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ABSTRACT

Parallel dataflow systems are a central part of most analytic pipelines

for big data. The iterative nature of many analysis and machine

learning algorithms, however, is still a challenge for current systems.

While certain types of bulk iterative algorithms are supported by

novel dataflow frameworks, these systems cannot exploit compu-

tational dependencies present in many algorithms, such as graph

algorithms. As a result, these algorithms are inefficiently executed

and have led to specialized systems based on other paradigms, such

as message passing or shared memory.

We propose a method to integrate incremental iterations, a form

of workset iterations, with parallel dataflows. After showing how

to integrate bulk iterations into a dataflow system and its optimizer,

we present an extension to the programming model for incremental

iterations. The extension alleviates for the lack of mutable state

in dataflows and allows for exploiting the sparse computational

dependencies inherent in many iterative algorithms. The evaluation

of a prototypical implementation shows that those aspects lead to

up to two orders of magnitude speedup in algorithm runtime, when

exploited. In our experiments, the improved dataflow system is

highly competitive with specialized systems while maintaining a

transparent and unified dataflow abstraction.

1. INTRODUCTION
Parallel dataflow systems are an increasingly popular solution for

analyzing large data volumes. They offer a simple programming

abstraction based on directed acyclic graphs, and relieve the pro-

grammer from dealing with the complicated tasks of scheduling com-

putation, transfering intermediate results, and dealing with failures.

Most importantly, they allow dataflow programs to be distributed

across large numbers of machines, which is imperative when deal-

ing with today’s data volumes. Besides parallel databases [17, 19],

MapReduce [16] is the best known representative, popular for its

applicability beyond relational data. Several other systems, like

Dryad [23], Hyracks [11], and Stratosphere [7], follow that trend

and push the paradigm further, eliminating many shortcomings of

MapReduce.

While dataflow systems were originally built for tasks like in-

dexing, filtering, transforming, or aggregating data, their simple

interface and powerful abstraction have made them popular for other

kinds of applications, like machine learning [5] or graph analy-

sis [26]. Many of these algorithms are of iterative or recursive

nature, repeating some computation until a condition is fulfilled.

Naturally, these tasks pose a challenge to dataflow systems, as the

flow of data is no longer acyclic.

During the last years, a number of solutions to specify and exe-

cute iterative algorithms as dataflows have appeared. MapReduce

extensions like Twister [18] or HaLoop [13], and frameworks like

Spark [36] are able to efficiently execute a certain class of iterative

algorithms. However, many machine learning and graph algorithms

still perform poorly, due to those systems’ inability to exploit the

(sparse) computational dependencies present in these tasks [28]. We

refer to the recomputed state as the partial solution of the iteration,

and henceforth distinguish between two different kinds of iterations:

• Bulk Iterations: Each iteration computes a completely new

partial solution from the previous iteration’s result, optionally

using additional data sets that remain constant in the course

of the iteration. Prominent examples are machine learning

algorithms like Batch Gradient Descend [35] and Distributed

Stochastic Gradient Descent [37], many clustering algorithms

(such as K-Means), and the well known PageRank algorithm1.

• Incremental Iterations: Each iteration’s result differs only par-

tially from the result of the previous iteration. Sparse compu-

tational dependencies exist between the elements in the partial

solution: an update on one element has a direct impact only

on a small number of other elements, such that different parts

of the solution may converge at different speeds. An example

is the Connected Components algorithm, where a change in a

vertex’s component membership directly influences only the

membership of its neighbors. Further algorithms in this category

are many graph algorithms where nodes propagate changes to

neighbors, such as shortest paths, belief propagation, and find-

ing densely connected sub-components. For certain algorithms,

the updates can be applied asynchronously, eliminating the syn-

chronization barrier between iterations.

Existing iterative dataflow systems support bulk iterations, be-

cause those iterations resemble the systems’ batch processing mode:

the algorithms fully consume the previous iteration’s result and

compute a completely new result. In contrast, incrementally itera-

tive algorithms evolve the result by changing or adding some data

points, instead of fully recomputing it in a batch. This implies up-

dating a mutable state that is carried to the next iteration. Since

1We refer to the original batch version of the PageRank algorithm.
An incremental version of the algorithm exists [25].
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existing dataflow systems execute incremental iterations as if they

were bulk iterative, they are drastically outperformed by specialized

systems [28, 29].

Existing dataflow systems are therefore practically inefficient for

many iterative algorithms. The systems are, however, still required

for other typical analysis and transformation tasks. Hence, many

data processing pipelines span multiple different systems, using

workflow frameworks to orchestrate the various steps. Training a

model over a large data corpus frequently requires a dataflow (like

MapReduce) for preprocessing the data (e. g., for joining different

sources and normalization), a specialized system for the training

algorithm, followed by another dataflow for postprocessing (such as

applying the model to assess its quality) [35].

We argue that the integration of iterations with dataflows, rather

than the creation of specialized systems, is important for several rea-

sons: first, an integrated approach enables many analytical pipelines

to be expressed in a unified fashion, eliminating the need for an

orchestration framework. Second, dataflows have been long known

to lend themselves well to optimization, not only in database sys-

tems, but also when using more flexible programming models [7,22].

Third, dataflows seem to be a well adopted abstraction for distributed

algorithms, as shown by their increased popularity in the database

and machine learning community [5, 35].

The contributions of this paper are the following:

• We discuss how to integrate bulk iterations in a parallel dataflow

system, as well as the consequences for the optimizer and exe-

cution engine (Section 4).

• We discuss an incremental iteration abstraction using worksets.

The abstraction integrates well with the dataflow programming

paradigm, can exploit the inherent computational dependencies

between data elements, allowing for very efficient execution of

many graph and machine learning algorithms (Section 5).

• We implement bulk and incremental iterations in the Strato-

sphere system, and integrate iterative processing with Strato-

sphere’s optimizer and execution engine.

• We present a case study, comparing the performance of graph

algorithms in a state-of-the-art batch processing system, a dedi-

cated graph analysis system, and our own Stratosphere dataflow

system that supports both bulk and incremental iterations. Our

experimental results indicate that incremental iterations are com-

petitive with the specialized system, outperforming both the

batch sytem and Stratosphere’s own bulk iterations by up to two

orders of magnitude. At the same time, Stratosphere outper-

forms the specialized system for bulk iterations (Section 6).

The remaining sections are structured as follows. Section 2 re-

views general concepts of iterative computations. Section 3 recapit-

ulates the basic features of dataflow systems that we assume in the

course of this paper. Section 7 discusses related work, and Section 8

concludes and offers an outlook.

2. ITERATIVE COMPUTATIONS
This section recapitulates the fundamentals of iterations and dif-

ferent representations that lend themselves to optimized execution.

2.1 Fixpoint Iterations
An iteration is, in its most general form, a computation that

repeatedly evaluates a function f on a partial solution s until a

certain termination criterion t is met:

while ¬t(s, f(s)) do

s = f(s)

A specific class of iterations are fixpoint computations, which apply

the step function until the partial solution no longer changes:

while s �= f(s) do

s = f(s)

For continuous domains, the termination criterion typically checks

whether a certain error threshold has been achieved, rather than

exact equality: t(s, f(s)) ≡ (|s− f(s)| ≤ ǫ).
Fixpoint iterations compute the Kleene chain of partial solutions

(s, f(s), f2(s), . . . , f i(s)), and terminate when fk(s) = fk+1(s)
for some k > 0. The value k is the number of iterations needed to

reach the fixpoint fk(s). Denote si = f i(s). Fixpoint iterations are

guaranteed to converge if it is possible to define a complete partial

order (CPO) � for the data type of s, with a bottom element ⊥.

Furthermore, the step function f must guarantee the production of

a successor to s when applied: ∀s : f(s) � s. The existence of

a supremum and the guaranteed progress towards the supremum

result in eventual termination.

Example: Connected Components. Assume an undirected graph

G = (V,E). We wish to partition the vertex set V into maximal

subsets Vi ⊆ V such that all vertices in the same subset are mutually

reachable. We compute a solution as a mapping s : V → N, which

assigns to each vertex a unique number (called component ID)

representing the connected component the vertex belongs to: ∀v ∈
Vi, w ∈ Vj : s(v) = s(w) ⇔ i = j. Algorithm FIXPOINT-CC in

Table 1 shows pseudocode of the pure fixpoint implementation of

the Connected Components algorithm. The algorithm takes as input

the set of vertices V and a neighborhood mapping N : V → V ∗,

which assigns to each vertex the set of its immediate neighbors:

∀x, v ∈ V : x ∈ N(v) ⇔ (v, x) ∈ E ∨ (x, v) ∈ E. The mapping

s is the partial solution and is iteratively improved. Initially, s(v) is

a unique natural number for each vertex v (we can simply number

the vertices from 1 to |V | in any order). Line 2 of the algorithm

corresponds to the termination condition s ≺ f(s), and lines 3-5

correspond to the partial solution update s ← f(s): For each vertex,

its component ID is set to the minimal component ID of itself and all

its neighbors. Like all algorithms in the second column of Table 1,

FIXPOINT-CC returns s as the result of the iteration.

The CPO over s is defined by comparing the component IDs

assigned to vertices: s � s′ ⇔ ∀v ∈ V : s(v) ≤ s′(v). A simple

supremum is the mapping that assigns zero to all vertices.

2.2 Incremental Iterations & Microsteps
For many fixpoint algorithms, the partial solution s is a set of

data points and the algorithms do not fully recompute si+1 from si,

but rather update si by adding or updating some of its data points.

Frequently, the change to a data point in one iteration affects only

few other data points in the next iteration. For example, in most

algorithms that operate on graphs, changing a vertex immediately

affects its neighbors only. This pattern is often referred to as sparse

computational dependencies [28, 29].

To support such algorithms efficiently, we can express an itera-

tion using two distinct functions u and δ, instead of a single step

function f . Algorithm INCR of Table 1 provides pseudocode for

this iteration scheme. The δ function computes the working set

w = δ(s, f(s)), which is conceptually the set of (candidate) up-

dates that, when applied to s, produce the next partial solution. The

function u combines w with s to build the next partial solution:

f(s) = u(s, w). Because the evaluation of f(s) is what we seek to

avoid, we vary this pattern to evaluate δ on si and wi to compute

the next working set wi+1.

The function u is typically efficient when w contains only can-

didate updates relevant to the current iteration. Consequently, this

form of incremental iterations is of particular interest, if a δ function
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Iteration Template Connected Components

1: function FIXPOINT(f , s)
2: while s ≺ f(s) do

3: s = f(s)

1: function FIXPOINT-CC(V ,N )
2: while (∃v, x ∈ V |x ∈ N(v) ∧

s(x) < s(v)) do

3: for (v ∈ V ) do

4: m = min{s(x)|x ∈ N(v)}
5: s(v) = min{m, s(v)}

1: function INCR(δ,u,s,w)
2: while w �= ∅ do

3: w′ = δ(s, w)
4: s = u(s, w)
5: w = w′

1: function INCR-CC(V ,N )
2: while w �= ∅ do

3: w′ = ∅
4: for (x, c) ∈ w do

5: if c < s(x) then

6: for z ∈ N(x) do

7: w′ = w′ ∪ {(z, c)}

8: for (x, c) ∈ w do

9: if c < s(x) then

10: s(x) = c

11: w = w′

1: function MICRO(δ,u,s,w)
2: while w �= ∅ do

3: d = arb(w)
4: s = u(s, d)
5: w = w ∪ δ(s, d)

1: function MICRO-CC(V ,N )
2: while w �= ∅ do

3: (d, c) = arb(w)
4: if (c < s(d)) then

5: s(d) = c
6: for (z ∈ N(d)) do

7: w = w ∪ {(z, c)}

Table 1: Classes of iterations and the corresponding implemen-

tations of the Connected Components algorithm. The arb func-

tion selects and removes an arbitrary element from a set.

exists that is both effective, in that it adds only relevant candidate up-

dates to w, and efficient, in that it does not require the evaluation of

f(s). Incremental iterations are similar to workset algorithms used

in optimizing compilers when performing dataflow analysis [24].

To the best of our knowledge, no formal characterization of the

class of functions whose fixpoint computation is amenable to such

an optimization exists. It is known that minimal fixpoints of all

distributive functions f : T → T : f(A ∨ B) = f(A) ∨ f(B),
where T is a semilattice with a meet operator ∨, can be executed in

an incremental fashion [14].

Example: Connected Components. Algorithm INCR-CC in Ta-

ble 1 shows pseudocode for the incremental implementation of the

Connected Components algorithm. The working set w contains in

each step the new candidate component IDs for a set of vertices.

Initially, w consists of all pairs (v, c) where c is the component ID

of a neighbor of v. For each vertex that gets a new component ID, δ

adds this ID as a candidate for all of the vertex’s neighbors (lines

4-7). The function u updates the partial solution in lines 8-10 of

the algorithm. For each element of the working set, it replaces the

vertex’s component ID by a candidate component ID, if the latter is

lower. This representation implicitly exploits the computational de-

pendencies present in the algorithm: a vertex’s component can only

change if one of its neighbors’ component changed in the previous

iteration. In the algorithm, a new candidate component is only in

the working set for exactly those vertices.

In practice, one can frequently obtain an effective and efficient δ

function by decomposing the iterations into a series of microsteps,

and eliminating the supersteps. A microstep removes a single ele-

ment d from w and uses it to update s and w, effectively interleaving

the updates of the partial solution and the working set. Microstep

4 2 

1 3 

7 

8 

9 

5 
6 

1 

2 

3 

4 

5 
6 

7 

8 

9 
4 2 

1 3 

7 

8 

9 

5 
6 

1 

1 

1 

1 

5 
5 

7 

7 

7 
4 2 

1 3 

7 

8 

9 

5 
6 

1 

1 

1 

2 

5 
5 

7 

7 

7 

vid 
cid 

S
0
 S

1
 S

2
 

Figure 1: Sample graph for the Connected Components.

iterations lead to a modified chain of solutions (s � p0,1 � . . . �
p0,n � f(s) � p1,1 � . . . � p1,n � f2(s), . . .), where pi,j is the

partial solution in iteration i after combining the j-th element from

w. The changes introduced by the element d are directly reflected in

the partial solution after the microstep. Algorithm MICRO of Table 1

shows the structure of a microstep iteration. The iteration state s and

the working set w are both incrementally updated by looking at one

element d ∈ w at a time. Similar to superstep iterations, microstep

iterations are guaranteed to converge, if each individual update to

the partial solution leads to a successor state in the CPO. Note that

this is a stricter condition than for incremental iterations, where all

updates together need to produce a successor state.

Example: Connected Components. Consider the pseudocode for

the Connected Components algorithm shown in Algorithm MICRO-

CC of Table 1. Inside each iteration, instead of performing two

loops to update the state and the working set, these are simultane-

ously updated in one loop over the elements of the working set.

Note that in parallel setups, this last form of fixpoint iterations

is amenable to asynchronous execution. The conformance of mi-

crosteps to the CPO can therefore enable fine-grained parallelism

where individual element updates take effect in parallel, and no

synchronization is required to coordinate the iterations/supersteps

across parallel instances.

2.3 Performance Implications
The efficiency of bulk and incremental iterations may differ sig-

nificantly. We illustrate this using the example of the Connected

Components algorithm. In the bulk iteration algorithm, each vertex

takes in each iteration the minimum component ID (cid) of itself

and all its neighbors. Consequently, the number of accesses to the

vertex state and the neighbor set is constant across all iterations. For

the incremental (and microstep) variant of the algorithm, the cost of

an iteration depends on the size of its working set.

Consider the sample graph from Figure 1. The numbers inside

the vertices denote the vertex ID (vid), and the number next to a

vertex denotes its current component ID (cid). The figure shows

how the assigned cid values change for each vertex over the three

iterations. We can see that all except the vertex with vid = 4 reach

their final cid in one step. For most vertices, all their neighbors

reach their final cid in the first step as well. Those vertices need not

be re-inspected. Their state cannot possibly change, since none of

their neighbors’ state did.

The incremental variant of the Connected Components algorithm

reflects that by accessing only vertices, for which the working set

contains new candidate cids. That way, the algorithm focusses on

“hot” portions of the graph, which still undergo changes, while “cold”

portions are not accessed. The magnitude of this effect for a larger

graph is illustrated in Figure 2. The graph is a small subset of the

Friend-of-a-Friend network derived from a Billion-Triple-Challenge

Web-Crawl and contains 1.2 million vertices and 7 million edges.

The figure shows how the number of accesses and modifications to

elements of the vertex states s (left y axis), as well as the number of

records added to the working set (right y axis) vary across iterations.
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Figure 2: The effective work the Connected Components algo-

rithm performs on the FOAF subgraph.

We see that the work performed in later iterations is significantly

lower than the work in the first iterations, and that the actual progress

(number of changed vertices) closely follows the size of the working

set.

3. DATAFLOW SYSTEMS
We have implemented full and incremental iterations in the Strato-

sphere dataflow system [7]. However, the results presented in this

paper are general, and can be applied in a variety of parallel dataflow

systems, including parallel RDBMSs [17, 19], Hyracks [11], and

SCOPE/Dryad [15]. This section briefly reviews the needed con-

cepts from dataflow processing.

A dataflow is a directed acyclic graph (DAG) that consists of

operators, sources, and sinks. The data sources and sinks, as well

as the intermediate data sets that flow through operators, are bags

of records. The operators are the inner nodes in the DAG, and can

be thought of as functions f : {I1, . . . , In} → O, where Ii and

O are bags of records. A dataflow construct of several operators

is therefore a function, whose fixpoint we can find by “closing the

loop” in the dataflow DAG.

We do not make any assumptions about the semantics of the

operators; indeed, operators can contain arbitrary user-defined code

as in Stratosphere. It is interesting, however, to distinguish between

certain classes of operators. First, we distinguish between operators

that produce output by consuming one record, called record-at-a-

time operators, and operators that need to consume multiple records

before producing output, called group-at-a-time operators. In the

popular MapReduce paradigm [16], an operator that implements the

Map second-order function is a tuple-at-a-time operator, whereas

Reduce operators are group-at-a-time; the latter need to consume

all tuples in the incoming data set with a certain key value before

producing output. A further distinction is between unary operators

and operators that receive multiple inputs.

All dataflow systems include common data manipulation pat-

terns, such as filtering based on predicate evaluation, joining of

two datasets, and grouping a dataset according to the values of

an attribute. In Stratosphere, user-defined code is encapsulated in

so-called Parallelization Contracts (PACTs) [7]. PACTs are second-

order functions that accept as arguments a user-defined first-order

function, typically written in Java, and one or more input data sets.

The type of PACT an operator implements informs the system about

the possible distribution strategies of the operator’s input. A Map

PACT dictates that every record of the input I can be processed

independently. A Reduce PACT dictates that all records of I with

the same value of a key attribute are processed as a group. A Cross

PACT produces an independent group from every pair of records of

its input data sets, resembling a Cartesian product. A Match PACT

groups pairs of records from two inputs only if the records have

equal values on a key attribute, resembling an equi-join. Finally, a

CoGroup PACT is a binary generalization of the Reduce contract,

creating a group from all records of two inputs for every value of a

key attribute.

Many dataflow systems, including Stratosphere, use an optimizer

that decides on the execution strategy for the dataflow operators. For

example, consider an equi-join, implemented via a Match contract.

The Stratosphere optimizer here explores possible parallelization

strategies, including broadcasting one input, partitioning one input,

or re-partitioning both. Possible implementations include various

flavors of hash-based or sort-merge-based execution [32]. The

optimizer uses a cost model and interesting properties to generate an

effcient plan for a given dataflow. Finally, we distinguish between

pipelined operators and operators that materialize their input, and

refer to the latter as materialization points or dams.

4. BULK ITERATIONS
This section describes the integration of bulk iterations into paral-

lel dataflows. Bulk iterations recompute the entire partial solution

in each iteration.

4.1 Dataflow Embedding
We represent this general form of iterations as a special construct

that is embedded in the dataflow like a regular operator. An iteration

is a complex operator defined as a tuple (G, I,O, T ). G is a data

flow that represents the step function f : S → S, S being the data

type of the partial solution. The partial solution corresponds to

the pair (I,O), where I is an edge that provides the latest partial

solution as input to G. O is the output of G, representing the next

partitial solution.2 In each but the first iteration, the previous itera-

tion’s O becomes the next iteration’s I . The iteration is embedded

into a dataflow by connecting the operator providing the initial ver-

sion of the partial solution I , and the operator cosuming the result of

the last iteration to O. T , finally, denotes the termination criterion

for the iteration. T is an operator integrated into G and is similar

to a data sink in that it has only a single input and no output. It

contains a Boolean function that consumes the input and returns a

flag indicating whether to trigger a successive iteration. Instead of a

termination criterion, the number of iterations n may be statically

defined. The iteration then is represented as a tuple (G, I,O, n).

Example: PageRank. The PageRank algorithm [31] finds the

fixpoint p = A × p, where p is the rank vector and A is the left

stochastic matrix describing the probabilities pi,j of going from

page j to page i. We represent the rank vector as a set of tuples

(pid, r), where pid is the row index (and a unique identifier for the

page), and r is the rank. The sparse stochastic matrix A is repre-

sented as a set of tuples (tid, pid, p), where tid is the row index

(the unique identifier of the target page), pid is the column index

(the unique identifier of the source page), and p is the transition

probability. This representation does not include the tuples with

p = 0.0. In each iteration the algorithm first joins the vector and the

matrix tuple sets on pid, returning for each match (tid, k = r ∗ p).
Second, all values are grouped by tid, which becomes the pid for

the result vector, and all k are summed up to form the new rank

r. Figure 3 shows the algorithm as an iterative dataflow. The big

dashed box represents the iteration construct. Here, the dataflow

G comprises the rightmost Match operator (which joins the vector

2The concept extends straightforwardly to multiple data sets and
hence multiple pairs (I, O)i. For ease of exposition, we present the
unary case in our examples.
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Figure 3: PageRank as an iterative dataflow.

and the matrix), the Reduce operator (which groups and recomputes

the rank), the data source A, and their connecting edges. The ter-

mination criterion T uses another Match operator between the new

and old rank data sets. The operator emits a record if a page’s rank

changed more than a threshold ǫ.

All nodes and edges in G on the path from I to O and from I

to T process different data during each iteration. We call that path

the dynamic data path. In contrast, all nodes and edges that belong

to the constant data path process data that is constant across all

iterations. In Figure 3, the dynamic data path consists of the solid

edges and the Match and Reduce operators. The constant data path

includes data source A and the edge connecting A to the Match

operatator. Note that data sources defined in G are always on the

constant data path.

4.2 Execution
Executing an iterative dataflow is possible by “unrolling the loop”

or via feedback channels. When executing by unrolling, we roll out

the iterations lazily: a new instance of G is created whenever O

receives the first record and T has signaled that another iteration

is needed. The new instance of G is concatenated to the current

data flow by connecting the existing unconnected O to the new I .

During an iteration, O may receive records before T has consumed

all records, depending on which operators in G materialize their

intermediate result. The PageRank example in Figure 3 describes

such a case, as the Reduce operator emits records simultaneously to

O and the Match that is input to T . Here, an extra dam must be added

to O, preventing the next iteration from receiving records before the

decision whether to have that iteration was made. In some cases, the

operator succeeding I materializes its corresponding input (e.g. in a

sort buffer or hash table). In that case, this specific materialization

point serves as the dam and no extra dam is needed.

The feedback-channel based execution reuses G in each iteration.

Each operator in G is reset after producing its last record. Similar

as in the “unrolling” execution, the feedback edge materializes an

iteration’s result if O receives records before T decides upon a new

iteration. Furthermore, if the dynamic data path contains less than

two materializing operators, the feedback channel must also dam the

dataflow to prevent the operators from participating in two iterations

simultaneously. For PageRank in Figure 3, the feedback channel

needs an additional dam if either the Reduce is pipelined or the right

hand side Match pipelines its input I .

For all massively parallel systems, resilience to machine failures

is necessary to ensure progress and completion of complex dataflows

spanning many machines. Iterative dataflows may log intermediate

results for recovery just as non-iterative dataflows, following their
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Figure 4: Different execution plans for the PageRank iterative

dataflow. The gray boxes show the optimizer’s strategy choices.

normal materialization strategies. In Stratosphere, for example, the

Nephele execution engine judiciously picks operators whose output

is materialized for recovery, trading the cost of creating the log

against the potential cost of having to recompute the data. When

executing with feedback channels, a new version of the log needs to

be created for every logged iteration.

4.3 Optimization
Many dataflow systems optimize dataflow programs before exe-

cuting them [7, 9, 17]. The optimization process typically creates

an execution plan that describes the actual execution strategy for

the degrees-of-freedom in the program. Such degrees-of-freedom

comprise operator order, shipping strategies (partitioning, broad-

casting) and local strategies (e. g., hashing vs. sorting operator

implementations, as well as inner and outer role).

The optimizer may choose a plan for the iteration’s data flow G

following the techniques for non-iterative dataflows [20, 33]. Note

that in the general case, a different plan may be optimal for every

iteration, if the size of the partial solution varies. The number of

iterations is often not known a priori, or it is hard to get a good

estimate for the size of the partial solution in later iteration steps. It

is therefore hard for cost-based optimizers to estimate the cost of

the entire iterative program. In our implementation in Stratosphere,

we resort to a simple heuristic and let the optimizer pick the plan

that has the least cost for the first iteration. For programs where the

result size is rather constant across all iterations, that plan should

be close to the best plan. To avoid re-executing the constant path’s

operators during every iteration, we include a heuristic that caches

the intermediate result at the operator where the constant path meets

the dynamic path. The caches are in-memory and gradually spilled

in the presence of memory pressure. The cache stores the records

not necessarily as an unordered collection, but possibly as a hash ta-

ble, or B+-Tree, depending on the execution strategy of the operator

at the dataflow position where the constant and dynamic data paths

meet. Finally, when comparing different plans, we weigh the cost of

the dynamic data path by a factor proportional to expected number

of iterations, since it is repeatedly executed. Plans that place costly

operations on the constant data path are consequently cheaper than

plans that place those operations on the dynamic data path.

Figure 4 shows two different execution plans for the PageRank

algorithm, as chosen by Stratosphere’s optimizer depending on the

sizes of p and A. The gray shaded boxes describe the optimizer’s

choices for execution strategies. It is noteworthy that the two plans

resemble two prominent implementations of PageRank in Hadoop
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MapReduce [4]. The left variant, as implemented by Mahout [5]

and optimized for smaller models, replicates the rank vector and

creates a hash table for it. This variant avoids to repeatedly ship the

transistion matrix by caching it in partitioned and sorted form, such

that grouping happens directly on the join result without additional

partitioning/sorting. The right hand side variant, which is close to

the PageRank implementation in Pegasus [26], joins a partitioned

vector with the transition matrix and re-partitions for the aggrega-

tion. The transition matrix is here cached as the join’s hash table.

While in MapReduce, different implementations exist to efficiently

handle different problem sizes, a dataflow system with an optimizer,

such as Stratosphere, can derive the efficient execution strategy au-

tomatically, allowing one implementation to fit both cases.

Many optimizers in dataflow systems follow the Volcano approach

[20], generating Interesting Properties (IPs) while they enumerate

execution plan alternatives. Interesting Properties are used during

plan pruning to recognize plans in which early operators can be more

expensive, but produce data in a format that helps later operators

to be executed more efficiently. For finding the optimal plan for G

across multiple iterations, the IPs propagated down from O depend

through the feedback on the IPs created for I , which themselves

depend on those from O. In general, for an edge e that is input to

operator P , its interesting properties are IPe = IPP,e ∪ APe, where

IPP,e are the IPs that P creates for that edge and APe ⊆
⋃

f≻e
IPf

are the inherited properties, where f ≻ e, if edge f is a successor

to edge e in the DAG G. Note that IPP,e only depends on the

possible execution strategies for P . A Match creates for example

“partitioning” or “replication” as IPs for both edges. Which IPs are

inherited depends on which properties could be preserved through

the possible execution strategies of P and the user code executed

inside the operators3. The formula can be expanded to IPe ⊆⋃
f≻e,P∈G

IPP,f . In the iterative setting, all edges on the dynamic

data path are successors to all other edges, so an edge’s interesting

properties depend on all operators on the dynamic data path. To

gather all relevant IPs for each edge, the optimization performs two

top down traversals over G, feeding the IPs from the first traversal

back from I to O for the second traversal.

In contrast to the methods originally described in [20], we inter-

pret the interesting properties of an edge additionally as a hint to

create a plan candidate that establishes those properties at that edge.

The left hand plan in Figure 4 is the result of that procedure: the

edge connecting A and the Match operator has an interesting prop-

erty for partitioning and sorting, generated by the Reduce operator.

The plan candidate that applies partitioning and sorting at that point

is actually very cheap in the end, because the expensive partitioning

and sorting occur early on the constant data path.

5. INCREMENTAL ITERATIONS
In this section we discuss how to integrate incremental iterations,

as described in Section 2, into dataflows.

5.1 Dataflow Embedding
An incremental iteration can be expressed using the bulk iterations

introduced in Section 4, with two data sets (S and W ) for the

partial solution and a step functions combining u and δ. The step

function reads both data sets and computes a new version of S and

W . However, recall that the primary motivation for incremental

iterations is to avoid creating a completely new version of the partial

3Reference [7] describes OutputContracts to determine how the
user code behaves with respect to data properties.

solution, but to apply point updates instead. The updated partial

solution should be implicitly carried to the next iteration.

In imperative programming, updating the partial solution is achiev-

able by modifying the statement S = u(S,W ) to u(&S,W ), i. e.,

passing a reference to the state of the partial solution and modi-

fying that shared state. Dataflow programs (like functional pro-

grams) require that the operators/functions are side effect free4.

We work around this obstacle by modifying the update function

from S = u(S,W ) to D = u(S,W ). The delta set D con-

tains all records that will be added to the partial solution and the

new versions of the records that should be replaced in the par-

tial solution. The solution set S is treated as a set of records

s, where each s ∈ S is uniquely identified by a key k(s). The

delta set is combined with the solution set as S = S ∪̇ D. The

∪̇ operator denotes a set union that, when finding two records

from S and D with the same key, chooses the record from D:

S ∪̇ D = D ∪ {s ∈ S : ¬∃d ∈ D|k(d) = k(s)}
We hence express an update of a record in the partial solution

through the replacement of that record. The incremental iterations

algorithm becomes

function INCR(δ,u,S,W )

while W �= ∅ do

D ← u(S,W )
W ← δ(D,S,W )
S = S ∪̇ D

Because the update function u and the working set function δ fre-

quently share operations, we combine them both to a single function

∆, for ease of programmability: (Di+1,Wi+1) = ∆(Si,Wi)

Example: Connected Components. The example follows the

algorithm INCR-CC in Table 1. The solution set S is a set of

pairs (vid, cid), which represents the mapping from vertex (vid) to

component ID (cid). The vid acts as the key that uniquely identifies

a record in S. The working set W contains pairs (vid, cid). Each

pair in W is a candidate component ID cid for vertex vid. Figure 5

shows the algorithm as an incrementally iterative dataflow. The

dotted box represents the iteration operator, containing the dataflow

for ∆ that computes Wi+1 and Di+1 from Wi and Si. We compute

D through an InnerCoGroup5 operator that uses vid as key. The

InnerCoGroup calls its UDF for each vid individually, providing

the current cid for the vertex from the input S, and all candidate

cids from W . Among the candidates, it selects the minimal cid and,

if that cid is smaller than the operators current cid, it returns a pair

(vid, cid) with that new cid. When D is combined with S, each

record in D replaces the record with the same vid in S, thereby

effectively updating the associated cid for a vid.

The next working set Wi+1 is computed though a single Match

operator that takes the delta set D and joins it with the data source N

that represents the neighborhood mapping. N contains the graph’s

edges as (vid1, vid2) pairs6. The Match joins D and N via vid =
vid1 and returns for each match a pair (vid2, cid). Each returned

pair represents the changed vertex’s new cid as a candidate cid for

its neighboring vertex vid2.

4An intransparent side effect would void the possibility of automatic
parallelization, which is one of the main reasons to use dataflow
programming for large scale analytics.
5The InnerCoGroup is like a CoGroup, except that, much like an
inner join, it drops groups where the key does not exist on both
sides.
6We assume an undirected graph here, such that N contains for
every edge (vid1, vid2) also the symmetric (vid2, vid1) pair.
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Figure 5: The Connected Components algorithm as an Incre-

mental Iteration.

In fact, the iterative dataflow of Figure 5 can serve as a tem-

plate for implementing a wide range of graph algorithms as in-

cremental iterations. Every algorithm that can be expressed via a

message-passing interface [3, 29] can also be expressed as an in-

cremental iteration. S(vid, state) represents the graph states, and

W (tid, vid,msg) represents the messages sent from vertex vid to

vertex tid. In each superstep, ∆ combines the current state S and

messages W , it produces the changed states D, and creates the new

set of messages using D and possibly the graph topology table N .

By computing a delta set instead of the next partial solution, we

can achieve that the iteration returns fewer records when fewer

changes need to be made to the partial solution (cf. later iterations

in Figure 2). The solution set S is here a persistent state across the

iterations, saving the cost of copying the unchanged records to the

next iteration. Merging the small D with S is highly efficient if S is

indexed by the key that identifies the records.

To generalize the aforementioned example, we represent an Incre-

mental Iteration as a complex dataflow operator, defined as a tuple

(∆, S0,W0). Let S denote the solution set. S is a set of records

s that are identified by a key k(s). In iteration i, S holds the i-th

partial solution Si. The initial version of S is S0, which is input to

the iteration. After the incremental iteration has converged, S holds

the iteration’s result. Let Wi denote the working set for iteration i.

The initial working set W0 is input to the iteration.

The step function ∆ computes in iteration i the delta set Di+1

with all new and changed records for Si+1, as well as the working

set Wi+1 for the next iteration: (Di+1,Wi+1) = ∆(Si,Wi). ∆ is

expressed as a dataflow in the same way as G expresses the step

function f for bulk iterations (Section 4). Since ∆ must return two

data sets, it is necessarily a non-tree DAG. After ∆ is evaluated

for iteration i, Di+1 is combined with Si using the modified union

operator ∪̇, producing the next partial solution Si+1. That implies

that any accesses to S during the computation of Di+1 and Wi+1

read the state of Si. The iteration terminates once the computed

working set is empty.

Because the delta set D is the result of a dataflow operator, it

is naturally an unordered bag of records, rather than a set. D may

hence contain multiple different records that are identified by the

same key, and would replace the same record in the current partial

solution. The exact result of S ∪̇D is then undefined. In practice,

many update functions create records such that only one record

with the same key can exist in D. That is, for example, the case in

the Connected Components algorithm, because the InnerCoGroup

operator joins the each record in the partial solution exactly once on

the key that indexes it (the vid), and the UDF does not modify that

field. Hence, each vid appears at most once in the operators result.

But since that is not necessarily the case in general, we allow the

optional definition of a comparator for the data type of S. Whenever

a record in S is to be replaced by a record in D, the comparator

establishes an order among the two records. The larger one will

be reflected in S, and the smaller one is discarded. The usage of

a comparator naturally reflects the strategy to establish an order

among two states before and after a point update, as done in the

definition of the CPO for S. Selecting the larger element represents

the record leading to a successor state. Because the record from D

is dropped if it is the smaller one, D relects only the records that

contributed to the new partial solution.

5.2 Microstep Iterations
Section 2 discussed microstep iterations as a special case of incre-

mental iterations. Recall that a microstep iteration is characterized

by the fact that it takes a single element d from the working set,

and updates both the partial solution and the working set. Note that

this implies that the partial solution already reflects the modification

when the next d is processed.

We represent microsteps iterations through the same abstraction

as incremental iterations. In our implementation, an incremental

iteration may be executed in microsteps rather than supersteps, if

it meets the following constraints: first, the step function ∆ must

consist solely of record-at-a-time operations (e. g., Map, Match,

Cross, ...), such that each record is processed individually7. For

the same reason, binary operators in ∆ may have at most one input

on the dynamic data path, otherwise their semantics are ill defined.

Consequently, the dynamic data path may not have branches, i. e.

each operator may have only one immediate successor, with the

exception of the output that connects to D. Note that this implies

that Wi+1 may depend on Wi only through d, which is consistent

with the definition of microstep iterations in Table 1, line 5.

Finally, for microstep iterations, we need to assure that each time

∆ is invoked, the partial solution reflects a consistent state, reflecting

all updates made by prior invocations of ∆. In a parallel system

with multiple instances of ∆ active at the same time, we encounter

the classic transactional consistency problem, where guaranteeing

a consistent up-to-date partial solution requires in the general case

fine grained distributed locking of the elements in S (or their keys).

We can avoid the locking, when an update of a record in S affects

only the parallel instance that created the updated record. This is

true, when the data flow between S and D does not cross partition

boundaries, which is easily inferable from ∆. The sufficient con-

ditions are that the key field containing k(s) is constant across the

path between S and D, and that all operations on that path are either

key-less (e. g. Map or Cross) or use k(s) as the key (for example in

the case of the Match).

The Connected Components example above becomes amenable

to microstep execution, if we replace InnerCoGroup operator by

the record-at-a-time Match operator. Since its UDF keeps the key

field constant, all records in D will replace records in S in the local

partition.

5.3 Runtime & Optimization
The principal execution scheme for incremental iterations follows

the bulk iteration scheme using feedback channels (Section 4.2).

The techniques described for the partial solution in bulk iterations

are used for the working set in the context of incremental iterations.

7For group- or set-at-a-time operations, supersteps are required
to define the scope of the sets. Cf. systems for stream analytics,
where windows or other reference frames are required to define set
operations.
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The dynamic and constant data path distinction applies directly

to the ∆ data flow in incremental iterations. The optimization,

including caching static data and the modified handling of interesting

properties happens the same way.

We extend those techniques to efficiently handle the persistent

partial solution. To facilitate efficient access and updates to the

partial solution, we store S partitioned by its key across all nodes.

Each node stores its partition of S in a primary index structure,

organized by the key. It is a typical pattern that the records from

S are joined (or otherwise associated) by an operator o using the

identifying key as the join key. In this case, we merge the S index

into o, creating a stateful operator that uses the S index for its

operation. The exact type of index is in this case determined by

the execution strategy of o. For example, if o is a join operator

and the optimizer chooses to execute that join with a hash strategy,

then S will be stored in an updateable hash table. In contrast, if the

optimizer picks a sort-based join strategy, S is stored in a sorted

index (B+-Tree). That way, both accesses to S by the o and record

additions to S happen through the same index.

In the general case, we cache the records in the delta set D un-

til the end of the superstep and afterwards merge them with S, to

guarantee a consistent view of S during the superstep. Under cer-

tain conditions, the records can be directly merged with S, because

we can guarantee that they will not be accessed in the same super-

step again. Those conditions are equivalent to the conditions that

guarantee updates to the partial soltution to be local.

Figure 6 illustrates the resulting execution strategy for the Con-

nected Components algorithm, as derived by the optimizer. The

working set W is cached in queues, partitioned by vid for the sub-

sequent Match with S. S is stored in a partitioned hash table using

vid as the key. When the Match between W and S returns a record,

the plan writes the record back to the hash table. Simultaneously, it

passes the record to the second Match function, which creates the

new (vid, cid) pairs for W . Note that the second Match uses the

same key as the first Match, so it is not necessary to repartition the

records by the join key. The contents of the data source N is cached

in a partitioned way as a hash table, such that ∆ becomes pipelined

and local. The plan partitions ∆’s result (the new working set) and

adds the records to the corresponding queues.

Match 
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Match 
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S (Hash Table) 

W (queue) 

N 

Match 
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Match 
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Figure 6: The execution of the incrementally iterative Con-

nected Components algorithm.

If an iteration is amenable to execution in microsteps, the dif-

ference between superstep and microstep execution manifests only

in the behavior of the queues that store W : for an asynchronous

microstep iteration, they behave like regular nonblocking queues,

passing records through in a FIFO fashion. In the presence of su-

persteps, the queues buffer all records that are added to them, but

do not yet return them, as those added records are destined for the

next iteration’s working set. When all queues have returned all

records for the current iteration, the superstep ends. The queues are

then signaled to switch their buffers in a synchronized step, making

the records added in the last iteration available to the current and

buffering the records added in the current iteration for the next one.

In our implementation in Stratosphere, we currently make use of the

channel events offered by the Nephele dataflow engine to coordinate

superstep transitions. Special channel events are sent by each node

to signal the end of its superstep to all other nodes. Upon reception

of an according number of events, each node switches to the next

superstep.

In the synchronous case, the execution has converged if the work-

ing set Wi is empty at the end of iteration i. A simple voting

scheme can here decide upon termination or progression. For the

asynchronous execution, however, no end-of-superstep point exists.

The distributed systems community has explored a variety of al-

gorithms for termination detection in processor networks. Many

of these algorithms apply also to the asynchronous execution of

the parallel dataflow. For example, [27] works by requesting and

sending acknowledgements for the records along the data channels.

6. EVALUATION
To evaluate the practical benefit of incremental iterations, we

compare three systems that support iterations in different ways:

Stratosphere [7], Spark [36], and Giraph [3].

Stratosphere supports both bulk and incremental iterations, which

were implemented as described in Sections 4 and 5. The implemen-

tation uses the feedback-channel based execution strategy.

Spark is a parallel dataflow system implemented in Scala and cen-

tered around the concept of Resilient Distributed Data Sets (RDSs).

RDSs are partitioned intermediate results cached in memory. Spark

queries may contain operations like Join, Group, or CoGroup and

apply user defined functions on the operators results. The system

accepts iterative programs, which create and consume RDSs in a

loop. Because RDSs are cached in memory and the dataflow is

created lazily when an RDS is needed, Spark’s model is well suited

for bulk iterative algorithms.

Giraph is an implementation of Google’s Pregel [29] and hence a

variant of Bulk Synchronous Parallel processing adopted for graph

analysis. The model is explicitly designed to exploit sparse compu-

tational dependencies in graphs. A program consists in its core of

a vertex update function. The function computes its update based

on messages it receives from other vertices, and sends out messages

to other vertices in turn. Because the function has only a local view

of one vertex, the algorithms have to be expressed by means of

localizing the updates. Pregel is thus a special case of incremental

iterations - the vertices represent the partial solution state and the

messages form the working set.

All of the above systems run in a Java Virtual Machine (JVM),

making their runtimes easy to compare. We ran our experiments on

a small cluster of four machines. Each machine was equipped each

with 2 Intel Xeon E5530 CPUs (4 cores, 8 hardware contexts) and 48

GB RAM. The machines’ disk arrays read 500 MB/sec, according

to hdparm. We started the JVMs with 38 GB heap size, leaving

10 GB to operating system, distributed filesystem caches and other

JVM memory pools, such as for native buffers for network I/O. The

cluster has consequently 32 cores, 64 threads and an aggregate Java

heap size of 152 GB.

We use four different graphs as data sets, which we obtained from

the University of Milan’s Web Data Set Repository [10]: the link

graph from the English Wikipedia and the Webbase web crawl from

2001 are typical web graphs. The Hollywood graph, linking Actors

that appeared in the same movie, and the Twitter follower graph are

representatives of social network graphs. The latter are typically

more densely connected. Table 2 shows the graphs’ basic properties.
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DataSet Vertices Edges Avg. Degree

Wikipedia-EN 16,513,969 219,505,928 13.29

Webbase 115,657,290 1,736,677,821 15.02

Hollywood 1,985,306 228,985,632 115.34

Twitter 41,652,230 1,468,365,182 35.25

Table 2: Data Set Properties

6.1 Full Iterations
We first establish a base line among the three systems using the

bulk iterative PageRank algorithm, as described in Section 4. For

Giraph and Spark, we used the implementations that were included

with the systems’ code. Giraph’s algorithm follows the example

in Pregel [29], and Spark’s implementation follows Pegasus [26].

For Stratosphere, we executed both strategies from Figure 4. The

partitioning plan (right hand side of the figure) is equivalent to the

Spark implementation. The broadcasting plan (left hand side) is

cheaper by network cost, because it computes the new ranks locally.

We run PageRank for 20 iterations. Even though computational

dependencies do exist in the graphs, the algorithm operates in

batches, updating each vertex every time. Consequently, we expect

all systems to have roughly equal runtime for PageRank because all

iterations do the same work: they create records for each edge prop-

agating the current rank of a vertex to its neighbors. These records

are pre-aggregated (cf. Combiners in MapReduce and Pregel) and

are then sent over the network to the node containing the neighbor

vertex. An exception is, as mentioned, Stratosphere’s broadcasting

strategy.
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Figure 7: Total execution times for the PageRank algorithm.

Figure 7 shows the results for the PageRank algorithm on the

three systems on different datasets. As expected, the runtime of

the algorithm is similar in Spark, Giraph, and Stratosphere for the

small Wikipedia dataset. We were unable to use Spark and Giraph

with the large datasets, because the number of messages created

exceeds the heap size on each node. The systems currently lack the

feature to spill messages in the presence of memory pressure. For

the large Webbase graph, we see that Stratosphere’s broadcasting

strategy degrades. Due to a limitation in the hash join algorithm,

the hash table containing the broadcasted rank vector is currently

built by a single thread on each machine, introducing a critical serial

codepath.

It is interesting to examine the time each iteration takes in the

different systems. Figure 8 breaks down the execution time for the

PageRank algorithm on the Wikipedia dataset. For Stratosphere, we

examine the partitioning strategy, because it performs the same work

as the two other systems. The iteration times are rather constant

in Stratosphere and Giraph. The first iteration is longer, because it

includes for Stratosphere the execution of the constant data path,

and for Giraph the partitioning and setup of the vertex states. The
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Figure 8: Execution times of the individual iterations for the

PageRank algorithm on the Wikipedia dataset.

iteration times in Spark vary quite heavily due to garbage collection

problems8. Spark uses new objects for all messages, creating a

substantial garbage collection overhead. In contrast, Stratosphere’s

PACT runtime stores records in serialized form to reduce memory

consumption and object allocation overhead. The runtime algo-

rithms are optimized for operation on serialized data. The Giraph

implementation is also hand tuned to avoid creating objects where

possible, removing pressure from the garbage collector.

6.2 Incremental Iterations
While we expected the systems to perform similarly for bulk

iterative algorithms, we expect a big performance difference for

incrementally iterative algorithms. The magnitude of the differ-

ence should depend on the sparsity of the computational dependen-

cies: the sparser the dependencies are, the more speedup we expect

through incremental iterations, as compared to bulk iterations.

To verify our expectations, we ran the different versions of the

Connected Components algorithm on the three systems. For di-

rected graphs, we interpreted the links as undirected, thus finding

weakly Connected Components. We ran the bulk iterative algorithm

from Section 2 on Spark and Stratosphere and an the incrementally

iterative version on Stratosphere and Giraph.

We have two Stratosphere implementations for the incrementally

iterative algorithm, resembling the examples in Section 5: one

uses a Match operator for the update function, the other one a

CoGroup. Recall that the Match variant corresponds to a microstep

iteration and takes each element from the working set individually,

potentially updating the partial solution and producing new working

set elements. The CoGroup variant represents a batch incremental

iteration. It groups all working set elements relevant to one entry

of the partial solution, such that each such entry is updated only

once. The grouping of the working set does, however, incure some

additional cost. We consequently expect the Microstep variant to

be faster on the sparse graphs, where the number of redundant

candidates in the working set is smaller. For denser graphs, we

expect the batch incremental algorithm to eventually be the faster

variant, as the cost of grouping the working set elements is amortized

by the saved cost due to fewer accesses to the partial solution.

Figure 9 shows the execution times for the Connected Compo-

nents algorithm. We were again unable to run the algorithm on

Giraph and Spark for the Twitter and Webbase dataset, as the sys-

tems ran out of memory.

For the Wikipedia graph, the algorithms took 14 iterations to

converge. The speedup of incremental iterations compared to bulk

8The iteration times for Spark were averaged from multiple runs of
the algorithm. Inside a single run, the variance is even greater.
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Figure 9: Total execution times for the Connected Components

algorithm.

iterations in Stratosphere is roughly a factor of 2. Giraph also clearly

outperforms the bulk iterations in Spark and Stratosphere.

For the Hollywood data set, the gain though incremental itera-

tions is less, because the vertex connections, and consequently the

computational dependencies, are more dense. In contrast to the

runtimes on the Wikipedia graph, the batch inremental algorithm

is here roughly 30% faster than the microstep algorithm. As dis-

cussed before, this is due to the graph’s density, which results for the

microstep algorithm in many more accesses to the partial solution,

while the batch incremental algorithm only groups a larger set.

For the Twitter dataset, where the algorithms takes 14 iterations to

converge, we see a tremendous gain through incremental iterations.

They are in Stratosphere roughly 5.3 times faster than the bulk

iterations. The performance gain is high, because a large subset

of the vertices finds its final component ID within the first four

iterations. The remaining 10 iterations change less than 5% of the

elements in the partial solution.

For the Webbase graph, the figure shows the algorithm runtimes

for the first 20 iterations. Because the largest component in the graph

has a huge diameter, the algorithms require 744 iterations to fully

converge. Already in the first 20 iterations, in which the majority of

the actual component ID changes happen, the incrementally iterative

algorithms are 3 times as fast as their bulk iterative counterparts. For

the entire 744 iterations, the incremental algorithms take 37 minutes,

which is only a few minutes longer than for the first 20 iterations. In

contrast, the extrapolated runtime for the bulk iterative algorithm to

converge on the whole graph is roughly 47 hours. The comparison

yields a speedup factor of 75. By the time the incremental algorithms

converge on the entire graph, the bulk iterative algorithm has just

finished its 10th iteration. Figure 10 shows the execution time and

the number of working set elements per iteration for the Webbase

graph. The execution time does not drop below 1 second, which is a

lower bound currently imposed by synchronization of the steps.

In Figure 11 we examine the iteration times for the various al-

gorithms processing the Wikipedia graph. To assess the benefit

from sharing the partial solution state across iterations, we added an

additional iteration variant that simulates an incremental iteration

on top of Spark’s non-incremental runtime. This simulated variant

adds a Boolean flag to the each entry in the partial solution. The flag

indicates whether the component ID decreased in the last iteration.

If it did not, then no messages are sent to the neighbors, but only to

the vertex itself, in order to carry the current component ID mapping

to the next iteration. This simulated variant exploits computational

dependencies, but needs to explicitly copy unchanged state.

We see that the bulk iterations in Stratosphere and Spark have a

constant iteration time (modulo the variance introduced by garbage
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Figure 10: Execution time and working set elements for Con-

nected Components in the Webbase graph on Stratosphere.
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Figure 11: Execution times of the individual iterations for the

Connected Components algorithm.

collection in Spark). In contrast, the incrementally iterative algo-

rithms in Stratosphere and Giraph converge towards a very low

iteration time after 4 iterations. They exploit the sparse computa-

tional dependencies and do not touch the already converged parts

of the partial solution in later iterations. Giraph’s iteration times

are the lowest after 5 iterations, because it currently uses a more

efficient way to synchronize iterations than Stratosphere. The simu-

lated incremental algorithm on Spark (Spark Sim. Incr.) decreases

in iteration time as well, but sustains at a much higher level, because

of the cost for copying the unchanged records in the partial solution.
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Figure 12: Correlation between the execution time and the ex-

changed messages for the Wikipedia graph on Stratosphere.

We finally look at how the number of created candidate compo-

nent IDs (messages, respectively working set elements), influence

the runtime of bulk iterative and incrementally iterative algorithms.

Figure 12 shows for the Wikipedia data set the time per iteration and

the number of messages (working set elements). By the overlapping

curves, we see that for the bulk iterative algorithm and the batch
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incremental algorithm (CoGroup), the runtime is almost a linear

function of number of candidate component IDs, in both cases with

the same slope. For the microstep iterative algorithm (Match), a sim-

ilar relationship exists but with a much lower slope. Because in the

microstep variant, the update function is much cheaper than for the

batch incremental variant, it can process in equal time much larger

working sets containing many more redundant candidate component

IDs.

We have seen that Stratosphere, as a general iterative dataflow

system, can outperform specialized analysis systems for bulk itera-

tive algorithms. At the same time, the incremental iterations speed

up algorithms that exploit sparse computational dependencies. They

touch in each iteration only the elements in the partial solution that

potentially require modification, thereby greatly outperforming full

iterations.

7. RELATED WORK
In this section, we first relate our work to recursive query evalu-

ation, which is the most prominent alternative to iterative queries.

Subsequently, we relate our work to other systems for parallel data

analysis.

7.1 Relationship to Recursive Queries
In programming languages, the equally expressive alternative to

iteration is recursion. There has been a wealth of research addressing

recursion in the context of Datalog and the relational model [6]. The

query processing line of that research focused largely on top-down

versus bottom-up evaluation techniques and suitable optimizations,

like predicate pushdown [8]. The incremental iteration techniques

presented here bear similarity to the semi-naı̈ve evaluation technique.

More recently, Afrati et al. [2] and Bu et al. [12] discuss how to

compile recursive Datalog queries to dataflows. Both evaluate the

recursion bottom up. The approach of [2] uses stateful operators

for the datalog rules, while [12] discusses a more comprehensive

approach including optimization of the created dataflow. Our incre-

mental iterations offer a similarly expressive abstraction. All exam-

ples from [2, 12] are expressible as incremental iterations. In fact,

following the arguments from Afanasiev et al. [1] and Bu et al. [12],

it becomes clear that one can express stratified (or XY-stratified)

Datalog progams as incremental iterations with supersteps. For

programs without negation and aggregation, the supersteps can be

omitted. Since recursion in relational databases has much stricter

conditions than in Datalog, the proposed incremental evaluation

is applicable to relational DBMSs. Early work in that direction

includes delta iterations [21]. We build on a similar abstraction, but

additionally focus on aspects relevant to parallel execution.

Both Datalog queries (and recursive relational queries) may only

add rule derivations (respectively tuples) to the partial solution.

There is no synchronization barrier defined, so this model naturally

lends itself to asynchronous execution. For algorithms that require

supersteps, Bu et al. [12] express synchronization barriers by in-

troducing a temporal variable that tracks the supersteps and using

aggregation predicates to access the latest superstep’s state. Because

this leads easily to a complicated set of rules, they use this technique

to specify domain specific programming models rather than to spec-

ify queries directly. A distinguishing aspect in our approach is the

fact that incremental iterations can actually update the state of the

partial solution, allowing the iterations to compute non-inflationary

fixpoints (cf. [1]). This obliterates the need to filter the state for the

latest version and naturally leads to a semi-naı̈ve flavor of evaluation,

resulting in simple queries.

In contrast to the work of [12], we do not distinguish between

global- and local model training, but leave the decision to replicate

or broadcast the model to the dataflow optimizer. Instead, we dis-

tinguish between iterations that recompute the partial solution or

incrementally evolve it, because that has a direct impact on how the

programmer has to specify the algorithm.

7.2 Other Iterative Analytical Systems
HaLoop [13] and Twister [18] are MapReduce [16] extensions

for iterative queries. They provide looping constructs and support

caching of loop-invariant data for the special case of a MapRe-

duce dataflow. In contrast, our technique addresses more general

dataflows. The optimization techniques presented in Section 4.3

subsume their special-case optimization. The Spark dataflow sys-

tem [36] supports resilient distributed datasets (RDS). With loop

constructs in its Scala front-end, it supports full iterations. Neither

of the systems addresses incremental iterations or considers dataflow

optimization.

Pregel [29] is a graph processing adoption of bulk synchronous

parallel processing [34]. Programs directly model a graph, where

vertices hold state and send messages to other vertices along the

edges. By receiving messages, vertices update their state. Pregel

is able to exploit sparse computational dependencies by having a

mutable state and the choice whether to update it and propagate

changes in an iteration. The incremental iterations proposed in

this paper permit equally efficient programs, with respect to the

number of times the state of a vertex is inspected, and the number

of messages (in our case records) sent. It is straightforward to

implement Pregel on top of Stratosphere’s iterative abstraction: the

partial solution holds the state of the vertices, the workset holds

the messages. The step function ∆ updates the vertex state from

the messages in the working set and creates new update messages.

Since ∆ may be a complex parallel data flow in itself, it allows

for writing even more complex algorithms easier. The adaptive

version of PageRank [25] for example, can be expressed as an

incremental iteration, while it is hard to express it on top of Pregel.

The reason for that is that Pregel combines vertex activation with

messaging, while incremental iterations give you the freedom to

separate these aspects. In addition, incremental iterations have well

defined conditions when they allow for (asynchronous) microstep

execution, and offer a dataflow abstraction, thus integrating naturally

with parallel dataflow systems.

GraphLab [28] is a framework for parallel machine learning,

where programs model a graph expressing the computational de-

pendencies. The abstraction is distributed shared memory: nodes

exchange data by reading neighboring nodes state. GraphLab has

configurable consistency levels and update schedulers, making it

a powerful, but low level abstraction. Most GraphLab algorithms

can be implemented as incremental iterations by using the working

set to hold the IDs of scheduled vertices and accessing neighboring

states though a join with the partial solution.

ScalOps [35] is a domain specific language for big data analytics

and machine learning. It provides a simple language interface with

integrated support for iterations. ScalOps programs are compiled to

optimized Hyracks [11] dataflows. At the time of writing this paper,

the system aspects of executing ScalOps on top of Hyracks have not

been published.

Ciel [30] is a dataflow execution engine that supports very fine

grained task dependencies and runtime task scheduling suitable for

iterations and recursions. Ciel does not offer a direct dataflow ab-

straction to iterations or recursions; instead, the task dependencies

are generated from queries in a specialized domain specific lan-

guage. Ciel cannot share state across iterations, but the runtime task

scheduling allows to somewhat mimic that, although at the cost of

creating very many tasks.
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8. CONCLUSIONS AND OUTLOOK
We have shown a general approach to iterations in dataflows. For

algorithms with sparse computational dependencies, we argued that

their exploitation is crucial, as it leads to a huge speedup. To exploit

computational dependencies in dataflow systems, we suggested an

abstraction for incremental iterations. Incremental iterations are gen-

eral and suit many iterative algorithms. We presented optimization

and execution strategies that allow a dataflow system to execute the

incremental iterations efficiently, touching only the state that needs

to be modified to arrive at the iteration’s result.

Incremental iterations subsume several specialized analysis mod-

els, such as the Pregel model, both in expressibility and efficiency.

In fact, all algorithms that are naturally expressible in Pregel’s pro-

gramming model, can be expressed as incremental iterations without

a performance hit. Furthermore, incremental iterations allow for

(asynchronous) microstep execution under well defined conditions.

In the case study with our prototypical implementation of incre-

mental iterations in the Stratosphere system, we have shown that an

implementation of incremental iterations allows a parallel dataflow

system to compete with specialized systems for algorithms that are

a sweet spot of those systems. At the same time, Stratosphere main-

tains a general dataflow abstraction, thus reducing the number of

systems required for large scale analytics.

In future work we want to explore how far compiler techniques

can automatically transform algorithms stated as fully iterative al-

gorithms into incremental algorithms. Furthermore, we plan to

investigate how fault tolerance techniques for full iterations can

benefit from the fact that the iteration repeatedly executes the same

data flow and may learn about its characteristics across iterations.
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