics computations.

Real-time graphics APIs such as Di-
rect3D and OpenGL strike this balance
by representing the rendering compu-
tation as a graphics processing pipeline
that performs operations on four fun-
damental entities: vertices, primitives,
fragments, and pixels. Figure 1 provides
a block diagram of a simplified seven-
stage graphics pipeline. Data flows be-
tween stages in streams of entities. This
pipeline contains fixed-function stages
(green) implementing API-specified
operations and three programmable
stages (red) whose behavior is defined

by application code. Figure 2 illustrates
the operation of key pipeline stages.

VG (vertex generation). Real-time
graphics APIs represent surfaces as
collections of simple geometric primi-
tives (points, lines, or triangles). Each
primitive is defined by a set of vertices.
To initiate rendering, the application
provides the pipeline’s VG stage with a
list of vertex descriptors. From this list,
VG prefetches vertex data from memory
and constructs a stream of vertex data
records for subsequent processing. In
practice, each record contains the 3D
(x,y,z) scene position of the vertex plus
additional application-defined param-
eters such as surface color and normal
vector orientation.

VP (vertex processing). The behavior
of VP is application programmable. VP
operates on each vertex independently
and produces exactly one output vertex
record from each input record. One of
the most important operations of VP ex-
ecution is computing the 2D output im-
age (screen) projection of the 3D vertex
position.

PG (primitive generation). PG uses
vertex topology data provided by the ap-
plication to group vertices from VP into
an ordered stream of primitives (each
primitive record is the concatenation of
several VP output vertex records). Vertex
topology also defines the order of primi-
tives in the output stream.

PP (primitive processing). PP operates
independently on each input primitive
to produce zero or more output primi-
tives. Thus, the output of PP is a new
(potentially longer or shorter) ordered
stream of primitives. Like VP, PP opera-
tion is application programmable.

FG (fragment generation). FG samples
each primitive densely in screen space
(this process is called rasterization).
Each sample is manifest as a fragment
record in the FG output stream. Frag-
ment records contain the output image
position of the surface sample, its dis-
tance from the virtual camera, as well as
values computed via interpolation of the
source primitive’s vertex parameters.

FP (fragment processing). FP simu-
lates the interaction of light with scene
surfaces to determine surface color and
opacity at each fragment’s sample point.
To give surfaces realistic appearances,
FP computations make heavy use of fil-
tered lookups into large, parameterized
1D, 2D, or 3D arrays called textures. FP is

figure 1: a simplified graphics pipeline.

vertex
generation
(vG)

vertex
processing
(vP)

primitive
generation
(PG)

primitive
processing
(PP)

fragment
processing
(FP)

pixel
operations
(Po)

fragment
generation
(FG)

vertex descriptors
vertex data buffers

memory Buffers

global buffers
textures

vertex topology

global buffers
textures

global buffers
textures

output image

 fixed-function stage
 shader-defined stage

practice

october 2008 | vol. 51 | no. 10 | communications of the acm 53

data- (stages operate independently on
stream entities) parallelism, making
parallel processing a viable strategy for
increasing throughput. Despite abun-
dant potential parallelism, however, the
unpredictable cost of shader execution
and constraints on the order of PO stage
processing introduce dynamic, fi ne-
grained dependencies that complicate
parallel implementation throughout
the pipeline. Although output image
contributions from most fragments can
be applied in parallel, those that con-
tribute to the same pixel cannot.

Extreme variations in pipeline load.
Although the number of stages and data
fl ows of the graphics pipeline is fi xed,
the computational and bandwidth re-
quirements of all stages vary signifi cant-
ly depending on the behavior of shader
functions and properties of scene. For
example, primitives that cover large re-
gions of the screen generate many more
fragments than vertices. In contrast,
many small primitives result in high ver-
tex-processing demands. Applications
frequently reconfi gure the pipeline to
use different shader functions that vary
from tens of instructions to a few hun-
dred. For these reasons, over the dura-
tion of processing for a single frame,
different stages will dominate overall
execution, often resulting in bandwidth
and compute-intensive phases of execu-
tion. Dynamic load balancing is required
to maintain an effi cient mapping of the
graphics pipeline to a GPU’s resources
in the face of this variability and GPUs
employ sophisticated heuristics for re-
allocating execution and on-chip stor-
age resources amongst pipeline stages
depending on load.

Fixed-function stages encapsulate dif-
fi cult-to-parallelize work. Programma-
ble stages are trivially parallelizable by
executing shader function logic simul-
taneously on multiple stream entities.
In contrast, the pipeline’s nonprogram-
mable stages involve multiple entity
interactions (such as ordering depen-
dencies in PO or vertex grouping in PG)
and stateful processing. Isolating this
non-data-parallel work into fi xed stages
allows the GPU’s programmable pro-
cessing components to be highly spe-
cialized for data-parallel execution and
keeps the shader programming model
simple. In addition, the separation en-
ables diffi cult aspects of the graphics
computation to be encapsulated in op-

timized, fi xed-function hardware com-
ponents.

Mixture of predictable and unpredict-
able data access. The graphics pipeline
rigidly defi nes inter-stage data fl ows
using streams of entities. This pre-
dictability presents opportunities for
aggregate prefetching of stream data
records and highly specialized hard-
ware management of on-chip storage
resources. In contrast, buffer and tex-
ture accesses performed by shaders
are fi ne-grained memory operations on
dynamically computed addresses, mak-
ing prefetch diffi cult. As both forms of
data access are critical to maintaining
high throughput, shader programming
models explicitly differentiate stream
from buffer/texture memory accesses,
permitting specialized hardware solu-
tions for both types of accesses.

Opportunities for instruction stream
sharing. While the shader programming
model permits each shader invocation
to follow a unique stream of control, in
practice, shader execution on nearby
stream elements often results in the
same dynamic control-fl ow decisions.
As a result, multiple shader invocations
can likely share an instruction stream.
Although GPUs must accommodate
situations where this is not the case, the
use of SIMD-style execution to exploit
shared control-fl ow across multiple
shader invocations is a key optimization
in the design of GPU processing cores
and is accounted for in algorithms for
pipeline scheduling.

Programmable
Processing Resources
A large fraction of a GPU’s resources
exist within programmable processing
cores responsible for executing shader
functions. While substantial imple-
mentation differences exist across
vendors and product lines, all modern
GPUs maintain high effi ciency through
the use of multicore designs that em-
ploy both hardware multithreading and
SIMD (single instruction, multiple data)
processing. As shown in the table here,
these throughput-computing tech-
niques are not unique to GPUs (top two
rows). In comparison with CPUs, how-
ever, GPU designs push these ideas to
extreme scales.

Multicore + SIMD Processing = Lots
of ALUs. A logical thread of control is
realized by a stream of processor in-

figure 2: Graphics pipeline operations.

v1

v2
v4

v3

v5v0

v1

v2v2v2
v4

v3

v5v0 p0

p1

p0

p1

p0

p1

(a) six vertices from the vG output stream
defi ne the scene position and orientation of
two triangles. (b) Following vP and PG, the
vertices have been transformed into their
screen-space positions and grouped into
two triangle primitives, p0 and p1. (c) FG
samples the two primitives, producing a set
of fragments corresponding to p0 and p1. (d)
FP computes the appearance of the surface
at each sample location. (e) Po updates the
output image with contributions from the
fragments, accounting for surface visibility.
in this example, p1 is nearer to the camera
than p0. As a result p0 is occluded by p1.

(a)

(b)

(c)

(d)

(e)

54 communications of the acm | october 2008 | vol. 51 | no. 10

practice

to take advantage of SIMD process-
ing. Dynamic per-entity control flow is
implemented by executing all control
paths taken by the shader invocations
in the group. SIMD operations that do
not apply to all invocations, such as
those within shader code conditional or
loop blocks, are partially nullified using
write-masks. In this implementation,
when shader control flow diverges, few-
er SIMD ALUs do useful work. Thus, on
a chip with width-S SIMD processing,
worst-case behavior yields performance
equaling 1/S the chip’s peak rate. For-
tunately, shader workloads exhibit
sufficient levels of instruction stream
sharing to justify wide SIMD implemen-
tations. Additionally, GPU ISAs contain
special instructions that make it pos-
sible for shader compilers to transform
per-entity control flow into efficient
sequences of explicit or implicit SIMD
operations.

Hardware Multithreading = High ALU
Utilization. Thread stalls pose an addi-
tional challenge to high-performance
shader execution. Threads stall (or
block) when the processor cannot dis-
patch the next instruction in an instruc-
tion stream due to a dependency on an
outstanding instruction. High-latency
off-chip memory accesses, most nota-
bly those generated by texture access
operations, cause thread stalls lasting
hundreds of cycles (recall that while
shader input and output records lend
themselves to streaming prefetch, tex-
ture accesses do not).

Allowing ALUs to remain idle dur-
ing the period while a thread is stalled
is inefficient. Instead, GPUs maintain
more execution contexts on chip than
they can simultaneously execute, and
they perform instructions from run-
nable threads when others are stalled.
Hardware scheduling logic determines
which context(s) to execute in each pro-
cessor cycle. This technique of overpro-
visioning cores with thread contexts to
hide the latency of thread stalls is called
hardware multithreading. GPUs use
multithreading as the primary mecha-
nism to hide both memory access and
instruction pipeline latencies.

The amount of stall latency a GPU
can tolerate via multithreading is de-
pendent on the ratio of hardware thread
contexts to the number of threads that
are simultaneously executed in a clock
(we refer to this ratio as T). Support for

tivec ISA extensions. These extensions
provide instructions that control the
operation of four ALUs (SIMD width
of 4). Alternatively, most GPUs realize
the benefits of SIMD execution by im-
plicitly sharing an instruction stream
across threads with identical PCs. In
this implementation, the SIMD width
of the machine is not explicitly made
visible to the programmer. CPU design-
ers have chosen a SIMD width of four as
a balance between providing increased
throughput and retaining high single-
threaded performance. Characteristics
of the shading workload make it ben-
eficial for GPUs to employ significantly
wider SIMD processing (widths ranging
from 32 to 64) and to support a rich set
of operations. It is common for GPUs
to support SIMD implementations of
reciprocal square root, trigonometric
functions, and memory gather/scatter
operations.

The efficiency of wide SIMD pro-
cessing allows GPUs to pack many cores
densely with ALUs. For example, the NVID-
IA GeForce GTX 280GPU contains 480
ALUs operating at 1.3GHz. These ALUs
are organized into 30 processing cores
and yield a peak rate of 933GFLOPS. In
comparison, a high-end 3GHz Intel Core
2 Quad CPU contains four cores, each
with eight SIMD floating-point ALUs (two
4-width vector instructions per clock) and
is capable of, at most, 96GFLOPS of peak
performance.

Recall that a shader function defines
processing on a single pipeline entity.
GPUs execute multiple invocations of
the same shader function in parallel

structions that execute within a pro-
cessor-managed environment, called
an execution (or thread) context. This
context consists of state such as a pro-
gram counter, a stack pointer, general-
purpose registers, and virtual memory
mappings. A single core processor man-
aging a single execution context can
run one thread of control at a time. A
multicore processor replicates process-
ing resources (ALUs, control logic, and
execution contexts) and organizes them
into independent cores. When an ap-
plication features multiple threads of
control, multicore architectures pro-
vide increased throughput by executing
these instruction streams on each core
in parallel. For example, an Intel Core
2 Quad contains four cores and can ex-
ecute four instruction streams simulta-
neously. As significant parallelism exists
across shader invocations in a graphics
pipeline, GPU designs easily push core
counts higher.

Even higher performance is possible
by populating each core with multiple
floating-point ALUs. This is done effi-
ciently through SIMD (single instruc-
tion, multiple data) processing, where
several ALUs perform the same opera-
tion on a different piece of data. SIMD
processing amortizes the complexity of
decoding an instruction stream and the
cost of ALU control structures across
multiple ALUs, resulting in both power-
and area-efficient chip execution.

The most common implementation
of SIMD processing is via explicit short-
vector instructions, similar to those
provided by the x86 SSE or PowerPC Al-

table 1. tale of the tape: throughput architectures.

type Processor cores/chip aLus/core3 simD width max t4

GPus AMd radeon hd
4870

10 80 64 25

nvidiA GeForce
GtX 280

30 8 32 128

cPus intel core 2 Quad1 4 8 4 1

sti cell be2 8 4 4 1

sun ultrasPArc t2 8 1 1 4

1 SSE processing only, does not account for traditional FPU
2 Stream processing (SPE) cores only, does not account for PPU cores.
3 32-bit floating point operations
4 Max T is defined as the maximum ratio of hardware-managed thread execution contexts to simultaneously

executable threads (not an absolute count of hardware-managed execution contexts). This ratio is a measure
of a processor’s ability to automatically hide thread stalls using hardware multithreading.

practice

october 2008 | vol. 51 | no. 10 | communications of the acm 55

more thread contexts allows the GPU to
hide longer or more frequent stalls. All
modern GPUs maintain large numbers
of execution contexts on chip to provide
maximal memory latency-hiding ability
(T reaches 128 in modern GPUs—see
the table). This represents a significant
departure from CPU designs, which at-
tempt to avoid or minimize stalls pri-
marily using large, low-latency data
caches and complicated out-of-order
execution logic. Current Intel Core 2
and AMD Phenom processors maintain
one thread per core, and even high-end
models of Sun’s multithreaded Ultra-
SPARC T2 processor manage only four
times the number of threads they can
simultaneously execute.

Note that in the absence of stalls, the
throughput of single- and multithreaded
processors is equivalent. Multithread-
ing does not increase the number of
processing resources on a chip. Rather,
it is a strategy that interleaves execution
of multiple threads in order to use exist-
ing resources more efficiently (improve
throughput). On average, a multithread-
ed core operating at its peak rate runs
each thread 1/T of the time.

To achieve large-scale multithread-
ing, execution contexts must be com-
pact. The number of thread contexts
supported by a GPU core is limited by
the size of on-chip execution context
storage. GPUs require compiled shader
binaries to statically declare input and
output entity sizes, as well as bounds on
temporary storage and scratch registers
required for their execution. At runtime,
GPUs use these bounds to dynamically
partition on-chip storage (including
data registers) to support the maximum
possible number of threads. As a re-
sult, the latency hiding ability of a GPU
is shader dependent. GPUs can man-
age many thread contexts (and provide
maximal latency-hiding ability) when
shaders use fewer resources. When
shaders require large amounts of stor-
age, the number of execution contexts
(and latency-hiding ability) provided by
a GPU drops.

fixed-function
Processing Resources
 A GPU’s programmable cores interoper-
ate with a collection of specialized fixed-
function processing units that provide
high-performance, power-efficient
implementations of nonshader stages.

Running a Fragment
Shader on a GPU Core
Shader compilation to SIMD (single instruction, multiple data) instruction
sequences coupled with dynamic hardware thread scheduling lead to efficient
execution of a fragment shader on the simplified single-core GPU shown in Figure A.

The core executes an instruc- ˲
tion from at most one thread each
processor clock, but maintains state
for four threads on-chip simultane-
ously (T=4).

Core threads issue explicit ˲
width-32 SIMD vector instructions;
32 ALUs simultaneously execute a
vector instruction in a single clock.

The core contains a pool of 16 ˲
general-purpose vector registers
(each containing a vector of 32
single-precision floats) partitioned
among thread contexts.

The only source of thread stalls is ˲
texture access; they have a maximum
latency of 50 cycles.

Shader compilation by the graphics driver produces a GPU binary from high-level
fragment shader source. The resulting vector instruction sequence performs
32 invocations of the fragment shader simultaneously by carrying out each
invocation in a single lane of the width-32 vectors. The compiled binary requires
four vector registers for temporary results and contains 20 arithmetic instructions
between each texture access operation.

At runtime, the GPU executes a copy of the shader binary on each of its four thread
contexts, as illustrated in Figure B. The core executes T0 (thread 0) until it detects
a stall resulting from texture access in cycle 20. While T0 waits for the result of the
texturing operation, the core continues to execute its remaining three threads.
The result of T0’s texture access becomes available in cycle 70. Upon T3’s stall in
cycle 80, the core immediately resumes T0. Thus, at no point during execution are
ALUs left idle.

When executing the shader program for this example, a minimum of four threads
is needed to keep core ALUs busy. Each thread operates simultaneously on 32
fragments; thus, 4*32=128 fragments are required for the chip to achieve peak
performance. As memory latencies on real GPUs involve hundreds of cycles,
modern GPUs must contain support for significantly more threads to sustain
high utilization. If we extend our simple GPU to a more realistic size of 16
processing cores and provision each core with storage for 16 execution contexts,
then simultaneous processing of 8,192 fragments is needed to approach peak
processing rates. Clearly, GPU performance relies heavily on the abundance of
parallel shading work.

figure a: example GPu core

Alus (siMd operation)

1

31

general register file
(partitioned among threads)

r
0

r
15

execution (thread) contexts

t0 t1 t2 t3

figure B: thread execution on the example GPu core

0

20

40

60

80

 executing ready (not executing) stalled

t0

c
yc

le

t1 t2 t3

stall

stall

stall

stall
ready

56 communications of the acm | october 2008 | vol. 51 | no. 10

practice

These components do not simply aug-
ment programmable processing; they
perform sophisticated operations and
constitute an additional hundreds of gi-
gaflops of processing power. Two of the
most important operations performed
via fixed-function hardware are texture
filtering and rasterization (fragment
generation).

Texturing is handled almost entirely
by fixed-function logic. A texturing op-
eration samples a contiguous 1D, 2D,
or 3D signal (a texture) that is discretely
represented by a multidimensional ar-
ray of color values (2D texture data is
simply an image). A GPU texture-filter-
ing unit accepts a point within the tex-
ture’s parameterization (represented by
a floating-point tuple, such as {.5,.75})
and loads array values surrounding the
coordinate from memory. The values
are then filtered to yield a single result
that represents the texture’s value at
the specified coordinate. This value
is returned to the calling shader func-
tion. Sophisticated texture filtering is
required for generating high-quality im-
ages. As graphics APIs provide a finite
set of filtering kernels, and because fil-
tering kernels are computationally ex-
pensive, texture filtering is well suited
for fixed-function processing.

Primitive rasterization in the FG
stage is another key pipeline opera-
tion currently implemented by fixed-
function components. Rasterization
involves densely sampling a primitive
(at least once per output image pixel)
to determine which pixels the primitive
overlaps. This process involves comput-
ing the location of the surface at each
sample point and then generating frag-
ments for all sample points covered by
the primitive. Bounding-box compu-
tations and hierarchical techniques
optimize the rasterization process.
Nonetheless, rasterization involves sig-
nificant computation.

In addition to the components for
texturing and rasterization, GPUs con-
tain dedicated hardware components for
operations such as surface visibility deter-
mination, output pixel compositing, and
data compression/decompression.

the memory system
Parallel-processing resources place ex-
treme load on a GPU’s memory system,
which services memory requests from
both fixed-function and programmable

components. These requests include
a mixture of fine-granularity and bulk
prefetch operations and may even re-
quire real-time guarantees (such as dis-
play scan out).

Recall that a GPU’s programmable
cores tolerate large memory latencies
via hardware multithreading and that
interstage stream data accesses can be
prefetched. As a result, GPU memory
systems are architected to deliver high-
bandwidth, rather than low-latency,
data access. High throughput is ob-
tained through the use of wide memory
buses and specialized GDDR (graphics
double data rate) memories that oper-
ate most efficiently when memory ac-
cess granularities are large. Thus, GPU
memory controllers must buffer, reor-
der, and then coalesce large numbers
of memory requests to synthesize large
operations that make efficient use of
the memory system. As an example, the
ATI Radeon HD 4870 memory controller
manipulates thousands of outstanding
requests to deliver 115GB per second of
bandwidth from GDDR5 memories at-
tached to a 256-bit bus.

GPU data caches meet different
needs from CPU caches. GPUs employ
relatively small, read-only caches (no
cache coherence) that serve to filter re-
quests destined for the memory control-
ler and to reduce bandwidth require-
ments placed on main memory. Thus,
GPU caches typically serve to amplify
total bandwidth to processing units
rather than decrease latency of memory
accesses. Interleaved execution of many
threads renders large read-write cach-
es inefficient because of severe cache
thrashing. Instead, GPUs benefit from
small caches that capture spatial locality
across simultaneously executed shader
invocations. This situation is common,
as texture accesses performed while
processing fragments in close screen
proximity are likely to have overlapping
texture-filter support regions.

Although most GPU caches are small,
this does not imply that GPUs con-
tain little on-chip storage. Significant
amounts of on-chip storage are used to
hold entity streams, execution contexts,
and thread scratch data.

Pipeline scheduling and control
Mapping the entire graphics pipeline
efficiently onto GPU resources is a chal-
lenging problem that requires dynamic

understanding
key ideas behind
the success of
GPu computing is
valuable not only
for developers
targeting software
for GPu execution,
but also for
informing the
design of new
architectures and
programming
systems for other
domains.

practice

october 2008 | vol. 51 | no. 10 | communications of the acm 57

and adaptive techniques. A unique as-
pect of GPU computing is that hardware
logic assumes a major role in mapping
and scheduling computation onto chip
resources. GPU hardware “scheduling”
logic extends beyond the thread-sched-
uling responsibilities discussed in pre-
vious sections. GPUs automatically as-
sign computations to threads, clean up
after threads complete, size and man-
age buffers that hold stream data, guar-
antee ordered processing when needed,
and identify and discard unnecessary
pipeline work. This logic relies heavily
on specific upfront knowledge of graph-
ics workload characteristics.

Conventional thread programming
uses operating-system or threading API
mechanisms for thread creation, com-
pletion, and synchronization on shared
structures. Large-scale multithreading
coupled with the brevity of shader func-
tion execution (at most a few hundred
instructions), however, means GPU
thread management must be performed
entirely by hardware logic.

GPUs minimize thread launch costs
by preconfiguring execution contexts to
run one of the pipeline’s three types of
shader functions and reusing the con-
figuration multiple times for shaders
of the same type. GPUs prefetch shader
input records and launch threads when
a shader stage’s input stream contains
a sufficient number of entities. Simi-
lar hardware logic commits records to
the output stream buffer upon thread
completion. The distribution of execu-
tion contexts to shader stages is repro-
visioned periodically as pipeline needs
change and stream buffers drain or ap-
proach capacity.

GPUs leverage upfront knowledge of
pipeline entities to identify and skip un-
necessary computation. For example,
vertices shared by multiple primitives
are identified and VP results cached to
avoid duplicate vertex processing. GPUs
also discard fragments prior to FP when
the fragment will not alter the value of
any image pixel. Early fragment discard
is triggered when a fragment’s sample
point is occluded by a previously pro-
cessed surface located closer to the
camera.

Another class of hardware optimiza-
tions reorganizes fine-grained opera-
tions for more efficient processing. For
example, rasterization orders fragment
generation to maximize screen proxim-

ity of samples. This ordering improves
texture cache hit rates, as well as in-
struction stream sharing across shader
invocations. The GPU memory control-
ler also performs automatic reorganiza-
tion when it reorders memory requests
to optimize memory bus and DRAM uti-
lization.

GPUs ensure inter-fragment PO or-
dering dependencies using hardware
logic. Implementations use structures
such as post-FP reorder buffers or
scoreboards that delay fragment thread
launch until the processing of overlap-
ping fragments is complete.

GPU hardware can take responsibil-
ity for sophisticated scheduling deci-
sions because semantics and invariants
of the graphics pipeline are known a pri-
ori. Hardware implementation enables
fine-granularity logic that is informed
by precise knowledge of both the graph-
ics pipeline and the underlying GPU
implementation. As a result, GPUs are
highly efficient at using all available re-
sources. The drawback of this approach
is that GPUs execute only those compu-
tations for which these invariants and
structures are known.

Graphics programming is becom-
ing increasingly versatile. Developers
constantly seek to incorporate more
sophisticated algorithms and leverage
more configurable graphics pipelines.
Simultaneously, the growing popular-
ity of GPU-based computing for non-
graphics applications has led to new
interfaces for accessing GPU resources.
Given both of these trends, the extent
to which GPU designers can embed a
priori knowledge of computations into
hardware scheduling logic will inevita-
bly decrease over time.

A major challenge in the evolution
of GPU programming involves preserv-
ing GPU performance levels and ease
of use while increasing the generality
and expressiveness of application inter-
faces. The designs of “GPU-compute”
interfaces, such as NVIDIA’s CUDA and
AMD’s CAL, are evidence of how difficult
this challenge is. These frameworks ab-
stract computation as large batch oper-
ations that involve many invocations of
a kernel function operating in parallel.
The resulting computations execute on
GPUs efficiently only under conditions
of massive data parallelism. Programs
that attempt to implement non data-
parallel algorithms perform poorly.

GPU-compute programming models
are simple to use and permit well-writ-
ten programs to make good use of both
GPU programmable cores and (if need-
ed) texturing resources. Programs using
these interfaces, however, cannot use
powerful fixed-function components of
the chip, such as those related to com-
pression, image compositing, or raster-
ization. Also, when these interfaces are
enabled, much of the logic specific to
graphics-pipeline scheduling is simply
turned off. Thus, current GPU-compute
programming frameworks significant-
ly restrict computations so that their
structure, as well as their use of chip re-
sources, remains sufficiently simple for
GPUs to run these programs in parallel.

GPu and cPu convergence
The modern graphics processor is a pow-
erful computing platform that resides
at the extreme end of the design space
of throughput-oriented architectures.
A GPU’s processing resources and ac-
companying memory system are heavily
optimized to execute large numbers of
operations in parallel. In addition, spe-
cialization to the graphics domain has
enabled the use of fixed-function pro-
cessing and allowed hardware schedul-
ing of a parallel computation to be prac-
tical. With this design, GPUs deliver
unsurpassed levels of performance to
challenging workloads while maintain-
ing a simple and convenient program-
ming interface for developers.

Today, commodity CPU designs are
adopting features common in GPU
computing, such as increased core
counts and hardware multithreading.
At the same time, each generation of
GPU evolution adds flexibility to previ-
ous high-throughput GPU designs. Giv-
en these trends, software developers in
many fields are likely to take interest in
the extent to which CPU and GPU archi-
tectures and, correspondingly, CPU and
GPU programming systems, ultimately
converge.

Kayvon Fatahalian (kayvonf@gmail.com) and Mike
houston are Ph.D. candidates in computer science in the
Computer Graphics Laboratory at Stanford University.

A previous version of this article was published in the
March 2008 issue of ACM Queue.

© 2008 ACM 0001-0782/08/1000 $5.00

