Dynamic Spyware Analysis

Manuel Egele, Christopher Kruegel, Engin Kirda
Secure Systems Lab
Technical University Vienna
{pizzaman,chris,ek }@seclab.tuwien.ac.at

Heng Yin Dawn Song
Carnegie Méllon University and College of William and Mary Carnegie Mélon University
hyin@ece.cmu.edu dawnsong@cmu.edu

Abstract as viruses and worms, which generally aim to propagate

Spyware is a class of malicious code that is surrep-t0 other systems and cause damage. -
titiously installed on victims’ machines. Once active, AS the spyware problem has intensified, a number of
it silently monitors the behavior of users, records theircOmmercial solutions have been introduced that aim to
web surfing habits, and steals their passwords. Curredfi€ntify and remove undesired spyware. These tools
anti-spyware tools operate in a way similar to traditional@€ Similar to anti-virus products in that they identify
virus scanners. That is, they check unknown program&nown instances of spyware by comparing the binary
against signatures associated with known spyware inmage of unkn_own samples to a database of signatures.
stances. Unfortunately, these techniques cannot iderf2ten. these signatures are generated manually by ana-
tify novel spyware, require frequent updates to signaturéyZing known spyware samples (which is a tedious task
databases, and are easy to evade by code obfuscation. When one considers that hundreds of new samples have

In this paper, we present a novel dynamic analysis apt© be analyzed every day). Unfortunately, spyware detec-
proach that precisely tracks the flow of sensitive informa-ion tools suffer from the known drawbacks of signature-
tion as itis processed by the web browser and any loadef@sed detectors, such as the continuous need for updates
browser helper objects. Using the results of our analysisOf the signature database and the inability to identify pre-
we can identify unknown components as spyware and/!0usly unknown samples. Note that a major drawback
provide comprehensive reports on their behavior. The?f Signature-based techniques is that they are also often
techniques presented in this paper address limitations ¢f°t able to deal with simple obfuscation techniques [3].
our previous work on spyware detection and significantly Because signature-based detection techniques have
improve the quality and richness of our analysis. In par-Significant shortcomings, we previously presented a
ticular, our approach allows a human analyst to observ&®€havior-based spyware detection technique that used a
the actual flows of sensitive data in the system. Basegombination of static and dynamic analysis to identify
on this information, it is possible to precisely determineMalicious behavior of Internet Explorer browser helper
which sensitive data is accessed and where this data RPiects (BHOs) [14]. Using our previous tool, we could
sentto. To demonstrate the effectiveness of the detectioflassify unknown components as malicious or benign.
and the comprehensiveness of the generated reports, whfortunately, our approach also has a number of lim-
evaluated our system on a substantial body of spywar#ations. First, we could only assert tpessibility that

and benign samples. sensitive information is leaked, but we were unable to es-
tablishexactly what data is collected by a spyware com-
1 Introduction ponent. This information is required by human spyware

analysts that need to understand and estimate the damage
An important security threat that affects many Internetcaused by a specific spyware program. Second, because
users today is spyware [24, 25]. Spyware is maliciousof our substantial reliance on static analysis of potelgtial
software that attempts to silently monitor the behavior ofhostile code, a spyware author who is aware of our tech-
users, record their web surfing habits, or steal their senRique can use code obfuscation to attempt to evade de-
sitive data such as passwords. Typically, the collected intection (or to make detection more difficult and costly).
formation is sent back to the spyware distributor, where it In this paper, we present a novel dynamic analysis ap-
is (ab)used for targeted advertisement or marketing studsroach that precisely tracks the flow of sensitive infor-
ies. This is different from other types of malware, suchmation as it is processed by the web browser and any

loaded BHOs. Based on the results of our analysis, wedd-ons or utilities. Examples include helpers that block
can classify unknown components as benign programpop-ups, implement support for mouse gestures, or pro-
or spyware and provide comprehensive reports on theivide embellishments (images) for web pages. Although
behavior. To identify information flows, we make use possible, they rarely implement more complex function-
of dynamic taint analysis, which tags sensitive data el-ality such as multi-media extensions or Java interpreters,
ements and tracks their use as they are processed. Owhich are realized as Internet Explorer plug-ins. Most
taint analysis combines the traditional whole system apbrowser helper objects do not contain any user inter-
proach (in which data is tainted at a physical level) withface elements and work in the background, responding
the ability to monitor activity within individual Windows to browser events and user input. However, they run in
operating system processes. This is necessary to distithe same address space as the browser and have full con-
guish between the use of sensitive information by the Introl over the browser’s functionality.

ternet Explorer and the abuse of the same data by mali- The focus on spyware that is implemented as BHOs is
cious browser objects. The techniques presented in thigistified by the fact that the large majority of spyware has
paper address limitations with our previous approach an@ component based on this technology. This is confirmed
significantly improve the quality of our analysis reports. by a recent study [26], which found that out of 120 dis-
By tracking actual information flows, we can more pre- tinct spyware programs, just under 90 used BHOs as an
cisely understand and characterize the behavior of spyentry point to monitor user activity. In addition, a US
ware. In particular, we can determiménich sensitive CERT report [10] names BHOs as one of the most fre-
data is leaked andhereit is sent. quently used techniques employed by spyware.

In previous work, we proposed the following behav-

The main contributions of this paper are the following: ioral characterization to classify a BHO as spyware:

e We introduce a dynamic analysis technique to pre-
cisely monitor the flow of sensitive data as it is pro-
cessed by the web browser and browser helper ob-
jects. By tracking the actual information flow us-
ing taint analysis, we caprecisely determine which
sensitive data is collected by a spyware component.
Unlike previous approaches that use dynamic taint
analysis, our system not only considers data depen- To determine whether an unknown component ex-
dencies, but also control dependencies. hibits malicious behavior, we used a combination of dy-

namic and static code analysis techniques. The dynamic

nalysis identified whether a BHO calls browser func-
ions that could be used to gather sensitive user data. The
static analysis then determined whether the component

e We present experimental results on a substantiafontained calls that could leak this information.
body of 21 spyware samples and 14 benign BHO Experimental evaluation demonstrated that our previ-
samples that demonstrate the effectiveness of oupus system yielded good detection results with low false

“A distinctive characteristic of spyware is that

a spyware component (or process) collects data
about user behavior and forwards this informa-
tion to a third party. Thus, a BHO is classified
as spyware when {fi) monitors user behavior
(ii) then leaks the gathered data to the attacker.”

e We present a tool that can be used to automaticall
analyze the behavior of unknown BHO samples an
provide comprehensive reports on their activities.

approach. positives. However, there are two significant limitations
with our previous approach. One is that our approach
2 Spyware Analysis Approach can only identify thepossibility that information could

be leaked. We were not able to record any actual infor-
In general, spyware refers to a category of maliciousmation flow. Thus, it is not possible to determine pre-
software that monitors a user’s operations without herisely which sensitive data is accessed or leaked. Also,
consent, typically to the benefit of a third party. Spy-it is not possible to identify preciselyhere the data is
ware exists in many forms and performs actions of dif-sent. Obviously, such knowledge is invaluable for a hu-
ferent levels of maliciousness. In this paper (as well asnan analyst who has to manually analyze a large body
in our previous work), we explicitly focus on spyware of new samples every day. The second limitation is our
that exploits the hooks provided by Microsoft’s Internet significant dependency on static analysis, which can be
Explorer to monitor the actions of a user. This is doneexploited by a spyware author who uses code obfusca-
by using the browser helper object (BHO) interface. Intion to make it difficult to disassemble the binary [20] or
a nutshell, browser helper objects are Windows dynamidide the presence of certain function calls [5, 27]. Unfor-
linked libraries that are automatically loaded by the In-tunately, when our analysis fails to identify those func-
ternet Explorer when it is launched. BHOs are mostlytion calls that are associated with malicious behavior, a
used to extend the Internet Explorer with small, customspyware component is incorrectly labeled as benign. At

the same time, if a more conservative approach is usediependencies (an example is shown in Section 3.2). In
the false positive rate increases and benign samples athkis fashion, tainted values can be laundered and detec-

falsely labeled as being malicious. tion is evaded. To address this threat, we believe that it is
necessary to stay ahead of spyware authors and already
2.1 Novel Analysis Approach consider control dependencies.

In addition to the precise tracking of sensitive data
To address the aforementioned shortcomings, this papeiithin the Internet Explorer, we are also interested in
introduces a novel dynamic analysis approach. The gogbllowing this data once it has left the browser’s address
of our analysis is to precisely track the flow of sensitive space. The fact that tainted information was leaked is
data as itis processed by the web browser and any loadegiifficient to classify a component as spyware, but it is
BHOs. By monitoring the actual information flow, we usually helpful for an analyst to be able to further track
can answer the question of which sensitive data is colthe information flow. For example, when data is written
lected by a spyware component. For example, we caihto the memory image of a spyware helper process, the
determine whether the spyware only records the URLsadditional information that this process later sends the
that a user navigates to, or whether parts of the visitedata to a remote server would be valuable. To track such

web pages are read as well. In addition, we can detelinter-process communication and data flows, we perform
mine how this information is eventually leaked. For ex- whole system analysis.

ample, data could be sent directly over the network, or _

first stored in a file that is later retrieved by an indepen-Operating System Awareness. One problem for our
dent spyware process. Moreover, some spyware compgénalysis is that it needs to distinguish between actions
nents are equipped with a list of URLs. Whenever thethat are performed by the Internet Explorer and those
user enters a URL, it is compared to all entries in thisthat are performed by its browser helper objects; a prob-
list. When the URL matches, the BHO triggers certainlem that is complicated by the fact that the browser and
actions (e.g., display an advertisement in a pop-up winits components are executing in the same process. The
dow). By monitoring how sensitive information is pro- distinction is necessary to correctly attribute sensitive
cessed, such checks can be identified. In some cases f@'mation flows either to normal browser operation or to

is even possible to reconstruct the static URL list. malicious activity of a spyware component. Otherwise,
it would not be possible to differentiate between the In-

Dynamic Taint Analysis. Our dynamic analysis uses (o et Explorer writing a page to its temporary cache di-
tainting to track the flow of sensitive information as it rectory or a spyware saving the same information to a
propagates through the system. Tainting refers t0 a proiggen log. A similar problem arises when a URL is
cess in which data of interest is first labeled and thenyisen to the browser's history file, a normal operation
tracked as it is processed by the system. With our dyyertormed by the Internet Explorer. To summarize, the
namic analysis, sensitive data such as URL and web pag@ere fact that sensitive information is written out of the
information is tainted. Then, we track the use of this dataaddress space of the Internet Exploremassufficient to

by the Internet Explorer and its _Iqaded BHOs._ When a.paracterize a BHO as spyware. The BHO is spyware
BHO attempts to leak any sensitive data outside of the,, \when it initiates the sensitive information flow. To

address space of the browser (e.g., by writing data to diskjistinguish between sensitive data processed by the In-

or sending it over the network), this action is recorded;, et Explorer and sensitive data processed by a BHO,

and the component is classified as spyware. This is & analysis requires a view that is aware of operating
cause according to our definition of spyware, the Ieaklngsystem processes and their loaded components.
of sensitive information is considered malicious.

Our taint analysis takes into account both data depenBrowser Session Recording and Replaying. A funda-
dencies and control dependencies. A data dependenceyental challenge faced by dynamic analysis approaches
captures the fact that the result of an operation (or assigris test coverage. When exposing a component to a set
ment) depends on its source operands. However, inforef test cases, one cannot be certain that these tests cover
mation flows can also be introduced when the executiorthe complete functionality. As a result, it is possible that
of an operation depends on the condition of a particusome interesting behavior is not observed. In our context,
lar variable. In this case, there is a dependency betweethis could lead to false negatives. To increase the cover-
the result of this operation and the variable that controlsage of our analysis, we have to ensure that we expose a
whether it is executed or not. Current spyware program®8HO to realistic and sufficient user interaction. To this
can be detected by only taking into account data flow deend, we developed a test system that records the actions
pendencies. However, it is easy to develop a spywaref a user who is surfing the web. These actions include
BHO that uses control flow dependencies to propagateavigation to web pages and filling in form fields. Later,
tainted values in a way that is not captured by data flonduring our analysis, a recorded browser session can be

replayed to the BHO. The goal is to have the Internet Ex-3.2 Dynamic Taint Propagation

plorer visit a large number of pages with different content

such that a spyware component will eventually triggerpata Dependencies. Tainting allows to tag data ele-
and reveal its malicious behavior. This allows us to testyents of interest and track their propagation throughout

and classify samples without manual intervention. the system. Similar to a number of previous systems that
use taint propagation [2, 6, 7, 22, 23], our taint analy-

3 System Design & I mplementation sis is capable of trackingata dependencies. To this
end, the taint engine marks all bytes of the output of

3.1 System Overview an operation as tainted whenever any byte of any input

operand is tainted. This correctly propagates taint infor-

Our dynamic taint analysis is built on top of Qemu [1], a mation in those cases in which a tainted value is used
generic and open source system emulator. Using Qemuas source operand in an arithmetic or logic operation,
emulation of an Intel x86 system, we installed Windowsor on the right-hand side of an assignment. Note that
2000 as guest operating system (with no service packspperand values can be either taken from processor regis-
The choice of Windows and the Intel x86 architecture isters or fetched from memory. Unfortunately, the propa-
motivated by the fact that our analysis focuses on spygation rule outline above does not take into account the
ware components that are implemented as BHOs for théaint status of a value that is used to calculatesitidress
Internet Explorer. An overview of the system and theof an operand, as only the taint status of the operand it-
analysis process is shown in Figure 1. self is relevant. This can lead to problems when tainted

When an unknown BHO is analyzed, it is first in- input is used as an index into a table (or an array). In
stalled on the guest OS. Then, the Internet Explorer isuch cases, the result of a table lookup is not labeled as
launched, loading the BHO component on startup. Alsofainted, and its relationship with the input value is lost.
the test generator is started. The task of the test gener#aterestingly, such lookup operations are frequently used
tor is to simulate a surfing user by replaying a previouslyfor converting user input (for example, to convert ASCI|
recorded browsing session. When sensitive data (sucto Unicode characters in Windows, or to map keyboard
as a URL that the test generator navigates to) enters th&can codes to keystrokes in Linux). Thus, we also taint
Internet Explorer process, it is marked as tainted. Fronthe output of an operation whenever a tainted value is
this point on, the taint engine tracks how the informationinvolved in the address computation of a source mem-
is processed by the browser and the BHO. To be ablery operand (regardless of the taint status of the memory
to distinguish between actions by the Internet Exploreroperand that is referenced).

and those by the BHO, the taint engine differentiates be-

tween code that is executed by the Internet Explorer anc?ontrOI Dependencmﬁ_ A sys_tem that can handle only_
code run on behalf of the BHO. The taint engine alsodata flow dependencies provides a spyware author with

monitors when (and where) tainted data exits the addres%ds'mple opportlun|:]y t(.)" evade dert]ectlort\).l F'gge 2h plrof—
space of the browser. When the Internet ExplorerwritesvI es an example that illustrates the problem. On the left

out tainted data because of regular browser activity, th(?'oIe 9f this figure, a code fragm(?‘nt IS sh”own where two
flow is recorded as benign. When tainted informationcond't'onal branches are used to “assign” the value of the

leaks because of activity on behalf of the BHO, the in-ta'mleOI Vi”able :10 thel vanfell?le,lgl'ean , ,,aEsumlng thhat
formation flow is recorded as malicious. In this case, thef[only takes on the values ‘a’, '0’, or 'c’. Because there

analysis engine classifies the BHO as spyware. Is no direct data dependency betweeandclean , the

. ariableclean will hold the same value ais after the
To keep track of the taint status of data processe) . .
. _execution of the code fragment, but it is not tainted.
by the system, we introduced a shadow memory. Thi

learly, this approach can be generalized to launder ar-

shadow memory holds one byte for each byte of emu-. ;

) : itrary information. To mitigate this weakness, our taint
lated physical memory, and also covers the eight genera . - .

. e analysis also considedirect control dependencies. To
purpose registers of the Intel x86 CPU. The decision to)
. correctly handle control dependencies, the result of an
use one byte for each byte of the main memory and the :) : .
. . operation has to be tainted whenever the execution of this
registers allows us to not only record whether a certain

ST : . . operation depends on the value of a tainted variable (e.g.,
location is tainted or not, but also to assign differentttain . .
. . X ! . when an operation is guarded by ifin-branch that tests
labels to each location. This assignment is helpful in tag-

ging data elements with different taint labels dependinga tainted variable, or when an operation is executed in

on their origin, or to distinguish between data that is pro—a case branch when the corresponding switch statement

cessed by the Internet Explorer and data that was touche%Sed atainted argument). Note that the result of any such

by the BHO. To p_ropa_lgate ta_int informat_ion' we had to INote that this example is shown in C code, although our system
extend Qemu’s micro instructions accordingly. operates directly on x86 binaries.

Windows 2000 Guest System

/\ e
___________________ =X Malicious
{ 7 Data Flow
i Spyware ,~ ~{
Sensiti { (BHO) / ~~al
(-Jr::; el;;gve ------- . -'“/ ----------- Analysis
"""""""""" Engine
Generator i
Internet Explorer -, Benign
OS'A‘\',Viaerf, Data Flow
\‘o
XB(? g)rlnsLtjem Taint Engine Shadow Memory
Emulator

Figure 1: System Overview.

operation is tainted independently of the taint status otion, two (or more) possible execution paths need to be
the source operands. Revisiting the example shown iexplored. This can only be done statically, because there
Figure 2, and using a system that can track direct contrak only a single path executed dynamically. As an exam-
dependencies, we observe that variaddean will be ple of a branch instruction with its corresponding scope
tainted whenever is tainted. This is because the exe- and post-dominator node, consider the right side of Fig-
cution of any assignment operation depends on the valuare 2. The graph represents the control flow of the code
oft , and thus, there are control dependencies betiveen fragment on the left. It can be seen that the last node
and the results of these assignments. (where 0 is assigned t) is the point where the two
To handle control dependencies, the taint engine exbranches of the first -statement merge.
amines all conditional branch instructions that are en- The first step in finding the instruction that ends a

countered during e_xecution. When suc_h an in_structionjCope is to build a (partial) control flow graph (CFG) of
has at least one tainted operand, the taint engine has {ge program. The control flow graph starts at the branch
identify all instructions whose execution is conditiogall ;struction and needs to cover all paths until the merg-
dependent on the result of the brarfchising an anal- ing point. Of course, this merging point is not knoan
ogy from imperative programming languages, the task isyrjori. Thus, we extend the control flow graph until we
to determine the scope of a conditional branch such thafeach instructions where the disassembly process cannot
this scope encloses all instructions that depen_d on th@ontinue(typically, these are function return instruatip
outcome of the branch. The results of all operations thag, 1 5150 indirect jumps whose target cannot be resolved
are then executed within this scope need to be tainted. statically). To build the CFG, our system uses a recur-
To find all instructions that belong to the scope of asjve disassembler [17]. Because we do not continue the
branch, static analysis is necessary. The reason is that Wsassembly process after instructions whose targets we
have to find the first instruction in the control flow graph cannot determine with certainty, we obtain a control flow
that is executed independent of whether the conditionagraph that contains only instructions that are reachable
branch is taken or not. More formally, this instruction during runtime. This assumes that the code is not self-
is the immediate post-dominator of the branch operatiormodifying_ Fortunately, our dynamic analysis can eas-
in the program'’s control flow graph. Intuitively, it is the ily identify attempts of a BHO to modify its own code
point where the two possible execution paths after theyy monitoring the target of memory write operations and
branch operation merge. At this instruction, the scope oknsuring that no code regions are altered. Any attempt of

the branch statement ends, and it is no longer necessagyBHO to modify its own code is flagged as malicious.

to taint the results of all operations. To find this instruc- The fact that our partial control graph is guaranteed

2Actually, the situation is a little more complicated witletk86 in- to C_Oma_'” _Only instructions that are reachable durmg
struction set. The reason is that conditional jumps do ne¢ bperands ~ runtime is important, as there are a number of ways in
themselves, but use the processor flags set by a previousacerop- which the attacker could attempt to thwart static analysis

eration to decide which branch to take. Thus, our systens lihle ; : :
execution of an instruction that compares (or tests) tdidtgta with a and the dlsassembly process using code obfuscation [20]'

subsequent conditional jump to identify those brancheisaperate on ~ BECAUSE We use a simple analys!s apprO_aCh that eXp_loreS
tainted data. paths only as long as successor instructions can be iden-

if (t == 'a')
clean = 'a';
else {
if (t == 'b")
clean = 'b';
else
clean = 'c';
}
X = 0;

Post Dominator

Figure 2: Control Dependency and Scope.

tified with certainty, our static analysis step is immune tovoked when the dynamic analysis actually encounters a
these obfuscation techniques. This is a major improveeonditional branch instruction with tainted operands.
ment over the significantly more complex static analy- Previous systems that use data tainting were not able
sis described in our previous work [14], where the com-to take into account control dependencies because this
plete binary is disassembled and analyzed. Of coursesonservative propagation policy typically resulted in too
the control flow graph that we extract is not necessarmany tainted values (a phenomenon often referred to as
ily complete. This is typically due to the problem of taint label explosion). The fact that we only track control
indirect jump or call instructions whose targets cannotflow dependencies when executing code inside the BHO
be resolved statically (e.g., in the presence of functioris very helpful to ensure that our system does not suffer
pointers or jump tables). We recognize and handle thigrom this problem. In addition, we observed in our exper-
problem in the following step. iments that tainted data is only used very rarely in control
dlow decisions, further mitigating the problem of label
explosion. However, there could be cases in which BHOs
nitely reachable starting from the branch instruction. WePTOc€ss tainted data such that many more control flow de-
cisions are based on tainted input. An example would be

then apply the well-known Lengauer Tarjan [19] algo- ¢
fithm to compute a dominator tree for this graph. This@ Java interpreter that executes Java code loaded by the
browser. In such cases, it is likely that we also suffer

dominator tree allows us to the find the node that imme-] :)
diately post-dominates the branch instruction, and thusiTom memory regions that are incorrectly tainted, lead-
represents the instruction that ends the scope. Howevef'd 0 false positives. Fortunately, such functionality is

as mentioned before, the control flow graph might betyPically notrealized in BHOs.

incomplete. In this case, it is possible that there arqntainting. In addition to a mechanism that flags reg-
multiple nodes that post-dominate the branch instructionigters and memory locations as tainted, there must also
Hence, whenever this situation occurs, we take a safe agse g way to clear their taint status. In the simplest case, a
proach and assume that the BHO contains code to thwafkgister or a memory location loses its taint status when
analysis, and label the BHO as malicious. it is overwritten with an untainted value. Immediate in-
Note that our technique to track control dependenciestruction operands (constant values) are always consid-
is conservative, as it taints the results of all operationas e ered untainted. In addition, one has also to take into ac-
ecuted within a tainted scope. Thus, it is possible that ougount constant functions, which denote code sequences
system introduces incorrect dependencies between varihat always produce the same output regardless of their
ables and raises false positives. To address this issu#put. For example, the following operation is used fre-
we only track control flow dependencies when executing.“]uenﬂy on the Intel i386 architecture to set a register to
code inside the BHO. The rationale is that the attackezero®
can only control the BHO, and we assume that the In-
ternet Explorer itself does not contain code that deliber-
ately attempts to hide data dependencies via the control sgisc chips, in contrast, typically provide a register trsahard-
flow. Also, observe that our static analysis is only in- wired to 0.

When the disassembler finishes, it has extracted a co
trol flow graph that contains all instructions that are defi-

xor %eax, %eax; // %eax = %eax %eax

Because this instruction always sets the register tdhat we wish to monitot. When the names match, the
zero, the output should not be tainted, even when th&€€R3value is extracted and the process is monitored.

input %eax is tainted. Note that another variant of the e . . .
pu™ %o Identifying Actionsin the Context of the BHO. The

same function usessb instruction instead of theor . bility to identify Wind i ;
We support simple constant functions that consist of 0Nty to igentity Windows operating System processes

singlexor or sub instruction. However, one needs to allows us to distinguish the operations that are performed

be aware that more complex versions of constant funcpy the Interet E_xp_Iorer from_ those of other Processes.
lénfortunately, this is not sufficient. The reason is that

tions may exist that are not detected. In these cases, th I d to determi hich cagiéhin the Int ;
system could incorrectly label certain data elements a ealiso needto _eermltr)lew Ic Cf '? ; nterne "
tainted, which might result in false positives. In our ex- .txp orC;ar p;]r.ozessdls run ecatusde N rsg# T}r frovas:(r)aZN-
periments, however, we did not observe any probleméY’ and which code Is execuitec on behall of a - AS
- ST discussed in Section 2, this is important to correctly at-
stemming from this limitation. . . e
tribute monitored behavior either to the Internet Explorer
or to one of the loaded components.
.) Obviously, all instructions that are located directly in
3.3 Bridging the Semantic Gap the code segment of the BHO are considered to run on its

Awhol ‘ lat h | id behalf. However, we also wish to cover the case in which
whole system emulator, such as Qemu, only provides ®he BHO code calls another function that is located else-

hardware-level view Of the guest system,_ including phys'where (in the Internet Explorer or any other loaded li-
ical memory, CPU registers, and l/O device status. HOW'brary). To correctly identify all instructions that are exe

ever, for the purpose of meaningful analysis, a view at theCutedi n the context of the BHO, the following algorithm
operating system level is necessary. In other words, WeS Lsed:

have to bridge the semantic gap between these two views.
In particular, we need to address two problems: (1) iden-
tifying operating system processes, so we know when the

Internet Explorer is executing; (2) distinguishing what ¢ yhe current stack pointer. This transition is rec-
actions are performed in the context of the BHO. These ognized by observing the execution of an instruc-

problems are _not entirely trivial, especially for a closed tion that is located in the code segment of the BHO.
source operating system such as Microsoft Windows. Then, goto Step 2.

1. Whenever execution is transferred from the Internet
Explorer to the code of the BHO, record the value

Identifying Operating System Processes. To identify 2. For every further instruction, check if the current
operating system processes, we leverage the mechanism value of the stack pointer is below the value stored
that Windows uses for virtual memory management (on in Step 1. If so, the instruction is executed in the
the x86 architecture). In particular, we make use of the context of the BHO:; else it is not, and we restart
fact that for the current process, tB&3processor reg- with Step 1.

ister stores the physical address of its page table direc-

tory. This address is unique for all running processes. The rationale behind this technique is as follows:
To obtain the page directory address that belongs to &/henever code in the BHO is called, we record the lo-
process, we exploit the facts that Windows stores thisation of the current stack frame on the stack. When
address as an attribute of tesROCESStructure, and the BHO itself calls other functions, additional stack
that a pointer to this is always mapped to the same, wellframes are pushed onto the stack. Because the stack
known virtual address. grows towards smaller addresses on the x86 architecture,

Of course, our analysis has to determine@R8value the stack pointer remains below the stored stack pointer.
for the Internet Explorer before it can execute any usefOnly when all functions have returned and the BHO in-
mode instructions. We decided to hook the Windowsvokes a return operation, the stack frame of the BHO is
system call that is responsible for creating new processegopped from the stack and the value of the stack pointer
(called NtCreateProcess). Hooking is performed exceeds the one stored. One problem that complicates
by checking the processor’s instruction pointer at the beour approach is the presence of threads. The reason is
ginning of each operation and comparing it to the addres#hat, for each thread, the operating system allocates a dif-
of theNtCreateProcess function. This address can ferent stack region in the process’ virtual address space.
be obtained from the kernel symbol table that comes withlhus, the value of the stack pointer is only meaningful
each Windows distribution, usually for debugging kernelin the context of a certain thread, and switches between
device drivers. Whenever a new process is created by in- ot , .

. . 0o be precise, we check the process list when
voking NtCreateProcess , we check the process list nicreateProcess retums, because at the time the function
for the new entry and compare its name to the program(s} called, th(EPROCESStructure does not exists yet.

threads have to be identified. To do so, we examine th&aint Sources. A taint source can be any partin the sys-
current identifier of the executing thread (which is lo- tem that precisely defines a portion of data that we wish
cated at a well-known address in ti@HREADBtructure) to track. On one hand, this can be memory locations
whenever execution returns from the kernel. where the hardware stores information (such as buffers
Based on the knowledge of which code is executed irthat hold network packets or keyboard scan codes). On
the context of the BHO, we now have the means to dif-the other hand, we can taint the arguments of certain
ferentiate between data that is written by the Internet Exfunctions. Currently, we use two taint sources. One taint
plorer and data that is leaked on behalf of the BHO. Tosource is used to taint all URL strings of the pages that
this end, we extend our taint propagation policy: When-a users visits. This can either happen by typing the URL
ever an instruction that is executed in the context of thedirectly into the browser’s address bar or by clicking a
BHO writes tainted data, the label of this data receives dink on a page. The other taint source taints the infor-
suspicious flag. From now on, this data is clearly iden- mation that the Internet Explorer receives in response to
tified as sensitive data that has been processed by ttits requests. This includes both HTTP pages and files
BHO. Whenever tainted data with a suspicious flag isthat are downloaded. The reason for selecting these taint
later processed by other instructions, even when thesgources is that we consider both the URL and the content
instructions are not run on behalf of the browser compo-of the page as sensitive information. Whenever this in-
nent, they retain their flag. Also, whenever any operandormation is leaked on behalf of a browser component,
of an instruction has the suspicious flag, the output ighis component is classified as spyware. Note that it
labeled suspicious as well. Data labeled with the suspiwould also be interesting to taint the data that a user
cious flag must no longer leak from the Internet Explorerenters into web forms. This would allow us to identify
process. Otherwise, the BHO is considered spyware. BHOs that attempt to steal user passwords (and other
private information). Including additional taint sources
Evasion. A spyware author who is aware of our tech- js quite straightforward, and as part of our future work,
nique to identify actions on behalf of the BHO might at- we are planning to taint user input as well. To taint the
tempt to evade detection. The goal for the attacker igrLs, we hook théNavigate function of the Internet
to leak sensitive information, but let it appear as regularexplorer and taint the string argument that represents the

browser activity. One possibility is to modify the code of URL. Note that the hooking of an Internet Explorer func-
the Internet Explorer such that malicious actions are pertion works similar to the hooking of a system calll.

formed when regular browser code is executed. Another To taint the data that is retrieved by the Internet Ex-
possibility is to inject new code into the address spacglorer, we mark the return data buffer of the Windows
that our analysis does not associate with the BHO. Thergquivalent of the Unixeceive system call, which is
some code pointer in the Internet Explorer must be redicalled NtDeviceloControlFile . Whenever this
rected to point to this injected code region. Both threatsunction is invoked, we first wait until it returns and then
can be countered by using the fact that our analysis enconsult the return code. When data was successfully re-
gine has complete control of the execution of the browseteived, the appropriate buffer is tainted. We assign dif-
and the BHO. This allows us to ensure that only thoseferent taint labels to the URL and the page data to be able
instructions are executed that are in known code regiongg distinguish between them.

To prevent a malicious component from altering the con-__.
ten?s of legitimate code regFi)ons, we can ensug:e that th(l-allnt Sinks. When input data becomes tainted, taint

BHO cannot remove their memory write protection (by information is automatically propagated by our system.
The goal is to determine whether this data is eventually

hooking the appropriate system call). Moreover, note : : .
that evasion is not possible for the attacker by executing é'sed in a fashion that would reveal spyware-like behav-

statement in the BHO that pushes the stack pointer abov&' of a browser component. According to our definition

the limit stored in Step 1. The reason is that, in this caseOf spyware, such behavior is present in situations where

the instruction following the stack pointer modification is jﬁalnted datg IS Ie_aked by t_he BHO. R_ecall that we are not
terested in writes of tainted data in general. Only a

)) . i
again recognized as belonging to the code segment of t g
BHO. Thus, the new value of the stack pointer is save ow of information that is explicitly labeled suspicious

and execution continues on behalf of the BHO. eads to the classification of a comppnent as spyware
To detect such flows, our system monitors the interfaces

that can be used to write information out of a process
3.4 Detection & Analysis for the presence of suspicious information. Currently,

we monitor communication over the network, writes to
In this section, we discuss when information is taintedthe file system, accesses to the registry, and communica-
and then explain when and where the use of tainted dattion with other processes via shared memory. While we
is suspicious. believe that our set of sensitive sinks is comprehensive,

it is possible that we have missed a vector that a BHOdata. One piece of information that we are interested in
could use to leak sensitive information. However, addingis whether the BHO reads tainted data at all. If a BHO
additional vectors to our system is straightforward, andnever touches any sensitive information, our confidence
merely a matter of monitoring the appropriate argumentsncreases that the component is not spyware. On the
of the relevant system calls. other hand, if tainted data is accessed, we are particu-
To monitor whether information is leaked over the net-larly interested in those reads where subsequent bytes of
work, we monitor the data buffer argument to the systenthe input are accessed. This could indicate that parts of
call NtDeviceloControlFile . This system call the sensitive data are copied for further processing.
acts as a funnel for higher-level network calls and is re- Another interesting indicator to better understand the
sponsible for receiving and sending data over both UDFbehavior of spyware is whether the monitored com-
and TCP. To differentiate between the different roles ofponent performs compare operations where one of the
NtDeviceloControlFile , its first parameter must operands is tainted. For example, when spyware com-
be evaluated. To check for writes to files, we moni- pares the current URL with its own list of interesting
tor the NtWriteFile system call. Also, we hook the URLS, or when the page is scanned for the presence of
NtCreateFile function to be able to later associate certain keywords, we would expect to see a nhumber of
the file name with the file handle that is used for file ac-consecutive compare instructions with tainted operands
cess calls. Similar hooks are inserted to monitor the systhat are executed in the context of the BHO. By recording
tem calls that are responsible for writing keys and valuesvhich values are compared, it is even possible for a hu-
to the registry. Note that it is typically not sufficient to man analyst to derive which keywords or URLSs the spy-
check the arguments of tidtWriteFile system call ware is searching for. Deriving more information about
to cover all file accesses. The reason is that files can alsiine values that the BHO is looking for can be done espe-
be memory mapped. In this case, (parts of) the contentsially well when an x86 string compare instruction such
of a file are mapped into the virtual address space of ascmps is used. In this case, the operands of the instruc-
process. Then, the file can be accessed by regular mertion point to the two complete strings that are compared.
ory read and write operations. To detect tainted data thaAlso, we check for sequences of compare operations that
is written into memory mapped files, the system call thatrefer to consecutive memory locations. This allows us
performs the mapping is intercepted. Whenever a monito identify (some) string matching routines that perform
tored process maps a file into its address space, the cdpyte-by-byte comparisons.

responding memory regions are recorded. On any S“bsﬁtutomated Browser Testing. When using dynamic

gugnt vx:}nte t(;_lthese monitored fa”hgesz our analysis cag), naches, it is very difficult to be certain that the com-
erive that a file was written. For this, it is necessary 0y o160 range of functionality of a component is analyzed.

check .the target addresses of every write opera_tion. Th"f’hus, the number of web pages visited and the interac-
check is performed as part of the taint propagation IOgICtion during the browsing phase is an important factor for

Note that it mh|g]t1t behoverly conservatg/e to C%'_qsllderlthe quality of the results. Clearly, requiring the human
as suspicious the fact that a BHO saves data to disk. Alz 5ot 1o manually visit pages and fill out forms is te-

though we have not encountered legitimate BHOS in 0uly;, s for |arge test sets and also prevents the system from
experiments that write URLs or web page data to a file, 'tbeing integrated into an automated tool-chain for spy-

is conceivable that certain legitimate a.pplications might,are analysis. To address this problem, we developed a
doso (e.g., bookmark managers). In this case, the Systefi}qwser testing tool that allows us to automate our anal-

could be extended so that it does not immediately repor;,siS by mimicking the surfing behavior of users. The

a BHO as spyware that writes to disk, butinstead continy, o .o record the web interactions of a user and later
ues to mo.nltor what happens to the sensitive (jata. Whemreplay” them to make the Internet Explorer visit a large
at one point, another process accesses the file, reads thﬁmber of web pages without manual intervention. It

sensitive |nformat|on,_a}nd sends it over the netvv_ork, thealso supports user input that is inserted into form fields.
BHO would be classified as spyware. Otherwise, the e hrowser automation tool consists of two compo-

\r/]vnte wogld be co|r15|dereddben|gn. While Ith|sdexten5|onnents: The first componentis a Mozilla Firefox extension
as not been implemented, our system already SUPPOr{Sq jyg-in) that records the pages a user has visited
this kind of analysis in principle (i.e., the tainting en-

. ; : \ and the input she has entered into forms. The captured
gine can track tainted data in multiple processes, and W8ata is dumped into a file so that it can be later replayed.

recor_d which bytes are tainted in a file when sensitiveThe second component is a Microsoft Windows appli-

data is saved). cation that first reads the information from the capture

Detailed Analysis. To improve the quality of our anal- file and then replays the surfing session to the Internet
ysis reports, we also record in more detail how codeExplorer. To this end, the tool first obtains a handle to

that is executed in the context of a BHO handles taintedhe browser. Then, it repeatedly invokes Mavigate

method of the browser8NebBrowser2 interface to or wall paper) to provide variety. For these categories,
visit the list of stored URLs. For every web page that iswe decided to use the ones presented in [21], a paper
visited, the tool uses tHéeiTMLDocument2 Document in which the authors analyzed different sites for the pres-
Object Model (DOM) interface to locate all its form ele- ence of spyware. The browsing session also contains typ-
ments. This allows us to automatically fill out form fields ical user interactions on the sites that might be of interest
that were filled out during the recorded session (using théor spyware, such as Google searches for free pornog-
names of the form elements). When a form is completedraphy, news browsing, and visits to music sites. At the

it is automatically submitted. end of the test, the browser is closed, and the analysis
engine analyzes the log file. If the log contains any indi-
4 Evaluation cation that sensitive information was leaked on behalf of

the component under analysis, it is classified as spyware.
The goal of our system evaluation is twofold. On one The sample set we used does not contain toolbar-
hand, we wish to verify the ability of our system to clas- based spyware. This is because our automated testing
sify unknown browser helper objects. To this end, we andinfrastructure currently does not support toolbars. Tool-
alyzed a collection of spyware and benign samples andyars introduce additional GUI elements into the web
determined the fraction of samples that were correctlybrowser that are not present when the initial test session
identified. On the other hand, we wish to demonstratgs recorded. Thus, our testing tool cannot invoke any
that our system provides comprehensive reports that atoolbar functions that require to click on GUI elements
low a human analyst to quickly and in detail understandnstalled by this toolbar.
the behavior exhibited by a spyware component. To this Table 1 shows the results for the batch analysis of our
end, we selected a few samples and provide a more déest set. The results demonstrate that all spyware compo-
tailed description of our findings. nents were correctly identified. In our experiments, none

of the spyware samples made use of control flow evasion

. techniques. Thus, all malicious BHOs can be correctl

4.1 Batch Analysis detectgd taking into account data dependency informg-

To verify the ability of our system to distinguish be- tion only. However, writing malicious code that makes

tween spyware and benign components, we compiled 45€ of control flow evasion is quite simple. To demon-
test set that contained 21 spyware and 14 benign browsétrate that, we developed a proof-of-concept BHO that
helper object samples. All spyware samples were proYSes & sequence @f -statements (similar to the code
vided by an anti-virus vendor. For the benign samplesShown in Figure 2) to leak sensitive information. Using
we downloaded a number of different browser helper ob 0Ny data dependencies, this BHO is classified as benign.
jects from various shareware sites. Of course, we madi/hen control dependencies are included, our system cor-
sure that these components were indeed benign by carkectly identifies the malicious data transfer. B
fully checking both anti-spyware vendor and software re- AIS0, most benign samples were correctly classified.

view web sites. The benign samples were chosen frorhiowever, in accordance with the results reported in our
a variety of application areas. Tables 4 and 5 in the ApPrévious paper, we found two benign samples that actu-

pendix list and describe the samples that we used du!ly do leak sensitive data and thus, exhibit spyware-like
ing our experiments. It is often difficult to determine the P€havior. In one case, closer analysis revealed that no

name of a malware sample as these names are not uniqagnsitive data was sent to a third party (false positive). In

and may vary between anti-spyware and anti-virus venIhe other case, however, sensitive data was indeed sent

dors. When naming the malware samples, we used thi® the_d_istributor of the BHO, although very infrequently
information we were given by the anti-virus vendor. (SUSPicious case). In Table 2, we show a breakdown of

Using our test set, we performed a batch analysis. Thatpe different mechanisms that the analyzed spyware sam-
is, for each sample in the set, the following steps werdles used to leak sensitive information. These results un-
carried out: First, the sample is loaded into the anal-d€rline that spyware BHOs in the wild actually make use
ysis environment. Then, it is installed using the Win- of a variety of techniques to send collected information

dowsregsvr32 utility. During this installation pro- Pack to the spyware distributor.

cess, BHOs register themselves with the Internet ExPerformance. Even though Qemu is a fast system em-
plorer so that they are automatically loaded when theulator, the complete analysis of an unknown BHO with
browser is launched. After that, the Internet Explorer isthe replaying of a browsing session can take several min-
started and the automated test generator replays a prevites. Thus, our system is mainly intended for analysts
ously recorded browsing session. For this test sessiorhat have to understand and classify unknown BHOs. In
we surfed to 50 web pages. The pages were choseaddition, our tool could also be used as the analysis com-
from different web site categories (such as adult, newsponent in an automated spyware collection system.

I | Spyware]| False Negative| Benign | Suspicious| False Positive] Total ||

Spyware 21 0 - - - 21
Benign - - 12 1 1 14

Table 1: Results for batch analysis.

Network | File System| Registry| Shared Memory|| Total
11 1 3 6 21

Table 2: Different mechanisms used by spyware to leak semisiata.

I [Min. | Max. [Average]| interesting function was called. The remaining overhead
Native Windowsll 061 2.9 19 of 70% is a result of the logic that propagates the taint la-
Qemu 181 6.1 36 bels. Again, this number could be significantly reduced,
Modified Qemu || 17.3| 79.4 357 for example, by selectively switching between emulation

and virtualization, as discussed in [11]. The memory

overhead of our system is basically constant, and dom-
inated by the size of the shadow memory, which requires
one byte for each byte of emulated physical memory. Be-
cause we reserved 128 MB of memory for Qemu, the size

For a more detailed overview of the incurred perfor- ©f the shadow memory was 128 MB as well.
mance penalty, refer to Table 3. This table presents the
times (in seconds) that were necessary to load web pages2 Detailed Analysis
on our test machine (Pentium 1V, 2.4 GHz with 1 GB))) .
RAM); for Windows running natively, on an unmodified The following paragraphs describe briefly the informa-
Qemu emulator, and on Qemu with our modifications.tion that is contained in our analysis reports. In addition,
These numbers show the average, minimum, and max¥e discuss in more detail the false positive, the suspi-
imum load times for the web pages used in our exper£ious sample, and three representative spyware BHOs.
almost linearly with the size of the page, and the result-detail of the reports that are automatically generated by

ing work necessary for rendering. It can be seen thafur dynamic analysis.

our system incurs an average slowdovv_n_ of about a f_""CReports After our system has analyzed a BHO, a report
tor of ten when compared to an unmodified Qemu, withis generated that describes how this BHO has handled
an additional factor of two when compared to native ex-gensitive data. For every byte of sensitive input that is
ecution. In a worst-case scenario, when all memory is;ccessed by the BHO, we show the value and the origin
tainted, the slowdown could significantly increase. Thej e sensitive source) of this byte. Consecutive labels
reason is that all conditional branches would operate oRre combined so that accesses to strings appear as such in
tainted data, thus triggering the static analysis step: Foline output. Of course, multiple reads of the same data are
tunately, as shown by our experiments, only a small fracynnressed and the access is shown only once. Whenever
tion of memory is typically tainted, and BHOs rarely gensitive data is used in comparison operations, we show
used tainted data in control flow decisions. the values and labels of those bytes involved in the com-
Although the focus of this work was not on perfor- parisons, as well as the values that the input is compared
mance, note that this overhead could probably be imio. Again, compares of multiple, consecutive labels are
proved. For example, about 30% of the overhead ofshown in a combined form (as discussed in Section 3.4).
our system is caused by checking, for each basic blocksinally, whenever a tainted byte is leaked via a sensitive
whether the first address corresponds to a function thatink, the type of the sink and the leaked bytes are dis-
represents a sensitive source or a sensitive sink. Instegiayed. In all cases, information is only displayed when
of checking the instruction pointer for each basic block,the tainted data has been processed by the BHO under
the interesting code parts could be memory-protectedanalysis.
Whenever these code regions are later accessed, a fault isin general, these reports present a significant improve-
raised that can be used by our system to determine that anent compared to our previous system [14], which could

Table 3: Performance overhead.

only label a BHO as spyware or benign. Previously, a tethe network (which is behavior typically associated with
dious and time-intensive manual process was necessagpyware). Using our tool, a detailed analysis can help to
to understand why an alert was raised, for example, irprovide more evidence to decide whether a componentis
case of a false positive. Furthermore, the important in-using data as described.

formation about the type of data that was leaked (such as))
the URL, or part of the page) was not available. Spyware Samples. Zango advertises its products
(such as games or screen savers) as ad-supported free-

False Positive. The false positive listed in Table 1 ware. During our analysis, we determined that the
is caused by thePrivacyBird BHO. This compo- zangohook.dll BHO, which is shipped with the
nent implements the client side of a privacy managementompany’s instant messaging client, is spyware. More
standard defined by the Platform for Privacy Preferenceprecisely, our system detects that whenever a web page
Project (P3P). The P3P standard specifies a mechanisisivisited, the BHO reads the current URL and copiesitto
for users to control the disclosure of their personal infor-a previously opened shared memory section. From this
mation on web pages. To this end, thavacyBird shared memory section, the data is later read by the spy-
BHO has to retrieve a privacy policy file (which is lo- ware helper processingo.exe . TheZango example
cated at w3c/p3p.xml) for every web page. To deter-underlines the importance of monitoring shared memory
mine the server that hosts the privacy file for the cur-areas that can be used by a BHO to write out data to other
rent page, the BHO reads the URL and extracts the doprocesses. Also, it demonstrates the usefulness of whole
main name. Then, the domain name is combined witrsystem analysis, which allows us to follow the sensitive
the static path to the privacy file. The resulting URL is data to the spyware helper process.

then used to fetch the privacy file. Because this contains The e2give BHO reads the URL of every site that

a partthatis tainted (the domain string), we detect a maliis visited and compares it to a list of URLs stored in
cious information flow. Our analysis shows that the BHOthe BHO. This check is implemented by consecutively
reads the URL of every page that is visited. In addition,matching the current URL against every item in the
we can quickly confirm that for every “malicious” re- BHO'’s URL list. As our analysis checks for compare
guest, the server that is contacted is equivalent to the danstructions that involve tainted operands, the log file
main string that is tainted in this request. This informa-contains the complete list of URLs that the BHO checks
tion allows a human analyst to gain confidence that theagainst. If any of the requested sites is found in the list,
PrivacyBird component is indeed not sending any the BHO redirects this request to a different server. In
sensitive information to a third party. Note that it would this case, the original URL is passed as an argument to
also be possible to specify a policy that classifies as bethe redirected GET request. This constitutes a flow of
nign all information flows in which information about a sensitive data that is correctly identified by our system.
URL or a page is transferred back to the host from whichThee2give BHO is interesting for two reasons. First,
they are loaded. The reason is that in such cases, no seih-demonstrates the ability of our tool to extract lists of
sitive information is revealed to a third party. When this URLSs that a spyware monitors. Second, it underlines the
policy were in effect, thérivacyBird BHO would importance of test coverage. When none of the URLs in
not have raised a false positive. the BHO list were visited, the sample would be misclas-

o o sified as benign (as sensitive data is only leaked in case
Suspicious Sample. The suspicious sample was the ¢, match).

LostGoggles BHO, a component that embellishes Finally, our analysis detected that tisedup.dll

G_oogle sear_ch results by adding pictures to th_e SearcBHO (i.e., Borlan) submits the URLSs of all visited pages

hits. T.O thlsdenfd, theh BHOh d(?wnlosds a plecr? 9%t a remote server. Thus, the sample was classified as

JavaShcrlpt code from the aut lorfs Wﬁ :e“’?r when b%pyware. This BHO is interesting because a scan with the

searc reque_st IS sent t_o Goc_)g € c_)rt_ e first t|_me. Su [atest versions (at the time of writing) of the commercial

sequently, this JavaScript snippet is mserteq into EVerY, nii-spyware tools AdAware [18] and SpyBot [15] yields

lresgltgage returned bthoofgIe. Whhen dthe_ scrr1|pt IS downho detection. This demonstrates that our analysis is ca-

oaded, the BHO sets the re errer headerin the HTTP rE:g)able of detecting previously unknown spyware samples.

guest that fetches the JavaScript file. This referrer header

contains the URL of the Google search that was issued

before. ThusLostGoggles does leak possibly sensi- © Related Work

tive user information, although the data is probably sent

inadvertently and only once when the script is obtained.Malware Detection. To combat the increasing spread
Interestingly, both the web pages BfivacyBird of spyware, a number of commercial solutions have been

andLostGoggles emphasize that the components aredeveloped. For example, both AdAware [18] and Spy-

not spyware, even though they do send information oveBot [15] are popular tools that are able to remove a large

number of spyware programs. The problem with exist-cution for the use of tainted data as arguments to con-
ing spyware detection tools is that they use signaturesrol flow instructions or systems calls [6, 7, 22, 23] (a
to detect known spyware instances. Thus, they requirgystem to perform taint propagation particularly efficient
frequent updates to their signature database and cannafs presented in [11]). The aim of these systems is to
identify previously unseen samples. identify exploits at runtime, and, in some cases, to cre-

To address the limitations of signature-based malwarate signatures for detected attacks. There are a number
detection, researchers have recently proposed behavioof differences to our work. First, we analyze malicious
based techniques. These techniques attempt to charamede that can be deliberately designed to thwart detec-
terize a program’s behavior in a way that is independention. Thus, it was necessary to extend our taint analysis
of its binary representation. By doing this, it is possible with the capability to handle control dependencies in ad-
to detect entire classes of malware. An example of usdition to data dependencies. Second, previous systems
ing behavior characterization to detect malicious code igocus on whole system emulation only and can neither
Microsoft's Strider Gatekeeper [26]. This tool monitors distinguish between operations performed by different
auto-start extensibility points (ASEPS) to determine if operating system processes (and individual components
software that will be executed automatically at startup isof these processes) nor keep track of which component
being surreptitiously installed on a system. In [4], the au-has accessed sensitive data. Finally, the aim of previous
thors characterize different variations of worms by iden-systems is to detect exploits, while the goal of our system
tifying semantically equivalent operations in the malwareis to identify spyware components and comprehensively
variants. A similar approach is followed in [16], where analyze and document their behavior.
the behavior of kernel-level rootkits is modeled.

In a previous paper [14], we introduced a behavioralg conclusions
approach to detect spyware. For that paper, we used
the same underlying characterization of spyware as inn this paper, we presented a novel dynamic analysis ap-
this work (that is, a BHO is considered spyware when itproach to classify unknown browser helper objects and
leaks sensitive information). However, the analysis techcapture their behavior. The goal of our system is to au-
niques are completely different. For the former paper, waomatically identify spyware that is installed in the form
mainly relied on binary, static analysis to identify code of browser helper objects for the Microsoft Internet Ex-
paths in the BHO that can leak information. A small dy- plorer. To this end, we monitor the way that the Inter-
namic component was used to find the entry points fomet Explorer and installed browser helper components
the static analyzer. In this paper, we developed (fromhandle sensitive user information (such as the URL that
scratch) a dynamic taint analysis system that supporta user visits or the content of the web pages that are
data and control dependencies and is operating-systefaded). A BHO is classified as spyware when it leaks
aware. Using our new system, we can automatically gensensitive information outside of the browser process. In
erate rich reports that precisely identify which sensitiveaddition to classification, the analysis also providesta ric
information a BHO touches and where it is eventuallyand comprehensive description of the actions performed
stored. This was not possible with our previous systemphy BHOs. The experimental results on a substantial body
Also, we removed our reliance on complex binary staticof spyware and benign samples demonstrate the effec-
analysis, which is vulnerable to code obfuscation andiveness of our approach.
evasion.

Virtual Machines and Taint Analysis. For this pa- ~ Acknowledgments
per, we use a virtual machine (Qemu) to monitor the
behavior of unknown browser helper objects. This has/Ve would like to thank our shepherd Andrew Warfield
the benefit that our analysis runs in complete isolationand the anonymous referees for their valuable feedback.
from the samples that are examined, making it muchrlhis work was supported by the Austrian Science Foun-
harder for spyware to detect the presence of our systenlation (FWF) under grant P18157, the FIT-IT project
Other researchers made similar use of virtual machineBathfinder, and the Secure Business Austria competence
to detect and prevent intrusions [9, 12] and to analyzecenter.
attacks [8, 13]. Also, virtual machines have been used
to implement whole system analysis based on dynami®References
tamtm,g' For example, a system V\{as.proposed in [2] to [1] BELLARD, F. QEMU, a Fast and Portable Dynamic Translator.
use taint information to track the lifetime of data. The In Usenix Annual Technical Conference, Freenix Track (2005).
goal was to determine the use of sensitive information

[2] CHow, J., FFAFF, B., GARFINKEL, T., CHRISTOPHER K.,

by the operating System and _Iarge applications. Other " A\p RosensLUM, M. Understanding Data Lifetime via Whole
researchers used taint analysis to monitor program exe- System Simulation. liUsenix Security Symposium (2004).

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]
[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

CHRISTODORESCUY M., AND JHA, S. Testing Malware Detec-
tors. INACM International Symposium on Software Testing and
Analysis (ISSTA) (2004).

CHRISTODORESCUYM., JHA, S., ESHIA, S., ONG, D., AND
BRYANT, R. Semantics-Aware Malware Detection.| EEE Sym-
posium on Security and Privacy (Oakland) (2005).

COLLBERG, C., THOMBORSON, C.,AND Low, D. Manufactur-
ing Cheap, Resilient, and Stealthy Opaque ConstructSoififer-
ence on Principles of Programming Languages (POPL) (1998).

CoOSTA, M., CROWCROFT J., CASTRO, M., ROWSTRON A.,
ZHou, L., ZHANG, L., AND BARHAM, P. Vigilante: End-to-
End Containment of Internet Worms. 20th ACM Symposium
on Operating Systems Principles (SOSP) (2005).

CRANDALL, J.,AND CHONG, F. Minos: Control Data Attack
Prevention Orthogonal to Memory Model. 87th International
Symposium on Microarchitecture (MICRO) (2004).

DuNLAP, G., KING, S., ONAR, S., BASRAI, M., AND CHEN,
P. ReVirt: Enabling Intrusion Analysis through Virtual-Efane
Logging and Replay. I8ymposium on Operating Systems Design
and Implementation (OSDI) (2002).

GARFINKEL, T., AND ROSENBLUM, M. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection. Net-
work and Distributed Systems Security Symposium (2003).

HACKWORTH, A. Spyware. US CERT Publications, 2005.

Ho, A., FETTERMAN, M., CLARK, C., WARFIELD, A., AND
HAND, S. Practical Taint-based Protection using Demand Emu-
lation. In EuroSys Conference (2006).

JosHi, A., KING, S., DUNLAP, G., AND CHEN, P. Detecting
past and present intrusions through vulnerability-spe@fiedi-
cates. InSymposium on Operating Systems Principles (2005).

KING, S.,AND CHEN, P. Backtracking Intrusions. Bymposium
on Operating Systems Principles (SOSP) (2003).

KIRDA, E., KRUEGEL, C., BANKS, G., VIGNA, G.,AND KEM-
MERER, R. Behavior-Based Spyware Detection.Usenix Secu-
rity Symposium (2006).

KoLLAa, P. Spybot Search & Destroy. http://www.
safer-networking.org/ ,2006.

KRUEGEL, C., ROBERTSON W., AND VIGNA, G. Detecting
Kernel-Level Rootkits Through Binary Analysis. Amnual Com-
puter Security Applications Conference (ACSAC) (2004).

KRUEGEL, C., VALEUR, F., ROBERTSON W., AND VIGNA,
G. Static Analysis of Obfuscated Binaries. Wsenix Security
Symposium (2004).

LAVASOFT. Ad-Aware. http://lwww.lavasoftusa.com/
software/adaware/ , 2006.

LENGAUER, T., AND TARJAN, R. A fast algorithm for finding
dominators in a flowgraphACM Transactions on Programming
Languages and Systems (TOPLAS) 1, 1 (1979).

LINN, C.,AND DEBRAY, S. Obfuscation of Executable Code to
Improve Resistance to Static Disassembly.A@GM Conference
on Computer and Communications Security (CCS) (2003).

MOSHCHUK, A., BRAGIN, T., GRIBBLE, S.,AND LEVY, H. A
Crawler-based Study of Spyware on the Web. Neiwork and
Distributed Systems Security Symposium (NDSS) (2006).

NEWSOME, J., AND SONG, D. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature GeneratibBxe
ploits on Commodity Software. INetwork and Distributed Sys-
tem Security Symposium (NDSS) (2005).

PORTOKALIDIS, G., S OWINSKA, A., AND BOs, H. Argos: an
Emulator for Fingerprinting Zero-Day Attacks. ACM S GOPS
EUROSYS (2006).

[24]

[25]

(26]

[27]

SAROIU, S., RIBBLE, S.,AND LEVY, H. Measurement and
Analysis of Spyware in a University Environment. Wsenix
NSDI (2004).

THoMPSON R. Why Spyware Poses Multiple Threats to Secu-
rity. Communications of the ACM 48, 8 (2005).

WANG, Y., ROUSSEV R., VERBOWSKI, C., JOHNSON, A.,
Wu, M., HUANG, Y., AND Kuo, S. Gatekeeper: Monitoring
Auto-Start Extensibility Points (ASEPs) for Spyware Maeag
ment. InUsenix Large Installation System Administration Con-
ference (LI1SA) (2004).

WROBLEWSKI, G. General Method of Program Code Obfusca-
tion. PhD thesis, Wroclaw University of Technology, 2002.

Appendix

[[Sample Name | Description I
McAfeeAntiPhishingFilter | Antiphishing solution
AT&T P3PClient Privacy utility
LostGoggles Search enhancing utility
Earthlink Toolbar Scam blocker
PopUpBlocker Utility to block popups
CookiePal Cookie management
SpywareGuard Spyware protection utility
ezSaveFlash Utility to save flash files
keepit File management utility

| KillaFing3 Utility to block popups
Super Popup Blocker Utility to block popups
SAPplayer Plays music/video files
BookmarkBuddy Bookmark management

Plug-In for blind users Render page for blind userg

Table 4: Benign samples.

Sample Name

Description I

ZangolM Universal instant messaging
BargainBuddy Bundled Spyware

RAX Search Helper Search tool

Sitestep Travel price comparison

Borlan (stdup.dll) Targeted ads

HtmlEdit Module Targeted ads

Clear Search Search tool

IEHelper Module Installs third-party componentsy

Generic BHO module | Targeted ads

eUniverse Targetede ads

eZula URL collector

Wo1 URL collector
Adware.MediaPlaceTV| Targeted ads and url collector
msnetwrk URL collector

hopster URL collector

Replace module URL collector

e2Give URL collector

Generic data miner URL collector
Adware-Click Targeted ads
CWSMeup-B Search string collector

HuntBar BHO URL collector

Table 5: Spyware samples.

