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T2, and increasingly multicore x86 sys-
tems from Intel and AMD, differentiate 
themselves from traditional CPU de-
signs by prioritizing high-throughput 
processing of many parallel operations 
over the low-latency execution of a sin-
gle task.

GPUs assemble a large collection of 
fixed-function and software-program-
mable processing resources. Impressive 
statistics, such as ALU (arithmetic logic 
unit) counts and peak floating-point 
rates often emerge during discussions 
of GPU design. Despite the inherently 
parallel nature of graphics, however, ef-
ficiently mapping common rendering 
algorithms onto GPU resources is ex-
tremely challenging. 

The key to high performance lies in 
strategies that hardware components 
and their corresponding software in-
terfaces use to keep GPU processing 
resources busy. GPU designs go to great 
lengths to obtain high efficiency and 
conveniently reduce the difficulty pro-
grammers face when programming 
graphics applications. As a result, GPUs 
deliver high performance and expose 
an expressive but simple programming 
interface. This interface remains largely 
devoid of explicit parallelism or asyn-
chronous execution and has proven to 
be portable across vendor implementa-
tions and generations of GPU designs.

At a time when the shift toward 
throughput-oriented CPU platforms is 
prompting alarm about the complexity 
of parallel programming, understand-
ing key ideas behind the success of 
GPU computing is valuable not only for 
developers targeting software for GPU 
execution, but also for informing the 
design of new architectures and pro-
gramming systems for other domains. 
In this article, we dive under the hood of 
a modern GPU to look at why interactive 
rendering is challenging and to explore 
the solutions GPU architects have de-
vised to meet these challenges.

the Graphics Pipeline
A graphics system generates images 
that represent views of a virtual scene. 
This scene is defined by the geometry, 
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As the line between GPUs and CPUs  
begins to blur, it’s important to understand 
what makes GPUs tick.

By kayVon fatahaLian anD mike houston

A GAMER WANDERS through a virtual world rendered 
in near-cinematic detail. Seconds later, the screen 
fills with a 3D explosion, the result of unseen enemies 
hiding in physically accurate shadows. Disappointed, 
the user exits the game and returns to a computer 
desktop that exhibits the stylish 3D look-and-feel 
of a modern window manager. Both of these visual 
experiences require hundreds of gigaflops of computing 
performance, a demand met by the GPU (graphics 
processing unit) present in every consumer PC. 

The modern GPU is a versatile processor that 
constitutes an extreme but compelling point in 
the growing space of multicore parallel computing 
architectures. These platforms, which include GPUs, 
the STI Cell Broadband Engine, the Sun UltraSPARC 
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an application-programmable stage.
PO (pixel operations). PO uses each 

fragment’s screen position to calculate 
and apply the fragment’s contribution 
to output image pixel values. PO ac-
counts for a sample’s distance from the 
virtual camera and discards fragments 
that are blocked from view by surfaces 
closer to the camera. When fragments 
from multiple primitives contribute to 
the value of a single pixel, as is often the 
case when semi-transparent surfaces 
overlap, many rendering techniques 
rely on PO to perform pixel updates 
in the order defined by the primitives’ 
positions in the PP output stream. All 
graphics APIs guarantee this behavior, 
and PO is the only stage where the order 
of entity processing is specified by the 
pipeline’s definition.

shader Programming
The behavior of application-program-
mable pipeline stages (VP, PP, FP) is 
defined by shader functions (or shaders). 
Graphics programmers express vertex, 
primitive, and fragment shader func-
tions in high-level shading languages 
such as NVIDIA’s Cg, OpenGL’s GLSL, 
or Microsoft’s HLSL. Shader source is 
compiled into bytecode offline, then 
transformed into a GPU-specific binary 
by the graphics driver at runtime.

Shading languages support complex 
data types and a rich set of control-flow 
constructs, but they do not contain 
primitives related to explicit parallel 
execution. Thus, a shader definition is 
a C-like function that serially computes 
output-entity data records from a single 
input entity. Each function invocation is 
abstracted as an independent sequence 
of control that executes in complete 
isolation from the processing of other 
stream entities.

As a convenience, in addition to data 
records from stage input and output 
streams, shader functions may access 
(but not modify) large, globally shared 
data buffers. Prior to pipeline execu-
tion, these buffers are initialized to con-
tain shader-specific parameters and tex-
tures by the application.

characteristics and challenges
Graphics pipeline execution is charac-
terized by the following key properties.

Opportunities for parallel processing. 
Graphics presents opportunities for 
both task- (across pipeline stages) and 

orientation, and material properties of 
object surfaces and the position and 
characteristics of light sources. A scene 
view is described by the location of a vir-
tual camera. Graphics systems seek to 
find the appropriate balance between 
conflicting goals of enabling maximum 
performance and maintaining an ex-
pressive but simple interface for de-
scribing graphics computations. 

Real-time graphics APIs such as Di-
rect3D and OpenGL strike this balance 
by representing the rendering compu-
tation as a graphics processing pipeline 
that performs operations on four fun-
damental entities: vertices, primitives, 
fragments, and pixels. Figure 1 provides 
a block diagram of a simplified seven-
stage graphics pipeline. Data flows be-
tween stages in streams of entities. This 
pipeline contains fixed-function stages 
(green) implementing API-specified 
operations and three programmable 
stages (red) whose behavior is defined 

by application code. Figure 2 illustrates 
the operation of key pipeline stages.

VG (vertex generation). Real-time 
graphics APIs represent surfaces as 
collections of simple geometric primi-
tives (points, lines, or triangles). Each 
primitive is defined by a set of vertices. 
To initiate rendering, the application 
provides the pipeline’s VG stage with a 
list of vertex descriptors. From this list, 
VG prefetches vertex data from memory 
and constructs a stream of vertex data 
records for subsequent processing. In 
practice, each record contains the 3D 
(x,y,z) scene position of the vertex plus 
additional application-defined param-
eters such as surface color and normal 
vector orientation.

VP (vertex processing). The behavior 
of VP is application programmable. VP 
operates on each vertex independently 
and produces exactly one output vertex 
record from each input record. One of 
the most important operations of VP ex-
ecution is computing the 2D output im-
age (screen) projection of the 3D vertex 
position.

PG (primitive generation). PG uses 
vertex topology data provided by the ap-
plication to group vertices from VP into 
an ordered stream of primitives (each 
primitive record is the concatenation of 
several VP output vertex records). Vertex 
topology also defines the order of primi-
tives in the output stream.

PP (primitive processing). PP operates 
independently on each input primitive 
to produce zero or more output primi-
tives. Thus, the output of PP is a new 
(potentially longer or shorter) ordered 
stream of primitives. Like VP, PP opera-
tion is application programmable.

FG (fragment generation). FG samples 
each primitive densely in screen space 
(this process is called rasterization). 
Each sample is manifest as a fragment 
record in the FG output stream. Frag-
ment records contain the output image 
position of the surface sample, its dis-
tance from the virtual camera, as well as 
values computed via interpolation of the 
source primitive’s vertex parameters.

FP (fragment processing). FP simu-
lates the interaction of light with scene 
surfaces to determine surface color and 
opacity at each fragment’s sample point. 
To give surfaces realistic appearances, 
FP computations make heavy use of fil-
tered lookups into large, parameterized 
1D, 2D, or 3D arrays called textures. FP is 

figure 1: a simplified graphics pipeline.
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data- (stages operate independently on 
stream entities) parallelism, making 
parallel processing a viable strategy for 
increasing throughput. Despite abun-
dant potential parallelism, however, the 
unpredictable cost of shader execution 
and constraints on the order of PO stage 
processing introduce dynamic, fi ne-
grained dependencies that complicate 
parallel implementation throughout 
the pipeline. Although output image 
contributions from most fragments can 
be applied in parallel, those that con-
tribute to the same pixel cannot.

Extreme variations in pipeline load.
Although the number of stages and data 
fl ows of the graphics pipeline is fi xed, 
the computational and bandwidth re-
quirements of all stages vary signifi cant-
ly depending on the behavior of shader 
functions and properties of scene. For 
example, primitives that cover large re-
gions of the screen generate many more 
fragments than vertices. In contrast, 
many small primitives result in high ver-
tex-processing demands. Applications 
frequently reconfi gure the pipeline to 
use different shader functions that vary 
from tens of instructions to a few hun-
dred. For these reasons, over the dura-
tion of processing for a single frame, 
different stages will dominate overall 
execution, often resulting in bandwidth 
and compute-intensive phases of execu-
tion. Dynamic load balancing is required 
to maintain an effi cient mapping of the 
graphics pipeline to a GPU’s resources 
in the face of this variability and GPUs 
employ sophisticated heuristics for re-
allocating execution and on-chip stor-
age resources amongst pipeline stages 
depending on load.

Fixed-function stages encapsulate dif-
fi cult-to-parallelize work. Programma-
ble stages are trivially parallelizable by 
executing shader function logic simul-
taneously on multiple stream entities. 
In contrast, the pipeline’s nonprogram-
mable stages involve multiple entity 
interactions (such as ordering depen-
dencies in PO or vertex grouping in PG) 
and stateful processing. Isolating this 
non-data-parallel work into fi xed stages 
allows the GPU’s programmable pro-
cessing components to be highly spe-
cialized for data-parallel execution and 
keeps the shader programming model 
simple. In addition, the separation en-
ables diffi cult aspects of the graphics 
computation to be encapsulated in op-

timized, fi xed-function hardware com-
ponents.

Mixture of predictable and unpredict-
able data access. The graphics pipeline 
rigidly defi nes inter-stage data fl ows 
using streams of entities. This pre-
dictability presents opportunities for 
aggregate prefetching of stream data 
records and highly specialized hard-
ware management of on-chip storage 
resources. In contrast, buffer and tex-
ture accesses performed by shaders 
are fi ne-grained memory operations on 
dynamically computed addresses, mak-
ing prefetch diffi cult. As both forms of 
data access are critical to maintaining 
high throughput, shader programming 
models explicitly differentiate stream 
from buffer/texture memory accesses, 
permitting specialized hardware solu-
tions for both types of accesses.

Opportunities for instruction stream 
sharing. While the shader programming 
model permits each shader invocation 
to follow a unique stream of control, in 
practice, shader execution on nearby 
stream elements often results in the 
same dynamic control-fl ow decisions. 
As a result, multiple shader invocations 
can likely share an instruction stream. 
Although GPUs must accommodate 
situations where this is not the case, the 
use of SIMD-style execution to exploit 
shared control-fl ow across multiple 
shader invocations is a key optimization 
in the design of GPU processing cores 
and is accounted for in algorithms for 
pipeline scheduling.

Programmable 
Processing Resources
A large fraction of a GPU’s resources 
exist within programmable processing 
cores responsible for executing shader 
functions. While substantial imple-
mentation differences exist across 
vendors and product lines, all modern 
GPUs maintain high effi ciency through 
the use of multicore designs that em-
ploy both hardware multithreading and 
SIMD (single instruction, multiple data) 
processing. As shown in the table here, 
these throughput-computing tech-
niques are not unique to GPUs (top two 
rows). In comparison with CPUs, how-
ever, GPU designs push these ideas to 
extreme scales. 

Multicore + SIMD Processing = Lots 
of ALUs. A logical thread of control is 
realized by a stream of processor in-

figure 2: Graphics pipeline operations.
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to take advantage of SIMD process-
ing. Dynamic per-entity control flow is 
implemented by executing all control 
paths taken by the shader invocations 
in the group. SIMD operations that do 
not apply to all invocations, such as 
those within shader code conditional or 
loop blocks, are partially nullified using 
write-masks. In this implementation, 
when shader control flow diverges, few-
er SIMD ALUs do useful work. Thus, on 
a chip with width-S SIMD processing, 
worst-case behavior yields performance 
equaling 1/S the chip’s peak rate. For-
tunately, shader workloads exhibit 
sufficient levels of instruction stream 
sharing to justify wide SIMD implemen-
tations. Additionally, GPU ISAs contain 
special instructions that make it pos-
sible for shader compilers to transform 
per-entity control flow into efficient 
sequences of explicit or implicit SIMD 
operations.

Hardware Multithreading = High ALU 
Utilization. Thread stalls pose an addi-
tional challenge to high-performance 
shader execution. Threads stall (or 
block) when the processor cannot dis-
patch the next instruction in an instruc-
tion stream due to a dependency on an 
outstanding instruction. High-latency 
off-chip memory accesses, most nota-
bly those generated by  texture access 
operations, cause thread stalls lasting 
hundreds of cycles (recall that while 
shader input and output records lend 
themselves to streaming prefetch, tex-
ture accesses do not). 

Allowing ALUs to remain idle dur-
ing the period while a thread is stalled 
is inefficient. Instead, GPUs maintain 
more execution contexts on chip than 
they can simultaneously execute, and 
they perform instructions from run-
nable threads when others are stalled. 
Hardware scheduling logic determines 
which context(s) to execute in each pro-
cessor cycle. This technique of overpro-
visioning cores with thread contexts to 
hide the latency of thread stalls is called 
hardware multithreading. GPUs use 
multithreading as the primary mecha-
nism to hide both memory access and 
instruction pipeline latencies.

The amount of stall latency a GPU 
can tolerate via multithreading is de-
pendent on the ratio of hardware thread 
contexts to the number of threads that 
are simultaneously executed in a clock 
(we refer to this ratio as T). Support for 

tivec ISA extensions. These extensions 
provide instructions that control the 
operation of four ALUs (SIMD width 
of 4). Alternatively, most GPUs realize 
the benefits of SIMD execution by im-
plicitly sharing an instruction stream 
across threads with identical PCs.  In 
this implementation, the SIMD width 
of the machine is not explicitly made 
visible to the programmer. CPU design-
ers have chosen a SIMD width of four as 
a balance between providing increased 
throughput and retaining high single-
threaded performance. Characteristics 
of the shading workload make it ben-
eficial for GPUs to employ significantly 
wider SIMD processing (widths ranging 
from 32 to 64) and to support a rich set 
of operations. It is common for GPUs 
to support SIMD implementations of 
reciprocal square root, trigonometric 
functions, and memory gather/scatter 
operations.

The efficiency of wide SIMD pro-
cessing allows GPUs to pack many cores 
densely with ALUs. For example, the NVID-
IA GeForce GTX 280GPU contains 480 
ALUs operating at 1.3GHz. These ALUs 
are organized into 30 processing cores 
and yield a peak rate of 933GFLOPS.  In 
comparison, a high-end 3GHz Intel Core 
2 Quad CPU contains four cores, each 
with eight SIMD floating-point ALUs (two 
4-width vector instructions per clock) and 
is capable of, at most, 96GFLOPS of peak 
performance.

Recall that a shader function defines 
processing on a single pipeline entity. 
GPUs execute multiple invocations of 
the same shader function in parallel 

structions that execute within a pro-
cessor-managed environment, called 
an execution (or thread) context. This 
context consists of state such as a pro-
gram counter, a stack pointer, general-
purpose registers, and virtual memory 
mappings. A single core processor man-
aging a single execution context can 
run one thread of control at a time.  A 
multicore processor replicates process-
ing resources (ALUs, control logic, and 
execution contexts) and organizes them 
into independent cores. When an ap-
plication features multiple threads of 
control, multicore architectures pro-
vide increased throughput by executing 
these instruction streams on each core 
in parallel. For example, an Intel Core 
2 Quad contains four cores and can ex-
ecute four instruction streams simulta-
neously. As significant parallelism exists 
across shader invocations in a graphics 
pipeline, GPU designs easily push core 
counts higher. 

Even higher performance is possible 
by populating each core with multiple 
floating-point ALUs. This is done effi-
ciently through SIMD (single instruc-
tion, multiple data) processing, where 
several ALUs perform the same opera-
tion on a different piece of data. SIMD 
processing amortizes the complexity of 
decoding an instruction stream and the 
cost of ALU control structures across 
multiple ALUs, resulting in both power- 
and area-efficient chip execution. 

The most common implementation 
of SIMD processing is via explicit short-
vector instructions, similar to those 
provided by the x86 SSE or PowerPC Al-

table 1. tale of the tape: throughput architectures.

type Processor cores/chip aLus/core3 simD width max t4

GPus AMd radeon hd 
4870

10 80 64 25

nvidiA GeForce 
GtX 280

30 8 32 128

cPus intel core 2 Quad1 4 8 4 1

sti cell be2 8 4 4 1

sun ultrasPArc t2 8 1 1 4

1 SSE processing only, does not account for traditional FPU
2 Stream processing (SPE) cores only, does not account for PPU cores.
3 32-bit floating point operations
4 Max T is defined as the maximum ratio of hardware-managed thread execution contexts to simultaneously 

executable threads (not an absolute count of hardware-managed execution contexts).  This ratio is a measure 
of a processor’s ability to automatically hide thread stalls using hardware multithreading.
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more thread contexts allows the GPU to 
hide longer or more frequent stalls. All 
modern GPUs maintain large numbers 
of execution contexts on chip to provide 
maximal memory latency-hiding ability 
(T reaches 128 in modern GPUs—see 
the table). This represents a significant 
departure from CPU designs, which at-
tempt to avoid or minimize stalls pri-
marily using large, low-latency data 
caches and complicated out-of-order 
execution logic. Current Intel Core 2 
and AMD Phenom processors maintain 
one thread per core, and even high-end 
models of Sun’s multithreaded Ultra-
SPARC T2 processor manage only four 
times the number of threads they can 
simultaneously execute.

Note that in the absence of stalls, the 
throughput of single- and multithreaded 
processors is equivalent. Multithread-
ing does not increase the number of 
processing resources on a chip. Rather, 
it is a strategy that interleaves execution 
of multiple threads in order to use exist-
ing resources more efficiently (improve 
throughput). On average, a multithread-
ed core operating at its peak rate runs 
each thread 1/T of the time.

To achieve large-scale multithread-
ing, execution contexts must be com-
pact. The number of thread contexts 
supported by a GPU core is limited by 
the size of on-chip execution context 
storage. GPUs require compiled shader 
binaries to statically declare input and 
output entity sizes, as well as bounds on 
temporary storage and scratch registers 
required for their execution. At runtime, 
GPUs use these bounds to dynamically 
partition on-chip storage (including 
data registers)  to support the maximum 
possible number of threads.  As a re-
sult, the latency hiding ability of a GPU 
is shader dependent. GPUs can man-
age many thread contexts (and provide 
maximal latency-hiding ability) when 
shaders use fewer resources. When 
shaders require large amounts of stor-
age, the number of execution contexts 
(and latency-hiding ability) provided by 
a GPU drops.

fixed-function  
Processing Resources
 A GPU’s programmable cores interoper-
ate with a collection of specialized fixed-
function processing units that provide 
high-performance, power-efficient 
implementations of nonshader stages. 

Running a Fragment 
Shader on a GPU Core
Shader compilation to SIMD (single instruction, multiple data) instruction 
sequences coupled with dynamic hardware thread scheduling lead to efficient 
execution of a fragment shader on the simplified single-core GPU shown in Figure A.

The core executes an instruc- ˲
tion from at most one thread each 
processor clock, but maintains state 
for four threads on-chip simultane-
ously (T=4).

Core threads issue explicit  ˲
width-32 SIMD vector instructions; 
32 ALUs simultaneously execute a 
vector instruction in a single clock.

The core contains a pool of 16  ˲
general-purpose vector registers 
(each containing a vector of 32 
single-precision floats) partitioned 
among thread contexts.

The only source of thread stalls is  ˲
texture access; they have a maximum 
latency of 50 cycles.

Shader compilation by the graphics driver produces a GPU binary from high-level 
fragment shader source. The resulting vector instruction sequence performs 
32 invocations of the fragment shader simultaneously by carrying out each 
invocation in a single lane of the width-32 vectors. The compiled binary requires 
four vector registers for temporary results and contains 20 arithmetic instructions 
between each texture access operation.

At runtime, the GPU executes a copy of the shader binary on each of its four thread 
contexts, as illustrated in Figure B. The core executes T0 (thread 0) until it detects 
a stall resulting from texture access in cycle 20. While T0 waits for the result of the 
texturing operation, the core continues to execute its remaining three threads. 
The result of T0’s texture access becomes available in cycle 70. Upon T3’s stall in 
cycle 80, the core immediately resumes T0. Thus, at no point during execution are 
ALUs left idle.

When executing the shader program for this example, a minimum of four threads 
is needed to keep core ALUs busy. Each thread operates simultaneously on 32 
fragments; thus, 4*32=128 fragments are required for the chip to achieve peak 
performance. As memory latencies on real GPUs involve hundreds of cycles, 
modern GPUs must contain support for significantly more threads to sustain 
high utilization. If we extend our simple GPU to a more realistic size of 16 
processing cores and provision each core with storage for 16 execution contexts, 
then simultaneous processing of 8,192 fragments is needed to approach peak 
processing rates. Clearly, GPU performance relies heavily on the abundance of 
parallel shading work.

figure a: example GPu core
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These components do not simply aug-
ment programmable processing; they 
perform sophisticated operations and 
constitute an additional hundreds of gi-
gaflops of processing power. Two of the 
most important operations performed 
via fixed-function hardware are texture 
filtering and rasterization (fragment 
generation).

Texturing is handled almost entirely 
by fixed-function logic. A texturing op-
eration samples a contiguous 1D, 2D, 
or 3D signal (a texture) that is discretely 
represented by a multidimensional ar-
ray of color values (2D texture data is 
simply an image). A GPU texture-filter-
ing unit accepts a point within the tex-
ture’s parameterization (represented by 
a floating-point tuple, such as {.5,.75}) 
and loads array values surrounding the 
coordinate from memory. The values 
are then filtered to yield a single result 
that represents the texture’s value at 
the specified coordinate. This value 
is returned to the calling shader func-
tion. Sophisticated texture filtering is 
required for generating high-quality im-
ages. As graphics APIs provide a finite 
set of filtering kernels, and because fil-
tering kernels are computationally ex-
pensive, texture filtering is well suited 
for fixed-function processing.

Primitive rasterization in the FG 
stage is another key pipeline opera-
tion currently implemented by fixed-
function components. Rasterization 
involves densely sampling a primitive 
(at least once per output image pixel) 
to determine which pixels the primitive 
overlaps. This process involves comput-
ing the location of the surface at each 
sample point and then generating frag-
ments for all sample points covered by 
the primitive. Bounding-box compu-
tations and hierarchical techniques 
optimize the rasterization process. 
Nonetheless, rasterization involves sig-
nificant computation.

In addition to the components for 
texturing and rasterization, GPUs con-
tain dedicated hardware components for 
operations such as surface visibility deter-
mination, output pixel compositing, and 
data compression/decompression.

the memory system
Parallel-processing resources place ex-
treme load on a GPU’s memory system, 
which services memory requests from 
both fixed-function and programmable 

components. These requests include 
a mixture of fine-granularity and bulk 
prefetch operations and may even re-
quire real-time guarantees (such as dis-
play scan out).

Recall that a GPU’s programmable 
cores tolerate large memory latencies 
via hardware multithreading and that 
interstage stream data accesses can be 
prefetched. As a result, GPU memory 
systems are architected to deliver high-
bandwidth, rather than low-latency, 
data access. High throughput is ob-
tained through the use of wide memory 
buses and specialized GDDR (graphics 
double data rate) memories that oper-
ate most efficiently when memory ac-
cess granularities are large. Thus, GPU 
memory controllers must buffer, reor-
der, and then coalesce large numbers 
of memory requests to synthesize large 
operations that make efficient use of 
the memory system. As an example, the 
ATI Radeon HD 4870 memory controller 
manipulates thousands of outstanding 
requests to deliver 115GB per second of 
bandwidth from GDDR5 memories at-
tached to a 256-bit bus.

GPU data caches meet different 
needs from CPU caches. GPUs employ 
relatively small, read-only caches (no 
cache coherence) that serve to filter re-
quests destined for the memory control-
ler and to reduce bandwidth require-
ments placed on main memory. Thus, 
GPU caches typically serve to amplify 
total bandwidth to processing units 
rather than decrease latency of memory 
accesses. Interleaved execution of many 
threads renders large read-write cach-
es inefficient because of severe cache 
thrashing. Instead, GPUs benefit from 
small caches that capture spatial locality 
across simultaneously executed shader 
invocations. This situation is common, 
as texture accesses performed while 
processing fragments in close screen 
proximity are likely to have overlapping 
texture-filter support regions.

Although most GPU caches are small, 
this does not imply that GPUs con-
tain little on-chip storage. Significant 
amounts of on-chip storage are used to 
hold entity streams, execution contexts, 
and thread scratch data.

Pipeline scheduling and control
Mapping the entire graphics pipeline 
efficiently onto GPU resources is a chal-
lenging problem that requires dynamic 

understanding 
key ideas behind 
the success of 
GPu computing is 
valuable not only 
for developers 
targeting software 
for GPu execution, 
but also for 
informing the 
design of new 
architectures and 
programming 
systems for other 
domains.
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and adaptive techniques. A unique as-
pect of GPU computing is that hardware 
logic assumes a major role in mapping 
and scheduling computation onto chip 
resources. GPU hardware “scheduling” 
logic extends beyond the thread-sched-
uling responsibilities discussed in pre-
vious sections. GPUs automatically as-
sign computations to threads, clean up 
after threads complete, size and man-
age buffers that hold stream data, guar-
antee ordered processing when needed, 
and identify and discard unnecessary 
pipeline work. This logic relies heavily 
on specific upfront knowledge of graph-
ics workload characteristics.

Conventional thread programming 
uses operating-system or threading API 
mechanisms for thread creation, com-
pletion, and synchronization on shared 
structures. Large-scale multithreading 
coupled with the brevity of shader func-
tion execution (at most a few hundred 
instructions), however, means GPU 
thread management must be performed 
entirely by hardware logic.

GPUs minimize thread launch costs 
by preconfiguring execution contexts to 
run one of the pipeline’s three types of 
shader functions and reusing the con-
figuration multiple times for shaders 
of the same type. GPUs prefetch shader 
input records and launch threads when 
a shader stage’s input stream contains 
a sufficient number of entities. Simi-
lar hardware logic commits records to 
the output stream buffer upon thread 
completion. The distribution of execu-
tion contexts to shader stages is repro-
visioned periodically as pipeline needs 
change and stream buffers drain or ap-
proach capacity.

GPUs leverage upfront knowledge of 
pipeline entities to identify and skip un-
necessary computation. For example, 
vertices shared by multiple primitives 
are identified and VP results cached to 
avoid duplicate vertex processing. GPUs 
also discard fragments prior to FP when 
the fragment will not alter the value of 
any image pixel. Early fragment discard 
is triggered when a fragment’s sample 
point is occluded by a previously pro-
cessed surface located closer to the 
camera.

Another class of hardware optimiza-
tions reorganizes fine-grained opera-
tions for more efficient processing. For 
example, rasterization orders fragment 
generation to maximize screen proxim-

ity of samples. This ordering improves 
texture cache hit rates, as well as in-
struction stream sharing across shader 
invocations. The GPU memory control-
ler also performs automatic reorganiza-
tion when it reorders memory requests 
to optimize memory bus and DRAM uti-
lization.

GPUs ensure inter-fragment PO or-
dering dependencies using hardware 
logic. Implementations use structures 
such as post-FP reorder buffers or 
scoreboards that delay fragment thread 
launch until the processing of overlap-
ping fragments is complete.

GPU hardware can take responsibil-
ity for sophisticated scheduling deci-
sions because semantics and invariants 
of the graphics pipeline are known a pri-
ori. Hardware implementation enables 
fine-granularity logic that is informed 
by precise knowledge of both the graph-
ics pipeline and the underlying GPU 
implementation. As a result, GPUs are 
highly efficient at using all available re-
sources. The drawback of this approach 
is that GPUs execute only those compu-
tations for which these invariants and 
structures are known. 

Graphics programming is becom-
ing increasingly versatile. Developers 
constantly seek to incorporate more 
sophisticated algorithms and leverage 
more configurable graphics pipelines. 
Simultaneously, the growing popular-
ity of GPU-based computing for non-
graphics applications has led to new 
interfaces for accessing GPU resources. 
Given both of these trends, the extent 
to which GPU designers can embed a 
priori knowledge of computations into 
hardware scheduling logic will inevita-
bly decrease over time.

A major challenge in the evolution 
of GPU programming involves preserv-
ing GPU performance levels and ease 
of use while increasing the generality 
and expressiveness of application inter-
faces. The designs of “GPU-compute” 
interfaces, such as NVIDIA’s CUDA and 
AMD’s CAL, are evidence of how difficult 
this challenge is. These frameworks ab-
stract computation as large batch oper-
ations that involve many invocations of 
a kernel function operating in parallel. 
The resulting computations execute on 
GPUs efficiently only under conditions 
of massive data parallelism. Programs 
that attempt to implement non data-
parallel algorithms perform poorly. 

GPU-compute programming models 
are simple to use and permit well-writ-
ten programs to make good use of both 
GPU programmable cores and (if need-
ed) texturing resources. Programs using 
these interfaces, however, cannot use 
powerful fixed-function components of 
the chip, such as those related to com-
pression, image compositing, or raster-
ization. Also, when these interfaces are 
enabled, much of the logic specific to 
graphics-pipeline scheduling is simply 
turned off. Thus, current GPU-compute 
programming frameworks significant-
ly restrict computations so that their 
structure, as well as their use of chip re-
sources, remains sufficiently simple for 
GPUs to run these programs in parallel.

GPu and cPu convergence
The modern graphics processor is a pow-
erful computing platform that resides 
at the extreme end of the design space 
of throughput-oriented architectures. 
A GPU’s processing resources and ac-
companying memory system are heavily 
optimized to execute large numbers of 
operations in parallel. In addition, spe-
cialization to the graphics domain has 
enabled the use of fixed-function pro-
cessing and allowed hardware schedul-
ing of a parallel computation to be prac-
tical. With this design, GPUs deliver 
unsurpassed levels of performance to 
challenging workloads while maintain-
ing a simple and convenient program-
ming interface for developers.

Today, commodity CPU designs are 
adopting features common in GPU 
computing, such as increased core 
counts and hardware multithreading. 
At the same time, each generation of 
GPU evolution adds flexibility to previ-
ous high-throughput GPU designs. Giv-
en these trends, software developers in 
many fields are likely to take interest in 
the extent to which CPU and GPU archi-
tectures and, correspondingly, CPU and 
GPU programming systems, ultimately 
converge.  

Kayvon Fatahalian (kayvonf@gmail.com) and Mike 
houston are Ph.D. candidates in computer science in the 
Computer Graphics Laboratory at Stanford University. 

A previous version of this article was published in the 
March 2008 issue of ACM Queue.

© 2008 ACM 0001-0782/08/1000 $5.00




