Automatic knowledge
extraction from documents

J. Fan
A. Kalyanpur
D. C. Gondek
D. A. Ferrucci

Access to a large amount of knowledge is critical for success at
answering open-domain questions for DeepQA systems such as
IBM Watson™. Formal representation of knowledge has the
advantage of being easy to reason with, but acquisition of structured
knowledge in open domains from unstructured data is often difficult
and expensive. Our central hypothesis is that shallow syntactic
knowledge and its implied semantics can be easily acquired and can
be used in many areas of a question-answering system. We take a
two-stage approach to extract the syntactic knowledge and implied
semantics. First, shallow knowledge from large collections of
documents is automatically extracted. Second, additional
semantics are inferred from aggregate statistics of the
automatically extracted shallow knowledge. In this paper, we
describe in detail what kind of shallow knowledge is extracted,
how it is automatically done from a large corpus, and how
additional semantics are inferred from aggregate statistics. We
also briefly discuss the various ways extracted knowledge is used

throughout the IBM DeepQA system.

Introduction

As with many problems in artificial intelligence, knowledge
is an important element of the IBM Watson* solution to the
open-domain question-answering problem [1]. Although
formally represented deep semantic knowledge is easy

to reason with when compared with other forms of
representation and can be used for deep inference, acquisition
of structured knowledge in open domains from unstructured
data is difficult and expensive. Unfortunately, much of
human knowledge is expressed in the form of unstructured
text. Take the following example passage:

Patrick “Pat” Floyd Garrett (June 5, 1850—February 29,
1908) was an American Old West lawman, bartender,
and customs agent. Garrett rode as a cowhand in
Texas, and he served drinks at the Beaver Smith’s
saloon at Fort Sumner, New Mexico.

This unstructured text contains useful knowledge, such as

the birthdate, death date, and occupation of Pat Garrett,
but efficiently extracting such knowledge is difficult. It

Digital Object Identifier: 10.1147/JRD.2012.2186519

requires correctly parsing the sentences, identifying key
entities, type information, and relationship information,

and performing co-reference resolution to merge information
about the same entity.

On the other hand, one may still infer important semantic
information from large amounts of shallow knowledge.

For example, from the example text above and thousands of
other sentences about Pat Garrett, we can infer many
assertions, such as Pat Garrett is a lawman and sheriff; the
most common actions that Pat Garrett was involved in are
kill, shoot, and capture; and the most common object of these
actions is Billy the Kid. We can also infer terminological
axioms such as the type. “People” is often the subject and
object of a kill action.

Our central hypothesis is that shallow syntactic knowledge
and its implied semantics can be easily acquired, and it can
be used in many areas of a question-answering system.

For example, given the sentence “Einstein, who has
published more than 300 scientific papers, won the Nobel
Prize for Physics in 19217, using a dependency parser and a
named entity recognizer (NER), we can extract and
generalize type-based patterns such as “scientists publish
papers”, “scientists win Nobel prizes”, “Nobel prizes are
associated with subjects and years”, etc., and gather statistics
about these patterns from a large text corpus to build a

©Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed
royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/12/$5.00 © 2012 IBM

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

JLFANETAL. 5:1

large-scale shallow semantic knowledge base. The resulting
knowledge base can be directly used to answer questions
such as “In 1921, at the age of 42, he won his only Nobel
Prize”. Similarly, it can give additional evidence to support
the answer “Carl Sagan” for the question “He published the
first scientific paper to predict nuclear winters” because
Carl Sagan is a scientist.

Existing linguistic resources such as VerbNet and
FrameNet provide some selectional restriction information
for verbs and frames. However, because they are manually
built, they tend to specify type constraints at a very high
level (e.g., agent, theme, and animate), and consequently,
they do not suffice for cases such as the previous
scientist-publishes-paper example.

We would like to infer more fine-grained knowledge for
predicates automatically from a large amount of data.

In addition, we do not want to restrict ourselves only to
verbs, to binary semantic relations, or to a specific type
hierarchy, because doing so will restrict the content of the
resulting knowledge base. For a truly open-domain
problem such as Jeopardy!**, such restriction will
significantly affect the usefulness of the knowledge base.
For example, lexical answer types (LATs)—question words
that suggest the types of the correct answers—from past
Jeopardy! questions include rare types such as laureate, angel,
monster, saxophonist, and conveyance. If we limit the
knowledge acquired to a specific type system, then we

may not be able to obtain the knowledge that is critical for
answering these questions. Similarly, many Jeopardy!
questions refer to rare semantic relations or express
semantic relations in novel ways (e.g., the come-from
relation in “This winged creature sprang from the blood of
Medusa”) that may not be captured if we limit ourselves to
only some parts of speech, a few semantic relations, or a
specific type hierarchy.

We achieve fine-grained knowledge by taking a two-stage
approach. First, shallow knowledge from large collections of
documents is automatically extracted. Specifically, we are
interested in extracting mostly syntactic relations within
sentential contexts and representing them as frames and slots.
For the previous example, frames such as “Einstein wins
Nobel Prize” and “Einstein publishes papers” are extracted.
Although syntactic relations do not capture all of the
knowledge contained in a piece of text, the redundancy of
the large corpus helps to increase the coverage of the
resulting knowledge base.

Second, additional semantics are inferred from aggregate
statistics of the automatically extracted shallow knowledge.
Given the aggregate statistics of syntactic relation usage,
we are able to use ontology-based generalization to infer
assertional axioms, such as “the best known thing Einstein
wins is a Nobel Prize”, as well as terminological axioms,
such as “scientists publish papers” and “scientists win
Nobel prizes”.

5:2) FANETAL.

The extracted knowledge is used by Watson in several
ways, such as generating answer candidates [2] for questions,
coercing answer candidates into the LAT of a question [3],
and finding missing links between clue terms and candidates
in Final Jeopardy! [4].

In this paper, we present PRISMATIC, the implementation
and the result of our two-stage approach that is used by
Watson as a knowledge resource for question answering.

In the following sections, we describe PRISMATIC in detail.
PRISMATIC proves to have a significant impact at both the
component and the system level, most importantly
improving the overall accuracy of the Watson system by
2.4% on PRISMATIC’s enhancements in type coercion alone.

Terminology
We have adopted the following terminology in the
development of PRISMATIC.

e Frame—A frame is the basic semantic unit representing a
set of entities and their relations in a piece of text.

A frame is made of a set of slot and value pairs. A frame
can be either intentional or extensional on the basis of
whether its values are instances or types.

e Slot—A slot in PRISMATIC is a binary relation. Most of
the slots in PRISMATIC are dependency relations
extracted from the parse tree. Table 1 lists the slots used
in PRISMATIC.

o Slot value—A slot value is either the lemma form of a
term from the sentence being extracted or a type
annotated by an NER. Table 2 shows the extracted frame
(i.e., list of slots and their values) based on the parse tree
in Figure 1. Notice that in Table 2 annotated types are
shown in all uppercase.

e Frame projection—A frame projection is a portion of a
frame (or the operation that produces the portion) that
occurs with regularity in many frames and is of particular
interest to the users of PRISMATIC. For example,
the portion of a frame that includes only subject, verb,
and object (i.e., S-V-O projection) is particularly useful
for analyzing the selectional preference of verbs.

PRISMATIC can be formally defined as a bag of frames,
ie.,

P={fi.fos-- - Su}s

where f; = {(s1,v1), {s2,v2), -+, {Sm, V) } is & frame made
of a set of slot-value pairs (s;, v;).
We use V(s,f) to denote the value of slot s on frame f.
A frame projection C C P is a subbag of frames that
have nonempty slot values for a given subset of all slots,
ie., Sc € S. Thus

C = {f € P|VsesV(s.f) # nil}.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

Table 1 Relations used in a frame and their descriptions. (Used with permission from J. Fan, D. Ferrucci,
D. Gondek, and A. Kalyanpur, “PRISMATIC: inducing knowledge from a large scale lexicalized relation resource,”
Proceedings of the NAACL HLT 2010 First International Workshop on Formalisms and Methodology for Learning by
Reading, pp. 122—127, Los Angeles, CA, Association for Computational Linguistics, June 2010.)

Relation and description Example

subj Subject

obj Direct object

iobj Indirect object

comp Complement

pred Predicate complement

objprep Object of the preposition
mod_nprep Bat Cave in Toronto is a tourist attraction
mod_vprep He made it to Broadway
mod_nobj The object of a nomialized verb
mod_ndet City's budget was passed
mod_ncomp Tweet is a word for microblogging
mod_nsubj A poem by Byron

mod_aobj John is similar to Steve

isa Subsumption relation

subtypeOf Subsumption relation

Table 2 Frames extracted from dependency parser in
Figure 1. (Used with permission from J. Fan, D. Ferrucci,
D. Gondek, and A. Kalyanpur, “PRISMATIC: inducing
knowledge from a large scale lexicalized relation
resource,” Proceedings of the NAACL HLT 2010 First
International Workshop on Formalisms and Methodology
for Learning by Reading, pp. 122—127, Los Angeles,
CA, Association for Computational Linguistics, June
2010.)

Frame(l
verb receive
subj Einstein

type PERSON/SCIENTIST
obj Nobel prize
mod_vprep in
objprep 1921
type YEAR
mod_vprep for
objprep Frame02

Frame02
noun work
mod_ndet his/Einstein
mod_nobj on

objprep effect

System overview

PRISMATIC is built using a suite of natural-language
processing (NLP) tools that include a dependency parser,

a rule-based NER, and a co-reference resolution component

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

[5]. The PRISMATIC creation process consists of
three phases.

1. Corpus processing—Documents are annotated by a suite
of components that perform dependency parsing,
co-reference resolution, NER, and relation detection.

2. Frame extraction—Frames are extracted on the basis of
the dependency parses and associated annotations.

This phase implements the first stage of our approach.

3. Frame projection—Frame projections of interest
(e.g., S-V-O projections) are identified over all frames,
and frequency information for each projection is
tabulated. This phase produces the aggregate statistics
from the extracted frames used to infer additional
semantics.

Figure 2 shows the three phases of PRISMATIC, which
are described in detail in the following subsections.

Corpus processing

The key step in the corpus processing phase is the application
of a dependency parser that is used to identify the frame
slots (as listed in Table 1) for the frame extraction stage.
We use ESG (English Slot Grammar) [5], which is a Slot
Grammar-based parser, in order to fill in the frame slots.
Sentences frequently require co-reference in order to
precisely identify the participating entity. In order to not lose
that information, we apply a simple rule-based co-reference
resolution component [5] in this phase. The co-reference
information helps to enhance the coverage of the frame
projections, which is particularly valuable in cases of sparse

JLFANETAL. 5:3

receive_p_18

In 1921, Einstein received the Nobel Prize for his original work on the photoelectric effect.

mod_vprep \ subj
in_p_0 Einstein_p_9

objprep

1921 _p_3 By _coref

Nobel_prize_p_31

original_p_51

mod_nadj

photoelectric_p_72

Figure 1

Parse tree of the sentence “In 1921, Einstein received the Nobel Prize for his original work on the photoelectric effect”. (Used with permission from
J. Fan, D. Ferrucci, D. Gondek, and A. Kalyanpur, “PRISMATIC: inducing knowledge from a large scale lexicalized relation resource,” Proceedings
of the NAACL HLT 2010 First International Workshop on Formalisms and Methodology for Learning by Reading, pp. 122—127, Los Angeles, CA,

Association for Computational Linguistics, June 2010.)

data. Relation detectors are also applied during the corpus
processing phase to fill frame slots not captured by ESG
(e.g., isa slot).

Semantic annotation

The parse trees produce axioms on entities similar to the
assertional axioms in description logic, but, in order to
include terminological axioms in PRISMATIC,
ontology-based generalization is needed. For this purpose, a
rule-based NER [5] is used to identify the types of slot-fillers.
The types of slot-fillers can also be recognized by any
other independently developed NERs (rule-based or
statistical). This type information is then registered in the
frame extraction stage to construct intentional frames.

Frame extraction

The next step of PRISMATIC is to extract a set of frames
from the parsed corpus. In order to capture the relationship
we are interested in, frame elements are limited to those that

5:4) FANET AL

represent the participant information of a predicate. Slots
consist of the ones listed in Table 1. Furthermore, each frame
is restricted to be two levels deep at the most; therefore,

a single large parse tree may result in multiple frames.
Table 2 shows how two frames are extracted from the
complex parse tree in Figure 1. The depth restriction is
needed for two reasons. First, despite the best efforts from
parser researchers, no parser is perfect, and big complex
parse trees tend to have more incorrect parses. By limiting a
frame to be only a small subset of a complex parse tree,
we reduce the chance of parse error in each frame. Second,
by isolating a subtree, each frame focuses on the immediate
participants of a predicate.

In addition to parser relations, semantic relations may also
be added to a frame. For example, the isa slot in Table 1 is
based the isa semantic relation detected by a syntactic
pattern-based relation detector [6].

Nonparser information may also be included in a frame.
For example, the type annotations of a word from an NER

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

Corpus processing
*Parsing

*Named entity recognizer
*Co-reference resolution

Frame
extraction

Frame
projection

PRISMATIC
knowledge
base

Corpus

Figure 2

Main stages of PRISMATIC construction. (Used with permission from
J. Fan, D. Ferrucci, D. Gondek, and A. Kalyanpur, “PRISMATIC:
inducing knowledge from a large scale lexicalized relation resource,”
Proceedings of the NAACL HLT 2010 First International Workshop on
Formalisms and Methodology for Learning by Reading, pp. 122—-127,
Los Angeles, CA, Association for Computational Linguistics, June
2010.)

are included, and such type information is useful for the
various applications described in the section “Applications in
Watson and beyond.” We also include a flag to indicate
whether a word is a proper noun. These two kinds of
information allow us to easily separate the intentional and the
extensional parts of PRISMATIC.

The result of frame extraction is a large set of frames
representing shallow knowledge extracted from the input
corpus. These frames are used as inputs for the frame
projection phase described next.

Frame projection

One of the main reasons for extracting a large amount of
frame data from a corpus is to induce interesting knowledge
patterns by exploiting redundancy in the data. For example,
we would like to learn that things that are annexed are
typically regions, i.e., a predominant object type for the noun
phrase annexation of is Region. To do this kind of knowledge
induction, we first need to isolate and analyze specific
portions of the frame—in this particular case, the
noun-phrase — object-type relationship. Then, given
multiple frames containing only the above relationship,

we hope to see the frame {(noun, “annexation™),
(preposition, “of), (object-type, “Region”)} occur

very frequently.

To enable this induction analysis, we define frame
projections, which specify a projection operation on a frame.
For example, we define an N-P-OT frame projection,
which, when applied to a frame, keeps only the noun (N),
preposition (P), and object-type (OT) slots and discards
the rest. Similarly, we define frame projections such as

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

S-V-0, S-V-0O-I0, S-V-P-O, N-Isa, N-Isa-Mod, etc.
(where S is subject, V is verb, O is object, 10 is indirect
object, N is noun, Isa is isa slot, and Mod is modifier),
which all dissect frames along different dimensions.

We use V-OT and N-Isa to illustrate the usefulness of
frame projections. Continuing with the annexation
example, we can use the V-OT frame projection to learn
that a predominant object type for the verb annex

is also Region, by seeing frames of the form
{(verb,“annex”), (object-type,“Region”)} multiple times
in our data. Such intentional frames are terminological
axioms that can be used to learn entailment rules.

The N-Isa frame projection shows the lexical types of
nouns independent of any predefined ontology.

For example, by seeing multiple frames of the form
{(noun,“Bill Clinton”), (isa,“politician”)}, we can learn that
Bill Clinton is often referred to as a politician.

To make frame projections more flexible, we allow them
to specify optional value constraints for slots. For example,
we can define an S-V-O frame projection, where both the
subject (S) and object (O) slot values are constrained
to be proper nouns, thereby creating strictly extensional
frames, i.e., frames containing data about instances,

e.g., {(subject,“United States”)(verb,“annex”)
(object,“Texas™)}. The extensional frames are assertional
axioms that can be used to provide factual evidence in tasks
such as question answering.

Frame projections allow us to precompute and look up
aggregate statistics quickly. In the next section, we describe
some commonly used aggregate statistics.

Aggregate statistics

There are a variety of useful aggregate statistics that can be
gleaned from the resulting frame projections. We list three
examples here.

1. Frequency—The frequency of a particular frame
(or slot-value pairs) can be defined as #(f) = |{f; €
PVsesV (s.f) = V(s,fi)}|- It computes the number of
frames whose slot values match with all the slot—value
pairs in a given frame. Frequency gives us an estimate of
the popularity of fillers for a given set of slots. For
example, the frequency of #({(subj,“Einstein”),
(verb,“win”),(obj,“award”)}) = 142 may suggest that
Einstein winning awards is a set of popular fillers in the
corpus. However, frequency value is also affected by
the size of the corpus and the popularities of individual
fillers, e.g., Einstein may frequently occur throughout
the corpus, and hence, Einstein winning award may
often appear.

2. Conditional probability—The conditional probability of a
particular frame can be estimated by p(f|f’) = [#(f)/
#(f")], where " C f. It estimates the probability of a
specific set of fillers given a subset of such slot-filler pairs.

JLFANETAL. 5:5

For example, let f = {(subj, “Einstein”), (verb, “win”),
(obj, “award™)}, f' ={(subj, “Einstein”), (verb, “win”)},
then p(f|f’) = 0.32 means that 32% of the time when
Einstein wins something, he wins an award. Unlike
frequency, it is easier to compare one conditional
probability with another because conditional probability
is less affected by the corpus size.

3. Normalized pointwise mutual information—The
normalized pointwise mutual information (NPMI) of
two frames is defined as

e pmi(ff")
npml(f:f) *Ma

where pmi(f,f") = InN (#(f Uf") [#(F) x #(")) (N is
the size of a particular frame projection). NPMI ranges
from —1 (for no co-occurrence) to 1 (for complete
co-occurrence). For example, let /' = {(obj, “award”)}
and /' = {(subj, “Einstein”), (verb, “win”)}; if
npmi(f,f') = 0.7, then it indicates a high degree of
co-occurrence between Einstein winning and award.
Compared with conditional probability, NPMI takes into
consideration the popularities of different subsets of a
frame and scores them accordingly.

Evaluation

There are two kinds of metrics for evaluating a

knowledge base: component- and system-level metrics. The
component-level evaluation judges the quality of the
knowledge base independently of the specific applications.
Typically, a component-level evaluation uses metrics such as
precision and recall to estimate the correctness and coverage
of the knowledge base. However, neither precision nor
recall is easy to obtain in the case of PRISMATIC because it
is difficult to judge the correctness of a frame. Other machine
learning systems, such as TextRunner [7], report precision
and recall using cross validation on their training data, and
these results reflect the performance of their underlying
relation detection and parsing components. In contrast,
PRISMATIC performance is gated by its NLP stack whose
parser is reported to have an accuracy of 89.3% [5]. None
of these numbers reflects the portion of information in a
corpus that is captured by PRISMATIC. In the next section,
we present some evaluation results on the coverage

of PRISMATIC.

Coverage

PRISMATIC contains a large amount of information.

The corpus we used to produce the initial PRISMATIC is
based on a selected set of sources, such as encyclopedias,
news articles, and other sources. After the corpus was
cleaned and HTML tags removed, there is 30 GB of text.
From these sources, we extracted approximately 995 million
frames. From these frames, we produced the most

5:6) FANETAL.

Table 3 PRISMATIC’s size, coverage, and impact.

Measure Value
Corpus size 30 GB
Number of frames extracted 995 millions
Number of frames per sentence 1.4
Percentage of named entities that are 94.4%

extracted as part of a frame

Watson Improvement with
PRISMATIC TyCor

+2.4% in accuracy

commonly used projections such as S-V-O, S-V-P-O,
and N-P-O.

Although we can measure the size of PRISMATIC, it does
not show the coverage. Since directly measuring the recall
is difficult, we have conducted the following study to gauge
the coverage of PRISMATIC. First, we randomly sampled
140,000 documents, out of which PRISMATIC generates
1.3 frames per sentence. This suggests that there is at least
one frame generated for each sentence on average. We also
measured the coverage of PRISMATIC frames on the named
entities in the sample. It produced frames for 94.4% of the
named entities detected by the NLP components we used.
Both results suggest that PRISMATIC is able to gather useful
information on most of the entities from most of the
sentences in the input corpus.

Table 3 shows the coverage evaluation results of
PRISMATIC. The coverage experiments give us a rough idea
of the quality of PRISMATIC; however, system-level
evaluation, or how much impact PRISMATIC has on a
variety of applications, is more important. In the next section,
we discuss applications of PRISMATIC in Watson and
their impact.

Applications in Watson and beyond

There are many potential applications that can utilize
PRISMATIC, such as type inference, relation extraction,
textual entailment, and more. We present applications of
PRISMATIC in Watson in the following sections.

Type coercion

PRISMATIC is used to determine whether a candidate
answer is of the LAT expressed by the question in Watson.
Typically, a Jeopardy! question indicates the type of the
correct answer through words in the clue. For example, the
question “Senator Obama attended the 2006 groundbreaking
for this man’s memorial, 1/2 mile from Lincoln’s”
suggests that the answer type is man. Whether a candidate
answer is of the correct LAT is an important feature of the
candidate answer. We can utilize the aggregate statistic

of {(noun,candidate answer)(isa,lat)} frame to determine
the likelihood that a candidate string is of the correct LAT.
By including the PRISMATIC type coercion component,

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

the Watson question-answering system’s overall accuracy
improved by 2.4%, and the PRISMATIC type coercion
component consistently ranks in the top 3 among 17 different
type coercion components in Watson. More details on how
PRISMATIC is used to judge the type correctness of a
candidate can be found in [3].

Candidate generation

PRISMATIC is also used to generate candidate answers.
Some Jeopardy! questions contain modifiers to the LAT,
such as “While Maltese borrows many words from Italian,
it developed from a dialect of this Semitic language.” Notice
that the LAT language has a modifier Semitic. PRISMATIC
aggregate statistics on the isa slot and modifier slots are
used to determine the top 20 most common instances of
Semitic language, which include the correct answer Arabic.
Although PRISMATIC candidate generation generates only
up to 20 candidates per question, its candidates are more
likely to be correct than other candidate generation
techniques. On a test set of 3,508 Jeopardy! questions,

the PRISMATIC candidate generator produces answers for
42.6% of them (1,495 questions). For example, given the
question “To: junglechick. From: mr simian. Subject:
pronouns. Fyi, I do use “I” when referring to myself in a
1914 novel” with category “LITERARY CHARACTERS’
E-MAILS”. The question analysis component recognizes the
LAT is character with literary as the modifier. Because of
distracting terms such as junglechick, document/passage
search on large corpora is unlikely to find the correct answer
Tarzan. However, PRISMATIC candidate generation
produces Tarzan as a candidate answer because it is the sixth
most popular literary character based on PRISMATIC’s
aggregate statistics. In addition, the PRISMATIC candidate
generator produces far fewer wrong candidate answers

than other candidate generation techniques. On average,

1 out of 57 PRISMATIC candidates is the correct answer to a
given question, compared with 1 out of 134 candidates from
the rest of the candidate generation pipeline. Details on
how PRISMATIC is used to generate candidate answers
can be found in [2].

Missing link

PRISMATIC can also be used to provide the semantic
relations between entities. Some Jeopardy! questions
require players to find a hidden entity whose connections to
parts of the clue are not explicitly stated. For example,
given the question “On hearing of the discovery of
George Mallory’s body, he told reporters he still thinks he
was first”, the entity Mount Everest is not stated,

but it provides the common link between George Mallory
and the correct answer Edmund Hillary. PRISMATIC

can be used to find such missing links and estimate

the degree of closeness between two concepts. For the

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

above example, one may find the following frames:
{(subj,*George Mallory”) (verb, perish”)(verb prep,“on”)
(objprep,“Mount Everest”)} and {(subj,“Edmund Hillary”)
(verb,“climb”) (obj,“Mount Everest”)}, which illustrates
the connection between Mallory and Hillary through
Mount Everest. Details on how PRISMATIC is used to find
missing links in Jeopardy! questions can be found in [4].

Type inference and its related uses

As noted in the section on frame projection, we use frame
projections to dissect frames along different slot dimensions.
The projections are used to produce aggregate statistics
across the entire data set to induce relationships among the
various frame slots, e.g., learn the predominant types for
subject/object slots in verb and noun phrases. Given a new
piece of text, we can apply this knowledge to infer types for
named entities. For example, since the aggregate statistics
show the most common type for the object of the verb annex
is Region, we can infer from the sentence “Napoleon
annexed Piedmont in 1859” that Piedmont is most likely to
be a Region. Similarly, consider the sentence “He ordered
a Napoleon at the restaurant”. A dictionary-based NER is
very likely to label Napoleon as a Person. However,

we can learn from a large amount of data that in the frame
{(subject type,”Person”)(verb,“order”){object type,“?”)
(verb prep,“at”)(obj prep,“restaurant™)}, the object type
typically denotes a Dish and, thus, correctly infer the

type for Napoleon in this context. Learning this kind of
fine-grained type information for a particular context is

not possible using traditional handcrafted resources

such as VerbNet or FrameNet. Unlike previous work in
selectional restriction [8, 9], PRISMATIC-based type
inference does not depend on a particular taxonomy or
previously annotated training data; it works with any NER
and its type system.

One of the areas in DeepQA where the above type
inference can be used is during question analysis. In [10],
we describe a set of heuristics to detect the LAT from the
question text. In some cases, the LAT in the question may be
meaningless (e.g., this or it), as in the following example:
“In the billiards game named for this black object, you must
sink it last”. In such cases, we can infer a meaningful LAT
by looking at lexical relations involving the focus of the
question and using PRISMATIC to find the most frequent
argument types for the relation, which are in the focus
position. In the above example, since the focus it is the
object of the verb sink, we can issue the frame query
{(verd,“sink™)(object,“?”)} against the PRISMATIC
knowledge base to find the most frequent lexical type
values for the object slot and use these values as potential
LATs. However, a key issue is taking into account the
larger context (or topic) of the relation, without which the
system can generate incorrect or noisy results. For example,
given the aforementioned query, PRISMATIC finds the

JLFANETAL. 5:7

most frequent object of the verb sink to be a ship
(whereas the correct LAT expected is ball). The problem
lies in the lack of context-aware knowledge in PRISMATIC;
although the question mentions the keyword billiards,
there is no direct dependency parse link between billiards
and the focus, and hence, it is not used as part of the
frame query.

As a workaround, we utilize type inference knowledge
from PRISMATIC in an answer-scoring component. The
idea is that because candidate answers are typically generated
on the basis of the context of the question, checking whether
a given candidate fits into the frame of the question using
PRISMATIC is an easier task than predicting the correct
LAT for the question, which requires considering context
within PRISMATIC. Continuing with our example question,
it is highly unlikely that an instance of a ship would be
generated as a candidate answer given the context of the
question, whereas entities related to billiards such as table,
black ball, and cue stick are more likely candidate answers.
Thus, in this case, we can use PRISMATIC knowledge to
compare candidates on the basis of how well they fit into
the object slot for the verb sink (e.g., sink ball is a more
common frame occurrence than sink table, sink cue stick,
and sink pocket). Results for an answer scorer that does
PRISMATIC-based type inference along these lines
are in [3].

The automatically induced type information can also be
used for co-reference resolution. For example, given the
sentence “Netherlands was ruled by the UTP party before
Napoleon annexed it”, we can use the inferred type constraint
on it (Region) to resolve it to Netherlands (instead of the
UTP Party).

Finally, typing knowledge can be used for word-sense
disambiguation. From the sentence “Tom Cruise is one of the
biggest stars in American Cinema”, we can infer, using our
frame-induced type knowledge base, that the word stars
in this context refers to a Person/Actor type and not in the
sense of star as an astronomical object.

Related work

Manually created resources

Many knowledge bases have been manually built since the
beginning of artificial intelligence research. Among them,
CYC** [11] is the best known. More recently, other
large-scale knowledge bases such as DBpedia [12] and
YAGO [13] that utilize crowd source results from the

web to create large amounts of knowledge have become
popular, and they have been shown to be useful for
different applications.

Several lexical resources have been manually built, most
notably WordNet** [14], FrameNet [15], and VerbNet [16].
WordNet is a lexical resource that contains individual
WordNet word synset information, such as definition,

5:8) FANET AL

synonyms, and antonyms. However, the amount of predicate
knowledge in WordNet is limited.

FrameNet is a lexical database that describes the frame
structure of selected words. Each frame represents a predicate
(e.g., eat and remove) with a list of frame elements that
constitute the semantic arguments of the predicate. Different
words may map to the same frame, and one word may
map to multiple frames on the basis of different word senses.
Frame elements are often specific to a particular frame,
and even two frame elements with the same name,
such as “Agent”, may have subtle semantic meanings in
different frames.

VerbNet is a lexical database that maps verbs to their
corresponding Levin [17] classes, and it includes syntactic
and semantic information of the verbs, such as the syntactic
sequences of a frame (e.g., NP V' NP PP) and the selectional
restriction of a frame argument value.

Compared with these resources, in addition to being an
automatic process, PRISMATIC has three major differences.
First, unlike the descriptive knowledge in WordNet,
VerbNet, and FrameNet, PRISMATIC offers only numeric
knowledge of the aggregate statistics of different predicates
and their argument values throughout a corpus. The statistical
profiles are easy to automatically produce, and they allow
additional knowledge, such as type restriction, to be inferred
from PRISMATIC easily.

Second, the frames are differently defined. The frames in
PRISMATIC are not abstract concepts generalized over a
set of words. They are defined by the words in a sentence and
the relations between them. Two frames with different slot
values are considered different although they may be
semantically similar. For example, the two sentences
“John loves Mary” and “John adores Mary” result in two
different frames, although semantically, they are very close.
By choosing not to use frame concepts generalized over
words, we avoid the problem of determining which frame a
word belongs to when processing text automatically.
Importantly, if there is enough redundancy in a corpus, then
valid values for different synonyms and variations will be
produced.

Third, PRISMATIC uses only a very small set of slots
(see Table 1) defined by parser and relation annotators to link
a frame and its arguments. By using parser relations as
slots directly, we avoid the problem of mapping parser
relations to frame elements.

Automatically created resources

The notion of utilizing implicit knowledge from text can be
traced to KNEX [18]. Schubert proposed to derive general
world knowledge in the form of possible propositions

from text. He applied a set of predefined syntactic patterns
to parse trees to extract propositions, such as “behavior
can be strange” or “a female individual may have an arm”.
DART (Discovery and Aggregation of Relations in Text)

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

[19] successfully applied such propositions to a variety of
tasks, such as improving parsing and providing support for
textual entailment rules.

TextRunner [7] is an information extraction system
that automatically extracts relation tuples over massive web
data in an unsupervised manner. TextRunner contains more
than 800 million extractions [7] and has proven to be a
useful resource in a number of important tasks in machine
reading such as hypernym discovery [20] and scoring
interesting assertions. TextRunner works by automatically
identifying and extracting relationships using a conditional
random field (CRF) model over natural-language text.
Because this is a computationally inexpensive technique,
it allows rapid application to web-scale data.

DIRT (Discovering Inference Rules from Text) [21]
automatically identifies inference rules over dependency
paths that tend to link the same arguments. The technique
consists of applying a dependency parser over 1 GB of text,
collecting the paths between arguments, and then calculating
path similarities between paths. DIRT has been extensively
used in recognizing textual entailment (RTE).

Never-Ending Language Learner (NELL) [22] is another
system that acquires knowledge automatically. It starts with a
set of seed categories and relations with a handful of
examples, and it extracts new instances of categories and
relations from millions of web pages.

Another recent system, Background Knowledge Base
(BKB) [23], also extracts parts of the parsed structure from a
domain-specific corpus as a knowledge source to improve
machine reading systems.

PRISMATIC is similar to KNEX and DART in the way
knowledge is extracted. All of them use parse trees as input,
although PRISMATIC includes semantic relations,
such as isa, in addition to parse relations. The frames and
frame projections in PRISMATIC are similar to the syntactic
patterns in KNEX and DART. The main difference
between KNEX/DART and PRISMATIC is the kind of
knowledge produced. KNEX and DART are interested in
terminological axioms by generalizing named entities to
their types. This allows them to use a relatively small
corpus. PRISMATIC produces both assertional and
terminological axioms. In order to obtain impactful
coverage for the assertional axioms, PRISMATIC requires
a large corpus.

PRISMATIC is similar to TextRunner and DIRT in that
it may be automatically applied over massive corpora.

At a representational level, it differs from both TextRunner
and DIRT by storing full frames from which n-ary relations
may be indexed and queried. PRISMATIC differs from
TextRunner in that it applies a full dependency parser in
order to identify dependency relationships between terms.
In contrast to DIRT and TextRunner, PRISMATIC also
performs co-reference resolution in order to increase
coverage for sparsely occurring entities and employs a named

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

entity detector (NED) and relation extractor on all of its
extractions to better represent intentional information.
PRISMATIC is also different from TextRunner in terms of
the annotation efforts required. Because TextRunner needs to
train a CRF model, it requires supervised training data.
PRISMATIC,
on the other hand, does not require any training data.
PRISMATIC is similar to NELL in the sense that it also
extracts instances of categories and relations automatically
from a large corpus. However, the categories and
relations are open-ended for PRISMATIC; they are not
limited to the set of given examples for NELL.
PRISMATIC is similar to BKB because both use parser
outputs to extract knowledge. They differ in terms of the
corpora they use and their applications. BKB uses a
domain-specific corpus to focus on aggregate statistics
relevant to that domain to improve machine reading system
performance. PRISMATIC uses an open-domain
general-purpose corpus to obtain overall aggregate statistics
of text usage.

Discussion and future work

We are improving PRISMATIC in three major areas:
context, coverage, and confidence. First, the current version
of PRISMATIC does not take context into consideration
when producing the aggregating statistics. Because of the
different usage of words under different contexts, the
aggregate statistics often are a mixture of different contexts.
As illustrated in the section “Applications in Watson and
beyond,” the most likely object of the verb sink is ship,
and ball is among the top objects of sink. Clearly, this is
the result of two senses of sink. If future versions of
PRISMATIC include context information, it will give us
more precise aggregate statistics for different situations.
The second area of improvement is coverage. Although
we have used a large corpus as input for PRISMATIC,
there are still gaps in its coverage. There are different ways
to improve this. We may be able to use better co-reference
components; we may incorporate even larger corpora.
Finally, we are looking to improve confidence. Because
none of the NLP components is perfect, future versions of
PRISMATIC may include confidence values in its frames
that incorporate the scores of each of the NLP components’
outputs. The confidence score may help create better
aggregate statistics than the ones based only on the
frequency count.

In this paper, we presented PRISMATIC, a large-scale
lexicalized relation resource that is automatically built over
massive amounts of text. It provides users with knowledge
about predicates and their arguments. It will be useful for
a variety of artificial intelligence applications, some of
which have been already demonstrated as part of the IBM
Watson system. We plan to pursue the others in the near
future.

JFANETAL. 5:9

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., Cycorp, Inc., or Trustees of Princeton University in
the United States, other countries, or both.

References

1. D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek,

A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager,
N. Schlaefer, and C. Welty, “Building Watson: An overview of
the DeepQA project,” Al Mag., vol. 31, no. 3, pp. 59-79, 2010.

2. J. Chu-Carroll, J. Fan, B. K. Boguraev, D. Carmel, D. Sheinwald,
and C. Welty, “Finding needles in the haystack: Search and
candidate generation,” IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 6, pp. 6:1-6:12, May/Jul. 2012.

3. J. W. Murdock, A. Kalyanpur, C. Welty, J. Fan, D. A. Ferrucci,
D. C. Gondek, L. Zhang, and H. Kanayama, “Typing candidate
answers using type coercion,” IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 7, pp. 7:1-7:13, May/Jul. 2012.

4. J. Chu-Carroll, E. W. Brown, A. Lally, and J. W. Murdock,
“Identifying implicit relationships,” IBM J. Res. & Dev., vol. 56,
no. 3/4, Paper 12, pp. 12:1-12:10, May/Jul. 2012.

5. M. C. McCord, J. W. Murdock, and B. K. Boguraev, “Deep
parsing in Watson,” IBM J. Res. & Dev., vol. 56, no. 3/4, Paper 3,
pp. 3:1-3:15, May/Jul. 2012.

6. C. Wang, A. Kalyanpur, J. Fan, B. K. Boguraev, and D. C. Gondek,
“Relation extraction and scoring in DeepQA,” IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 9, pp. 9:1-9:12, May/Jul. 2012.

7. T. Lin, O. Etzioni, and J. Fogarty, “Identifying interesting
assertions from the web,” in Proc. 18th CIKM, 2009,
pp. 1787-1790.

8. 1. Carroll and D. McCarthy, “Word sense disambiguation using
automatically acquired verbal preferences,” Comput. Human.,
vol. 34, no. 1/2, pp. 109-114, Apr. 2000.

9. P. Resnik, “Selection and information: A class-based approach to
lexical relationships,” Ph.D. dissertation, Univ. Pennsylvania,
Philadelphia, PA, 1993.

10. A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev,

S. Patwardhan, J. Fan, P. Fodor, and J. Chu-Carroll, “Question
analysis: How Watson reads a clue,” IBM J. Res. & Dev., vol. 56,
no. 3/4, Paper 2, pp. 2:1-2:14, May/Jul. 2012.

11. D. B. Lenat, “CyC: A large-scale investment in knowledge
infrastructure,” Commun. ACM, vol. 38, no. 11, pp. 33-38,

Nov. 1995.

12. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,

R. Cyganiak, and S. Hellmann, “Dbpedia—A crystallization point
for the web of data,” J. Web Semant.—Science, Services and
Agents on the World Wide Web, vol. 7, no. 3, pp. 154-165,

Sep. 2009.

13. F. Suchanek, G. Kasneci, and G. Weikum, “Yago—A core of
semantic knowledge,” in Proc. 16th Int. WWW, 2007,
pp. 697-706.

14. C. Fellbaum, WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press, 1998.

15. C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley
framenet project,” in Proc. 36th Annu. Meeting ACL, 1998, vol. 1,
pp- 86-90.

16. K. Schuler, “VerbNet: A broad-coverage, comprehensive verb
lexicon,” Ph.D. dissertation, Univ. Pennsylvania, Philadelphia,
PA, 2005.

17. B. Levin, English Verb Classes and Alternations: A Preliminary
Investigation. Chicago, IL: Univ. Chicago Press, 1993.

18. L. Schubert, “Can we derive general world knowledge from text?”
in Proc. HLT, 2002, pp. 94-97.

19. P. Clark and P. Harrison, “Large-scale extraction and use of
knowledge from text,” in Proc. 5th KCAP, 2009, pp. 153-160.

20. S. Soderland, A. Ritter, and O. Etzioni, “What is this, anyway:
Automatic hypernym discovery,” in Proc. AAAI Spring Symp.
Learn. Read. Learn. Read, 2009, pp. 88-93.

5:10 1 FANET AL

21. D. Lin and P. Pantel, “Dirt—Discovery of inference rules from
text,” in Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2001, pp. 323-328.

22. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, Jr.,
and T. M. Mitchell, “Toward an architecture for never-ending
language learning,” in Proc. AAAI, 2010, pp. 1306-1313.

23. A. Penas and E. Hovy, “Semantic enrichment of text with
background knowledge,” in Proc. Ist Int. Workshop FAM-LbR
NAACL, 2010, pp. 15-23.

Received July 22, 2011; accepted for publication
December 7, 2011

James Fan [BM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (fanj@us.ibm.com). Dr. Fan
is a Research Staff Member in the Semantic Analysis and Integration
Department at the T. J. Watson Research Center. He joined IBM
after receiving the Ph.D. degree at the University of Texas at Austin,
in 2006. He is a member of the DeepQA Team that developed the
Watson question-answering system, which defeated the two best human
players on the quiz show Jeopardy!. Dr. Fan is author or coauthor of
dozens of technical papers on subjects of knowledge representation,
reasoning, natural-language processing, and machine learning. He is a
member of the Association for Computational Linguistics.

Aditya Kalyanpur IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA
(adityakal@us.ibm.com). Dr. Kalyanpur is a Research Staff Member
at the IBM T. J. Watson Research Center. He received his Ph.D. degree
in computer science from the University of Maryland in 2006. His
research interests include knowledge representation and reasoning,
natural-language processing, statistical data mining, and machine
learning. He joined IBM in 2006 and worked on the Scalable Highly
Expressive Reasoner (SHER) project that scales ontology reasoning
to very large and expressive knowledge bases. Subsequently, he joined
the algorithms team on the DeepQA project and helped design the
Watson question-answering system. Dr. Kalyanpur has over

25 publications in leading artificial intelligence journals and
conferences and several patents related to SHER and DeepQA.

He has also chaired international workshops and served on W3C
Working Groups.

David C. Gondek IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA
(dgondek@us.ibm.com). Dr. Gondek is a Research Staff Member and
Manager at the T. J. Watson Research Center. He received the B.A.
degree in mathematics and computer science from Dartmouth College,
Hanover, NH, in 1998 and the Ph.D. degree in computer science from
Brown University, Providence, RI, in 2005. He subsequently joined
IBM, where he worked on the IBM Watson Jeopardy! challenge and
now leads the Knowledge Capture and Learning Group in the Semantic
Analysis and Integration Department.

David A. Ferrucci IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA
(ferrucci@us.ibm.com). Dr. Ferrucci is an IBM Fellow and the
Principal Investigator for the DeepQA Watson/Jeopardy! project.

He has been at the T. J. Watson Research Center since 1995, where he
leads the Semantic Analysis and Integration Department. Dr. Ferrucci
focuses on technologies for automatically discovering meaning in
natural-language content and using it to enable better human decision
making. He graduated from Manhattan College with the B.S. degree
in biology and from Rensselaer Polytechnic Institute, Troy, NY,

in 1994 with the Ph.D. degree in computer science specializing in
knowledge representation and reasoning. He has published papers
in the areas of artificial intelligence, knowledge representation and
reasoning, natural-language processing, and automatic question
answering.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 5 MAY/JULY 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

