
Theoretical Computer Science 276 (2002) 51–81
www.elsevier.com/locate/tcs

On the analysis of the (1 + 1) evolutionary algorithm�

Stefan Droste ∗, Thomas Jansen, Ingo Wegener
FB Informatik, LS 2, Universitat Dortmund, 44221 Dortmund, Germany

Received February 1998; received in revised form February 2001; accepted February 2001
Communicated by M. Paterson

Abstract

Many experimental results are reported on all types of Evolutionary Algorithms but only few
results have been proved. A step towards a theory on Evolutionary Algorithms, in particular,
the so-called (1 + 1) Evolutionary Algorithm, is performed. Linear functions are proved to be
optimized in expected time O(nlnn) but only mutation rates of size 8(1=n) can ensure this
behavior. For some polynomial of degree 2 the optimization needs exponential time. The same
is proved for a unimodal function. Both results were not expected by several other authors.
Finally, a hierarchy result is proved. Moreover, methods are presented to analyze the behavior
of the (1 + 1) Evolutionary Algorithm. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Evolutionary Algorithms are a class of search algorithms that are often used as
function optimizers for static objective functions. There are a lot of di<erent types of
Evolutionary Algorithms, the best known are Evolution Strategies [16, 19], Evolution-
ary Programming [5], Genetic Algorithms [8, 7], and Genetic Programming [12]. Each
type of Evolutionary Algorithm itself is an algorithm paradigm that has many di<er-
ent concrete instances. The Aeld of Evolutionary Algorithms, though the Arst origins
can be found in the early 1960s, is still a quite young and evolving area of mostly
practical e<orts. The very successful application of Evolutionary Algorithms in very
di<erent domains led to strongly practical oriented interests. Today, theory is far behind
“experimental knowledge”. There are, of course, theoretical investigations about some
properties of Evolutionary Algorithms, though rigorous research is hard to And. This

� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative
Research Center “Computational Intelligence” (531).

∗ Corresponding author.
E-mail addresses: droste@ls2.cs.uni-dortmund.de (S. Droste), jansen@ls2.cs.uni-dortmund.de (T. Jansen),

wegener@ls2.cs.uni-dortmund.de (I. Wegener).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00182 -7

52 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

implies that even the best known results are still subject to controversial discussions.
To put an end to this, a solid theory has to be build up that starts with simple exam-
ples and shows how results can be obtained in a rigorous fashion. The most important
questions concerning Evolutionary Algorithms, as long as function optimization is the
objective, are how eJciently an Evolutionary Algorithm will optimize a given objective
function, which classes of objective functions can be optimized eJciently and which
cannot.
In order to make a step towards this goal we investigate the running time behavior

of a very simple variant, that is called (1 + 1) Evolutionary Algorithm ((1 + 1) EA).
As the name “Evolutionary Algorithm” suggests, evolution as it is observed in nature
is imitated. It is believed that the repeated process of recombination, mutation, and
selection leads to individuals that are increasingly adapted to their environment, i.e.,
they are assumed to be of increasing Atness. Therefore, in EAs a possible solution to
the optimization task is called an individual and a set of individuals is called a popu-
lation. From this population in one step or generation a subset of parents is selected
according to their function values under the objective function, i.e., their 0tness. The
individuals are recombined by application of crossover and the resulting individuals
are mutated. Then some replacement strategy is applied to determine the next popu-
lation that may contain some of the newly generated children as well as some of their
parents. The choice of concrete algorithms to perform selection, crossover, mutation,
and replacement as well as the choice of the concrete representation of the individuals
o<ers a great variety of di<erent EAs.
The analysis here concentrates on the most simple variant of an EA that is still of

theoretical and practical interest [10, 17]. We restrict the size of the population to just
one individual and do not use crossover. Since we assume the objective function to
have Boolean inputs we represent the current individual as a bit string. This is the usual
choice for Genetic Algorithms. We use a bitwise mutation operator that Kips each bit
independently of the others with some probability pm that depends on the length of the
bit string. We replace the current bit string by the new one if the Atness of the current
bit string is not superior to the Atness of the new string. This replacement strategy
is taken from Evolution Strategies and is called (1 + 1)-strategy there [17]: the new
generation is chosen as the best individual of one parent and one child. We always
assume that the objective or Atness function f : {0; 1}n→R has to be maximized here.
Therefore, we can formalize the (1 + 1) EA as follows.

Algorithm 1

1. Set pm := 1=n.
2. Choose randomly an initial bit string x∈{0; 1}n.
3. Repeat the following mutation step:

Compute x′ by 5ipping independently each bit xi with probability pm.
Replace x by x′ i6 f(x′)¿ f(x).

Algorithm 1 is sometimes regarded as a special variant of a hillclimber and is then
said to be a randomized or stochastic hillclimber (cf. e.g. [1]). Like a hillclimber it

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 53

uses only one current point in the search space and never accepts a new point with
inferior function value. Unlike normal hillclimbers the (1 + 1) EA has no clearly
deAned neighborhood, or, stated otherwise, it can reach in one single step any point in
the search space, while the probability of reaching a point decreases with increasing
Hamming distance to the current point.
One may consider the (1+1) EA as a degenerate kind of Simulated Annealing [11],

where the cooling scheme is trivial since the temperature is constant zero. In this case,
again, the probabilistic kind of neighborhood is quite unusual.
We start o< here with some basic deAnitions that will be helpful during the analysis.

More concepts and notions are introduced in the sections, when they are needed.

De�nition 2. A function f : {0; 1}n→R is called a 0tness function. We assume that
f has to be maximized.

De�nition 3. For two bit strings x; y∈{0; 1}n we deAne the Hamming distance of x
and y by

H (x; y) :=
n∑
i=1

|xi − yi|:

A Atness function f : {0; 1}n→R can be written as a polynomial

f(x1; : : : ; xn) =
∑

I⊆{1;:::;n}
cf(I)

∏
i∈I

xi

with coeJcients cf(I)∈R.

De�nition 4. The degree of f is deAned as

deg(f) : max{i ∈ {0; : : : ; n}|∃I with |I | = i and cf(I) �= 0}:

De�nition 5. The expected running time E(T) of the (1+1) EA on a Atness function
f is deAned as the mean of the number of function evaluations of Algorithm 1 before
the current bit string is a global optimum of f. The number of function evaluations
is given by the number of times line 3 is executed increased by 1 for the initial bit
string. We know that the expected running time is inKuenced by the random choice of
the initial bit string and the random mutations.
The expected running time of the (1 + 1) EA on a class of Atness functions F is

deAned as the supremum of the expected running times on f for all f∈F .

The (1+1) EA is deAned without any stopping rule. Therefore, the expected running
time is deAned as the expected time taken to optimize the Atness function. The (1+1)
EA, under many di<erent names as we mentioned above, has already been subject to
various studies. As examples for theoretical investigations we mention three publica-
tions, though undoubtedly a lot of other papers can be found. BOack [2] investigates the
question of which mutation rate should be chosen. MOuhlenbein [15] gives a sharp upper

54 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

bound on the expected running time on a very simple linear Atness function. A number
of di<erent upper bounds on the expected running time, also for more interesting and
challenging functions, are given by Rudolph [17].
In the following section we give a general upper bound on the expected running

time of the (1 + 1) EA for all Atness functions. We demonstrate that Atness functions
exist, that require that amount of time asymptotically. We present a Atness function of
degree 2 that has this worst case property. In Section 3 we prove that Atness functions
of degree one, i.e., linear functions, are always solvable in expected time O(n log n). In
Section 4 we deal with unimodal functions which are a superclass of the linear functions
discussed in Section 3. We derive lower bounds on the expected running time for two
concrete unimodal Atness functions and show that this class has exponential expected
running time in the worst case. After dealing with extreme running times only, in
Section 5 we give a deAnition of n functions where the expected running time for the
mth function is 8(n log n + nm) for 1 6 m 6 n. Finally, in Section 6 we discuss a
variant of Algorithm 1 and demonstrate that very small changes in the algorithm can
cause huge di<erences in the expected running time.

2. Worst case bounds and worst case examples

As we are interested in the eJciency of the (1+1) EA for di<erent Atness functions,
we should compare the expected running time of the (1+1) EA with other optimization
algorithms. The most simple algorithm for function optimization, complete enumeration,
needs 8(2n) steps to And the global optimum of an arbitrary Atness function over n
Boolean variables. In Section 2.1 we show, that the (1+1) EA Ands the global optimum
of every Atness function on average after at most nn steps.
In the Sections 2.2 and 2.3 we present the functions DISTANCE and TRAP and prove

that the expected running time of the (1+1) EA for these functions equals 8(nn). The
function DISTANCE is of degree 2 and our analysis of DISTANCE disproves the conjecture
that small degree implies small running times of the (1+1) EA. Nevertheless, DISTANCE
is not diJcult for variants of the (1 + 1) EA. There is a probability larger than a
constant c¿0 such that the (1 + 1) EA Ands the global optimum of DISTANCE within
O(n log n) steps. Hence, the parallel execution of, e.g., n independent (1 + 1) EAs
will And the optimum of DISTANCE with large probability in polynomial time. If the
number of parallel runs is large enough, namely Q(n log n), even the expected number
of Atness evaluations is polynomially bounded. The function TRAP is of degree n but
for this function the (1 + 1) EA needs time 8(nn) with a probability which is close
to 1. No variant of the (1 + 1) EA can optimize this function eJciently.

2.1. A general upper bound for the expected running time

Theorem 6. The expected running time of the (1 + 1) EA for an arbitrary 0tness
function is at most nn.

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 55

Fig. 1. The function DISTANCE for n=20.

Proof. Let x∈{0; 1}n be an arbitrary bit string and x∗ a global optimum of the Atness
function. As H (x; x∗) 6 n, the probability of mutating from x to x∗ in one step is
(1=n)H (x; x

∗)(1− 1=n)n−H (x; x∗) ¿ n−n. Hence, the expected time until this event occurs
is at most nn. Because this event implies, that a global optimum of the Atness function
is found, the expected running time of the (1 + 1) EA is at most nn.

As in this proof the exact expected running time of the (1 + 1) EA is only roughly
upper bounded, it has not yet been shown that any Atness function exists such that
the (1 + 1) EA needs on average 8(nn) steps for optimizing it. The next subsection
presents an explicit function with this property.

2.2. A function of degree two with expected running time 8(nn)

A Atness function is assumed to be diJcult to be optimized, if it gives “misleading
hints” regarding the position of its global optimum. The (1+ 1) EA most often makes
only small mutations, which are accepted if they do not decrease the Atness function
value. Therefore, the expected running time of the (1 + 1) EA should be large, if for
many bit strings their “neighbors”, i.e., bit strings with small Hamming distance, with
larger Atness lead away from the global optimum.
The function DISTANCE, deAned by

DISTANCE(x1; : : : ; xn) =
(

n∑
i=1

xi −
(
n
2
+
1
3

))2

is of degree 2 and has these properties (see Fig. 1 for n=20).

Theorem 7. The expected running time of the (1+ 1) EA for DISTANCE equals 8(nn)
but the probability that the global optimum is found within O(n log n) steps is bounded
below by (1=2)− � where � is an arbitrary positive constant.

56 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

Proof. First, we investigate the initial bit string x. The number of ones is binomially
distributed with respect to n and 1=2. It follows by Stirling’s formula that, for each
k, the probability that x contains exactly k ones is bounded by O(n−1=2). Hence, the
probability that x has more than (n=2)+n1=4 ones (event I+) as well as the probability
that x has less than (n=2)− n1=4 ones (event I−) is bounded below by 1=2− o(1).
It will be useful to consider also the function x1 + · · · + xn known in the theory

of EAs as ONEMAX (see DeAnition 9). It is known (MOuhlenbein [15] and a simple
proof is contained in Section 3) that the expected running time of the (1 + 1) EA on
ONEMAX is bounded above by cn log n for some constant c.
If the initial bit string x has more than (n=2)+n1=4 ones the (1+1) EA has the same

behavior on ONEMAX and DISTANCE as long as no bit string x′ with at most (n=2)−n1=4

ones is created by mutation.
Starting with more than (n=2)+n1=4 ones, the (1+1) EA accepts for DISTANCE as well

as for ONEMAX no bit string where the number of ones is larger than (n=2)−n1=4 and at
most (n=2)+ n1=4. Hence, a bit string x′ with at most (n=2)− n1=4 ones is only created
if at least 2n1=4 bits Kip simultaneously. The number of Kipping bits is binomially
distributed with respect to n and 1=n and this distribution can be approximated by
the Poisson distribution with parameter �=1. Hence, the probability of at least 2n1=4

Kipping bits is bounded above by 2−Q(n
1=4 log n). Let E be the event that during the Arst

n2 steps it never happens that at least 2n1=4 bits Kip simultaneously. The probability
for this event equals 1− n2 · 2−Q(n1=4 log n) = 1− 2−Q(n1=4 log n).
The upper bound cn log n on the expected running time of the (1+1) EA on ONEMAX

also holds under the condition I+ ∩E which has a probability of 1=2−o(1). This follows
from the simple investigation of ONEMAX in Section 3. By Marko<’s inequality, the
(1+1) EA reaches the optimal bit string for ONEMAX xone consisting of ones only under
the condition I+ ∩ E with probability at least 1 − 1=c′ within c′cn log n steps. Under
the same condition I+ ∩E, the (1+1) EA on DISTANCE reaches xone with probability at
least 1− 1=c′ within c′cn log n steps. Hence, with probability at least 1=2− 1=c′ − o(1)
the (1 + 1) EA reaches xone within c′cn log n and then needs on average nn steps to
reach the optimal bit string xzero consisting of zeros only. This implies the result on
the expected running time.
The same arguments work if we replace I+ by I−. Hence, with probability at least

1=2−1=c′−o(1) the (1+1) EA reaches the optimal string xzero within c′cn log n steps.
The second claim follows if we choose c′ large enough.

2.3. A function where the running time is 8(nn) with large probability

The function TRAP : {0; 1}n→R deAned by

TRAP(x1; : : : ; xn) :=
n∑
i=1

xi + (n+ 1) ·
n∏
i=1
(1− xi)

has been introduced in [1]. Its degree is n and TRAP(x)=ONEMAX(x), if x �= xzero. The
global optimum of TRAP is xzero.

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 57

Theorem 8. For each constant c¡1 there exists a constant �¿0 such that the (1+1)
EA needs for TRAP with probability at least c at least �nn steps.

Proof. The probability that the initial bit string x has at least n=4 ones is 1 − o(1)
(Cherno<’s inequality, see Motwani and Raghavan [14]). The probability that within n2

steps there is no step where at least n=4 bits Kip simultaneously is 1−o(1) (see the proof
of Theorem 7). Since TRAP and ONEMAX only di<er on xzero, we conclude that with
probability 1−o(1) the (1+1) EA reaches xone within n2 steps. Here we have applied
Marko<’s inequality on the expected running time of the (1 + 1) EA for ONEMAX.
Having reached xone only xzero is accepted as a di<erent bit string. The probability that
xzero is not created during �nn − 1 mutations of xone equals (1− n−n)�n

n−1 ¿ e−�. We
choose � small enough such that the error probabilities o(1) and 1− (1−n−n)�n

n−1 are
less than 1− c.

3. Linear functions1

We know from the previous section that Atness functions of degree at least 2 can be
very diJcult for the (1 + 1) EA. Fitness functions of degree 0 are, of course, trivial,
since they are constant. Fitness functions of degree 1 remain as an interesting class of
functions, and they are in fact easy for the (1+ 1) EA as we will prove here. We call
these functions linear, since they can be written as

f(x) = �+
n∑
i=1

wixi (1)

for some �; wi ∈R.
For the analysis in this section we make without loss of generality some assumptions.

Constant additive terms have no inKuence on the behavior of the (1 + 1) EA, so we
assume �=0. We assume that all weights are non-negative. Otherwise one may replace
xi by 1−xi. Furthermore, the weights wi are assumed to be integers. Finally, we assume
that the weights are sorted, i.e., w1 ¿ · · ·¿ wn. It follows that xone is always a global
optimum. Moreover, if all weights are positive, xone is the only global optimum.
Before we consider an arbitrary linear function f, we introduce two special linear

functions that are of particular interest.

De�nition 9. The linear function ONEMAX has all weights set to 1, i.e.,

ONEMAX(x) =
n∑
i=1

xi:

The linear function BIN has set the ith weight according to wi := 2n−i, i.e., BIN interprets
a bit string as binary representation of an integer.

1The results of this section have been presented at the ICEC ’98 [3].

58 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

These two functions are in some sense two extreme examples from the class of linear
functions. The weights of BIN are so strongly decreasing that wi¿

∑n
j=i+1 wj holds for

all i with 1 6 i¡n. This implies that it is always the leftmost Kipping bit alone that
decides whether a mutation is accepted. The weights of ONEMAX are all equal, so that
it is only the number of bits Kipping to one compared with the number of bits Kipping
to zero that decides whether a mutation is accepted.
The function ONEMAX is easy to analyze; upper bounds for the expected running

time have been presented, e.g., by MOuhlenbein [15]. As for all symmetric functions,
mutation steps to bit strings with equal number of ones can be ignored. In successful
steps the number of ones is increased by at least 1, so at most n successful steps are
suJcient. If the number of zeros in the current bit string equals i, the probability for
a successful step is bounded below by

(i
1

)
n−1(1− 1=n)n−1, so we get

n∑
i=1

((
i
1

)
1
n

(
1− 1

n

)n−1)−1
6 en

n∑
i=1

1
i
= O(n ln n)

as an upper bound for the expected running time. A lower bound of equal order of
growth is easy to And, too. Furthermore, it is valid for all linear functions with all
non-zero weights.

Lemma 10. The expected number of steps the (1 + 1) EA takes to optimize a linear
function with all non-zero weights is Q(n ln n).

Proof. By our assumptions all weights wi are positive. Since xone is the only optimum,
it is necessary that each bit that is zero after random initialization Kips at least once.
Hence, the average time until each of these bits has tried to Kip at least once is a
lower bound on the considered expected time. The following considerations are similar
to the example called “coupons collector’s problem” by Motwani and Raghavan [14].
Let T denote the random variable describing the Arst point of time where each of

these bits has tried to Kip at least once. Since T takes only positive integers, we have

E(T) =
∞∑
t=1

t Prob(T = t) =
∞∑
t=1
Prob(T ¿ t):

Without loss of generality n is even. With probability at least 1=2 at least half of the
bits are zero after random initialization. (1− 1=n)t−1 describes the probability that one
bit does not Kip at all in t− 1 steps. So, 1− (1− 1=n)t−1 is the probability that it Kips
at least once in t−1 steps. Therefore, we have (1− (1−1=n)t−1)n=2 as probability that
this is the case with n=2 bits. Finally, 1 − (1 − (1 − 1=n)t−1)n=2 is the probability for
the event that at least one of n=2 bits never Kips in t − 1 steps. So, we have

E(T)¿
1
2

∞∑
t=1


1−

(
1−

(
1− 1

n

)t−1)n=2



S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 59

¿
1
2
(n− 1)(ln n)


1−

(
1−

(
1− 1

n

)(n−1) ln n)n=2



¿
1
2
(n− 1)(ln n)(1− e−1=2) = Q(n ln n):

For BIN an upper bound is harder to And. Since it is only the leftmost Kipping bit
that decides whether a mutation is accepted, the Hamming distance to xone may be
increased during optimization. Even extreme steps like the one from (0; 1; 1; : : : ; 1) to
(1; 0; 0; : : : ; 0) are possible though extremely unlikely.

Lemma 11. The expected number of steps of the (1 + 1) EA on the function BIN is
8(n ln n).

Proof. The lower bound is given in Lemma 10, so we only prove an upper bound.
Without loss of generality n is even. Let T be the random variable describing the

Arst point of time where the (1 + 1) EA reaches xone. We cut up the optimization
process and distinguish the Arst phase of length T1 until the leftmost n=2 bits all are
ones and the second phase of length T2 =T−T1. The reasons for this will be discussed
later.
In order to derive an upper bound on E(T1) we distinguish the mutations: steps that

change at least one of the bits in the left half are called successful. Unsuccessful steps
may only change bits in the right half and are not important for us.
Let Xi be the random variable describing the Arst point of time where the left half

of the current bit string x contains at least i ones, in particular X0 = 0. Then we have

T1 = Xn=2 = (X1 − X0) + (X2 − X1) + · · ·+ (Xn=2 − Xn=2−1):

We distinguish between successful and unsuccessful steps and therefore introduce the
random variable Yi that describes the random number of successful steps in the interval
[Xi−1 +1; : : : ; Xi], as well as Zi that describes the random number of unsuccessful steps
during that period of time. This yields

T1 = Y1 + Z1 + Y2 + Z2 + · · ·+ Yn=2 + Zn=2;

and we can investigate successful and unsuccessful steps separately.
We claim that E(Yi) 6 2. The right half of the bit string has no inKuence on the

random variable Yi and we investigate only the bit strings of the n=2 leftmost bits. We
start with a bit string x0 with i−1 ones and have to estimate the number of successful
steps until we obtain for the Arst time a bit string with more than i − 1 ones. Hence,
we only investigate the (1 + 1) EA on bit strings with at most i − 1 ones.
Let x0; x1; x2; : : : be the sequence of di<erent bit strings produced by the (1 + 1) EA

starting on x0. Let Dj be the random variable describing the di<erence of the number
of ones of xj and xj−1. Then Yi is the Arst point of time t where D1+· · ·+Dt ¿ 1. The

60 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

probability distribution of Dj under the assumption D1+· · ·+Dj−1¡1 can be described
as follows. The bit string xj−1 has at most i−1 ones. The step is successful if and only
if the leftmost Kipping bit is a bit Kipping from 0 to 1. This position p contributes 1
to Dj. Let k 6 n=2− 1 be the number of ones of xj−1 to the right of position p and l
the corresponding number of zeros. Under all the considered assumptions Dj =1− Bj
where Bj =Bj;0−Bj;1 and Bj;0 is binomially distributed with respect to k and 1=n and
Bj;1 is binomially distributed with respect to l and 1=n.
We introduce random variables which are easier to handle and which can be com-

pared with Dj. Let B∗
j be independent random variables which are binomially distributed

with respect to n=2− 1 and 1=n and let D∗
j =1− B∗

j .
It follows that for all possible values of n; j; p; k; l, and r and independently of the

values of B1; : : : ; Bj−1 Prob(B∗
j 6 r)6 Prob(Bj 6 r) and, therefore, Prob(D∗

j 6 r)¿
Prob(Dj 6 r). Let T ∗ be the Arst point of time t where D∗

1 + · · · + D∗
t ¿ 1. Then

Prob(T ∗ 6 t∗)6 Prob(Yi 6 t∗) for all t∗ and E(T ∗)¿ E(Yi). Hence, it is suJcient
to prove that E(T ∗)6 2.
By deAnition, D∗

j 6 1 and E(D∗
j)= 1 − (n=2 − 1)=n¿1=2. Let St =D∗

1 + · · · + D∗
t .

The random variables S0 = 0; S1; S2; : : : describe a random walk on the line which is
homogeneous with respect to time and place. Since D∗

j 6 1, we reach 1 as the Arst
point to the right of the point 0. We stop the random walk whenever we reach the
point 1 and T ∗ is the stopping time of this process. After the Arst step of the random
walk the distance to point 1 is 1−D∗

1 and, because of the homogeneity of the process,
the expected stopping time starting at distance d from point 1 equals dE(T ∗). Hence,

E(T ∗) = 1 +
1∑

d=−n=2+2
Prob(D∗

1 = d)(1− d)E(T ∗)

= 1 + E(T ∗)− E(T ∗)
1∑

d=−n=2+2
dProb(D∗

1 = d)

= 1 + E(T ∗)− E(T ∗)E(D∗
1):

We conclude that E(T ∗)= 1=E(D∗
1), and with E(D

∗
k)¿1=2 for all k we have E(T

∗)6
2. This implies E(Yi) 6 2 for all i. The equality E(T ∗)E(D∗

1)= 1 is known in more
general form in probability theory as Wald’s identity [4]. We remark that if we start
the same proof method without restricting ourselves to the left half of the bit strings,
B∗
j is binomially distributed for n− 1 and 1=n and E(D∗

j)= 1=n is too small to obtain
the desired result.
Now, we look for some lower bound p, for the probability of a successful mutation.

Given p, the average time until we have k successful mutations is at most k=p, so we
have

E(Yi + Zi) =
∑
k
Prob(Yi = k)E(Yi + Zi |Yi = k)

=
∑
k
Prob(Yi = k)

k
p
=

E(Yi)
p

6
2
p
:

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 61

During the steps Xi−1 + 1; : : : ; Xi the number of ones in the left half of x is bounded
above by i− 1. A suJcient condition for a successful step is that all bits equal to one
do not try to Kip and exactly one of the bits equal to zero tries to Kip. The probability
of this event is bounded below by(

n=2− (i − 1)
1

)
1
n

(
1− 1

n

)n=2−1
¿
(n
2
− i + 1

) e−1=2
n

:

Altogether we have

n=2∑
i=1

E(Yi + Zi)6 2
n=2−1∑
i=0

((n
2
− i
) e−1=2

n

)−1

= 2e1=2n
n=2∑
i=1

1
i
6 2e1=2n(ln n+ 1) = O(n ln n):

The investigation of the second phase can be carried out analogously. Only the
probability of a successful step changes, since it is necessary to guarantee that no
bit of the left half of x tries to Kip. We achieve this by replacing (1 − 1=n)n=2−1 by
(1− 1=n)n−1. This yields the upper bound 2en(ln n+ 1), so we have

E(T) = E(T1) + E(T2)6 2(e + e1=2)n(ln n+ 1) = O(n ln n):

For an arbitrary linear function things are a little more complicated. On the one
hand, a bit that Kips from zero to one can have such a large weight that it allows
several other bits to Kip from 1 to 0 simultaneously, as it is the case for BIN. On the
other hand, di<erent to BIN, it may well be true that leading ones are not guaranteed
to remain unchanged, as it is the case with ONEMAX. But the main idea from the proof
of the upper bound on the expected running time for BIN can be carried over: one can
distinguish more and less important bits according to their weights.

Theorem 12. The expected running time of the (1 + 1) EA on the class of linear
functions with non-zero weights is 8(n ln n).

Proof. The lower bound follows from Lemma 10. We prove the upper bound for an
arbitrary linear function f. We have already discussed that without loss of generality
�=0 and w1¿w2¿ · · ·¿wn¿0. We follow the main ideas of the proof of Lemma 11
but the general situation is much more complicated.
We measure the progress of the (1+1) EA on the function f by the artiAcial Atness

function

val(x) = 2
n=2∑
i=1

xi +
n∑

i=n=2+1
xi:

This artiAcial Atness function plays the role of a potential function ' in the analysis
of data structures and algorithms. We investigate the (1+1) EA on f but we measure

62 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

the progress with respect to val. The aim is to prove that steps where the actual string
changes lead to an expected gain which is bounded below by a positive constant.
Therefore, it is necessary that the potential function contains the information that the
Arst half positions are those with the larger weights.
The initial bit string x has the value val(x) which is not negative. The value of

the global optimum equals (3=2)n. A step of the (1 + 1) EA working on the linear
function f is called successful if it produces from x a mutated string x′ which replaces
x (i.e., x′ �= x and f(x′)¿f(x)). Let x be a bit string with val(x)= i¡(3=2)n. We
are interested in the expected number of successful steps until we obtain for the Arst
time a bit string x′ where val(x′)¿val(x). Later we prove that we can upper bound
the expected number independently from x by a constant c∗. Afterwards, it is easy to
bound the expected number of successful and unsuccessful steps. This can be done in
the same way as in the proof of Lemma 11 by proving a lower bound on the probability
of successful steps if the value of the bit string is bounded above by i¡(3=2)n. Then
the number of zeros in the bit string is at least ri= �(3=4)n − (1=2)i� and there exist
at least ri di<erent one bit mutations which increase f. Hence, the success probability
is at least ri(1=n)(1 − 1=n)n−1¿e−1ri=n. Altogether, the expected number of steps to
optimize f is bounded by

(3=2)n−1∑
i=0

c∗
1
ri
en6 2 c∗en2 ·

	(3=4)n
∑
j=1

1
j
= O(n ln n):

The only claim we have to prove is the existence of a constant upper bound on the
expectation of the number of successful steps to increase the value. Let x be a bit string
(not the global optimum) and x′ the random bit string produced by a successful step
based on x. Let S be the random set of indices i where xi=0 and x′i =1. Since the step
was successful, S �= ∅. Let DS(x)= val(x′)− val(x) be the random variable describing
for Axed S the gain with respect to the value function. Our main step is to deAne
a random variable D∗

S (x) which takes integer values, D
∗
S (x)61, and has the property

that Prob(D∗
S (x)6r)¿Prob(DS(x)6r) for all r. We prove that there is some positive

constant d∗ (which does neither depend on x nor on S), such that E(D∗
S (x))¿d∗ holds.

In order to do so, we consider Anitely many cases and choose at the end the smallest
of the considered constants.
The deAnition of D∗

S (x) is complicated. Let us consider DS(x)= val(x′)−val(x). The
contribution of positions i to DS(x) equals
• +2, if xi=0; x′i =1, and i6n=2,
• −2, if xi=1; x′i =0, and i6n=2,
• +1, if xi=0; x′i =1, and i¿n=2,
• −1, if xi=1; x′i =0, and i¿n=2,
• 0, if xi= x′i .
Let p be the minimal element of S. If p6n=2, we only take the negative contributions
of mutations into account and deAne

d∗S(x) := 2− 2|{i 6 n=2 | xi = 1; x′i = 0}| − |{i ¿ n=2 | xi = 1; x′i = 0}|:

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 63

Then D∗
S (x) := min{1; d∗S(x)}. If p¿n=2, we have to be more careful, because ev-

ery bit Kipping from zero to one has only a contribution of 1. Hence, we deAne
D∗
S (x) := min{1; val(x′)− val(x)}.
Is is obvious that, in both cases, D∗

S (x) is an integer, D
∗
S (x)61, and D∗

S (x)6DS(x)
implying that Prob(D∗

S (x)6r)¿Prob(DS(x)6r). We have to prove that E(D∗
S (x))¿d∗

for some positive constant d∗.
Case 1. p6n=2: We know that the mutation from x to x′ is a successful one and

that S is the set of all indices i where xi=0 and x′i =1. Hence, xi=0 and i =∈ S implies
x′i =0.
Let j2 be the number of positions i6n=2 where xi=1 and the mutation where

only xi Kips from 1 to 0 is successful, and let j1 be the corresponding number of
positions i¿n=2. The expected number of Kipping bits among these j2 + j1 bits (under
no condition) is (j2 + j1)=n which leads to an expected contribution of −(2j2 + j1)=n to
d∗S(x). Given the set S of bits Kipping from 0 to 1, if we assume in addition that the
mutation is successful, this may only decrease the number of bits Kipping from 1 to 0.
Therefore, we may estimate the expected contribution of these bits by −(2j2 + j1)=n.
We have shown that E(d∗S(x))¿2− (2j2 + j1)=n. If no bit Kips from 1 to 0, d∗S(x)= 2
but D∗

S (x)= 1. We have to consider the conditional probability that no bit Kips from 1
to 0. It is suJcient to consider the j2 + j1 selected positions. Let C be the event that
the mutation is successful and A be the event that no bit Kips from 1 to 0. Since A
implies C we have Prob(A|C)=Prob(A)=Prob(C). Obviously, Prob(A)= (1−1=n) j2+j1 .
We are interested in upper bounds on Prob(A|C) and, therefore, in lower bounds on
Prob(C). By deAnition

Prob(C)¿
(
1− 1

n

)j2+j1

+ (j2 + j1)
1
n

(
1− 1

n

)j2+j1−1

implying that

Prob(A|C)6 1− 1=n
1− 1=n+ (j2 + j1)=n

6
1

1 + (j2 + j1)=n
:

We conclude that

E(D∗
S (x))¿ E(d∗S(x))− Prob(A|C)¿ 2− 2j2 + j1

n
− 1
1 + (j2 + j1)=n

:

This lower bound for E(D∗
S (x)) is a decreasing function of j2 and j1. Since j26(n=2)−1

by assumption, we can consider the lower bound for j2 = n=2 leading to

E(D∗
S (x))¿ 1− j1

n
− 1
(3=2) + (j1=n)

:

If j16n=3, E(D∗
S (x))¿4=33. If j1¿n=3, we consider the v=(j2+j12) pairs of the consid-

ered positions and denote by v′ the number of these pairs which may Kip from 1 to 0
without making the mutation unsuccessful. If v′¿v=2, the lower bound on Prob(C) can
be increased by (v=2)(1=n2)(1−1=n) j2+j1−2 which is larger than some positive constant.

64 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

Since j1=n61=2; Prob(A|C)6(1=2)−* for some positive constant *, and we are done.
If v′¡v=2, we again use the estimation Prob(A|C)61=2. In this case the upper bound
on the expected number of bits Kipping from 0 to 1 can be improved. The number
of pairs which are not allowed to Kip is at least +n2 for some constant +¿0 and the
probability that exactly one of these pairs tries to Kip from 1 to 0 is bounded below by
some constant +′¿0. Hence, the expected contribution of the bits Kipping from 1 to 0
to D∗

S (x) can be lower bounded by −(2j2 + j1)=n+ +′′¿− 3=2+ +” for some constant
+′′¿0. Altogether, we have proved that E(D∗

S (x))¿d∗ for some positive constant d∗

in Case 1.
Case 2. p¿n=2: Let s= |S|. First, we consider the subcase s¿4. In order to prove

a lower bound on E(D∗
S (x)), we work with the following assumptions which only lead

to smaller values of E(D∗
S (x)). We do not make use of the fact that the step from

x to x′ has to be successful and we assume that xi=1 for all i =∈ S. Then we have
n=2 positions i6n=2 where xi=1 and less then n=2 positions i¿n=2 where xi=1. We
overestimate the number of bits Kipping from 1 to 0 by assuming that we have n=2
positions i¿n=2 where xi=1. The random number Z ′

2 of bits in the Arst half Kipping
from 1 to 0 is binomially distributed with respect to the parameters n=2 and 1=n. The
same holds by our pessimistic assumptions for the random number Z ′

1 of bits in the
second half. It is suJcient to prove a lower bound on E(D∗

S (x)) under the assumption
that the number of bits Kipping from 1 to 0 are given by Z ′

2 and Z ′
1, respectively.

The binomial distribution with parameters n=2 and 1=n can be approximated by the
Poisson distribution with parameter �=1=2. Let Z2 and Z1 be independent random
variables whose distribution is Poisson with parameter �=1=2. We work with Z2 and
Z1 instead of Z ′

2 and Z ′
1, respectively. Later we discuss the mistake caused by this

replacement.
We know that

Prob(Z2 = z2; Z1 = z1) =
1
z2!

(
1
2

)z2

e−1=2
1
z1!

(
1
2

)z1

e−1=2:

In the following we estimate E(D∗
S (x)) under the assumption that the numbers of bits

Kipping from 1 to 0 are given by Z2 and Z1, respectively. This new random variable
is called D∗∗

S (x). The pair (Z2; Z1) of random variables takes values from N0×N0.
Hence,

E(D∗∗
S (x)) =

∑
z2¿0; z1¿0

E(D∗∗
S (x) |Z2 = z2; Z1 = z1) Prob(Z2 = z2; Z1 = z1): (∗)

We partition N0 ×N0 into disjoint sets:
• A1 = {(0; 0)},
• A2 = {(0; z1) | z1¿5},
• A3 = {(1; z1) | z1¿3},
• A4 = {(z2; z1) | z2¿2; z1¿0},
• A5 =N0 ×N0\(A1 ∪ A2 ∪ A3 ∪ A4).

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 65

It is easy to see that
• D∗∗

S (x)= 1, if (z2; z1)∈A1,
• D∗∗

S (x)¿4− z1, if (z2; z1)∈A2,
• D∗∗

S (x)¿2− z1, if (z2; z1)∈A3,
• D∗∗

S (x)¿4− 2z2 − z1, if (z2; z1)∈A4,
• D∗∗

S (x)¿0, if (z2; z1)∈A5.
Let coni ; 16i65, be the contribution of all terms (z2; z1)∈Ai to the sum (∗). Then
• con1¿e−1,
• con2¿

∑
z1¿5(4− z1)(1=z1!)(12)

z1e−1¿− 1
1920 e

−1,
• con3¿

∑
z1¿3(2− z1)(1=z1!)(12)

z1+1e−1¿− 1
48 e

−1,
• con4¿

∑
z2¿2

∑
z1¿0(4− 2z2 − z1)(1=z2!z1!)(12)

z2+z1e−1¿− 53
192 e

−1,
• con5¿0.
Hence,

E(D∗∗
S (x))¿

1349
1920

e−1:

However, we are interested in an estimate of E(D∗
S (x)). We estimate the mistake by

replacing the random variables Z ′
1 and Z

′
2 which are binomially distributed with respect

to n=2 and 1=n with the random variables Z1 and Z2, respectively, with a Poisson
distribution with respect to 1=2. In the subcase s¿4 as in the later subcases we only
consider terms

Prob(Z ′
i = r) and r Prob(Z ′

i = r) for some r 6 4;∑
j¿r

Prob(Z ′
i = j) and

∑
j¿r

j Prob(Z ′
i = j) for some r 6 5

and Anite combinations of these terms. It is well-known that for constant � and param-
eters n and p(n) for the binomial distribution where np(n)→ � as n→∞ the binomial
distribution converges against the Poisson distribution. In our case the product of the
parameters of the binomial distribution equals �=1=2. Hence, for each �¿0 and n
large enough

|Prob(Z ′
i = r)− Prob(Zi = r)|6 �

and

|r Prob(Z ′
i = r)− r Prob(Zi = r)|6 �

for all r 6 4. Since∑
j¿0

Prob(Z ′
i = j) =

∑
j¿0

Prob(Zi = j) = 1

and ∑
j¿0

j Prob(Z ′
i = j) =

∑
j¿0

j Prob(Zi = j) = 1=2;

we can also estimate the corresponding di<erences of the sums
∑

j¿r by �. Hence, for
large n, the mistake in each coni is smaller than any given constant and this holds also
for the sum of a constant number of these mistakes.

66 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

For the subcases s∈{1; 2; 3}, we are more careful by excluding cases which nec-
essarily lead to unsuccessful steps. A step cannot be successful if z2¿s or z2 = s and
z1¿0. Hence, we consider only steps where z26s− 1 or z2 = s and z1 = 0. Let +s be
the probability that z26s − 1 or z2 = s and z1 = 0. We follow the same approach as
in the subcase s¿4, the probability of the event (Z2 = z2; Z1 = z1) under the condition
Z26s − 1 or Z2 = s and Z1 = 0 is equal to the product of +−1s and the unconditional
probability of the event (Z2 = z2; Z1 = z1).
For s=1, we partition the set of pairs (z2; z1) where z260 or z2 = 1 and z1 = 0 into

• A1 = {(0; 0)},
• A2 = {(1; 0)},
• A3 = {(0; z1) | z1¿1}.
It is easy to see that
• D∗∗

S (x)= 1, if (z2; z1)∈A1,
• D∗∗

S (x)=−1, if (z2; z1)∈A2,
• D∗∗

S (x)= 1− z1, if (z2; z1)∈A3.
Then
• con1 = e−1+−11 ,
• con2 =− 1

2 e
−1+−11 ,

• con3¿
∑

z1¿1(1− z1)(1=z1!)(12)
z1e−1+−11 ¿− 1

4 e
−1+−11 .

Hence, E(D∗
S (x)) is also in this subcase bounded below by a positive constant, if n is

large enough.
For s=2 we partition the set of pairs (z2; z1) where z261 or z2 = 2 and z1 = 0 into

• A1 = {(0; 0)},
• A2 = {(1; 0); (2; 0)},
• A3 = {(0; z1); (1; z1) | z1¿1}.
It is not diJcult to see that we have
• D∗∗

S (x)= 1, if (z2; z1)∈A1,
• D∗∗

S (x)= 2− 2z2, if (z2; z1)∈A2,
• D∗∗

S (x)= 2− 2z2 − z1, if (z2; z1)∈A3.
Then
• con1 = e−1+−12 ,
• con2 =−218e−1+−12 =− 1

4 e
−1+−12 ,

•

con3¿

(∑
z1¿2

(2− z1)
1
z1!

(
1
2

)z1

e−1+−12

)
+

(∑
z1¿1

−z1 1
(z1)!

(
1
2

)z1+1

e−1+−12

)

¿
(
− 1
24

− 5
12

)
e−1+−12 = −11

24
e−1+−12 :

Thereby, E(D∗
S (x)) is lower bounded by a positive constant in this subcase, too.

For s=3 we partition the set of pairs (z2; z1) where z162 or z2 = 3 and z1 = 0 into
• A1 = {(0; 0)},
• A2 = {(0; z1) | z1¿3},

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 67

• A3 = {(1; z1) | z1¿1},
• A4 = {(2; z1) | z1¿0},
• A5 = {(3; 0)},
• A6 = {(1; 0); (0; 1); (0; 2)}.
It is easy to see that
• D∗∗

S (x)= 1, if (z2; z1)∈A1,
• D∗∗

S (x)= 3− z1, if (z2; z1)∈A2,
• D∗∗

S (x)= 1− z1, if (z2; z1)∈A3,
• D∗∗

S (x)=−1− z1, if (z2; z1)∈A4,
• D∗∗

S (x)=−3, if (z2; z1)∈A5,
• D∗∗

S (x)¿0, if (z1; z2)∈A6.
This leads to
• con1 = e−1+−13 ,
• con2 =

∑
z1¿3 (3− z1)(1=z1!)(12)

z1e−1+−13 ¿− 1
192 e

−1+−13 ,
• con3 =

∑
z1¿1 (1− z1)(1=z1!)(12)

z1+1e−1+−13 ¿− 1
8 e

−1+−13 ,
• con4 =−

∑
z1¿0 (1 + z1)(1=z1! · 2!) (12)z1+2e−1+−13 ¿− 1

3 e
−1+−13 ,

• con5 =− 3
48 e

−1+−13 ,
• con6¿0,
as contributions for the subcase s=3. Obviously, E(D∗

S (x)) is bounded below by a
positive constant also in this last subcase.
Altogether, D∗

S (x) has all desired properties and, in particular, E(D
∗
S (x))¿d∗ for

some positive constant d∗ if n is large enough.
Let T ∗(x) be the random variable describing the Arst point of time where the

value of the bit string produced by successful steps of the (1 + 1) EA on the lin-
ear function f starting at x is larger than val(x). We claim that E(T ∗(x))6c∗ := 1=d∗.
We prove this claim by considering the changes of val. We investigate the stochas-
tic process related to the (1+1) EA on f where the initial string is X0 = x. Let
X0; X1; X2; : : : ; be the sequence of actual strings created by successful steps. Then
we look for the Arst point of time t where Yt := val(Xt) − val(X0) takes a positive
value. The sequence Y0; Y1; Y2; : : : is a stochastic process on Z. The distribution of
Yt+1 − Yt for some given value of Xt = x′ (and, therefore, also Yt) is described by
the random variable D(x′) which equals DS(x′) if S is the set of positions Kipping
from 0 to 1. We have shown that we obtain an upper bound on T ∗(x) if we re-
place D(x′) with D∗(x′) (and DS(x′) with D∗

S (x
′)). Since D∗(x)61, the Arst pos-

itive value reached by this new process is the point 1. We cannot apply Wald’s
identity, since D∗(x′) depends on x′. Therefore, we need a slight generalization of
Wald’s identity. We prove the claim by induction on val(x). The base of induction,
val(x)= 0, considers the all-zero string and is obvious, since each successful step
leads to a positive value of val. Let the claim be true for all x′ where val(x′)¡k
and let x be one of the strings where val(x)= k and where among these strings
E(T ∗(x)) is maximal. If D∗(x)= 1, we are done after one step. If D∗(x)=d60, we
need by the induction hypothesis on average at most −dc∗ steps until we reach 0
again. Moreover, we need at most an expected number of E(T ∗(x)) steps to reach 1.

68 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

Hence,

E(T ∗(x))6 1 + Prob(D∗(x) �= 1) · E(T ∗(x))− ∑
d60

Prob(D∗(x) = d)dc∗

= 1 + Prob(D∗(x) �= 1) · E(T ∗(x))− ∑
d61

Prob(D∗(x) = d)dc∗

+ c∗ Prob(D∗(x) = 1)

= 1 + E(T ∗(x))− E(T ∗(x)) Prob(D∗(x) = 1)− E(D∗(x))c∗

+ c∗ Prob(D∗(x) = 1):

This implies

E(T ∗(x)) Prob(D∗(x) = 1)6 1− E(D∗(x))c∗ + c∗ Prob(D∗(x) = 1)

6 c∗ Prob(D∗(x) = 1):

This last inequality follows, since E(D∗(x))¿d∗=1=c∗. Since Prob(D∗(x)= 1)¿0, we
obtain the desired result E(T ∗(x))6c∗. This proves the theorem.

We see that the (1 + 1) EA optimizes linear functions quite eJciently. One may
ask whether the performance depends on the mutation probability pm, whether the
performance can be improved substantially by using other values than 1=n for pm.
The “correct” mutation probability has already been subject to some research, see,

e.g., [2]. The choice of pm=1=n is the most often recommended one, but the reasoning
is basically based on experimental experience. We prove here that mutation probabilities
of c=n for positive constants c are optimal for linear functions and that much smaller
or larger probabilities increase the expected running time.
For much smaller mutation probabilities, we expect that the waiting time until all

bits have tried to Kip becomes too long. For much larger mutation probabilities, in
each step on average a lot of bits try to Kip, so we expect the probabilities of
successful steps may become too small. We justify this reasoning by two formal
statements.

Theorem 13. The (1+1) EA with mutation probability pm=(+(n)n)−1; where +(n)→
∞ for n→∞; needs on average Q(+(n)n ln n) steps until it reaches the optimal value
of a linear function with positive weights.

Proof. With probability at least 1=2 we have at least n=2 zeros in the initial bit string.
The following analysis works under this condition. As in the proof of Lemma 10 let
T be the random variable describing the Arst point of time where each of the n=2 zero
bits has tried to Kip. If Prob(T¿t)¿c for some constant c and all t6+(n)n ln n− ln n,
then the theorem follows. Let t=(n+(n) − 1) ln n. Then (1 − 1=n+(n))t¿e− ln n=1=n

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 69

and

Prob(T ¿ t + 1) = 1−
(
1−

(
1− 1

n+(n)

)t
)n=2

¿ 1−
(
1− 1

n

)n=2

¿ 1− e−1=2:

Theorem 14. The (1+1) EA with mutation probability pm= +(n)=n; where +(n)→∞
for n→∞; needs on average Q(+(n)n ln n) steps until it reaches the optimal value of
ONEMAX.

Proof. The probability that the initial string has less then n=3 ones is exponentially
small. Otherwise, we always have at least n=3 ones. None of these ones Kips during
the last step creating the optimal all-one string. Hence, the expected running time in
this case is at least the reciprocal value of the probability that n=3 speciAed bits do
not Kip. Hence, we get the lower bound

(1− o(1))
(
1− +(n)

n

)−n=3

¿ ec+(n)

for some constant c¿0. Since +(n)n ln n6e3 ln n, we get the claimed bound if +(n)
¿ 3c−1 ln n.
If +(n)=O(log n), we only investigate the time interval I starting with the Arst point

of time where the current string x∗ has at least n−n1=2 ones. Let A be the event that x∗

has at most n− n1=2=4 ones. We prove the bound by showing that Prob(A)= 1− o(1)
and that the expected running time given A is bounded by Q(+(n)n ln n).
First, we prove that Prob(A)= 1 − o(1). The probability that the initial string has

more than n−n1=2 ones is exponentially small. Since pm=O((log n)=n), the probability
that less than a fraction of 3=4 of the former zeros Kips is 1− o(1).
Now we estimate the expected running time given A. The probability of at least Ave

Kipping zeros is bounded above by

(
n1=2

5

)(
+(n)
n

)5
=O((log n)5n−5=2):

If such a step happens within +(n)n ln n steps, we estimate the running time by 0.
Otherwise, i.e., with probability 1− o(1), the probability of increasing the number of
ones during a step with a current string with N zeros is

∑
06j¡i64

(
N
i

)
pi
m

(
n− N
j

)
pj
m(1− pm)n−i−j

6
∑

06j¡i64
Ninj

(
+(n)
n

)i+j

e−Q(+(n)) = Nn−1+(n)7e−Q(+(n)):

70 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

Hence, the expected waiting time to increase the number of ones is

(1=N)n+(n)−7eQ(+(n)) = (1=N)Q(+(n) · n):

Since the number of ones is increased by our assumptions in each step at most by an
additive term of 4, the expected running time of the (1 + 1) EA is at least

(
1
4
+
1
8
+
1
12
+ · · ·+ 1

r

)
Q(+(n)n);

where r is the largest multiple of 4 smaller than n1=2=4 and, therefore, the lower bound
is Q(+(n)n ln n).

4. Unimodal functions

Linear functions are our Arst example of a class of functions where the (1 + 1) EA
is expected to And the global optimum quite eJciently. Of course, we would like to
identify more and larger classes of functions where some polynomial upper bound on
the expected running time can be given. Since we know from Section 2 that already
functions with degree 2 can be most diJcult for the (1 + 1) EA, we need some other
criterion to recognize a Atness function as easy.
In this section we consider unimodal functions. Since we are considering Atness

functions with Boolean inputs, it is not totally obvious how “unimodal” should be
deAned. In fact, there are di<erent deAnitions in the literature which yield quite di<erent
classes of functions. Here, we use that deAnition which appears to be the most natural
one.

De�nition 15. Let f : {0; 1}n→R be a Atness function. We call x∈{0; 1}n a local
maximum, i<

∀y ∈ {0; 1}n : H (x; y) = 1⇒ f(y)6 f(x):

The function f is unimodal i< f has exactly one local maximum.

Obviously, all linear functions with all nonzero weights are unimodal. Moreover, the
most striking similarity between unimodal and linear functions is that for all x∈{0; 1}n
that are not the global optimum there is always another point with Hamming distance 1
with greater Atness. So there is always a mutation of exactly one bit that improves the
function value. This leads MOuhlenbein [15] to the remark that all unimodal functions
can be optimized by the (1+1) EA in expected O(n log n) steps without clearly deAning
his notion of unimodality. We take unimodal to be deAned as above and disprove this
claim in this section.

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 71

4.1. A quadratic lower bound for a unimodal 0tness function

Already Rudolph [17] doubts MOuhlenbein’s claim and presents a Atness function and
believes that the (1 + 1) EA has expected running time 8(n2) on that function. He
proves an upper bound of O(n2) steps and presents experiments that conArm the lower
bound, but does not give a formal proof. We use his example and present the lower
bound.

De�nition 16. The function LEADINGONES: {0; 1}n→R is deAned by

LEADINGONES(x1; : : : ; xn) :=
n∑
i=1

i∏
j=1

xj:

The function value of LEADINGONES(x) equals the number of leading ones in x. Since
the function value can always be increased by appending a single one to the leading
ones, LEADINGONES is obviously unimodal. The (1 + 1) EA accepts a mutation i< the
number of leading ones is not decreased by this mutation.

Theorem 17. The expected running time for the (1 + 1) EA on the function LEADING
ONES is 8(n2). Moreover; there are constants c1; c2¿0 such that the probability that
the running time of the (1+1) EA on LEADINGONES is outside the interval [c1n2; c2n2]
is exponentially small.

Proof. We repeat the easy proof of the upper bound. If x is not optimal, the number
of leading ones is increased i< the Arst zero in x Kips and no bit among the leading
ones Kips. The probability of such a success is bounded below by 1=n(1− 1=n)n−1 ¿
e−1=n. It is obvious that we have reached the optimum after at most n successes. The
expected time for n successes is bounded above by en2. By Cherno<’s bounds, the
probability of not having reached the optimum after 2en2 steps is bounded above by
exp(−n=4).
For the lower bound we investigate the stochastic process behind the (1 + 1) EA.

Let i be the number of leading ones of the current string x. If i= n, we are done.
If i¡n, xi+1 =0. We claim that (xi+2; : : : ; xn) is a random string uniformly distributed
over {0; 1}n−i−1. This obviously holds for the initial string. We assume that it holds
for the current string x. The new string x′ is accepted i< the Arst i bits have not Kipped.
It is obvious that the random mutation of a random string leads to a random string,
i.e., (x′i+2; : : : ; x

′
n) also is random. If the parameter i changes, it increases and the suJx

after the Arst 0 is still random.
Let i be the number of leading ones of the current string x. The probability that we

increase the number of leading ones during the next step is bounded above by 1=n,
since it is necessary that the bit at position i + 1 Kips. Such steps are called essen-
tial. We have k “free-riders”, if exactly the k leading bits of the string (x′i+2; : : : ; x

′
n)

are ones. Since this is a random string the expected number of free-riders is less
than 1.

72 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

We prove that with high probability n2=6 steps are not suJcient to reach the optimum
for LEADINGONES. We consider two types of “failures”:
– there are at least n=3 essential steps,
– there are more than 2n=3 free-riders during n=3 occasions.
If we have less than n=3 essential steps, we have at most n=3 occasions where we
may have free-riders. If the number of free-riders is bounded by 2n=3 and the number
of essential steps is less than n=3, the optimization process is not Anished. We use
Cherno<’s bounds to estimate the failure probability. The Arst failure probability is
bounded above by (e=4)n=6 and is exponentially small. For the second failure, we
consider a random 0–1-string of arbitrary length with the following interpretation. The
number of ones between the (i − 1)th and the ith zero, where i ¿ 1, is the number
of free-riders during the ith occasion. We have seen above that the random number of
leading ones of an initial string describes the random number of free-riders (besides the
fact that our string has bounded length n). If and only if the random string has less than
n=3 zeros among the Arst n positions, the number of free-riders during n=3 occasions
is larger than 2n=3. The probability of this event is bounded above by exp(−n=36) and
is exponentially small. Hence, the probability that the number of steps is at least n2=6
is exponentially close to 1 and this implies the lower bound on the expected time.

4.2. An exponential lower bound for a unimodal 0tness function

It is obvious that the (1 + 1) EA reaches the optimum of a unimodal function
with k di<erent function values after an expected number of O(kn) steps [17]. For
unimodal functions there is always at least one possible mutation that increases the
function value and requires only the mutation of exactly one bit. Since such mutations
have probability (1=n)(1 − 1=n)n−1, the expected time until such a mutation occurs is
bounded above by en. At most k such mutations are suJcient, so the bound O(kn)
follows. To enforce large expected running times on unimodal functions one needs a
Atness function where only a large number of 1 bit mutations is suJcient to reach the
optimum by such “small steps”. The idea is to construct functions where only a “path”
to the optimum exists: a path is a sequence of bit strings that are all reachable via
mutations of exactly one bit such that this mutation is the only mutation of exactly one
bit that is accepted. If this path is exponentially long, one may hope that the (1 + 1)
EA needs exponentially many steps to And the optimum in the expected case.
Such long paths were introduced by Horn et al. [9]. They performed several ex-

periments and compared the (1 + 1) EA and some other hillclimbers with a Genetic
Algorithm. Though they were convinced to observe exponential running times of the
(1 + 1) EA, Rudolph [18] proved that the expected running time is only O(n3). The
problem is that already a mutation of two bits simultaneously enables the (1 + 1)
EA to take a shortcut and this reduces the number of required steps dramatically. To
overcome this problem Rudolph [17] formally deAnes a variant of long paths (already
informally described by Horn et al. [9], such that no mutation of at most k bits is
suJcient to take a short cut. These paths are called long k-paths. The parameter k can

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 73

be chosen, though with increasing k the length of the path decreases. We start with
deAning long k-paths and a few simple statements about them that are taken from [17].

De�nition 18. Let n ¿ 1 hold. For all k¿1 where (n − 1)=k ∈N the long k-path of
dimension n is a sequence of bit strings from {0; 1}n. The long k-path of dimension
1 is deAned as Pk

1 := (0; 1). The long k-path of dimension n is deAned using the long
k-path of dimension n− k as basis as follows. Let the long k-path of dimension n− k
be given by Pk

n−k =(v1; : : : ; vl). Then we deAne the sequences of bit strings S0; Bn,
and S1 from {0; 1}n, where S0 := (0 kv1; 0 kv2; : : : ; 0 kvl); S1 := (1kvl; 1kvl−1; : : : ; 1kv1),
and Bn := (0 k−11vl; 0 k−211vl; : : : ; 01k−1vl). The points in Bn build a bridge between
the points in S0 and S1, that di<er in the k leading bits. Therefore, the points in Bn are
called bridge points. The resulting long k-path Pk

n is constructed by appending S0; Bn,
and S1, so Pk

n is a sequence of |Pk
n |= |S0|+ |Bn|+ |S1| points. We call |Pk

n | the length
of Pk

n . The ith point on the path Pk
n is denoted as pi; pi+j is called the jth successor

of pi.

The recursive deAnition of long k-paths allows us to determine the length of the
paths easily. We remark that it is for our purpose more convenient to deAne the length
of a path by the number of nodes on the path and not (as usual) by the number of
edges.

Lemma 19. The long k-path of dimension n has length |Pk
n |=(k +1)2(n−1)=k − k +1.

All points of the path are di6erent.

Proof. For n=1 the length is (k +1)20− k +1=2. Let the statement hold for values
smaller than n. By deAnition of long k-paths we have |Pk

n |=2|Pk
n−k |+ k − 1=2(k +

1)2(n−k−1)=k − 2k + 2+ k − 1= (k + 1)2(n−1)=k − k + 1. By deAnition all points on the
path are di<erent.

The most important property of long k-paths is the simple rule that holds for the
Hamming distances between each point and its successors.

Lemma 20. Let n and k be given such that the long k-path Pk
n is well de0ned. For

all i with 0¡i¡k the following holds. If x∈Pk
n has at least i di6erent successors on

the path; the ith successor of x has Hamming distance i of x and all other points on
the path that are successors of x have Hamming distances di6erent from i.

Proof. The statement is obviously true for n=1 and all values of k. Assume that it
holds for Pk

n−k . We know that Pk
n is constructed by appending S0; Bn, and S1, with

|Pk
n |=(k + 1)2(n−1)=k − k + 1; |S0|= |S1|=(k + 1)2(n−k−1)=k − k + 1, and |Bn|= k − 1.

Let x be the pth point of Pk
n . We distinguish several cases according to the value of p.

If p¡|S0| and p+ i 6 |S0|, the Hamming distance between x and its ith successor
on the path equals i by the induction hypothesis. The last point belonging to S0 has by
induction hypothesis a Hamming distance of at least i from x. Hence, the Hamming

74 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

distance between x and points on the bridge is larger than i and all points from S1
have a Hamming distance of at least k¿i from the points of S0.
If p6 |S0| and |S0|¡p+ i 6 |S0|+ |Bn|, the Hamming distance from x to the last

point in S0 is |S0| −p which is at least 0 and less than k by the assumption 0¡i¡k.
By deAnition of Bn, the jth point in Bn di<ers from the last point of S0 in j bits, so
there is exactly one point in Bn with Hamming distance i. All points in S1 have greater
Hamming distance, since the Arst k bits of points in S0 and S1 are all di<erent.
If |S0|¡p¡|S0|+ |Bn| and p+ i 6 |S0|+ |Bn|, the statement is obviously true. All

points in Bn just di<er on the Arst k bits, the Hamming distance of any point to its
jth successor is j so x has exactly one successor in Bn with Hamming distance i. All
points in S1 have greater Hamming distance.
If |S0|¡p6 |S0|+ |Bn| and |S0|+ |Bn|¡p+ i hold, let j= |S0|+ |Bn| −p+1. The

(p + j)th point x′ on the path has a Hamming distance of j from x and a Hamming
distance of i − j from the ith successor of x on the path. The result follows, since
the Hamming distance of each point x′′ from S1 to x is by an additive term j larger
than the Hamming distance of x′′ to x′. This implies the statement by the induction
hypothesis.
Finally, if |S0|+ |Bn|¡p, the statement holds by assumption, since S1 has the same

structure as Pk
n−k .

We are interested in unimodal Atness functions, so for a Atness function f: {0; 1}n →
R exactly 2n function values have to be deAned. Since the long k-path of dimension n
consists of only (k+1)2(n−1)=k−k+1 points, we have to embed this path in a unimodal
function. The following deAnition di<ers from the one given by Rudolph [17] in the
way bit strings not belonging to the long k-path are treated. This little modiAcation
simpliAes the lower bound proof while it does not matter for the upper bounds that
were already given by Rudolph.

De�nition 21. Let n ¿ 1 hold, let k¿1 be given such that k satisAes (n − 1)=k ∈N.
The long k-path function of dimension n is called PATHk : {0; 1}n → N and is deAned
by

PATHk(x) =

{
n2 + l if x is the lth point of Pk

n ;

n2 − n
∑k

i=1 xi −
∑n

i=k+1 xi if x =∈ Pk
n :

We have already mentioned that a Atness function f is unimodal i< for all points
x∈{0; 1}n either x is the global maximum or there exists y∈{0; 1}n with H (x; y)= 1,
such that f(x)¡f(y) holds. For PATHk this is obviously the case. For all points on the
path except the last one, which is the global optimum, this holds, since there is always
one successor on the path with Hamming distance exactly 1 according to Lemma 20.
For points not on the path decreasing the number of ones by 1 always yields a bit
string with increased function value. By DeAnition 18 it is obvious that the all-zero bit
string is the Arst point on the path.

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 75

Rudolph [17] establishes two upper bounds on the expected running time that both
yield exponential values for k =

√
n− 1, so he speculates that the expected running

time may in fact be exponential for this choice of k. We prove this here, and thereby
answer the open question, whether unimodal functions exist, on which the (1 + 1) EA
has exponential expected running time.

Lemma 22 (Rudolph[17]). The expected running time of the (1+ 1) EA on PATHk is
bounded above by O(nk+1=k) and O(n|Pk

n |).

Proof. During a run of the (1 + 1) EA the function values of the current string never
decrease. We divide a run of the algorithm into two di<erent phases. In the Arst phase
after random initialization the long k-path is reached. Note, that once the path is reached
it cannot be left again. In the second phase the global optimum of Pk

n is found. We
denote the number of steps in the Arst phase by T1 and in the second phase by T2.
We prove an upper bound on E(T1) and two upper bounds on E(T2).
The Arst phase starts with some point that does not belong to the path. Otherwise

T1 = 0. The Arst phase ends when a point on the path is reached for the Arst time.
The function PATHk restricted to the points not on the path is linear with weights
w1 = · · · =wk =−n; wk+1 = · · · =wn=−1, and the constant additive term �= n2 (see
Eq. (1)). Moreover, all points on the path have larger Atness. Hence, the expected
time to reach a point on the path is not larger than the expected time to optimize the
described linear function. We conclude from Theorem 12 that E(T1)=O(n log n) holds.
Since k¿1; n log n=O(nk+1=k). If k = n− 1, we have |Pk

n |=2n− (n− 1)+1=Q(n).
Otherwise, we have k 6 (n− 1)=2. The long k-path of dimension n P k

n is constructed
recursively based on Pk

n−k . In each construction step a “bridge” of length k − 1 is
inserted. There are ((n − 1)=k) − 1 recursive construction steps. Thereby, we have
|Pk
n |¿ ((n− k − 1)=k)(k − 1)=Q(n) in this case. Hence, the length of Pk

n is always
Q(n) and n log n=O(n|Pk

n |).
In order to estimate E(T2) we use the following approach. The path Pk

n =(a1; a2; : : : ;
al) where l= |Pk

n | is divided into r consecutive subpaths U1; : : : ; Ur where Ur = {al}
only consists of the global optimum. Let p∗ be a lower bound on the probability of
reaching a point in Ui+1 ∪ · · · ∪ Ur from a point in Ui for all i. This implies the
upper bound (r − 1)=p∗ on E(T2), since from Ui only steps to Ui ∪ · · · ∪ Ur are
accepted.
For the Arst upper bound set r= l and Ui= {ai}. Since ai+1 has Hamming distance

1 from ai; p∗ ¿ (1=n)(1− 1=n)n−1 ¿ 1=(en) in this case and E(T2)=O(n|Pk
n |).

For the second upper bound set r=(n−1)=k+2. The path Pk
n is constructed from two

“copies” of Pk
n−k denoted by S0 and S1 and a bridge between them. Let U1 contain

S0 and the bridge. Then we follow this approach to construct U1; : : : ; Ur for S1. At
the end we obtain a path of length 2 and Ur−1 and Ur contain the points of this
path. The crucial observation is that for each point a in S0 or the bridge there is a
point b in S1 such that the Hamming distance between a and b is at most k. Hence,
p∗ ¿ (1=n) k(1− 1=n)n−k ¿ 1=(enk) in this case and E(T2)=O(nk+1=k).

76 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

Theorem 23. The expected running time of the (1+1) EA on PATH√n−1 is 8(n3=22
√
n).

Proof. For k =
√
n− 1 we have |Pk

n |=(k + 1)2k − k + 1 according to Lemma 19, so
the upper bound follows directly from Lemma 22.
For the lower bound we reconsider the Arst phase until a point x∗ on Pk

n =(a1; : : : ; al)
is reached and the second phase until the optimum is reached. For the Arst phase we
use the trivial lower bound 0 for the running time. We claim that the probability that
x∗ belongs to the Arst part S0 of Pk

n or to the bridge Bn is at least 1=4 (this bound can
be improved to 1=2). For this reason we denote the points of S0 by 0 kv1; : : : ; 0 kvl. By
deAnition, S1 contains the points 1kvl; : : : ; 1kv1. The probability that the initial bit string
x contains at least k=2 zeros among the Arst k bits is at least 1=2. In the following
we assume that this event has occurred. As long as no point of Pk

n is reached, the
deAnition of PATHk implies that the number of zeros at the Arst k=2 positions does
not decrease. Hence, the probability of creating 0 kvi by mutation is always at least
as large as the probability of creating 1kvl−i+1. It remains to prove the lower bound
Q(n3=22

√
n) on the expected running time under the assumption that we start from a

point ai belonging to S0 or Bn.
Let aj be an arbitrary point from Pk

n . Only the points aj; : : : ; al have at least the
same Atness as aj. Hence, after one step we have reached some point am where m¿ j.
The progress caused by this step is measured by m − j and we claim (for large n)
that the expected progress can be estimated by 2=n (independently of j). Here we use
the facts contained in Lemma 20. With probability (1=n)r(1 − 1=n)n−r 6 (1=n)r the
mutation of aj results in aj+r if j + r 6 l and 16 r 6 k − 1. In order to reach one
of the points aj+k ; : : : ; al at least k bits have to Kip. The probability for this event is
bounded above by

(n
k

)
(1=n) k 6 1=k!. In this case the progress is bounded by the trivial

bound |Pk
n |. In all other cases the progress is zero. Hence, the expected progress can

be estimated by
k−1∑
r=1

r
nr
+
1
k!
|Pk

n |:

Using the formulas for geometric series we obtain
k−1∑
r=1

r
nr

¡
∞∑
r=1

∞∑
j=r

1
nj
=

n
(n− 1)2 =

1
n− 1 +

1
(n− 1)2 :

Using Lemma 19 and the fact k =
√
n− 1 we obtain that

|Pk
n |6 (k + 1)2(n−1)=k = 2O(

√
n)

and, by Stirling’s formula,

k! = 2Q(
√
n log n):

Hence, the expected progress can be estimated by
1

n− 1 +
1

(n− 1)2 + 2
−Q(√n log n)

which is at most 2=n for large n.

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 77

Fig. 2. The function JUMPm; n for n=40 and m=6.

Under the condition that x∗ does not belong to S1, the necessary progress is at least
|S1|= |Pk

n−k |¿ k2(n−k−1)=k ¿ c
√
n2

√
n for some constant c¿0. The expected progress

within (1=4)cn3=22
√
n steps is bounded above by (1=2)c

√
n2

√
n and, by Marko<’s in-

equality, the probability that the global optimum is reached within (1=4)cn3=22
√
n steps

is bounded above by 1=2. Altogether, we have proved the proposed lower bound.

5. Enforcing expected running times

We have a class of Atness functions which the (1 + 1) EA optimizes eJciently,
and we know several examples where the expected running time of the (1 + 1) EA is
exponential. In this section we deAne n di<erent Atness functions JUMP1; n; : : : ; JUMPn; n,
where the expected running time is 8(nm + n log n) for JUMPm;n. So we can enforce
a large variety of di<erent expected running times. This result can be interpreted as a
hierarchy result for the performance of the (1 + 1) EA. Each additional factor n for
a permitted upper bound on the expected time enlarges the class of functions which
can be optimized. The construction of the functions JUMPm;n is done in a way that
shows the understanding of the way Algorithm 1 works. The main idea is to use a
construction similar to the TRAP-function, but to adjust the distance between the local
and the global maximum, so that the expected running time, that is dominated by the
time for the jump over that distance, can be controlled. The function JUMPm;n, which
is given in the following deAnition, is visualized in Fig. 2 for n=40 and m=6. With

78 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

growing m the size of the gap widens, for m= n the function JUMPn; n equals TRAP. For
m=1 we get the linear function ONEMAX.

De�nition 24. Given n with n¿1 and m∈{1; 2; : : : ; n}, let the function JUMPm;n: {0; 1}n
→ R be deAned by

JUMPm;n(x) :=

{
m+

∑n
i=1 xi if

∑n
i=1 xi 6 n− m or

∑n
i=1 xi = n;

n−∑n
i=1 xi otherwise:

Theorem 25. The expected running time of the (1 + 1) EA on JUMPm;n is 8(nm +
n log n) for m∈{1; 2; : : : ; n}.

Proof. In this proof we omit the subscript n in JUMPm;n. As we mentioned above, for
m=1 the function JUMP1 essentially equals ONEMAX (in fact it gives ONEMAX+1), so
the expected running time 8(n log n) follows from the results of Section 3.
Now we assume that m¿1 holds. We partition the search space into three disjoint

sets A1; A2, and A3 with

A1 :=
{
x ∈ {0; 1}n | n− m ¡

n∑
i=1

xi ¡ n
}
;

A2 :=
{
x ∈ {0; 1}n |

n∑
i=1

xi 6 n− m
}

A3 := {xone}:

The deAnition of the sets is done in a way that ensures that bit strings in Ai have
greater function values than bit strings in Aj, i< i¿j holds. So after reaching some bit
string in Aj the (1+1) EA can only reach bit strings in Ai with i ¿ j. Since JUMPm is
a symmetric function, we can ignore steps where the number of ones in the bit string
remains unchanged.
We begin with an upper bound on the expected running time. The expected number

of steps until the (1 + 1) EA reaches either a bit string with exactly m zeros or
alternatively the global optimum is O(n log n). If the current bit string belongs to A1,
steps towards bit strings with more zeros are accepted. The situation is similar to
the linear function f(x)=−∑n

i=1 xi, except for steps to the global optimum, which
are, of course, accepted. We conclude that with high probability after O(n log n) steps
either the global maximum or a bit string from A2 is reached. So we now assume that
the current bit string belongs to A2. The situation is similar to ONEMAX, as long as
the number of zeros in the current bit string is at least m. We conclude that again
after O(n log n) steps either the global maximum or a bit string with exactly m zeros
is reached. Once the (1 + 1) EA reaches a bit string with exactly m zeros, only
mutations to other bit strings with exactly m zeros and mutations to the global maximum
are accepted. The probability for reaching the global maximum by an m-bit mutation

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 79

equals n−m(1 − 1=n)n−m ¿ e−1n−m. We conclude that we have an upper bound of
O(nm + n log n) on the expected running time.
Now we derive the lower bound. Let T denote the number of steps until the optimum

is reached. Let q be the probability that some bit string in A2 is reached, then we claim
that E(T)¿ qnm.
If we have reached x∈A2, we never accept a string from A1. Hence, the global

optimum has to be reached directly by a mutation of some y∈A2. The probability to
obtain the global optimum from y∈A2 is bounded above by n−m(1− 1=n)n−m 6 n−m.
Hence, with probability q the expected running time is at least nm.
The probability that the initial bit string contains at least n=2 zeros is at least 1=2.

It remains to prove that the probability of reaching some bit string in A2 if we start
with a bit string with at least n=2 zeros is bounded below by a positive constant �.
If m 6 n=2, the initial bit string belongs to A2. Hence, we can assume that m¿n=2.
We consider the Arst n2 steps. The number of ones only gets larger than n=2 if we
reach the global optimum. The probability for such a jump is bounded above by n−n=2

and, therefore, the probability of reaching the global optimum within n2 steps is ex-
ponentially small. By Marko<’s inequality the probability of reaching a string of A2
within n2 steps is at least 1−O((n log n)=n2)= 1−O((log n)=n). This proves the lower
bound.

6. A variant of the (1 + 1) EA

When we take a closer look at the (1+1) EA, i.e. Algorithm 1, we see that the old
bit string x is replaced by a new bit string x′, even if f(x)=f(x′). This strategy of
accepting equal-valued bit strings is often used in many Evolutionary Algorithms, as
it is assumed to help the algorithm to escape from plateaus, i.e. sets of neighboring bit
strings with equal Atness value: if the actual bit string is “surrounded” by bit strings
of the same Atness value and Algorithm 1 would only accept bit strings with higher
Atness, it would need a long time to make an improvement. By accepting bit strings
with the same Atness, the (1 + 1) EA can make random steps on this plateau, which
can bring it nearer to bit strings with higher Atness, therefore making it more likely to
escape from this plateau.
Now we will show that this common-sense argumentation for the strategy of accept-

ing equal-valued bit strings can be rigorously proven for the PEAK-function to lower the
growth of the expected running time of the (1+1) EA substantially. The PEAK-function
is deAned by

PEAK(x1; : : : ; xn) :=
n∏
i=1

xi:

The PEAK-function should be well suited for our purpose, as it has only one peak,
while all other bit strings form one big plateau, therefore giving no “hints” about the
peak.

80 S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81

Theorem 26. The (1+1) EA has an expected running time bounded above by 2n(1+
o(1)) for PEAK. If the (1 + 1) EA only accepts bit strings with higher 0tness; the
expected running time for PEAK is bounded below by en ln(n=2).

Proof. The upper bound for the original (1 + 1) EA follows directly from results due
to [6].
If the (1 + 1) EA is changed in such a way that it only accepts bit strings with

higher Atness the expected running time can be computed exactly. Because now the
expected running time of the (1 + 1) EA is nk(n=(n − 1))n−k , if the initial bit string
has k ¿ 1 zeros. As the initial bit string is chosen randomly, the expected running
time is now

n∑
k=1

(n
k

)
2−nnk

(
n

n− 1
)n−k

= 2−n

((
n∑

k=0

(n
k

)
nk
(

n
n− 1

)n−k
)

−
(

n
n− 1

)n
)

= 2−n
((

n+
n

n− 1
)n

−
(

n
n− 1

)n)
¿
(n
2

)n
= en ln(n=2):

So we have proven that the strategy of accepting equal-valued bit strings can improve
the order of growth of the expected running time. But do functions exist, where the
expected running time of the (1 + 1) EA increases, when equal-valued bit strings are
accepted? There exists a function f: {0; 1}4 → R such that the expected running time
is larger than 188 if equal-valued bit strings are accepted and smaller than 183 if
only improvements are accepted [13]. But it is an open question, if there are functions
such that the order of growth of the expected running time increases, when accepting
equal-valued bit strings, too.

7. Conclusion

We have presented several methods to analyze the (1 + 1) EA. These methods
yield results for the classes of linear functions, polynomials of degree 2, and unimodal
functions, and they can be used to obtain a hierarchy result. The next step is to analyze
Evolutionary Algorithms which allow populations of individuals and crossover.

References

[1] D.H. Ackley, A Connectionist Machine for Genetic Hillclimbers, Kluwer Academic Publishers, Boston,
1987.

[2] Th. BOack, Optimal mutation rates in genetic search, in: S. Forrest (Ed.), Proc. 5th Internat. Conf. on
Genetic Algorithms ICGA, Morgan Kaufman, San Mateo, CA, 1993, pp. 2–8.

S. Droste et al. / Theoretical Computer Science 276 (2002) 51–81 81

[3] S. Droste, Th. Jansen, I. Wegener, A rigorous complexity analysis of the (1+1) Evolutionary Algorithm
for linear functions with Boolean inputs, in: Proc. IEEE Internat. Conf. on Evolutionary Computation
ICEC ’98, IEEE Press, Piscataway, NJ, 1998, pp. 499–504.

[4] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1971.
[5] D.B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press,

Piscataway, NJ, 1995.
[6] J. Garnier, L. Kallel, M. Schoenauer, Rigorous hitting times for binary mutations, Evolutionary Comput.

7 (2) (1999) 167–203.
[7] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,

Reading, MA, 1989.
[8] J.H. Holland, Adaption in Natural and ArtiAcial Systems, University of Michigan, Michigan, 1975.
[9] J. Horn, D.E. Goldberg, K. Deb, Long path problems, in: Y. Davidor, H.-P. Schwefel, R. MOanner

(Eds.), Parallel Problem Solving from Nature PPSN III, Lecture Notes in Computer Science, Vol. 866,
Springer, Berlin, 1994, pp. 149–158.

[10] A. Juels, M. Wattenberg, Hillclimbing as a baseline Method for the evaluation of stochastic optimization
Algorithms, in: D.S. Touretzky, et al. (Eds.), Advances in Neural Information Processing Systems 8,
MIT Press, Cambridge, MA, 1995, pp. 430–436.

[11] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983)
671–680.

[12] J.R. Koza, Genetic Programming: On the Programming of Computers by means of Natural Selection,
MIT Press, Cambridge, MA, 1992.

[13] R. Menke, personal communication, 1998.
[14] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995.
[15] H. MOuhlenbein, How Genetic Algorithms really work. Mutation and hill-climbing, in: R. MOanner, R.

Manderick (Eds.), Parallel Problem Solving from Nature PPSN II, North-Holland, Amsterdam, 1992,
pp. 15–25.

[16] I. Rechenberg, Evolutionsstrategie ’94, Frommann-Holzboog, Stuttgart, 1994.
[17] G. Rudolph, Convergence properties of evolutionary algorithms, Ph.D. Thesis, Verlag Dr. KovaXc,

Hamburg, 1997.
[18] G. Rudolph, How mutation and selection solve long-path problems in polynomial expected time,

Evolutionary Comput. 4 (2) (1997) 195–205.
[19] H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.

