
Here Come The ⊕ Ninjas

Thai Duong Juliano Rizzo

May 13, 2011

Abstract

This paper introduces a fast blockwise chosen-plaintext attack against SSL 3.0 and TLS 1.0. We also de-
scribe one application of the attack that allows an attacker to efficiently decrypt and obtain authentication tokens
embedded in HTTPS requests1 The resulting exploits work for major web browsers at the time of writing.

1 Introduction
The Secure Sockets Layer (SSL) protocol2 is widely-used for securing communication over the Internet. The
SSL standard allows for symmetric-key encryption using either block ciphers or stream ciphers. Implementa-
tions usually utilize block ciphers, and the attack in this paper applies only when block ciphers are used. The SSL
standard mandates the use of the CBC mode encryption [8] with chained initialization vectors (IVs); i.e., the IV
used when encrypting a message should be the last block of the previous ciphertext. Unfortunately, CBC mode
encryption with chained IVs is insecure [6, 17], and this insecurity extends to SSL [1, 2, 15]. We show that this
vulnerability enables a man-in-the-middle attacker mounting a chosen-plaintext attack against SSL to quickly
recover plaintext. In case of HTTPS [16], we demonstrate that an attacker can decrypt and obtain authentication
tokens such as HTTP cookie [9, 14].

Contributions This paper describes a new plaintext-recovery attack against real world implementations of
the CBC encryption scheme. The refined blockwise attack model introduced in this paper better captures SSL
attackers than any other chosen-plaintext attack models. As a consequence, the new attacks described here
are more dangerous, generic and efficient than any previous published results involving chosen-plaintext attack
against SSL. As a proof of concept, this paper also present efficient browser exploits that actually decrypt HTTPS
requests to obtain HTTP cookies.

2 Related Work
The chosen-plaintext attacks described in this paper are based on a known attack against SSL with chained IVs
that was reported in [1,2,5,6,15]. In SSL the plaintext is fragmented into records of length less than or equal to
214 bytes. Each record is then encrypted in CBC mode with chained IVs; i.e., the CBC IV for each record except
the first is the previous records’ last ciphertext block. Therefore, the IV is predictable and an attacker intercepting
network traffic will know the IV for the next record to be encrypted before the next record is actually encrypted.
This means that if an attacker can control the first block of the input into SSL’s underlying CBC encryption
scheme, he will be able to control the corresponding input to the underlying block cipher. Since a block cipher is
deterministic, an attacker could use this to glean information about a previously encrypted message (by looking
to see if some value was ever the input to a previous blocks cipher invocation). As described by W. Dai in [6]
the attack itself is very simple. Remember that in CBC mode, each plaintext block is XOR’ed with the last
ciphertext block and then encrypted to produce the next ciphertext block. Suppose the attacker suspects that
plaintext block Pi in some previously seen SSL record might be x, and wants to test whether that is the case, he
would choose the first plaintext block of the next record Pj to be C j−1⊕Ci−1⊕ x. If his guess is correct, then
C j = Ek(Pj⊕C j−1) = Ek(Pi⊕Ci−1) =Ci, and so he can confirm his guess by looking at whether C j =Ci.

1Besides HTTP over SSL, we also target WebSocket over SSL. For convenience, we simply refer to these generically as “HTTPS.”
2The attack described here applies to SSL 3.0 [11] and TLS 1.0 [7]. For convenience, we simply refer to these generically as “SSL.”

1

As observed in [1], at its core the attack just described is an example of what is called a “blockwise” at-
tack [5, 13]. In contrast to a “standard” chosen-plaintext attack where messages are viewed as atomic, in a
blockwise attack an adversary is assumed to have the additional ability to insert plaintext blocks within some
longer message as that message is being encrypted [13]. Although Dai’s attack does not exactly follow this
paradigm, one may cast that attack in this light due to the fact that the IV for each record is taken to be the final
block of the ciphertext corresponding to the preceding record. In particular, this is precisely how CBC would
operate were it to encrypt consecutive messages as one, longer message; in other words, this “feature” of SSL is
exactly what makes a blockwise attack feasible.

Essentially the Dai’s attack has been used previously to attack SSH [5]. In [1,2], G. Bard extended the attack
to SSL. It was both surprising and helpful for the authors of this paper to discover G. Bard’s work. Indeed in
2004 and later in 2006, G. Bard already discussed the scenario, requirements, possible implementations, and
solutions of using Dai’s method to attack SSL , which is basically what we independently rediscover in 2011.
Nevertheless, it is important to stress that while [1, 2] provided a solid background on chosen-plaintext attacks
against SSL with chained IVs, they did not show any practical exploit that can break real world implementations
of SSL. That also explains why the world has ignored the warning of SSL’s insecurity in those papers, and kept
using SSL 3.0 and TLS 1.0. That said, in order to avoid repeating what had been already done, we only focus
on the new ideas in this paper, and refer as much as possible to [1, 2] and other papers for other relevant details.

3 Chaining of Predictable IVs
In order to mount the Dai’s attack, the adversary has to control the entire first block Pj.3 Usually, in practice,
some header data is prepended to the plaintext before encryption, i.e., some bits of Pj are not controllable by the
adversary. This means that an attacker may not be able to force a user’s underlying CBC scheme to encrypt the
block C j−1⊕Ci−1⊕ x. As analyzed in [5], an attacker will, however, be able to mount Dai’s attack if Ci−1 and
C j−1 are identical in the bits that the attacker cannot control in Pj. However, the success probability of the attack
is significant reduced, because the attacker now has to wait for a collision on some bits that he has no control.
This section outlines a technique that allows an adversary to mount the Dai’s attack with a success probability
that can approach 100% even if it cannot control the entire Pj.

Recall that C j−1, which is known to the adversary, is used as the IV to encrypt Pj. The idea is to use C j−1
to predict C j. Since C j is again used as the IV to encrypt Pj+1, knowing C j in advance basically allows the
adversary to use Pj+1, which he fully controls, to guess for Pi. To simplify the discussion, suppose that the
adversary cannot control the first byte of Pj, e.g., a magic byte or length field, denotes as w, is prepended to
the plaintext block before it is actually encrypted. Suppose there is a lookup table T that maps C j−1[1], i.e., the
first byte of C j−1, to a fixed pair of (P∗,C∗← Ek(P∗)) such that w =C j−1[1]⊕P∗[1]. The adversary computes
Pj ← C j−1⊕P∗ and Pj+1 ← C∗⊕Ci−1⊕ x. Basically he ensures that the first byte of Pj is w and use Pj+1 to
make a guess for Pi. If his guess is correct, then we can check that:

C j+1 = Ek(C j⊕Pj+1)

= Ek(Ek(C j−1⊕Pj)⊕Pj+1)

= Ek(Ek(C j−1⊕C j−1⊕P∗)⊕Pj+1)

= Ek(Ek(P∗)⊕Pj+1)

= Ek(C∗⊕C∗⊕Ci−1⊕Pi)

=Ci.

Since the adversary is performing a chosen-plaintext attack, he can build such a table T easily. The adversary
just needs to choose P∗ and store the corresponding C∗ returned by the encryption oracle. If the adversary cannot
control n bits of Pj, then T would contain at most 2n entries. He even does not need to build a full table before
starting to guess for Pi, but he can build in on the fly, i.e., if T contains an entry for the current IV, then make a
guess for Pi; otherwise add a new entry to T , encrypt a random block P∗, and lookup the table for the new IV
again.

3We use the same notation as in the description of the Dai’s attack above.

2

4 The Blockwise Attack
In cryptography, security notions are usually defined by combining a security goal and an attack model. The
more accurate an attack model captures attackers in the real world, the better the security notions are. The
blockwise attack (BA) model [5, 13] was proposed with that motivation. [10] explained why the BA model
better captures real world attackers than the standard one as follows

The standard model for the chosen-plaintext attack is message oriented: i.e. the messages are viewed
as atomic object which cannot be split into blocks. Thus, adversaries can only be adaptive between
the messages. However, sometimes the encryption process has to be started even if the entire plain-
text is not known. For example, in real-time applications, the cryptographic device cannot store
the whole plaintext before the starting of the encryption. [...]Moreover, in many practical applica-
tions, cryptographic devices (smart cards) are memory restricted. Then, if messages are too large,
they cannot be stored in the cryptographic module before the beginning of the encryption process.
Therefore, the message must be sent block by block to the cryptographic module which returns
on-the-fly the output block C[i], say just after the query of the input block M[i] in some implemen-
tations. As a consequence, the adversary model needs to be changed to take into account attackers
querying messages block by block. In the BA model, attackers are more adaptive than standard ad-
versaries: they are adaptive during the encryption query, i.e. between each block of messages, and
not only between the encryption queries, i.e. between the messages. Hence the name of “blockwise”
adversaries.

It is known that the BA model is stronger than the standard one. [4] proved that the CBC encryption scheme
is secure in the standard model. However, in [13], Joux, Martinet and Valette used the same idea as Dai’s attack
to show that the CBC encryption scheme is not secure in the BA model after only two encrypted blocks. It is
worth noticing the attack against CBC in [13] invalidates the security proof by building distinguisher but do not
allow to recover the secret key or to totally break the scheme.

4.1 A Refinement of The Blockwise Attack
We now present blockwise chosen-boundary attack (BCBA), which is a refinement of the blockwise attack.
Suppose the encryption mode in use is CBC. Let b be the block size in byte, and let m be a (padded) message
consists of l bytes m[1],m[2], ...,m[l].4 m would be divided into s b-byte blocks p1, p2, ..., ps. Consider the block
boundary, denoted as x, between p1 and p2. For now x is at the position between m[b] and m[b+1]. In the BCBA
model, it is assumed that before m is actually encrypted, an attacker can move block boundaries to any position
at his will, e.g., he can move x to the position between m[1] and m[2]. One way for an attacker to control the
position of block boundaries is to prepend string of arbitrary length to m, e.g., if an attacker can prepend r bytes
to m such that r < b, then all block boundaries in m would be shifted r positions to the left. Figure 1 illustrates
a concrete example of what is just described. In this case the block size in bytes is 8 and m consists of 9 bytes
(or 16 bytes including padding.) By prepending an arbitrary 7-byte string to m, an attacker shifts the block
boundary 7 positions to the left. In general, for any consecutive pair of bytes m[i] and m[i+1], an attacker can
always prepend less than b bytes to m such that there is a block boundary between m[i] and m[i+1]. Therefore,
an attacker can choose which position to become a block boundary. Hence the name of “chosen-boundary”
attackers.

4.2 Plaintext-Recovery Attack Against CBC Mode
In [4], Bellare et al. have proved that the CBC encryption scheme is secure in the standard model up to the
encryption of 2n/2 blocks, where n denotes the block length in bits of a block cipher. in [13], Joux, Martinet
and Valette used the same idea as Dai’s attack to show that the CBC encryption scheme is not secure in the BA
model after only two encrypted blocks. In this section, we briefly recall the CBC encryption mode and then we
describe how to mount a plaintext-recovery attack against CBC in the BCBA model.

Let Ek be a block cipher with secret key k and block-size b bytes and let m be the (padded) message to
encrypt that consists of l bytes m[1],m[2], ...,m[l]. m is divided into n b-byte blocks denoted by (P1, ...,Pn). A

4The block size and padding scheme in use do not affect the attacks described in this paper.

3

m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9]

m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9]r[1] r[2] r[3] r[4] r[5] r[6] r[7]

block boundary

block boundary

block size = 8

len(m) = 9

len(r) = 7

Figure 1: Prepending string to a message allows an attacker to choose block boundaries.

CBC Challenger

k K

m M

R

R

BCBA Adversary
r

(C ,C ,...,C) E (r||m)0 1 s k
* * *

P

C E (P)i k

i

i

Figure 2: Blockwise chosen-boundary adversary against CBC mode.

random b-byte initial value IV is generated by the encryption box. The CBC mode of encryption with random
initial value is defined as follows:

C0 = IV ;
Ci = Ek(Pi⊕Ci−1) for i=1,...,n.

The transmitted ciphertext is (C0,C1, ...,Cn).
If Ci−1 is known when choosing Pi, an attacker can easily mount the Dai’s attack to break the security proof

of CBC in [4]. Now consider the security game illustrated in Figure 2. Like other security games, this game
consists of a challenger and an adversary. The challenger is a CBC encryption oracle that on startup generates
a random key k ∈ K and choose a random message m in the message space M. On the other hand, in addition
to being adaptive from one block to the next within a single message, the adversary is also allowed to prepend
string of arbitrary length to m before m is actually encrypted. In order to give the adversary that flexibility, the
security game is designed to consist of two phases:

Phase 1 (Chosen-Boundary) The adversary generates a random string r, and send r to the challenger. The
challenger chooses a random IV , prepends r to m, encrypts the resulting (padded) string in CBC mode
under key k and the random IV (denoted as C∗0), and sends the ciphertext (C∗0 ,C

∗
1 , ...,C

∗
s) to the adversary.

Phase 2 (Blockwise) The adversary chooses a block Pi, sends it to the challenger. The challenger encrypts Pi
using key k and the last ciphertext block as IV, and sends the ciphertext Ci to the adversary. The adversary
repeats this phase again until it wants to stop.

The goal of the adversary is to decrypt m.

First Byte Decryption

It turns out that there is a deterministic algorithm that allows the adversary to obtain m[1] after as many as 256
repetitions of phase 2. In other words, after querying the challenger 256 queries in phase 2, the adversary can
decrypt the first byte of m. If the adversary is lucky (with probability 1/256), it can obtain m[1] with the first
query. On average, it has to try 128 queries. The algorithm proceeds as follows:

4

Step 1 Generate a random string r that consists of b−1 bytes, and send r to the challenger.

Step 2 The challenger prepends r to m to obtain P∗. P∗ would be divided into s b-byte blocks, denoted as
P∗1 , ...,P

∗
s . Since r consists of b− 1 bytes, the first plaintext block P∗1 would be equal to r||m[1]. The

challenger encrypts P∗ and transmits the resulting ciphertext (C∗0 ,C
∗
1 , ...,C

∗
s) to the adversary. The goal of

the adversary is now to guess the value of m[1]. Let i = 0.

Step 3 Let IV be the last ciphertext block obtained from the challenger, e.g., IV is C∗s after step 2. Send
Pi =C∗0 ⊕ IV ⊕ (r||i) to the challenger.

Step 4 Receive Ci from the challenger.

Step 5 If Ci =C∗1 , output i; otherwise, increase i and goes back to step 3.

We claim that the above algorithm would terminate and output m[1] after a maximum of 256 repetitions
of the last three steps. Actually the last three steps of the algorithm are similar to the Dai’s attack, i.e., each
execution makes a guess for the correct value of some block, which in this case is P∗1 . The key idea here is
that the first two steps (the chosen-boundary phase) make sure that all but the last byte of P∗1 are known. Thus,
an attacker needs to guess for only one byte instead of a whole block, and that allows a fast recovery of m[1].
Indeed since i is increased after each failed guess, i would be eventually equal to m[1]. Then we can check that:

Ci = Ek(IV ⊕Pi)

= Ek(IV ⊕C∗0 ⊕ IV ⊕ (r||i))
= Ek(C∗0 ⊕ (r||m[1]))
= Ek(C∗0 ⊕P∗1)

=C∗1 .

It is easy to see that when i 6= m[1], Ci is different from C∗1 . As a consequence, the attacker can easily find m[i]
after trying on average 128 queries.

Full Message Decryption

It is straight-forward to extend the first byte decryption algorithm to a full message decryption algorithm. Sup-
pose the attacker has obtained m[1],m[2], ...,m[i−1], and he now wants to obtain m[i]. Recall that in Section 4.1
we showed that for any consecutive pair of bytes m[i] and m[i+ 1], an attacker can always prepend less than b
bytes to m such that there is a block boundary between m[i] and m[i+1]. In other words, an attacker can always
make m[i] become the last and only unknown byte of some block, and he then uses the first byte decryption
algorithm to obtain m[i]. For a l-byte message m, an attacker needs to query the challenger on average 128 ∗ l
times to obtain m. It is worth noticing that the cost analysis stated here is for the generic case when bytes in m
is random, i.e., each of them can take any value between [0..255]. If bytes in m take only values in some smaller
range, then the cost is smaller.

5 Application: Decrypting HTTPS Requests

5.1 HTTPS Overview
The HTTPS protocol is a combination of the HTTP [9] with the SSL protocol to provide encrypted commu-
nication and secure identification of a network web server. HTTPS connections are often used for payment
transactions on the World Wide Web and for sensitive transactions in corporate information systems. HTTP
operates at the highest layer of the OSI Model [19], the Application layer; but the security protocol operates
at a lower sublayer, encrypting an HTTP message prior to transmission and decrypting a message upon arrival.
Strictly speaking, HTTPS is not a separate protocol, but refers to use of ordinary HTTP over an encrypted SSL
connection. A HTTP request message consists of the following:

• Request line consisting of a method, resource path and HTTP version, such as GET /logo.png HTTP/1.1,
which requests a resource called /logo.png from server.

• Headers, such as Cookie: sessionid=1cf1e8dacc3b29c2fc9161baf30539fd;.

• An empty line.

• An optional message body.

5

block boundary

P O S T / A A A A A A

R E Q E S T

[...]

known bytes added by browsers

known bytes that adversary controls

unknown bytes that adversary wants to decrypt

block size = 8

H T T

/ 1 . 1 \r \n

P

block boundary

block boundary

\r \n

\r \n\r \n

A A A A A A

E A A A A AQ U E S TR A AB O A AD Y A[...]

H E A D E

R S

Figure 3: Performing a blockwise chosen-boundary attack against HTTPS with POST requests.

The request line and headers must all end with <CR><LF> (that is, a carriage return followed by a line feed.) The
empty line must consist of only <CR><LF> and no other whitespace.

In HTTPS, everything in the HTTP message is encrypted, including the headers, and the request/response
load. SSL receives the HTTP message from the Application Layer as raw data. This message is fragmented into
blocks of length less than or equal to 214 bytes. These blocks are optionally compressed 5 and are then encrypted,
then the resulting ciphertext blocks are sent to server. The most important information inside a HTTP request is
usually the cookie header. Since HTTP is a stateless protocol, a HTTP cookie, also known as a web cookie, or
browser cookie, is used for an origin website to send state information to a user’s browser and for the browser to
return the state information to the origin site. The state information can be used for authentication, identification
of a user session, user’s preferences, shopping cart contents, or anything else that can be accomplished through
storing text data. Most web sites use cookies as the only identifiers for user sessions. If a web site uses cookies
as session identifiers, attackers can impersonate users’ requests by stealing a full set of victims’ cookies. From
the web server’s point of view, a request from an attacker has the same authentication as the victim’s requests;
thus the request is performed on behalf of the victim’s session.

Giving the important role of HTTP cookies, there are several cookie stealing attacks as well as counter-
measures have been proposed [18]. Actually HTTPS is mainly used to protect the cookies from being stolen
by network eavesdropping attacks. A server can specify the secure flag while setting a cookie, which will
cause the browser to send the cookie only over an encrypted SSL channel. The attacks described in this paper
allow an attacker to obtain the cookies even if HTTPS is in use and the secure flag is turned on. The novelty
of our attacks lie in the fact that they are the first attacks that actually decrypt HTTPS requests by exploiting
cryptographic weaknesses of using HTTP over SSL.

5.2 Threat Model
Suppose that Alice uses her browser to access Bob’s web server over HTTPS at https://bob.com. Bob’s web
server sets some session identifer cookies inside Alice’s browser so that it can authenticate subsequent requests
from Alice. Alice then visits http://mallory.com where Mallory has installed some malicious code that
allows Mallory to decrypt Alice’s requests sent to https://bob.com and finally obtain her cookies. We make
three assumptions about the capability of Mallory:

Network Eavesdropping Privilege Mallory can capture encrypted HTTPS requests sent by Alice. As noted
by G. Bard, since the ciphertext blocks travel over the Internet, this is not expected to be difficult. (In fact,
if it is assumed difficult to obtain this information then there is little reason to use encryption in the first
place).

Chosen-Boundary Privilege Mallory can force Alice’s browser to make arbitrary cookie-bearing requests to
Bob’s web server over HTTPS. Moreover, Mallory can also control the resource path of these requests, i.e.,
/logo.png as shown above. Note that this capability basically allows Mallory to control block boundaries
of the targeted request headers.

5The attacks in this paper do not apply directly when compression is used; however, compression is rarely used in practice.

6

Blockwise Privilege After making Alice’s browser open some HTTPS requests to the server, Mallory can ap-
pend arbitrary plaintext blocks to each ongoing request. Note that this capability together with the first
capability basically allows Mallory to perform the Dai’s attack against HTTPS.

In the next section, we show how Mallory can gain the last two privileges by leveraging browser features or
plugins. We now show that with these assumptions, Mallory can decrypt and obtain the request headers which
contain the cookies he wants. One can see that Mallory now becomes the BCBA adversary and Alice’s browser
becomes the CBC challenger, as part of the security game in Figure 2. For the chosen-boundary phase, r is the
resource path which is controlled by Mallory and the secret message m consists of Alice’s cookies and other
headers. For the blockwise phase, the plaintext blocks that Mallory appends to each ongoing request are Pi;
Mallory receives Ci by capturing Alice’s encrypted HTTPS requests. Figure 3 shows how Mallory can mount a
blockwise chosen-boundary attack against Alice’s browser to decrypt the first byte of the targeted request header.
Suppose the block size in bytes is 8, the attack proceeds as follows:

Step 1 Mallory forces Alice’s browser to open a HTTPS POST request to http://bob.com/AAAAAA. Alice’s
browser uses SSL to derive a shared secret key k with Bob’s web server, then it utilizes a block cipher in
CBC mode to compute C1|C2|C3|...|Cn←Ek(P) where P is POST /AAAAAA HTTP/1.1<CR><LF><REQUEST
HEADERS><CR><LF><REQUEST BODY>, and sends C1|C2|C3|...|Cn to server.

Step 2 Mallory captures C1,C2,C3, ...,Cn. Note that C3 is the encryption of P3 = P/1.1<CR><LF><X>, i.e., the
first 7 bytes are known to Mallory and the last byte, denotes as X , is the first byte of the request headers.
Mallory’s goal now is to obtain X . Let W [1..l] is the set of allowed bytes in HTTP header and let i = 1.

Step 3 Let IV be the last ciphertext block that Mallory captures, e.g., IV is Cn after step 2. Mallory computes
Pi = IV ⊕C2⊕Pguess, where Pguess = P/1.1<CR><LF><W[i]>. Mallory appends Pi to the existing request,
e.g., Pi is appended to the request body (this is the last assumption.) Alice’s browser would compute
Ci← Ek(IV ⊕Pi) and send Ci to server.

Step 4 Mallory captures Ci. If Ci = C3, he knows that X is equal to W [i]. Otherwise he increases i and goes
back to step 3.

We claim that the above attack would terminate and Mallory would obtain the first byte of the request header
after a maximum of |W | repetitions of the last two steps. Indeed what Mallory does is exactly the same as the
first byte decryption algorithm described in Section 4.2. So once again the same argument stated in Section 4.2
can be applied, and one can also see that it is straight forward for Mallory to extend the attack to decrypt the
whole request headers and obtain Alice’s cookies. In practice, most bytes of the request headers are known, so
Mallory can optimize the attack by decrypting only the cookie header.

The remaining question now is if there is any real world adversary that actually has the same privileges as
Mallory. As described in the first paragraph of this section, we assume that Alice visits http://mallory.com
where Mallory has installed some malicious code, which we call “Mallory’s agent” or simply “the agent” here-
inafter. The agent can be regarded as a browser exploit that leverages browser features or plugins to help Mallory
gain his desired privileges. In addition, any real world Mallory must also consist of a network sniffer that inter-
cepts SSL traffic, and sends ciphertext blocks to the agent. The agent can communicate with the network sniffer
via basic socket programming, with synchronization done using timing or message length (refer to [1, 2] for a
discussion.) In the next section, we present a “portfolio” of browser technologies that can be used to implement
Mallory’s agent.

5.3 From Browser Technologies To Mallory’s Privileges
Recall that the necessary condition of Mallory’s agent is the ability to send cookie-bearing requests to Bob’s
server, since Alice’s browser cookies are what Mallory is going after. The author of this papers then collected
a list of browser features and plugins that satisfy this condition. Surprisingly, there are a lot of them, including
but not limited to Javascript XMLHttpRequest API, HTML5 WebSocket API, Flash URLRequest API, Java
Applet URLConnection API, and Silverlight WebClient API (refer to [18] for an excellent discussion of this
topic.) Actually Mallory can make Alice’s browser open arbitrary cookie-bearing requests to Bob’s server using
techniques similar to cross-site request forgery attacks [3]. For example, Alice might be browsing a chat forum
at http://mallory.com where Mallory has posted a message. Suppose that Mallory has crafted an HTML
image element that references a resource on Bob’s server, e.g., ,
then Alice’s browser would send a cookie-bearing HTTPS request to https://bob.com/AAAAAA. So it is easy
for Mallory to gain the chosen-boundary privilege. This approach does not allow Mallory to gain the blockwise

7

privilege though. There are some reasons. First, web browsers tend to open a new SSL connection to server
for each HTTP request. Secondly, even if Mallory can make web browsers re-use the same SSL connection
for multiple HTTP requests, Mallory cannot control the first few bytes of each request because they are always
set as a fixed string such as GET /, POST /, etc. We note that these strings are too long so that the technique
described in Section 3 takes too much time to run. Finally, most browsers do not accept arbitrary strings as
resource path [18]. Nevertheless, we eventually realize what Mallory really needs is to make Alice’s browser
open bi-directional communication channels to server. We use this condition to further narrow down the initial
list, and what left are HTML5 WebSocket API, Java URLConnection API, and Silverlight WebClient API. We
stress that this list is by no means complete. There might be other features or plugins that as “good” as the ones
listed here but we did not know. At the end of the day, we just want to make our point that there is a vulnerability
in HTTPS, and it is just a matter of browser features for adversaries to implement efficient exploits. In appendix
A we describe three browser exploits that can act as Mallory’s agent. The existence of these exploits confirm
the existence and practicability of blockwise chosen-boundary attacks in general and the SSL vulnerability in
particular.

6 Impact

7 Countermeasures
Acknowledgements

References
[1] G.V. Bard. The Vulnerability of SSL to Chosen-Plaintext Attack. Cryptology ePrint Archive, Report

2004/111, 2004.

[2] G.V. Bard. A Challenging but Feasible Blockwise-Adaptive Chosen-Plaintext Attack on SSL. SECRYPT,
pages 7–10, 2006.

[3] A. Barth, C. Jackson, and J.C. Mitchell. Robust Defenses for Cross-site Request Forgery. In Proceedings
of the 15th ACM conference on Computer and communications security, pages 75–88. ACM, 2008.

[4] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Symmetric Encryption.
In FOCS, page 394. Published by the IEEE Computer Society, 1997.

[5] M. Bellare, T. Kohno, and C. Namprempre. Authenticated Encryption in SSH: Provably Fixing the SSH
Binary Packet Protocol. In Proceedings of the 9th ACM Conference on Computer and Communications
Security, pages 1–11. ACM, 2002.

[6] W. Dai. An Attack Against SSH2 Protocol, Feb. 2002. Email to the ietf-ssh@ netbsd. org email list, 2002.

[7] T. Dierks. The TLS Protocol Version 1.0 – RFC 2246. IETF Request For Comments, 1999.

[8] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Methods and Techniques. Technical
report, DTIC Document, 2001.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext Transfer
Protocol–HTTP/1.1. Technical report, RFC 2616, June, 1999.

[10] P.A. Fouque, A. Joux, and G. Poupard. Blockwise Adversarial Model for On-line Ciphers and Symmetric
Encryption Schemes. In Selected Areas in Cryptography, pages 212–226. Springer, 2005.

[11] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol. Netscape Communications Corp, 18:2780,
1996.

[12] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting Browsers From DNS Rebinding
Attacks. ACM Transactions on the Web (TWEB), 3(1):1–26, 2009.

[13] A. Joux, G. Martinet, and F. Valette. Blockwise-Adaptive Attackers Revisiting The (In) Security of Some
Provably Secure Encryption Modes: CBC, GEM, IACBC. Advances in Cryptology - CRYPTO 2002, pages
231–248, 2002.

[14] D. Kristol and L. Montulli. HTTP State Management Mechanism – RFC 2965. RFC Editor United States,
2000.

8

[15] B. Moeller. Security of CBC Ciphersuites in SSL/TLS: Problems and Countermeasures. Available at
http://www.openssl.org/~bodo/tls-cbc.txt, 2004.

[16] E. Rescorla. HTTP over TLS – RFC 2818. RFC Editor United States, 2000.

[17] P. Rogaway. Problems with Proposed IP Cryptography. Available at http://www.cs.ucdavis.edu/
~rogaway/papers/draft-rogaway-ipsec-comments-00.txt, 1996.

[18] M. Zalewski. Browser Security Handbook. Available at http://code.google.com/p/browsersec/,
2010.

[19] H. Zimmermann. OSI Reference Model–The ISO Model of Architecture for Open Systems Interconnec-
tion. IEEE Transactions on Communications, 28(4):425–432, 1980.

A Browser Exploit Implementations
Recall that Alice visits http://mallory.com where Mallory has installed an agent that allows him to send
cookie-bearing requests to https://bob.com. People familiar with browser security probably have noticed
that the same-origin security policy in modern browsers may prevent Mallory’s agent from running. As de-
scribed by Zalewski in [18], the principal intent for this same-origin mechanism is to make it possible for largely
unrestrained scripting and other interactions between pages served as a part of the same site (understood as hav-
ing a particular DNS host name, or part thereof), whilst almost completely preventing any interference between
unrelated sites. In practice, however, there is no single same-origin policy, but rather, a set of mechanisms with
some superficial resemblance, but quite a few important differences. We observe that in some circumstances,
Mallory can leverage these differences so that his agent running inside http://mallory.com can still send
requests to https://bob.com. For example, in Java, it is widely known that if mallory.com and bob.com
share the same IP address6, then they are considered same-origin.7 In the WebSocket protocol, JavaScript pro-
grams in mallory.com can still access WebSocket services in bob.com if the services are configured to allow
connections from mallory.com. To put it differently, all it takes for Mallory’s agent to run is the ability to
insert JavaScript code into any website that is allowed to access WebSocket services in bob.com. There is a
large class of attacks known as cross-site scripting that makes the just described scenario possible. Therefore,
in order to focus on cryptographic aspects of this work, we assume that Mallory’s agent can send requests to
https://bob.com. That said, we acknowledge that given the current state of browser security, the ability to
send same-origin requests from different DNS host names may open other non-cryptographic attacks which are,
however, out of scope of this discussion.

A.1 Java Applet Exploit

A.2 Silverlight Exploit

A.3 HTML5 WebSocket Exploit
The current version of the WebSocket protocol in most browsers is implemented based on what is known as
version 76 of the WebSocket specification.8 Suppose there is a WebSocket service at bob.com/websocket.
Mallory can connect to that service over SSL using the following JavaScript code:

v a r s = new WebSocket (" wss : / / bob . com / websocke t ?ABCDEF ") ;
s . onopen = f u n c t i o n (e) {

c o n s o l e . l o g (" opened ") ;
s . send (" Hel lo , wor ld ! ") ;
s . send (" Here come t h e + n i n j a s ") ;

}

The browser would open a SSL connection to bob.com, and perform the initial WebSocket handshake. We stress
that the cookie header is included in the handshake requests. In order to gain the chosen-boundary privilege,
Mallory can append bytes to the query string of the destination URL, e.g., ABCDEF as shown above.9 For each

6Mallory can use DNS re-pinning attacks [12] to trick browsers into believing that mallory.com has the same IP address as bob.com.
7http://download.oracle.com/javase/6/docs/api/java/net/URL.html.
8http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76.
9This query string would be ignored by the targeted WebSocket service

9

http://www.openssl.org/~bodo/tls-cbc.txt
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt
http://code.google.com/p/browsersec/
http://download.oracle.com/javase/6/docs/api/java/net/URL.html
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76

call to the send API function, the browser would send a new SSL record (in the on-going SSL connection)
containing the data passing to send. Mallory can use this API function to gain the blockwise privilege. There is
one minor issue though. WebSocket packs data into frames. Although a frame can contain binary or UTF-8 data,
current version of the send function in most browsers does not support binary frames. Each frame of UTF-8
data starts with a 0x00 byte and ends with a 0xFF byte, with the UTF-8 text in between. This data framing
technique creates two problems. First, due to the prepended 0x00 byte, Mallory cannot control the entire first
block. Fortunately, Mallory can use the technique described in section 3 to bypass this limitation. Secondly, all
data blocks sent by Mallory must be valid UTF-8 string; otherwise browsers would raise an invalid data type
error. Recall that in the chaining of predictable IVs technique, Mallory needs to send two data blocks, denotes
as P1 and P2, i.e., the first block is used to set the IV for the second block, which in turn is used to make a guess
for the targeted plaintext block. While Mallory cannot control P1, since its value depends on a random IV, he
can control the P2 (refer to section 3 for detailed explanation.) In other words, Mallory can deploy a randomized
algorithm such that if the last ciphertext block of the last SSL record, i.e., the IV of the next record, makes P1
decode as valid UTF-8 string, then he makes a guess in P2; he simply tries again otherwise.

10

	Introduction
	Related Work
	Chaining of Predictable IVs
	The Blockwise Attack
	Application: Decrypting HTTPS Requests
	Impact
	Countermeasures
	Browser Exploit Implementations

