
Modular Type Classes

Derek Dreyer
Toyota Technological Institute at Chicago

dreyer@tti-c.org

Robert Harper
Carnegie Mellon University

rwh@cs.cmu.edu

Manuel M.T. Chakravarty
Gabriele Keller

University of New South Wales
{chak,keller}@cse.unsw.edu.au

Abstract
ML modules and Haskell type classes have proven to be highly ef-
fective tools for program structuring. Modules emphasize explicit
configuration of program components and the use of data abstrac-
tion. Type classes emphasize implicit program construction and
ad hoc polymorphism. In this paper, we show how the implicitly-
typed style of type class programming may be supported within
the framework of an explicitly-typed module language by viewing
type classes as a particular mode of use of modules. This view of-
fers a harmonious integration of modules and type classes, where
type class features, such as class hierarchies and associated types,
arise naturally as uses of existing module-language constructs, such
as module hierarchies and type components. In addition, program-
mers have explicit control over which type class instances are avail-
able for use by type inference in a given scope. We formalize our
approach as a Harper-Stone-style elaboration relation, and provide
a sound type inference algorithm as a guide to implementation.

1. Introduction
The ML module system [17] and the Haskell type class system [25,
19] have proved, through more than 15 years of practical experi-
ence and theoretical analysis, to be effective linguistic tools for
structuring programs. Each provides the means of specifying the
functionality of program components, abstracting programs over
such specifications, and instantiating programs with specific real-
izations of the specifications on which they depend. In ML such
specifications are called signatures, abstraction is achieved through
functors, and instantiation is achieved by functor application to
structures that implement these signatures. In Haskell such spec-
ifications are called type classes, abstraction is achieved through
constrained polymorphism, and instantiation is achieved through
polymorphic instantiation with instances of type classes. There is a
clear correspondence between the highlighted concepts (see [26]),
and consequently modules and type classes are sometimes regarded
as opposing approaches to language design. We show that there is
no opposition. Rather, type classes and modules are complemen-
tary aspects of a comprehensive framework of modularity.

Perhaps the most significant difference is the mode of use of the
two concepts. The Haskell type class system is primarily intended
to support ad hoc polymorphism in the context of a parametrically
polymorphic language. It emphasizes the implicit inference of class
constraints and automatic construction of instances during overload
resolution, which makes it convenient to use in many common
cases, but does not facilitate more general purposes of modular
programming. Moreover, the emphasis on automatic generation
of instances imposes inherent limitations on expressiveness—most
importantly, there can be at most one instance of a type class at any
particular type.

In contrast, the ML module system is designed to support the
structuring of programs by forming hierarchies of components and

imposing abstraction boundaries—both client-side abstraction, via
functors, and implementor-side abstraction, via signature ascription
(aka sealing). The module system emphasizes explicit manipula-
tion of modules in the program, which makes it more flexible and
general than the type class mechanism. Modules may be ascribed
multiple signatures that reveal varying amounts of type informa-
tion, signatures may be implemented by many modules, and neither
modules nor signatures are restricted to have the rigid form that
Haskell’s instances and classes have. On the other hand, ML lacks
support for implicit module generation and ad hoc polymorphism,
features which experience with Haskell has shown to be convenient
and desirable.

There have been many proposals to increase the expressive-
ness of the original type class system as proposed by Wadler and
Blott [25], including constructor classes [15], functional dependen-
cies [12], named instances [16], and associated types [2, 1]. These
may all be seen as adding functionality to the Haskell class system
that mirrors aspects of the ML module system, while retaining the
implicit style of usage of type classes. However, these (and other)
extensions tend to complicate the type class system without allevi-
ating the underlying need for a more expressive module system.

In fact, there are ways in which the Haskell type class mech-
anism impedes modularity. To support implicit instance genera-
tion while ensuring coherence of inference, Haskell insists that
instances of type classes be drawn from a global set of instance
declarations; in particular, instances are implicitly exported and
imported, which puts their availability beyond programmer con-
trol. This can be quite inconvenient—for many type classes there is
more than one useful instance of the class at a particular type, and
the appropriate choice of instance depends on the context in which
an overloaded operator is used. Hence, the Haskell Prelude must
provide many functions in two versions: one using type classes and
the other an explicit function argument—e.g., sort and sortBy.

In this paper we take a different tack. Rather than bolster the
expressiveness of type classes, we instead propose that a more sen-
sible approach to combining the benefits of type classes and mod-
ules is to start with modules as the fundamental concept, and then
recover type classes as a particular mode of use of modularity. We
retain the advantages of a fully expressive explicit module system,
while also offering the conveniences of implicit type class program-
ming, particularly the integration of ad hoc and parametric poly-
morphism. Moreover, the proposed design provides a clean separa-
tion between the definition of instances and their availability for use
during type inference. This offers localization of instance scoping,
enhanced readability, and the potential for instances to be compiled
separately from their uses. The result is a harmonious integration
of modules and type classes that provides the best features of both
approaches in a single, consistent framework. The elegance of our
approach stems from the observation that type class features, such
as class hierarchies and associated types, arise naturally as uses of

1 2006/10/26

existing module-language constructs, such as module hierarchies
and type components.

In summary, this paper makes the following contributions:

• We present a smooth integration of type classes and mod-
ules that provides a foundation for future work on incorpo-
rating type classes into ML and a proper module system into
Haskell. We give an intuition of the integration of type classes
into ML in Section 2.

• We highlight some interesting design issues that arose while
developing the interpretation of type classes in terms of mod-
ules (Section 3).

• We specify the semantics of an extended module language
that supports type classes. We formalize its elaboration (in
the style of Harper and Stone [9]) into an explicitly-typed
module type system. We also generalize Damas and Milner’s
Algorithm W [3] to an inference algorithm for modular type
classes that we have proved sound with respect to the elabo-
ration semantics (Section 4).

Our elaboration translation demonstrates that modules can serve as
evidence in the sense of Jones [14]. Compared to the customary
use of dictionary records as evidence, modules offer a cleaner way
of handling extensions to the basic type class mechanism such as
associated types. In addition, for the application to type classes, the
use of modules as evidence makes clear that the construction of
evidence respects the phase distinction [8], i.e., it is based solely on
compile-time information, not run-time information. We conclude
in Section 5 with further discussion of related work.

2. Modular Type Classes: An Overview
In this section we summarize our approach to representing the main
mechanisms of a Haskell-style type class system within the context
of an ML-style module system. For readability, we employ ML-like
syntax for our examples, although the formal design we describe
later is syntactically more austere and leaves a number of (largely
superficial) aspects of an actual ML extension to future work.

2.1 Classes are signatures, instances are modules
A type class in Haskell is essentially an interface describing a set of
operations whose types mention a distinguished abstract type vari-
able known as the class parameter. It is natural therefore to repre-
sent a class in the module setting as a signature (i.e., an interface)
with a distinguished type component (representing the class param-
eter). In particular, we insist that the distinguished type component
be named “t”. It may be followed by any number of other type,
value, or substructure components. We call such a signature a class
signature, specifically an atomic class signature (in contrast to the
composite ones that we describe below in Section 2.3.) For exam-
ple, the class of equality types is represented by the atomic class
signature EQ, defined as follows:

signature EQ = sig
type t
val eq : t * t -> bool

end

Note that class signatures like EQ are just ordinary ML signatures
of a certain specified form.

Correspondingly, an instance of a type class is represented by a
module. A monomorphic instance of a type class is represented by
a structure, and a polymorphic instance is represented by a functor.
For example, we can encode an int instance of the equality class
as a structure whose signature is EQ where type t = int:

structure EqInt = struct
type t = int
val eq = Int.eq

end

As in Haskell, the instance for a compound type t(t1, . . . , tn) is
composed from instances of its component types, t1, . . . , tn, by a
functor, Eq t, associated with its outermost type constructor, t. For
example, here is an instance of equality for product types t1 * t2:

functor EqProd (X : EQ, Y : EQ) = struct
type t = X.t * Y.t
fun eq ((x1,y1), (x2, y2)) =
X.eq(x1,x2) andalso Y.eq(y1,y2)

end

There is an evident correspondence with Haskell instance decla-
rations, but rather than use Horn clause logic programs to specify
closure conditions, we instead use functional programs (in the form
of functors).

From the EqInt and EqProd modules we can construct an
instance, say, of signature EQ where type t=int*int:

structure EqII = EqProd(EqInt,EqInt)

Of course, one of the main reasons for using type classes in the
first place is so that we don’t have to write this functor application
manually—it corresponds to the process known as dictionary con-
struction in Haskell and can be performed automatically, behind the
scenes, during type inference. In particular, such automatic functor
application may occur in the elaboration of expressions that ap-
pear to be values, such as when a variable undergoes polymorphic
instantiation (see below). Consequently, it is important that the ap-
plication of an instance functor does not engender any computa-
tional effects, such as I/O or non-termination. We therefore require
that instance functors be total in the sense that their bodies satisfy
something akin to ML’s value restriction. This restriction appears
necessary in order to ensure predictable program behavior.

2.2 Separating the definition of an instance from its use
In Haskell, an instance becomes immediately available for use by
the type inference engine as soon as it is declared. As a conse-
quence, due to the implicit global importing and exporting of in-
stances, there can only ever be a single instance of a class at a cer-
tain type in one program. This is often a nuisance and leads to awk-
ward workarounds. Proposals such as named instances [16] have
attempted to alleviate this problem, but have not been generally ac-
cepted.

In contrast, our reconstruction of type classes in terms of mod-
ules provides a natural solution to this dilemma. Specifically, we
require that an instance module only become available for use by
the inference engine after it has been nominated for this purpose
explicitly by a using declaration. This separates the definition of
an instance from its adoption as a canonical instance, thus facili-
tating modular decomposition and constraining inference to make
use only of a clearly specified set of instances. For example, the
declaration

using EqInt, EqProd in mod

nominates the two instance modules defined earlier as available
for canonical instance generation during elaboration of the module
mod . The typing rule for using demands that EqInt and EqProd
not overlap with any instances that have already been adopted as
canonical. (A precise definition of overlapping instances is given in
Section 3.2.)

In both our language and Haskell, canonical instance genera-
tion is implicitly invoked whenever overloading is resolved. In our
language, we additionally provide a mechanism canon(sig) by

2 2006/10/26

which the programmer can explicitly request the canonical instance
module implementing the class signature sig .1 At whatever point
within mod instance generation occurs, it will employ only those
instances that have been adopted as canonical in that scope.

2.3 Class hierarchies via module hierarchies
In Haskell, one can extend a class A with additional operations
to form a class B, at which point A is called a superclass of B.
Class hierarchies arise in the module setting naturally from module
hierarchies. This is easiest to illustrate by example.

Suppose we want to define a class called ORD, which extends
the EQ class with a lt operation. We can do this by first defining an
atomic class LT that only supports lt, and then defining ORD as a
composite of EQ and LT:

signature ORD = sig
structure E : EQ
structure L : LT
sharing type E.t = L.t

end

The sharing specification makes explicit that ORD is providing two
different interpretations of the same type, as an equality type and
as an ordered type. ORD is an example of what we call a composite
class signature, i.e., a signature consisting of a collection of atomic
signatures bound to submodules whose names are arbitrary.

Instances of composite class signatures are not written by the
programmer directly, but rather are composed automatically by the
inference engine from the instances for their atomic signature parts.
For example, if we want to write instances of ORD for int and the
* type constructor, what we do instead is to write instances of LT:

structure LtInt = struct
type t = int
val lt = Int.lt

end
functor LtProd (X : ORD, Y : LT) = struct
type t = X.E.t * Y.t
fun lt ((x1,y1), (x2,y2)) =
X.L.lt(x1,x2) orelse
(X.E.eq(x1,x2) andalso Y.L.lt(y1,y2))

end

Note that LtProd requires its first argument to be an instance of
ORD, not LT. This is because the implementation of lt in the body
of the functor depends on having both equality and ordering on the
type X.E.t so that it can implement a lexicographic ordering on
X.E.t * Y.t. For Y.t, only the lt operation is needed.

Now, let us assume these instances are made canonical (via the
using declaration) in a certain scope. Then, during typechecking,
if the inference engine demands a canonical module of signature
ORD where type E.t = int * int, it will be computed to be

struct
structure E = EqProd(EqInt,EqInt)
structure L = LtProd(struct

structure E = EqInt
structure L = LtInt

end,
LtInt)

end

The fundamental reason that we do not allow instances for
ORD to be adopted directly is that we wish to prevent the in-
stances for ORD from having any overlap with existing instances

1 This feature is particularly useful in conjunction with our support for
associated types; see Section 2.5.

that may have been adopted for EQ. If one were to define an in-
stance for ORD where type E.t = int directly, one would im-
plicitly provide an instance for EQ where type t = int through
its E substructure; and if one tried to adopt such an ORD instance as
canonical, it would overlap with any existing canonical instance of
EQ where type t = int.

Under our approach, this sort of overlap is avoided. Moreover,
the code one writes is ultimately very similar to the code one would
write in Haskell (except that it is expressed entirely in terms of
existing ML constructs). In particular, the instance declaration for
ORD at int in Haskell is only permitted to provide a definition for
the new operations (namely, lt) that are present in ORD but not in
EQ. In other words, an instance declaration for ORD in Haskell is
precisely what we would call an instance of LT.

2.4 Constrained polymorphism via functors
Under the Harper-Stone interpretation of Standard ML (hereafter,
HS) [9], polymorphic functions in the external (source) language
are elaborated into functors in an internal module type system.
Specifically, a polymorphic value is viewed as a functor that takes
a module consisting only of type components (representing the
polymorphic type variables) as its argument and returns a module
consisting of a single value component as its result.

The HS semantics supports the concept of equality polymor-
phism found in Standard ML by simply extending the class of sig-
natures over which polymorphic functions may be abstracted to in-
clude the EQ signature defined above. For example, in the internal
module type system of HS, the ad hoc polymorphic equality func-
tion is represented by the functor

functor eq (X:EQ) :> [[X.t * X.t -> bool]] = [X.eq]

where the brackets notation describes a module with a single value
component. Polymorphic instantiation at a type τ consists of com-
puting a canonical instance of EQ where type t = τ , as de-
scribed above, applying the functor eq to it, and extracting the value
component of the resulting module.

The present proposal is essentially a generalization of the HS
treatment of equality polymorphism to arbitrary type classes. A
functor that abstracts over a module representing an instance of
a type class is reminiscent of the notion of a qualified type [11],
except that we make use of the familiar concept of a functor from
the ML module system, rather than introduce a new mechanism
solely to support ad hoc polymorphism.

Of course, the programmer need not write the eq functor manu-
ally. Our external language provides an overload mechanism, and
the elaborator will generate the above functor automatically when
the programmer writes

val eq = overload eq from EQ

Note that there is no need to bind the polymorphic function returned
by the overload mechanism to the name eq; it can be called
anything. In practice, it may be useful to be able to overload all the
components of a class signature at once by writing overload SIG
as syntactic sugar for a sequence of overload’s for the individual
components of the signature.

The following are some examples of elaboration in the presence
of the overloaded eq function:

using EqInt, EqProd in ...eq((2,3),(4,5))...
; ...Val(eq(EqProd(EqInt,EqInt))) ((2,3),(4,5))...

fun refl y = eq(y,y)
; functor refl (X : EQ) :> [[X.t -> bool]]

= [fn y => Val(eq(X)) (y,y)]

3 2006/10/26

(Note: the Val operator seen here is the mechanism in our internal
module type system by which a value of type τ is extracted from a
module of signature [[τ]].)

Our language also allows for the possibility that the programmer
may wish to work with explicitly polymorphic functions in addition
to implicit overloaded ones. In particular, by writing

functor Refl = explicit (refl :
(X : EQ) -> sig val it : X.t -> bool end)

we convert the polymorphic function refl into an explicit functor
Refl. The programmer can then apply it to an arbitrary module ar-
gument of signature EQ and project out the it component of the re-
sult. The reason we require a signature annotation on the explicit
construct is that the implicitly-typed refl may be declaratively as-
cribed many different signatures. Whenever refl is used, type in-
ference will compute the appropriate instance arguments for it re-
gardless of the particular signature it has been ascribed. However,
since it is the programmer who applies Refl, she needs to know
exactly what shape Refl’s module argument is expected to have.

We also provide an implicit construct to coerce explicit func-
tors into implicit ones. (See Section 4.2 for details.)

2.5 Associated types arise naturally
The experience with type classes in Haskell quickly led to the de-
sire for type classes with more than one class parameter. However,
these multi-parameter type classes are not generally very useful un-
less dependencies between the parameters can be expressed. This
led in turn to the proposal of functional dependencies [12] and more
recently associated types [2, 1] for Haskell.

An associated type is a type component provided by a class
that is not the distinguished type component (class parameter).
The associated types of a class do not play a role in determining
the canonical instance of a class at a certain type—that is solely
determined by the identity of the distinguished type.

Modular type classes immediately support associated types as
additional type components of a class signature. An illustrative
example is provided by a class of collection types:

signature COLLECTS = sig
type t
type elem
val empty : t
val insert : elem * t -> t
val member : elem * t -> bool
val toList : t -> elem list

end

The distinguished type t represents the collection type and the
associated type component elem represents the type of elements.
An instance for lists, where the elements are required to support
equality for the membership test, would be defined as follows:

functor CollectsList (X : EQ) = struct
type t = X.t list
type elem = X.t
val empty = []
fun insert (x, L) = x::L
fun member (x, []) = raise NotInCollection
| member (x, y::L) = X.eq (x,y) orelse

member (x,L)
fun toList L = L

end

When using classes with associated types, it is common to need
to place some constraints on the identities of the associated types.
For example, suppose we write the following:

val toList = overload toList from COLLECTS
fun sumColl C = sum (toList C)

The sumColl function does not care what type of collection C is,
so long as its element type is int. Correspondingly, the elaborator
will assign sumColl the polymorphic type (i.e., functor signature)

(X : COLLECTS where type elem = int) -> [[X.t -> int]]

Note that the constraint on the type X.elem is expressed com-
pletely naturally using ML’s existing where type mechanism,
which is just syntactic sugar for the transparent realization of an
abstract type component in a signature. In contrast, the extension
to handle associated type synonyms in Haskell [1] requires an ad-
ditional mechanism called equality constraints in order to handle
functions like sumColl.

As Chakravarty et al. [1] have demonstrated, it is useful in
certain circumstances to be able to compute (statically) the identity
of an associated type assoc in the canonical instance of a type
class SIG at a given type τ . This is achieved in our setting via
the canon(sig) construct, which we introduced above as a way
of explicitly computing a canonical instance. In particular, we can
write

canon(SIG where type t = τ).assoc

which constructs the canonical instance of SIG at τ and then
projects the assoc type from it.2 In the associated type extension
to Haskell, one would instead write assoc(τ).

While the ML syntax here is clearly less compact, there is a
good reason for it. Specifically, the Haskell syntax only makes
sense because Haskell ties each associated type name in the pro-
gram to a single class (in this case, assoc would be tied to SIG).
In contrast, in our setting, it is fine for several different class signa-
tures to have an associated type component called assoc.

3. Design Considerations
In this section we examine some of the more subtle points in
the design of modular type classes and explain our approach to
handling them.

3.1 Coherence in the presence of scoped instances
The using mechanism described in the introduction separates the
definition of instance functors from their adoption as canonical
instances. It also raises questions of coherence stemming from
the nondeterministic nature of polymorphic type inference. Sup-
pose EqInt1 and EqInt2 are two observably distinct instances of
EQ where type t = int. Consider the following code:

structure A = using EqInt1 in
struct ...fun f x = eq(x,x)... end

structure B = using EqInt2 in
struct ...val y = A.f(3)... end

The type inference algorithm is free to resolve the meaning of this
program in two incompatible ways. On the one hand, it may choose
to treat A.f as polymorphic over the class EQ; in this case, the ap-
plication A.f(3) demands an instance of EQ where type t=int,
which can only be resolved by EqInt2. On the other hand, type in-
ference is free to assign the type int -> bool to A.f at the point
where f is defined, in which case the demand for an instance of EQ
can only be met by EqInt1. These are both valid typings, but they
lead to observably different behavior.

2 Note that, due to the principle of phase separation in the ML module
system [8], the identity of the assoc type here can be determined purely
statically, and elaboration does not actually need to construct the dynamic
parts of canon(SIG where type t = τ).

4 2006/10/26

An unattractive solution is to insist on a specific algorithm for
type inference that arbitrarily chooses one resolution over another,
but this sacrifices the elegant, declarative nature of a Hindley-
Milner-style type system and, worse, imposes a specific resolution
policy that may not be desired in practice. Instead, we prefer to take
a different approach, which is to put the decision under program-
mer control, permitting either outcome at her discretion. We could
achieve this by insisting that the scope of a using declaration be
given an explicit signature, so that in the above example the pro-
grammer would have to specify whether A.f is to be polymorphic
or monomorphic. However, this approach is awkward for nested
using declarations, forcing repeated specifications of the same in-
formation.

Instead we propose that the using declaration be confined to an
outer (or top-level) layer that consists only of module declarations,
whose signatures are typically specified in any case. All core-level
terms appear in the inner layer, where type inference proceeds
without restriction, but no using clauses are allowed. Thus, the
set of permissible instances is fixed in any inner context, but may
vary across outer contexts. At the boundary of the two layers, a type
or signature annotation is required. This ensures that the scope of a
using declaration is explicitly typed without effecting duplication
of annotations. The programmer who wishes to ignore type classes
simply confines herself to the inner level, with no restrictions; only
the use of type classes demands attention be paid to the distinction.

3.2 Overlapping instances
To ensure coherence of type inference, the set of available instances
in any context must be non-overlapping. Roughly speaking, this
means that there should only be one way to compute the canonical
instance of any given class at any given type. There is considerable
leeway, though, in determining the precise definition of overlap,
and indeed this remains a subject of debate in the Haskell commu-
nity. For the purposes of this paper we follow the guidelines used
in Haskell 98. In particular, we insist that there be one instance per
type constructor, so that instance resolution proceeds by a simple
inductive analysis of the structure of the instance type, composing
instance functors to obtain the desired result.

However, in the modular approach suggested here, there is an
additional complication. Just as a module may satisfy several dif-
ferent signatures, so a single module may qualify as an instance of
several different type classes. For example, the module

struct type t = int; fun f(x:t) = x end

may be seen as an instance of the class

sig type t; val f : t -> t end

and also of the class

sig type t; val f : t -> int end.

Thus, to check if two instances A and B (with the same t com-
ponent) are non-overlapping, we need to ensure that the set of all
classes to which A could belong is disjoint from the set of all classes
to which B could also belong.

A simple, but practical, criterion to ensure this is to define two
instances to be non-overlapping iff either (1) they differ on their
distinguished t component, so that no overlap is possible, or (2) in
the case that they have the same t component, that they be struc-
turally dissimilar, which we define to mean that their components
do not all have the same names and appear in the same order. While
other, more refined definitions are possible, we opt here for sim-
plicity until evidence of the need for a more permissive criterion is
available.

3.3 Unconstrained type components in class signatures
In order to support ordinary ML-style polymorphism, we need a
way to include unconstrained type components in a class signa-
ture. We could use the class signature sig type t end for this
purpose. However, since our policy is that the only canonical in-
stances of atomic class signatures are those that have been ex-
plicitly adopted as canonical by a using declaration, this would
amount to treating sig type t end as a special case.

We choose instead to allow composite class signatures to con-
tain arbitrary unconstrained type components, so long as they are
named something other than t. For example, under our approach,
the divergent function

fun f x = f x

can be assigned the polymorphic type

(X : sig type a; type b end) -> [[X.a -> X.b]]

(The choice of the particular names a and b here is arbitrary.)
In our formal system, we refer to the union of the t components

and the unconstrained components of a class signature S as the
parameters of S.

3.4 Multi-parameter and constructor classes
Two extensions to Wadler & Blott’s [25] type class system that have
received considerable attention are multi-parameter type classes
and constructor classes. We have chosen not to cover these exten-
sions in this paper. Concerning multi-parameter classes, most uses
of them require functional dependencies [12], which when rewrit-
ten to use associated types (which we support), turn into single-
parameter classes. Hence, we expect the need for multi-parameter
classes to be greatly diminished in our case.

As for constructor classes, we see no fundamental problems
in supporting them in an extension of our framework since type
components of ML modules may have higher kind. However, we
view them as an orthogonal extension, and thus have opted to omit
them in the interest of a clearer and more compact presentation.

4. Formal System
In this section we formalize our language design in the style of
Harper and Stone [9]. This consists of an elaboration translation of
programs from an external source language to an internal module
type system. The elaboration translation is syntax-directed, but it is
also nondeterministic with respect to polymorphic generalization
and instantiation. To show how this language may be implemented,
we define a type inference algorithm, which we have proven sound.

Elaboration translations are the standard method of giving
meaning to programs involving type classes, although in the con-
text of Haskell they are often called evidence translations [14]. The
crucial difference between our account and previous treatments is
that we elaborate into a module-aware internal language.

4.1 Internal language type system
Figure 1 shows the syntax and module typing rules for our internal
language (IL). (The remainder of the type system is given in Fig-
ure 5 of the appendix.) The IL we use here is a simplified variant of
the type system for modules defined in Dreyer’s thesis [4], which in
turn is based on the higher-order module calculus of Dreyer, Crary
and Harper [6].

The core and module levels of our language are tightly coupled.
The core, or term, fragment is relatively standard, so we concentrate
primarily on the module fragment. The basic module constructs are
the type (constructor) module [C] and the term module [e], which
contain exactly one component each. These modules are given the
signatures [[K]] and [[τ]], respectively, assuming that C has kind K,

5 2006/10/26

Kinds K, L ::= T | s(τ) | {`.α:K} | Πα:K1.K2

Transparent Kinds K, L ::= s(τ) | {`.α:K} | Πα:K1.K2

Constructors C, τ ::= α | τ1→ τ2 | {`.α=C} | C.` | λα:K.C | C1(C2)
Terms e, f ::= x | λx:τ.e | e1(e2) | Val(M) | let X=M in e
Valuable Terms v, u ::= x | λx:τ.e | Val(V) | let X=V in v
Signatures S, R ::= [[K]] | [[τ]] | {`.X:S} | ΠX:S1.S2 | ∀X:S1.S2

Transparent Signatures S, R ::= [[K]] | [[τ]] | {`.X:S} | ΠX:S1.S2 | ∀X:S1.S2

Modules M, N, F ::= X | [C] | [e] | {`.X=M} | M.` |
λ(X:S1):>S2.M | F(M) | ΛX:S1.V | F〈M〉 |
M :>S | let X=M1 in M2 :>S

Projectible Modules M, N, F ::= X | [C] | [e] | {`.X=M} | M.` |
λ(X:S1):>S2.M | ΛX:S1.V | F〈M〉

Valuable Modules V, U ::= X | [C] | [v] | {`.X=V} | V.` |
λ(X:S1):>S2.M | ΛX:S1.V | V1〈V2〉 |
V :> S | let X=V1 in V2 :> S

Contexts Γ ::= ∅ | Γ, α:K | Γ, x:τ | Γ, X:S

Well-formed Modules: Γ ` M : S

X:S ∈ Γ
Γ ` X : S

Γ ` C : K
Γ ` [C] : [[K]]

Γ ` e : τ
Γ ` [e] : [[τ]] Γ ` {} : {}

Γ ` M1 : S1 Γ, X1:S1 ` {`.X=M} : {`.X:S}
Γ ` {`1.X1=M1, `.X=M} : {`1.X1:S1, `.X:S}

Γ ` M : {`1.X1:S1, . . . , `n.Xn:Sn} i ∈ 1..n

Γ ` M.`i : Si[M.`j/Xj]
i−1
j=1

Γ ` S1 sig Γ, X:S1 ` M : S2

Γ ` λ(X:S1):>S2.M : ΠX:S1.S2

Γ ` F : ΠX:S1.S2 Γ ` M : S1

Γ ` F(M) : S2[M/X]

Γ ` S1 sig Γ, X:S1 ` V : S2

Γ ` ΛX:S1.V : ∀X:S1.S2

Γ ` F : ∀X:S1.S2 Γ ` M : S1

Γ ` F〈M〉 : S2[M/X]

Γ ` M1 : S1 Γ, X:S1 ` M2 : S Xc 6∈ FV(S)

Γ ` let X=M1 in M2 :>S : S
Γ ` M : S

Γ ` M :>S : S

Γ ` M : S′ Γ ` S′ ≤ S

Γ ` M : S
Γ ` M : S

Γ ` M : sS(M)

Figure 1. Internal Language Syntax and Module Typing Rules

and e has type τ . Compound modules, or structures, are dependent
records of the form

{`1.X1=M1, . . . , `n.Xn=Mn}.

Here, `1, . . . , `n are the pairwise distinct labels, or external names,
by which the record components are accessed, and X1, . . . , Xn are
the variables, or internal names, by which subsequent components
can refer to previous ones (see [7] for more on this essential dis-
tinction). The type, or signature, of such a record has the form

{`1.X1:S1, . . . , `n.Xn:Sn},

which we abbreviate by writing {`.X:S}. (Throughout the paper,
we will use E as a shorthand for E1, . . . , En, for various syntactic
constructs E.) The variables mediate the dependencies among the
signatures of the successive components of the record.

Module signatures are translucent in that they may reveal the
definitions of some (including all or none) of their type compo-
nents. We model this through the use of singleton kinds [23, 24].
Briefly, a constructor of kind s(τ) is definitionally equivalent to
τ . In particular, if this is the kind of a variable, then the variable
may be thought of as having τ as its definition. As a limiting case,
a signature is transparent iff the kinds of all of its type constructor
components are singletons—the definitions of all components are
thereby revealed.

A functor is simply a function at the level of modules, albeit
one with a dependent type expressing the flow of type information
from argument to result. Here, as in the HS semantics, we make
essential use of both total and partial functors. Total functors, writ-
ten with a Λ, must have valuable (pure and terminating) bodies;

partial functors, written with a λ, impose no restrictions. Conse-
quently, the application of a total functor to a valuable argument,
written V1〈V2〉, is itself valuable, whereas application of a par-
tial functor, written F(M), is not. In addition to requiring that the
bodies of total functors be valuable, we also require that they have
fully transparent result signatures. This arises from the interpreta-
tion of data abstraction as a computational effect, as described by
Dreyer, et al. [6].

The module language provides mechanisms for let-binding a
module and sealing a module with a signature ascription. The typ-
ing rules for these constructs (and a number of others) are only
useful in conjunction with the signature subsumption rule, which
allows a module to be coerced to a less transparent signature using
the signature subtyping judgment. The definition of signature sub-
typing (see Figure 5 in the appendix) is, however, fairly rigid. In
particular, it does not allow dropping or reordering of components
from structure signatures, and it coincides with signature equiva-
lence at functor signatures. A more flexible notion of signature sub-
typing is provided by the coercive signature matching judgment in
the elaboration relation given below.

Finally, it is essential to review the constructs for extracting
the type and value components of modules, which provide the
interface between the core and module levels of the language. The
term Val(M) extracts the term component from the module, M,
of signature [[τ]]. One might expect an analogous operation at the
type level, but instead we employ a meta-operation Fst(M) that
computes the type component of the module M of signature [[K]].
When M is a variable, X, the projection Fst(X) is defined to be
an associated type variable Xc of kind K. Otherwise, Fst(M) is

6 2006/10/26

Kinds knd ::= T | s(typ) | Tn →T | Πα.s(typ)
Transparent Kinds tknd ::= s(typ) | Πα.s(typ)
Type Constructors con, typ ::= α | typ1→ typ2 | P | canon(sig).`s | λα.typ | con(typ)
Terms exp ::= x | λx.exp | exp1(exp2) | P | let X=mod in exp | exp : typ
Signatures sig ::= [[knd]] | [[typ]] | {`.X:sig} | ΠX:sig1.sig2 | ∀X:sig1.tsig2

Transparent Signatures tsig ::= [[tknd]] | [[typ]] | {`.X:tsig} | ΠX:sig1.sig2 | ∀X:sig1.tsig2

Modules mod ::= P | [con] | [exp] | {`.X=mod} | λX:sig1.mod | P1(P2) |
ΛX:sig1.mod | P1〈P2〉 | let X=mod1 inmod2 | mod :> sig |
canon(sig) | overload `s from sig | implicit(P) | explicit(P : S)

Top-Level Modules top ::= P | [con] | {`.X=top} | λX:sig1.top | P1(P2) |
ΛX:sig1.top | P1〈P2〉 | let X=top1 in top2 | mod :> sig |
canon(sig) | overload `s from sig | implicit(P) | explicit(P : S) |
using P in top

Sequences of Label Projections `s ::= ` | `.`s
Constructor Paths p ::= α | α.`s
Module Paths P ::= X | X.`s
Instance Sets Θ ::= ∅ | Θ, P

Figure 2. External Language Syntax

defined inductively on the structure of M. In keeping with the
interpretation of type abstraction as an effect [6], not all modules
permit extraction of their type components. Those that do—that is,
those for which Fst(M) is defined—are said to be projectible. Since
variables are deemed projectible, any module that is substituted
for a variable must also be projectible. (See [4, 6] for details of
projectibility.)

4.2 External language
Figure 2 shows the syntax of our external language (EL), which is
elaborated into the internal language described above.

The EL type language is similar to that of ML. In particular, EL
type constructors are restricted to be of kind T or Tn →T (short
for Πα:{1:T, . . . , n:T}.T). In addition, types may be projected
(through one or more label projections) only from modules that
are variables (X) or that have the form canon(sig). Note that
the EL does not have polymorphic types, because we interpret
polymorphism using functors.

The EL term language is essentially an implicitly-typed ver-
sion of the IL term language. The sealing construct, exp : typ, is
used to annotate a term with a specific type. Term variables (x)
are monomorphic, whereas paths (P) which are compositions of
projections from modules, may be polymorphic. This is consistent
with our treatment of polymorphic functions as functors.

The syntax of EL signatures is similar to that of IL signatures,
except that we include a special form of functor signature for the
representation of polymorphism. The main difference compared to
a general total functor is that the argument signature must repre-
sent a type class, and the result signature must be that of an atomic
value module. A signature is deemed a type class if it is a collec-
tion of unconstrained type components and atomic instance com-
ponents (whose first component is t), in which the unconstrained
and t components are all abstract (possibly subject to sharing con-
straints). We omit explicit where or sharing constructs here, since
these can be simulated using type definitions in signatures.

Polymorphic generalization takes place when a term is injected
into the module language (using the atomic module [exp]), and
polymorphic instantiation takes place when a module path P ap-
pears in a core-language term. This resonates with the idea (due
to Harper and Stone) of interpreting the classical distinction be-
tween polytypes and monotypes as a distinction between the mod-
ule and core levels of the language. It also divorces so-called let-

polymorphism from dependence on a let construct. Specifically, the
traditional polymorphic let construct let x=exp1 in exp2 is encod-
able in our language as let X=[exp1] in {x 7→X}exp2.

The EL module constructs canon(sig) and overload `s from sig
are described in Section 2.4; these are not present in the IL, but are
instead elaborated into uses of the IL module constructs. Similarly,
the constructs implicit(P) and explicit(P : sig) convert between
implicit and explicit forms of polymorphic values. The explicit
form of a polymorphic value of signature ∀X:S.[[τ]] is a functor
of signature ∀X:S.{it:[[τ]]}, which can be constructed and applied
manually by the programmer.

Finally, as described in Section 3.1, there is a distinction be-
tween inner-level modules (mod) and top-level modules (top). The
syntax for these levels is nearly identical, except that core-level
terms only appear in mod ’s, and using declarations only appear
in top’s. The only point at which mod ’s may enter the syntax of
top’s is in the construct mod :> sig , where they are annotated with
the signature sig .

4.3 Elaboration
A selection of judgments and rules for elaboration of the EL into
the IL are given in Figure 3. The overall structure is derived from
the Harper-Stone semantics of ML, much of which carries over
essentially unchanged. We concentrate here only on those aspects
related to type classes. Please see the appendix for a complete
specification of the IL, EL, and elaboration.

The main elaboration judgments take as input a context com-
prised of an IL typing context Γ and a canonical instance set Θ.
The latter consists of a set of paths to structures and functors that
have been adopted for use in canonical instance generation.

The elaboration of type constructors is straightforward. Rule 1
converts module paths of signature [[K]] to constructors of kind K
by applying the meta-operation Fst described in Section 4.1. Rule 2
computes projections from a canon(sig) module similarly.

The elaboration of signatures is straightforward as well. In the
case of total functor signatures, we must do case analysis to check
whether the result signature is of the form {. . .} or [[τ]]. In the
latter case, the signature represents a constrained polymorphic type,
so Rule 4 ensures that the argument signature is a valid class
signature. This is achieved by the class elaboration judgment, but
we defer explanation of this important judgment until we discuss
polymorphic generalization below.

7 2006/10/26

Type Constructors: Θ; Γ ` con ; C : K

Γ ` P : [[K]]

Θ; Γ ` P ; Fst(P) : K
(1)

Θ; Γ ` canon(sig) ; V : S Γ ` V.`s : [[K]]

Θ; Γ ` canon(sig).`s ; Fst(V).`s : K
(2)

Signatures: Θ; Γ ` sig ; S

Θ; Γ ` sig1 ; S1 Θ; Γ, X:S1 ` tsig2 ; S2 S2 = {. . .}
Θ; Γ ` ∀X:sig1.tsig2 ; ∀X:S1.S2

(3)

Θ; Γ ` sig ; S Γ c̀lass X : S ; Θ′

Θ, Θ′; Γ, X:S ` typ ; τ : T

Θ; Γ ` ∀X:sig .[[typ]] ; ∀X:S.[[τ]]
(4)

Terms: Θ; Γ ` exp ; e : τ

x:τ ∈ Γ
Θ; Γ ` x ; x : τ

(5)
Γ ` τ1 : T Θ; Γ, x:τ1 ` exp ; e : τ2

Θ; Γ ` λx.exp ; λx:τ1.e : τ1→ τ2
(6)

Θ; Γ ` exp1 ; e1 : τ2→ τ Θ; Γ ` exp2 ; e2 : τ2

Θ; Γ ` exp1(exp2) ; e1(e2) : τ
(7)

Γ ` P : [[τ]]

Θ; Γ ` P ; Val(P) : τ
(8)

Γ ` P : ∀X:S.[[τ]] Γ ` S ≤ S Θ; Γ c̀an V : S
Θ; Γ ` P ; Val(P〈V〉) : τ [V/X]

(9)
Θ; Γ ` typ ; τ : T Θ; Γ ` exp ; e : τ

Θ; Γ ` exp : typ ; e : τ
(10)

Θ; Γ ` mod ; M : S Θ; Γ, X:S ` exp ; e : τ Xc 6∈ FV(τ)

Θ; Γ ` let X=mod in exp ; let X=M in e : τ
(11)

Θ; Γ ` exp ; e : τ ′ Γ ` τ ′ ≡ τ : T

Θ; Γ ` exp ; e : τ
(12)

Modules: Θ; Γ ` mod ; M : S

Θ; Γ ` exp ; e : τ

Θ; Γ ` [exp] ; [e] : [[τ]]
(13)

X 6∈ FV(exp) Γ c̀lass X : S ; Θ′ Θ, Θ′; Γ, X:S ` exp ; v : τ

Θ; Γ ` [exp] ; ΛX:S.[v] : ∀X:S.[[τ]]
(14)

Θ; Γ ` sig ; S1 Θ; Γ, X:S1 ` mod ; V : S2 S2 = {. . .}
Θ; Γ ` ΛX:sig .mod ; ΛX:S1.V : ∀X:S1.S2

(15)

Γ ` P1 : ∀X:S1.S S = {. . .}
Γ ` P2 : S2 Θ; Γ ` P2 � S1 ; V : S1

Θ; Γ ` P1〈P2〉 ; P1〈V〉 : S[V/X]
(16)

Θ; Γ ` sig ; S Γ ` S concrete Γ ` S ≤ S Θ; Γ c̀an V : S
Θ; Γ ` canon(sig) ; V : S

(17)
Θ; Γ ` sig ; S Γ, X:S ` X.`s : [[τ]] Γ ` S class

Θ; Γ ` overload `s from sig ; ΛX:S.(X.`s) : ∀X:S.[[τ]]
(18)

Θ; Γ ` sig ; S1 Γ, X1:S1 ` X1.`s : ∀X2:S2.[[τ]] S = {1.X1:S1, 2.X2:S2} Γ ` S class

Θ; Γ ` overload `s from sig ; ΛX:S.(X.1.`s〈X.2〉) : ∀X:S.[[τ [X.i/Xi]]]
(19)

Coercive Signature Matching: Θ; Γ ` P � S ; V : S

Γ ` P : [[K]] Γ ` K ≤ K

Θ; Γ ` P � [[K]] ; P : [[K]]
(20)

S is of the form [[τ]] or ∀X:S.[[τ]] Θ; Γ ` [P] ; V : S
Θ; Γ ` P � S ; V : S (21)

Top-Level Modules: Θ; Γ ` top ; M : S

Θ; Γ ` P usable Θ, P; Γ ` top ; M : S

Θ; Γ ` using P in top ; M : S
(22)

Canonical Modules: Θ; Γ c̀an V : S

Γ ` τ : T
Θ; Γ c̀an [τ] : [[s(τ)]]

(23)
Γ, α:Tn ` τ : T

Θ; Γ c̀an [λα:Tn.τ] : [[Πα:Tn.s(τ)]]
(24)

∀i ∈ 1..n : Θ; Γ c̀an Vi : Si t 6∈ {`1, . . . , `n}
Θ; Γ c̀an {`1=V1, . . . , `n=Vn} : {`1:S1, . . . , `n:Sn}

(25)

P ∈ Θ Γ ` P : S S = {t:[[s(τ)]], . . .}
Θ; Γ c̀an P : S (26)

P ∈ Θ Γ ` P : ∀X:S1.S2

Θ; Γ c̀an V : S1 Γ ` S1 ≤ S1

Θ; Γ c̀an P〈V〉 : S2[V/X]
(27)

Θ; Γ c̀an V : S′ Γ ` S′ ≡ S
Θ; Γ c̀an V : S (28)

Class Elaboration: Γ ` S class Γ c̀lass X : S ; Θ

Γ c̀lass X : S ; Θ

Γ ` S class
(29)

Γ ` S sig S⇒∃α.S Γ, α ` S ↓ S′ params(S′) ⊆ {α} Γ, α, X:S ` paths(X : S) ↓Θ

Γ c̀lass X : S ; Θ
(30)

Figure 3. Key Elaboration Rules

8 2006/10/26

Concerning term elaboration, the first three and the last three
rules shown in Figure 3 are standard. The rules for λ-abstractions
and applications are nondeterministic in the choice of argument
type, as is typical for a declarative specification of elaboration
(see [18, 9]).

Rule 8 governs the projection of a value from a monomor-
phic path P of signature [[τ]]. If P has the polymorphic signature
∀X:S.[[τ]], then it must be instantiated before its value component
can be accessed. This is governed by Rule 9, which specifies that
instantiation consists of finding the canonical instance module of
the class signature S to which P will be applied. Since the parame-
ters of S are abstract, the choice of which instance module is non-
deterministic. Correspondingly, what the second premise does is to
pick a transparent subsignature S of S that realizes these param-
eters with some choices τ1, . . . , τn. Then, the third premise finds
the canonical module V of signature S using the canonical module
judgment Θ; Γ c̀an V : S, described below. Note that all of this
is done in terms of module and signature judgments, without ever
explicitly mentioning the instantiating types τ1, . . . , τn!

The atomic term module [exp] can be elaborated monomorphi-
cally (Rule 13) or polymorphically (Rule 14). The polymorphic
option is only available if exp elaborates to a valuable term v,
per the usual value restriction. One can view Rule 14 as “guess-
ing” a polymorphic type ∀X:S.[[τ]] to assign to exp. Suppose that
S is an atomic class signature like EQ. In order to see whether exp
can be elaborated with this type, we add the class constraint X:S
to the context and make it a canonical instance of the signature
S where type t = X.t (by adding X to Θ) before typecheck-
ing exp. The last step is critical: if X is not added to Θ, then the
canonical module judgment will have no way of knowing that X
is the canonical module of signature S where type t = X.t at
polymorphic instantiation time.

However, in the case that S is a composite class, the elaborator
does not permit X to be added directly to the instance set Θ.
To simplify the formalization of other judgments, we require all
the instance structures in Θ to have atomic signature. Thus, in
general we need a way of parsing the class constraint X:S in
order to produce a set of paths Θ′ (all of which are rooted at X)
that represent the atomic instance modules contained within X.
This class parsing is achieved via the class elaboration judgment
Γ c̀lass X : S ; Θ′ used in the second premise of Rule 14. (The
judgment also checks that S is a valid class signature.)

For example, if S were the composite class ORD from Sec-
tion 2.3, then Θ′ would be the set {X.E, X.L}. Note that the in-
stances in Θ′ are guaranteed not to overlap with any instances in
the input instance set Θ because the instances in Θ′ all concern
abstract type components of the freshly chosen variable X.

Total functors elaborate successfully so long as their bodies are
valuable transparent structures (Rule 15). Rule 16 elaborates total
functor applications P1〈P2〉 by matching the argument P2 against
P1’s argument signature S1 via the coercive signature matching
judgment, Θ; Γ ` P2 � S1 ; V : S1. This judgment (taken
directly from the HS semantics) takes as input a path and a target
signature, and returns a module derived from the input path that
matches the target signature. Although the transparent signature S1

describing V is not used in this particular rule, it is guaranteed to
be a subtype of the target signature S1.

Rule 17 elaborates canon(sig) by computing the (unique)
canonical module of signature sig . This operation is only possible
if the parameters of sig are concrete, i.e., they are all transparently
equivalent to types that are well-formed in Γ. This simple check is
performed by an auxiliary concreteness judgment, Γ ` S concrete,
whose definition is given in Figure 13 in the appendix. Note that
the concreteness of sig does not imply that it is fully transparent,

only that its parameters are transparent. In particular, the associated
type components in sig may be abstract.

Rules 18 and 19 translate the overload `s from sig mechanism
essentially as prescribed in Section 2.4. The latter rule is useful for
overloading a value component of sig that already has a polymor-
phic type. The class constraint on that value component is joined
with sig itself to form a composite class constraint.

Rules 20 and 21 illustrate the base cases of the coercive signa-
ture matching judgment. To coerce to an atomic kind signature [[K]],
the input path P must be an atomic type module whose component
is of kind K. To coerce to a (potentially polymorphic) type signa-
ture S, it must be the case that P has a more general polymorphic
type than S. This subsumption check is captured very concisely by
checking whether the η-expansion of P (with respect to constrained
type abstraction) can be assigned the signature S.

Rule 22 elaborates using P in top by first checking whether P is
usable and then adding P to the canonical instance set Θ during the
elaboration of top. Usability is determined by the usable instance
judgment Θ; Γ ` P usable (defined in Figure 13 of the appendix).
This judgment specifies formally what we described informally in
Section 3.2, and thus guarantees that P will not overlap with any of
the instances in Θ.

Rules 23–28 define the canonical module judgment. In short, a
composite instance module is canonical if all its atomic instance
components are canonical; an atomic instance module is canonical
if it is either a canonical instance structure (from the set Θ) or
the result of applying a canonical instance functor from Θ to a
canonical argument. Canonical modules may also contain arbitrary
unconstrained type components (named something other than t).

Finally, Rule 30 defines the class elaboration judgment, written
Γ c̀lass X : S ; Θ, which checks whether S is a class signature and
then parses the class constraint X:S into a set of paths to the atomic
instances in X (see the discussion of polymorphic generalization
above). The premises of Rule 30 refer to several auxiliary judg-
ments and meta-operations defined in Figure 12 in the appendix.

The first premise checks that S is well-formed. The second
creates a sequence of type variables α corresponding to the abstract
type components of S. It also returns S, a transparent version of S
with the abstract type specifications replaced by references to α.
For example, [[T]]⇒∃α.[[s(α)]]. The third premise normalizes S
to S′ (using the normalization algorithm of Stone and Harper [24]).
If S is indeed a valid class signature, then this step should render
all the parameters of the class (i.e., the t components together with
the unconstrained components) transparently equal to one of the α.
This is precisely what the fourth premise checks.

The last premise of Rule 30 computes the paths to the atomic
instance modules within X and reduces them to a normal form. Re-
duction to normal form ensures that none of the paths overlap with
each other. For instance, S might be a composite class containing
two substructures of class EQ with a shared t component. Such an
S is a perfectly legitimate class, but the Θ′ returned by elaboration
of S can only contain the path to one of the two substructures.

4.4 Type inference algorithm
The elaboration relation presented above is nondeterministic, and
hence is not directly implementable without backtracking. In this
section we present a deterministic type inference algorithm in the
style of Algorithm W [3]. In particular, we thread through the in-
ference rules a substitution δ whose domain consists of unification
variables, denoted by bold α.

In addition, polymorphic instantiation in the presence of type
classes generates constraints, which we denote Σ. Constraints are
sets of X:S bindings, in which the X’s do not appear free in the
S’s. Each X:S represents a demand generated by the algorithm for

9 2006/10/26

partition(α; Σ)
def
= (Σ1; Σ2),

where Σ2 = {X:S | X:S ∈ Σ ∧ ∃α ∈ α. S = {t:s(α), . . .}} and Σ1 = Σ− Σ2

makesig(α; Σ)
def
= {tyvars.Y:{1:[[T]], . . . , m:[[T]]}, consts:{1:S′1, . . . , n:S′n}},

where α = α1, . . . , αm and Σ = X1:S1, . . . , Xn:Sn and S′i = Si[Y.j/αj]
n
j=1

genvars(Γ; Σ; τ)
def
= α2,

where α2 is the greatest set such that α1 ∪α2 = UV(Σ, τ) and α1 ∩α2 = ∅
and α2 ∩UV(Γ, Σ1) = ∅, where partition(α2; Σ) = (Σ1; Σ2)

Type Unification: Γ ` τ1 ≡ τ2 ⇒ δ Γ ` τ1 = τ2 ⇒ δ

Γ ` τ1 ↓ τ ′1 Γ ` τ2 ↓ τ ′2 Γ ` τ ′1 = τ ′2 ⇒ δ

Γ ` τ1 ≡ τ2 ⇒ δ
(31)

α 6∈ FV(τ) ` Γ[τ/α] ok

Γ ` α = τ ⇒ {α 7→ τ}
(32)

Terms: Θ; Γ ` exp ⇒ e : τ/(Σ; δ)

x:τ ∈ Γ

Θ; Γ ` x ⇒ x : τ/(∅; id)
(33)

Θ; Γ, x:α ` exp ⇒↓ e : τ/(Σ; δ)

Θ; Γ ` λx.exp ⇒ λx:δα.e : δα→ τ/(Σ; δ|Γ)
(34)

Θ; Γ ` exp1 ⇒↓ e1 : τ1/(Σ1; δ1) Θ; δ1Γ ` exp2 ⇒↓ e2 : τ2/(Σ2; δ2) δ2δ1Γ ` δ2τ1 ≡ (τ2→α) ⇒ δ3

Θ; Γ ` exp1(exp2) ⇒ δ3δ2e1(δ3e2) : δ3α/(δ3δ2Σ1, δ3Σ2; δ3δ2δ1|Γ)
(35)

Γ ` P :↓ [[τ]]

Θ; Γ ` P ⇒ Val(P) : τ/(∅; id)
(36)

Γ ` P :↓ ∀X:S.[[τ]] S⇒∃α.S Γ, X:S ` τ ↓ τ ′

Θ; Γ ` P ⇒ Val(P〈X〉) : τ ′/(X:S; id)
(37)

Terms With Constraint and Type Normalization: Θ; Γ ` exp ⇒↓ e : τ/(Σ; δ)

Θ; Γ ` exp ⇒ e : τ ′/(Σ1; δ1) Θ; δ1Γ ` Σ1 ↓ (Σ2; σ; δ2) δ2δ1Γ ` δ2τ
′ ↓ τ

Θ; Γ ` exp ⇒↓ σδ2e : τ/(Σ2; δ2δ1|Γ)
(38)

Modules: Θ; Γ ` mod ⇒ M : S/(Σ; δ)

Θ; Γ ` exp ⇒↓ v : τ/(Σ; δ1) genvars(δ1Γ; Σ; τ) = α partition(α; Σ) = (Σ1; Σ2) makesig(α; Σ2) = S
α = α1, . . . , αm Σ2 = X1:S1, . . . , Xn:Sn δ = {αi 7→X.tyvars.i}m

i=1 σ = {Xi 7→X.consts.i}n
i=1

Θ; Γ ` [exp] ⇒ ΛX:S.[σδv] : ∀X:S.[[δτ]]/(Σ1; δ1)
(39)

Θ; Γ ` exp ⇒↓ e : τ/(Σ; δ) e not valuable
Θ; Γ ` [exp] ⇒ [e] : [[τ]]/(Σ; δ)

(40)

Θ; Γ ` sig ⇒ S Γ ` S concrete
S⇒∃α.S Θ; Γ ` X:S ↓ (∅; σ; δ) α ⊆ dom(δ)

Θ; Γ ` canon(sig) ⇒ σX : δS/(∅; id)
(41)

Constraint Normalization: Θ; Γ ` Σ1 ↓ (Σ2; σ; δ)

∀X:S ∈ Σ. ∃α. Γ, Σ ` X.t ≡ α : T
∀X1:S1, X2:S2 ∈ Σ. (X1 6= X2 ∧ S1 ≈ S2) ⇒ Γ, Σ ` X1.t 6≡ X2.t : T

Θ; Γ ` Σ ↓ (Σ; id; id)
(42)

Θ; Γ ` Σ1 (Σ2; σ1; δ1)
Θ; δ1Γ ` Σ2 ↓ (Σ3; σ2; δ2)

Θ; Γ ` Σ1 ↓ (Σ3; σ2δ2σ1; δ2δ1)
(43)

Constraint Reduction: Θ; Γ ` Σ1 (Σ2; σ; δ)

Θ; Γ ` Σ, X:[[s(τ)]] (Σ; {X 7→ [τ]}; id)
(44)

Γ ` S ↓ {`1:S1, . . . , `n:Sn} t 6∈ `1, . . . , `n

Θ; Γ ` Σ, X:S (Σ, X1:S1, . . . , Xn:Sn; {X 7→ {`1=X1, . . . , `n=Xn}}; id)
(45)

Γ ` S ↓ {t:[[s(τ)]], . . .} τ not an α
P ∈ Θ Γ ` P :↓ S′ Γ ` S ≡ S′ ⇒ δ

Θ; Γ ` Σ, X:S (δΣ; {X 7→P}; δ)
(46)

Γ ` S ↓ {t:[[s(τ)]], . . .} τ not an α
P ∈ Θ Γ ` P :↓ ∀Y:S1.S2 S1⇒∃α.S1 Γ, Y:S1 ` S ≡ S2 ⇒ δ

Θ; Γ ` Σ, X:S (δΣ, Y:δS1; {X 7→P〈Y〉}; δ)
(47)

∃α. Γ, Σ ` X1.t ≡ α ≡ X2.t : T Γ ` S1 ≡ S2 ⇒ δ

Θ; Γ ` Σ, X1:S1, X2:S2 (δΣ, X1:δS1; {X2 7→X1}; δ)
(48)

Figure 4. Key Type Inference Rules

10 2006/10/26

a canonical module of signature S to be substituted for X in the
term or module that is output by elaboration.

Figure 4 consists of a selection of the most interesting rules in
the type inference algorithm. We use⇒ instead of ; to distinguish
the inference judgments from the elaboration judgments. The type
unification judgment (Rule 31) first normalizes the given types,
then performs syntactic unification on them. The latter is mostly
standard, although in the base case of Rule 32 it is important to
perform not only an occurs-check but a well-formedness check on
the context. In the presence of explicit local abstract types, as arise
for example from functor abstractions, an attempt may be made to
unify α with a type τ that is only valid in a later scope. The premise
` Γ[τ/α] ok safeguards against this.

Rules 33–35 are standard, but there are a few points of note.
First, the α that appears in these rules is implicitly chosen to be
a fresh unification variable. Second, Rule 35 is representative of
how most of the rules defining elaboration are easily converted
into algorithmic rules by amassing Σ’s and threading δ’s. In the
conclusion of the rule, the output substitution δ is subjected to an
operation written δ|Γ. This restricts the domain of δ to UV(Γ) (the
free unification variables of Γ). It is essentially a form of garbage
collection that removes from δ any bindings for fresh unification
variables that were introduced during the inference for exp1(exp2).
This step is useful for soundness purposes to ensure that the range
of δ|Γ is well-formed in the context δΓ.

The premises of these rules employ a variant of inference writ-
ten with ⇒↓. This signifies the composition of inference with type
and constraint normalization (see Rule 38). Constraint normaliza-
tion takes an arbitrary constraint and reduces it to one in normal
form. In a normal form constraint, every signature is atomic and its
t component is equal to a unification variable. Certain rules (such
as Rule 39 for generalization) require their premises to have their
constraints normalized; most rules don’t. Nevertheless, there is no
harm in eagerly reducing all constraints to normal form. Constraint
normalization is discussed in more detail below.

Rule 37 performs polymorphic instantiation. Given a path P of
polymorphic signature ∀X:S.[[τ]], it uses the judgment S⇒∃α.S to
generate fresh unification variables α corresponding to the abstract
type components of S. It then applies P to an unknown canonical
module X of signature S, and projects out the value component.
This in turn effects a demand for X:S in the output constraint. For
example, if S were the class EQ, then the output constraint would
be X:EQ where type t = α. (Note: the “:↓” judgment used in
the first premise indicates ∀X:S.[[τ]] is the normal form signature
of P, and the last premise normalizes τ so that references to type
components of X become references to the corresponding α.)

Rule 39 performs polymorphic generalization. The first premise
translates exp to a valuable term v with type τ , and generates a
normalized constraint Σ. The second premise calculates the largest
set of variables α over which v may be abstracted. Based on α, the
third premise partitions Σ accordingly into Σ2 (which will join α
in the abstraction) and Σ1 (which will propagate out of the rule).
Essentially, Σ2 comprises the constraints that refer to variables in
α and Σ1 comprises the constraints that do not. Finally, we use
the makesig macro to combine α and Σ2 into a class signature
S that we can abstract v over. The remainder of the premises are
simply doing namespace management to convert references to α
and dom(Σ2) into projections from the module variable X.

Rule 41 computes the canonical module of signature S by do-
ing something similar to polymorphic instantiation. As in Rule 37,
a constraint X:S is constructed that fills in the abstract type com-
ponents of S with fresh unification variables. However, since S is
required to be concrete, these unification variables may only fill
in associated type components. Thus, it must be the case that X:S
can be fully reduced via constraint normalization to the empty con-

straint. In the process, a canonical module substitution σ is gener-
ated such that σX is canonical at signature δS, a subtype of S.

As Rule 41 illustrates, the constraint normalization judgment
is the place in the algorithm where canonical modules are actually
computed. Normalization takes zero or more steps of constraint
reduction until the input constraint is reduced to a normal form
in which all residual constraints are instances of atomic classes at
unification variables (Rules 42 and 43). The relation between the
input and output of normalization is summarized by the following
invariant:

If Θ; Γ ` Σ1 ↓ (Σ2; σ; δ),
then ∀X:S ∈ Σ1. Θ, dom(Σ2); δΓ, Σ2 c̀an σX : δS.

That is, if we treat the domain of the normalized constraint Σ2 as a
set of canonical instances, then from those instances together with
the canonical instances already in Θ, the substitution σ shows how
to construct canonical modules to satisfy all the demands of the
original constraint Σ1 (subject to type substitution δ).

To make this concrete, suppose Θ contains the EqInt and
EqProd instance modules given in Section 2.1, and suppose that
Σ1 is X : EQ where type t = int * α. Then the normalized
Σ2 would be Y : EQ where type t = α, and the substitution σ
would map X to EqProd(EqInt,Y). (In this case, δ would simply
be the identity substitution id.)

Rules 44–47 for constraint reduction correspond closely to
Haskell-style context reduction, aka simplification. In the terms of
our elaborator, constraint reduction can be viewed as a backchain-
ing implementation of the canonical module judgment. Rule 48
provides a form of constraint improvement [10]. If two constraints
share their t component and their signatures are unifiable, then our
definition of overlapping instances implies that the only way the
constraints can possibly be satisfied is if they are unified into one.

Finally, we have not shown any inference rules for top-level
modules because they are essentially identical to the corresponding
elaboration rules. Since the outer level of the program is explicitly
typed, there is no need at that level for any Damas-Milner-style type
inference.

4.5 Soundness
We have proven that our inference algorithm is sound with respect
to the elaboration semantics. We collect the main results here and
refer to the appendix for the full statement (in Figure 23) and its
auxiliary definitions (Figure 22), including the precise meaning of
the theorem’s preconditions.

Theorem (Soundness)
Suppose (Θ; Γ) is valid for inference, Θ′ ⊇ Θ, Γ′ ` δ′ : δΓ,
` (Θ′; Γ′) ok, and ∀X:S ∈ Σ. Θ′; Γ′

c̀an σ′X : δ′S. Then:

1. If Θ; Γ ` exp ⇒ e : τ/(Σ; δ),
then Θ′; Γ′ ` exp ; σ′δ′e : δ′τ .

2. If Θ; Γ ` mod ⇒ M : S/(Σ; δ),
then Θ′; Γ′ ` mod ; σ′δ′M : δ′S.

Consider part 1. Informally, Θ, Γ and exp are inputs. If type
inference on exp succeeds, it produces an IL term e, along with a
constraint Σ and a substitution δ. If in any “future world” (Θ′; Γ′)
the constraint Σ can be solved by substitutions σ′ and δ′, then exp
will declaratively elaborate to σ′δ′e in that world. The theorem
statement for modules (part 2) is analogous.

4.6 Incompleteness
While the inference algorithm is sound, it is not complete, for rea-
sons that arise independently of the present work. One source of in-
completeness is inherited from Haskell and concerns a fundamental
problem with type classes, namely the problem of ambiguity [14].
The canonical example uses the following two signatures:

11 2006/10/26

signature SHOW = sig
type t
val show : t -> string

end
signature READ = sig
type t
val read : string -> t

end
val show = overload show from SHOW
val read = overload read from READ

Given this overloading, the expression show (read ("1")) is
ambiguous, as the result type of read and argument type of show
are completely unconstrained. This is problematic because, de-
pending on the available canonical instances, two or more valid
elaborations with observably different behaviour may exist. Hence,
ambiguous programs need to be rejected. This can be done easily
during inference, but for inference to be complete the complete-
ness theorem has to be formulated in such a way that ambiguous
programs are excluded from consideration. We have avoided this
issue here entirely in the interest of a clearer presentation.

Another source of incompleteness is inherited from ML, and
arises from the interaction between modules and type inference.
Consider the following Standard ML program:

functor F(X : sig type t end) = struct
val f = (print "Hello"; fn x => x)

end
structure Y1 = F(struct type t = int end)
structure Y2 = F(struct type t = bool end)
val z1 = Y1.f(3)
val z2 = Y2.f(true)

The binding of f in F is chosen to have an effect, so that it cannot
be given a polymorphic type. This raises the question of what sig-
nature should be assigned to F. According to the Definition of Stan-
dard ML [18] (and the HS semantics as well), the above program
is well-typed because f may be assigned the type X.t -> X.t,
which is consistent with both subsequent uses of F. But in order
to figure this out, a compiler would have to do a form of higher-
order unification—once we leave the scope of X.t, the unification
variable in the type of f should be skolemized over X.t.

As a result, nearly all existing implementations of Standard
ML reject this program, as do we. (The only one that accepts
it is MLton, but MLton also accepts similar programs that the
Definition rejects [5].) This example points out that the interactions
between type inference and modules are still not fully understood,
and merit further investigation beyond the scope of this paper.

5. Related Work
Type classes in Haskell. Since Wadler and Blott’s seminal pa-
per [25], the basic system of type classes has been extended in a
number of ways. Of these, Jones’ framework of qualified types [11]
and the resulting generalizations to constructor classes [15], multi-
parameter type classes, and functional dependencies [12] are the
most widely used. We discussed the option of supporting multi-
parameter and constructor classes in the modular setting in Sec-
tion 3.4. Instead of functional dependencies, we support associated
types, as they arise naturally from type components in modules.

Achieving a separation between instance declaration and in-
stance adoption, so that instance declarations need not have global
scope, is still an open problem in the Haskell setting. There exists
an experimental proposal by Kahl and Scheffczyk [16] that is moti-
vated by a comparison with ML modules. Their basic idea is to al-
low constrained polymorphic functions to be given explicit instance
arguments instead of having their instance arguments computed au-

tomatically. We support this functionality by providing the ability
to coerce back and forth between polymorphic functions and func-
tors, the latter of which may be given explicit module arguments
(Section 2.4). Moreover, we permit different instances of the same
signature to be made canonical in different scopes, which Kahl and
Scheffczyk do not.

Comparing type classes and modules. The only formal compari-
son between ML modules and Haskell type classes is by Wehr [26].
He formalizes a translation from type classes to modules and vice
versa, proves that both translations are type-preserving, and uses
the translations as the basis for a comparison of the expressive-
ness of the language features. Wehr concludes that his encoding
can help Haskell programmers to emulate certain aspects of mod-
ules in Haskell, but that the module encoding of type classes in ML
is too heavyweight to be used for realistic programs. Not surpris-
ingly, Wehr’s encoding of type classes as modules uses signatures
for classes and modules for instances, as we do. In fact, his transla-
tion can be regarded as an elaboration from a Haskell core language
to a fragment of ML. However, the fundamental difference between
our work and his is that he performs elaboration in the non-modular
context of Haskell, whereas we demonstrate how to perform elab-
oration and type inference in the modular context of ML.

Type classes for ML. Schneider [20] has proposed to extend ML
with type classes as a feature independent of modules. This leads
to significant duplication of mechanism and a number of techni-
cal problems, which we avoid by expressing type classes via mod-
ules. More recently, Siek and Lumsdaine [22] have described a
language FG that integrates concepts, which are closely related to
type classes, into System F. However, FG does not support type
inference. Siek’s thesis [21] defines a related language G, which
supports inference for type applications, but not type abstractions.
Concepts in G are treated as a distinct construct, unrelated to mod-
ules, and G does not support parameterized modules (i.e., functors).

Parameterized signatures. Jones [13] has proposed a way of
supporting modular programming in a Haskell-like language, in
which a signature is encoded as a record type parameterized over
the abstract type components of the signature. However, he does
not consider the interaction with type classes.

Acknowledgments
We thank Stefan Wehr for stimulating discussions on ways of
representing type classes with modules.

References
[1] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.

Associated type synonyms. In ICFP ’05.
[2] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and

Simon Marlow. Associated types with class. In POPL ’05.
[3] Luis Damas and Robin Milner. Principal type schemes for functional

programs. In POPL ’82.
[4] Derek Dreyer. Understanding and Evolving the ML Module System.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 2005.
[5] Derek Dreyer and Matthias Blume. Principal type schemes for

modular programs. Technical Report TR-2006-08, University of
Chicago Comp. Sci. Dept., October 2006.

[6] Derek Dreyer, Karl Crary, and Robert Harper. A type system for
higher-order modules. In POPL ’03.

[7] Robert Harper and Mark Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In POPL ’94.

[8] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order
modules and the phase distinction. In POPL ’90.

[9] Robert Harper and Chris Stone. A type-theoretic interpretation of
Standard ML. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,

12 2006/10/26

Language, and Interaction: Essays in Honor of Robin Milner. MIT
Press, 2000.

[10] Mark P. Jones. Simplifying and improving qualified types. In
FPCA ’95.

[11] Mark P. Jones. A theory of qualified types. In ESOP ’92.
[12] Mark P. Jones. Type classes with functional dependencies. In

ESOP ’00.
[13] Mark P. Jones. Using parameterized signatures to express modular

structure. In POPL ’96.
[14] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge

University Press, 1994.
[15] Mark P. Jones. A system of constructor classes: Overloading

and implicit higher-order polymorphism. Journal of Functional
Programming, 5(1), 1995.

[16] Wolfram Kahl and Jan Scheffczyk. Named instances for Haskell type
classes. In Haskell Workshop, 2001.

[17] David MacQueen. Modules for Standard ML. In LFP ’84.
[18] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.

The Definition of Standard ML (Revised). MIT Press, 1997.
[19] Simon Peyton Jones et al. Haskell 98 language and libraries: the

revised report. Journal of Functional Programming, 13(1), 2003.
[20] Gerhard Schneider. ML mit Typklassen. Master’s thesis, June 2000.
[21] Jeremy Siek. A Language for Generic Programming. PhD thesis,

Indiana University, August 2005.
[22] Jeremy Siek and Andrew Lumsdaine. Essential language support for

generic programming. In PLDI ’05.
[23] Christopher A. Stone and Robert Harper. Deciding type equivalence

in a language with singleton kinds. In POPL ’00.
[24] Christopher A. Stone and Robert Harper. Extensional equivalence

and singleton types. ACM Transactions on Computational Logic,
2006. To appear.

[25] P. Wadler and S. Blott. How to make ad-hoc polymorphism less
ad-hoc. In POPL ’89.

[26] Stefan Wehr. ML modules and Haskell type classes: A constructive
comparison. Master’s thesis, Albert-Ludwigs-Universität Freiburg,
Institut für Informatik, 2005.

13 2006/10/26

Fst([[K]])
def
= K

Fst([[τ]])
def
= {}

Fst({`.X:S}) def
= {`.Xc:Fst(S)}

Fst(∀X:S1.S2)
def
= ΠXc:Fst(S1).Fst(S2)

Fst(ΠX:S1.S2)
def
= {}

s[[K]](C)
def
= [[sK(C)]]

s[[τ]](C)
def
= [[τ]]

s{`.X:S}(C)
def
= {`.X:sS(C.`)}

s∀X:S1.S2(C)
def
= ∀X:S1.S2

sΠX:S1.S2(C)
def
= ΠX:S1.S2

Fst(X)
def
= Xc

Fst([C])
def
= C

Fst([e])
def
= {}

Fst({`.X=M}) def
= {`.Xc=Fst(M)}

Fst(M.`)
def
= Fst(M).`

Fst(ΛX:S.M)
def
= λXc:Fst(S).Fst(M)

Fst(F〈M〉) def
= Fst(F)(Fst(M))

Fst(λ(X:S1):>S2.M)
def
= {}

Notation: sS(M) and E[M/X] are shorthand for sS(Fst(M)) and E[Fst(M)/Xc], respectively.

Well-formed Contexts: ` Γ ok

` ∅ ok
` Γ ok Γ ` K kind

` Γ, α:K ok
` Γ ok Γ ` τ : T

` Γ, x:τ ok

` Γ ok Γ ` S sig

` Γ, X:S ok

Kind Subtyping: Γ ` K1 ≤ K2

Γ ` T ≤ T
Γ ` τ : T

Γ ` s(τ) ≤ T

Γ ` τ1 ≡ τ2 : T

Γ ` s(τ1) ≤ s(τ2)

Γ ` K′
1 ≡ K′

2 Γ, α:K′
1 ` K′′

1 ≤ K′′
2

Γ ` Πα:K′
1.K

′′
1 ≤ Πα:K′

2.K
′′
2

Γ ` {} ≤ {}
Γ ` K1 ≤ K′

1 Γ, α:K1 ` {`.α:K} ≤ {`.α:K′} Γ ` {`1.α1:K
′
1, `.α:K′} kind

Γ ` {`1.α1:K1, `.α:K} ≤ {`1.α1:K
′
1, `.α:K′}

Signature Subtyping: Γ ` S1 ≤ S2

Γ ` K1 ≤ K2

Γ ` [[K1]] ≤ [[K2]]

Γ ` τ1 ≡ τ2 : T

Γ ` [[τ1]] ≤ [[τ2]]

Γ ` S′1 ≡ S′2 Γ, X:S′1 ` S′′1 ≡ S′′2

Γ ` ΠX:S′1.S
′′
1 ≤ ΠX:S′2.S

′′
2

Γ ` S′1 ≡ S′2 Γ, X:S′1 ` S′′1 ≡ S′′2
Γ ` ∀X:S′1.S′′1 ≤ ∀X:S′2.S′′2

Γ ` {} ≤ {}
Γ ` S1 ≤ S′1 Γ, X:S1 ` {`.X:S} ≤ {`.X:S′} Γ ` {`1.X1:S

′
1, `.X:S′} sig

Γ ` {`1.X1:S1, `.X:S} ≤ {`1.X1:S
′
1, `.X:S′}

The judgments Γ ` K1 ≡ K2 and Γ ` S1 ≡ S2 are defined to coincide with subtyping in both directions.
For details of the kinding and equivalence judgments for type constructors, see Dreyer’s thesis [4].

Figure 5. IL Static Semantics (Abridged)

14 2006/10/26

Kinds: Θ; Γ ` knd ; K

knd = T or Tn →T
Θ; Γ ` knd ; knd

Θ; Γ ` typ ; τ : T

Θ; Γ ` s(typ) ; s(τ)

Θ; Γ, α ` typ ; τ : T α = α1, . . . , αn

Θ; Γ ` Πα.s(typ) ; Πα:Tn.s(typ[α.i/αi])

Type Constructors: Θ; Γ ` con ; C : K

α:K ∈ Γ
Θ; Γ ` α ; α : K

∀i ∈ {1, 2}. Θ; Γ ` typi ; τi : T

Θ; Γ ` typ1→ typ2 ; τ1→ τ2 : T

Γ ` P : [[K]]

Θ; Γ ` P ; Fst(P) : K

Θ; Γ ` canon(sig) ; V : S Γ ` V.`s : [[K]]

Θ; Γ ` canon(sig).`s ; Fst(V).`s : K

Θ; Γ ` con ; C : K′ Γ ` C : K

Θ; Γ ` con ; C : K

Θ; Γ, α ` typ ; τ : T α = α1, . . . , αn

Θ; Γ ` λα.typ ; λα:Tn.τ [α.i/αi] : Tn →T

Θ; Γ ` con ; C : Tn →T ∀i ∈ 1..n. Θ; Γ ` typi ; τi : T

Θ; Γ ` con(typ1, . . . , typn) ; C(τ1, . . . , τn) : T

Signatures: Θ; Γ ` sig ; S

Θ; Γ ` knd ; K

Θ; Γ ` [[knd]] ; [[K]]

Θ; Γ ` typ ; τ : T

Θ; Γ ` [[typ]] ; [[τ]] Θ; Γ ` {} ; {}
Θ; Γ ` sig1 ; S1 Θ; Γ, X1:S1 ` {`.X:sig} ; {`.X:S}

Θ; Γ ` {`1.X1:sig1, `.X:sig} ; {`1.X1:S1, `.X:S}

Θ; Γ ` sig1 ; S1 Θ; Γ, X:S1 ` sig2 ; S2 S2 = {. . .}
Θ; Γ ` ΠX:sig1.sig2 ; ΠX:S1.S2

Θ; Γ ` sig1 ; S1 Θ; Γ, X:S1 ` tsig2 ; S2 S2 = {. . .}
Θ; Γ ` ∀X:sig1.tsig2 ; ∀X:S1.S2

Θ; Γ ` sig ; S Γ c̀lass X : S ; Θ′ Θ, Θ′; Γ, X:S ` typ ; τ : T

Θ; Γ ` ∀X:sig .[[typ]] ; ∀X:S.[[τ]]

Figure 6. Elaboration Rules for Kinds, Types, and Signatures

Terms: Θ; Γ ` exp ; e : τ

x:τ ∈ Γ
Θ; Γ ` x ; x : τ

Γ ` τ1 : T Θ; Γ, x:τ1 ` exp ; e : τ2

Θ; Γ ` λx.exp ; λx:τ1.e : τ1→ τ2

Θ; Γ ` exp1 ; e1 : τ2→ τ Θ; Γ ` exp2 ; e2 : τ2

Θ; Γ ` exp1(exp2) ; e1(e2) : τ

Γ ` P : [[τ]]

Θ; Γ ` P ; Val(P) : τ

Γ ` P : ∀X:S.[[τ]] Γ ` S ≤ S Θ; Γ c̀an V : S
Θ; Γ ` P ; Val(P〈V〉) : τ [V/X]

Θ; Γ ` mod ; M : S Θ; Γ, X:S ` exp ; e : τ Xc 6∈ FV(τ)

Θ; Γ ` let X=mod in exp ; let X=M in e : τ

Θ; Γ ` typ ; τ : T Θ; Γ ` exp ; e : τ

Θ; Γ ` exp : typ ; e : τ

Θ; Γ ` exp ; e : τ ′ Γ ` τ ′ ≡ τ : T

Θ; Γ ` exp ; e : τ

Figure 7. Elaboration Rules for Terms

15 2006/10/26

Modules: Θ; Γ ` mod ; M : S

Γ ` P : S
Θ; Γ ` P ; P : S

Θ; Γ ` con ; C : K
Θ; Γ ` [con] ; [C] : [[K]]

Θ; Γ ` exp ; e : τ

Θ; Γ ` [exp] ; [e] : [[τ]]

X 6∈ FV(exp) Γ c̀lass X : S ; Θ′ Θ, Θ′; Γ, X:S ` exp ; v : τ

Θ; Γ ` [exp] ; ΛX:S.[v] : ∀X:S.[[τ]]

Θ; Γ ` {} ; {} : {}
Θ; Γ ` mod1 ; M1 : S1 Θ; Γ, X1:S1 ` {`.X=mod} ; {`.X=M} : {`.X:S}

Θ; Γ ` {`1.X1=mod1, `.X=mod} ; {`1.X1=M1, `.X=M} : {`1.X1:S1, `.X:S}

Θ; Γ ` sig ; S1 Θ; Γ, X:S1 ` mod ; M : S2 S2 = {. . .}
Θ; Γ ` λX:sig .mod ; λ(X:S1):>S2.M : ΠX:S1.S2

Θ; Γ ` sig ; S1 Θ; Γ, X:S1 ` mod ; V : S2 S2 = {. . .}
Θ; Γ ` ΛX:sig .mod ; ΛX:S1.V : ∀X:S1.S2

Γ ` P1 : ΠX:S1.S S = {. . .} Γ ` P2 : S2 Θ; Γ ` P2 � S1 ; V : S1

Θ; Γ ` P1(P2) ; P1(V) : S[V/X]

Γ ` P1 : ∀X:S1.S S = {. . .} Γ ` P2 : S2 Θ; Γ ` P2 � S1 ; V : S1

Θ; Γ ` P1〈P2〉 ; P1〈V〉 : S[V/X]

Θ; Γ ` mod1 ; M1 : S1 Θ; Γ, X:S1 ` mod2 ; M2 : S Xc 6∈ FV(S)

Θ; Γ ` let X=mod1 inmod2 ; let X=M1 in M2 :>S : S

Θ; Γ ` mod ; M : S1 Θ; Γ ` sig ; S Θ; Γ, X:S1 ` X � S ; V : S
Θ; Γ ` mod :> sig ; let X=M in V :>S : S

Θ; Γ ` mod ; M : S′ Γ ` S′ ≡ S

Θ; Γ ` mod ; M : S

Θ; Γ ` sig ; S Γ ` S concrete Γ ` S ≤ S Θ; Γ c̀an V : S
Θ; Γ ` canon(sig) ; V : S

Θ; Γ ` sig ; S Γ, X:S ` X.`s : [[τ]] Γ ` S class

Θ; Γ ` overload `s from sig ; ΛX:S.(X.`s) : ∀X:S.[[τ]]

Θ; Γ ` sig ; S1 Γ, X1:S1 ` X1.`s : ∀X2:S2.[[τ]] S = {1.X1:S1, 2.X2:S2} Γ ` S class

Θ; Γ ` overload `s from sig ; ΛX:S.(X.1.`s〈X.2〉) : ∀X:S.[[τ [X.i/Xi]]]

Γ ` P : ∀X:S.{it:[[τ]]} Γ ` S class

Θ; Γ ` implicit(P) ; ΛX:S.(P〈X〉.it) : ∀X:S.[[τ]]

Γ ` P : ∀X1:S1.{it:∀X2:S2.[[τ]]} S = {1.X1:S1, 2.X2:S2} Γ ` S class

Θ; Γ ` implicit(P) ; ΛX:S.(P〈X.1〉.it〈X.2〉) : ∀X:S.[[τ [X.i/Xi]]]

Θ; Γ ` sig ; ∀X:S.{it:[[τ]]} Γ ` S class Θ; Γ ` P � ∀X:S.[[τ]] ; V :

Θ; Γ ` explicit(P : sig) ; ΛX:S.{it=V〈X〉} : ∀X:S.{it:[[τ]]}

Θ; Γ ` sig ; ∀X1:S1.{it:∀X2:S2.[[τ]]} S = {1.X1:S1, 2.X2:S2} Γ ` S class Θ; Γ ` P � ∀X:S.[[τ [X.i/Xi]]] ; V :

Θ; Γ ` explicit(P : sig) ; ΛX1:S1.{it=ΛX2:S2.V〈{1=X1, 2=X2}〉} : ∀X1:S1.{it:∀X2:S2.[[τ]]}

Figure 8. Elaboration Rules for Modules

16 2006/10/26

Coercive Signature Matching: Θ; Γ ` P � S ; V : S

Γ ` P : [[K]] Γ ` K ≤ K

Θ; Γ ` P � [[K]] ; P : [[K]]

S is of the form [[τ]] or ∀X:S.[[τ]] Θ; Γ ` [P] ; V : S
Θ; Γ ` P � S ; V : S

Γ ` P : {. . .}
Θ; Γ ` P � {} ; {} : {}

Γ ` P.`1 : S′1 Θ; Γ ` P.`1 � S1 ; V1 : S1 Θ; Γ, X1:S1 ` P � {`.X:S} ; {`.X=V} : {`.X:S}
Θ; Γ ` P � {`1.X1:S1, `.X:S} ; {`1.X1=V1, `.X=V} : {`1.X1:S1, `.X:S}

S2 = {. . .} Γ ` P : ∀Y:R1.R2 Θ; Γ, X:S1 ` X � R1 ; V1 : Θ; Γ, X:S1, Z:R2[V1/Y] ` Z � S2 ; V2 :

Θ; Γ ` P � ∀X:S1.S2 ; ΛX:S1.{1.Z=P〈V1〉, 2=V2}.2 : ∀X:S1.S2

S2 = {. . .} Γ ` P : ∀Y:R1.R2 Θ; Γ, X:S1 ` X � R1 ; V1 : Θ; Γ, X:S1, Z:R2[V1/Y] ` Z � S2 ; V2 :

Θ; Γ ` P � ΠX:S1.S2 ; λ(X:S1):>S2.(let Z=P〈V1〉 in V2 :>S2) : ΠX:S1.S2

S2 = {. . .} Γ ` P : ΠY:R1.R2 Θ; Γ, X:S1 ` X � R1 ; V1 : Θ; Γ, X:S1, Z:R2[V1/Y] ` Z � S2 ; V2 :

Θ; Γ ` P � ΠX:S1.S2 ; λ(X:S1):>S2.(let Z=P(V1) in V2 :>S2) : ΠX:S1.S2

Figure 9. Elaboration Rules for Coercive Signature Matching

Top-Level Modules: Θ; Γ ` top ; M : S

Analogous to module elaboration rules, minus the rule for [exp], but plus:

Θ; Γ ` P usable Θ, P; Γ ` top ; M : S

Θ; Γ ` using P in top ; M : S

Contexts: ` (Θ; Γ) ok

` Γ ok
` (∅; Γ) ok

` (Θ; Γ) ok Θ; Γ ` P usable

` (Θ, P; Γ) ok

Figure 10. Elaboration Rules for Top-Level Modules and Well-formedness Rules for Contexts

Canonical Modules: Θ; Γ c̀an V : S

Γ ` τ : T
Θ; Γ c̀an [τ] : [[s(τ)]]

Γ, α:Tn ` τ : T

Θ; Γ c̀an [λα:Tn.τ] : [[Πα:Tn.s(τ)]]

∀i ∈ 1..n : Θ; Γ c̀an Vi : Si t 6∈ {`1, . . . , `n}
Θ; Γ c̀an {`1=V1, . . . , `n=Vn} : {`1:S1, . . . , `n:Sn}

P ∈ Θ Γ ` P : S S = {t:[[s(τ)]], . . .}
Θ; Γ c̀an P : S

P ∈ Θ Γ ` P : ∀X:S1.S2 Θ; Γ c̀an V : S1 Γ ` S1 ≤ S1

Θ; Γ c̀an P〈V〉 : S2[V/X]

Θ; Γ c̀an V : S′ Γ ` S′ ≡ S
Θ; Γ c̀an V : S

Figure 11. Elaboration Rules for Canonical Modules

17 2006/10/26

Signature Similarity: R ≈ S

R = {`1.X1:R1, . . . , `n.Xn:Rn} S = {`1.Y1:S1, . . . , `n.Yn:Sn}
R ≈ S

Abstract Type Extraction: S⇒∃α.S

S⇒∃∅.S [[T]]⇒∃α.[[s(α)]]

S1⇒∃α1.S1 {`.X:S}⇒∃α.{`.X:S} α1 ∩ α = ∅
{`1.X1:S1, `.X:S}⇒∃α1, α.{`1.X1:S1, `.X:S}

Class Parameters: params(S)

params([[s(α)]])
def
= {α}

params({}) def
= ∅

params({`1.X1:S1, `.X:S}) def
= params(S1) ∪ params({`.X:S}), where t 6∈ {`1, `}

params({t.X:[[s(α)]], . . .}) def
= {α}

Paths to Atomic Instance Modules in a Class: paths(P : S)

paths(P : [[s(τ)]])
def
= ∅

paths(P : {}) def
= ∅

paths(P : {`1.X1:S1, `.X:S}) def
= paths(P.`1 : S1) ∪ paths(P : {`.X:S}), where t 6∈ {`1, `}

paths(P : {t.X:[[s(τ)]], . . .}) def
= {P}

Instance Set Simplification: Γ ` Θ ↓Θ′

Θ′ ⊆ Θ
∀P1 ∈ Θ. ∃P2 ∈ Θ′. Γ ` P1 : S1 ∧ Γ ` P2 : S2 ∧ Γ ` S1 ≡ S2

∀P1, P2 ∈ Θ′. (P1 6= P2 ∧ Γ ` P1 : S1 ∧ Γ ` P2 : S2 ∧ S1 ≈ S2) ⇒ Γ ` P1.t 6≡ P2.t : T

Γ ` Θ ↓Θ′

Class Elaboration: Γ c̀lass X : S ; Θ

Γ ` S sig S⇒∃α.S Γ, α ` S ↓ S′ params(S′) ⊆ {α} Γ, α, X:S ` paths(X : S) ↓Θ

Γ c̀lass X : S ; Θ

Well-formed Classes: Γ ` S class

Γ c̀lass X : S ; Θ

Γ ` S class

Figure 12. Elaboration Rules for Classes

18 2006/10/26

Concrete Signatures: Γ ` S concrete

Γ ` τ : T
Γ ` [[s(τ)]] concrete

∀S ∈ S. Γ ` S concrete t 6∈ `

Γ ` {`.X:S} concrete
Γ ` τ : T

Γ ` {t.X:[[s(τ)]], . . .} concrete
Γ ` S′ concrete Γ ` S′ ≡ S

Γ ` S concrete

Instances: Γ ` (P; p) instance

Γ ` P : S S = {t.Y:[[s(C)]], . . .} Γ ` C ↓ p

Γ ` (P; p) instance

Γ ` P : ∀X:S1.S2 Γ ` S1 class S1⇒∃α.S1 S2 = {t.Y:[[s(C)]], . . .}
Γ, α ` S1 ↓ S′1 params(S′1) = {β} Γ, α, X:S1 ` C ↓ p(β)

Γ ` (P; p) instance

Usable Instances: Θ; Γ ` P usable

Γ ` (P; p) instance Γ ` P : S ∀P′ ∈ Θ. (Γ ` (P′; p) instance ∧ Γ ` P′ : S′) ⇒ S 6≈ S′

Θ; Γ ` P usable

Γ ` (P; p) instance Γ ` P : ∀X:S1.S ∀P′ ∈ Θ. (Γ ` (P′; p) instance ∧ Γ ` P′ : ∀X:S′1.S′) ⇒ S 6≈ S′

Θ; Γ ` P usable

Figure 13. Elaboration Rules for Instances

19 2006/10/26

Type Unification: Γ ` τ1 = τ2 ⇒ δ

Γ ` τ = τ ⇒ id

Γ ` τ1 = τ ′1 ⇒ δ1 δ1Γ ` δ1τ2 = δ1τ
′
2 ⇒ δ2

Γ ` τ1→ τ2 = τ ′1→ τ ′2 ⇒ δ2δ1

Γ ` τ1 = τ2 ⇒ δ

Γ ` p(τ1) = p(τ2) ⇒ δ

α 6∈ FV(τ) ` Γ[τ/α] ok

Γ ` α = τ ⇒ {α 7→ τ}
α 6∈ FV(τ) ` Γ[τ/α] ok

Γ ` τ = α ⇒ {α 7→ τ}

Kind Unification: Γ ` K1 = K2 ⇒ δ

Γ ` K = K ⇒ id

Γ ` τ1 = τ2 ⇒ δ

Γ ` s(τ1) = s(τ2) ⇒ δ

Γ, α:Tn ` τ1 = τ2 ⇒ δ α 6∈ FV(δ)

Γ ` Πα:Tn.s(τ1) = Πα:Tn.s(τ2) ⇒ δ

Signature Unification: Γ ` S1 = S2 ⇒ δ

Γ ` K1 = K2 ⇒ δ

Γ ` [[K1]] = [[K2]] ⇒ δ

Γ ` τ1 = τ2 ⇒ δ

Γ ` [[τ1]] = [[τ2]] ⇒ δ

Γ ` {} = {} ⇒ id

Γ ` S1 = S′1 ⇒ δ1 δ1Γ, X1:δ1S1 ` δ1{`.X:S} = δ1{`.X:S′} ⇒ δ2 Xc
1 6∈ FV(δ2)

Γ ` {`1.X1:S1, `.X:S} = {`1.X1:S
′
1, `.X:S′} ⇒ δ2δ1

Γ ` S1 = S′1 ⇒ δ1 δ1Γ, X:δ1S1 ` δ1S2 = δ1S
′
2 ⇒ δ2 Xc 6∈ FV(δ2)

Γ ` ΠX:S1.S2 = ΠX:S′1.S
′
2 ⇒ δ2δ1

Γ ` S1 = S′1 ⇒ δ1 δ1Γ, X:δ1S1 ` δ1S2 = δ1S
′
2 ⇒ δ2 Xc 6∈ FV(δ2)

Γ ` ∀X:S1.S2 = ∀X:S′1.S
′
2 ⇒ δ2δ1

Multiple Unifications: Γ ` meta1 = meta2 ⇒ δ

Γ ` ∅ = ∅ ⇒ id

Γ ` meta1 = meta ′1 ⇒ δ1 δ1Γ ` δ1meta = δ1meta ′ ⇒ δ2

Γ ` meta1,meta = meta ′1,meta ′ ⇒ δ2δ1

Unification After Normalization: Γ ` meta1 ≡ meta2 ⇒ δ

Γ ` meta1 ↓ meta ′1 Γ ` meta2 ↓ meta ′2 Γ ` meta ′1 = meta ′2 ⇒ δ

Γ ` meta1 ≡ meta2 ⇒ δ

Figure 14. Unification Rules

Kinds: Θ; Γ ` knd ⇒ K

Signatures: Θ; Γ ` sig ⇒ S

Constructors: Θ; Γ ` con ⇒ C : K

Analogous to corresponding declarative elaboration rules, except:

Θ; Γ ` canon(sig) ⇒↓ V : S/(∅; id) Γ ` V.`s : [[K]]

Θ; Γ ` canon(sig).`s ⇒ Fst(V).`s : K

Figure 15. Type Inference Rules for Kinds, Constructors and Signatures

20 2006/10/26

Terms With Constraint and Type Normalization: Θ; Γ ` exp ⇒↓ e : τ/(Σ; δ)

Θ; Γ ` exp ⇒ e : τ ′/(Σ1; δ1) Θ; δ1Γ ` Σ1 ↓ (Σ2; σ; δ2) δ2δ1Γ ` δ2τ
′ ↓ τ

Θ; Γ ` exp ⇒↓ σδ2e : τ/(Σ2; δ2δ1|Γ)

Terms With Constraint Normalization Given a Ground Target Type: Θ; Γ ` exp : τ ⇒↓ e/(Σ; δ)

Θ; Γ ` exp ⇒ e : τ ′/(Σ1; δ1) δ1Γ ` τ ′ ≡ τ ⇒ δ2 Θ; δ2δ1Γ ` δ2Σ1 ↓ (Σ2; σ; δ3)

Θ; Γ ` exp : τ ⇒↓ σδ3δ2e/(Σ2; δ3δ2δ1|Γ)

Terms: Θ; Γ ` exp ⇒ e : τ/(Σ; δ)

x:τ ∈ Γ

Θ; Γ ` x ⇒ x : τ/(∅; id)

Θ; Γ, x:α ` exp ⇒↓ e : τ/(Σ; δ)

Θ; Γ ` λx.exp ⇒ λx:δα.e : δα→ τ/(Σ; δ|Γ)

Θ; Γ ` exp1 ⇒↓ e1 : τ1/(Σ1; δ1) Θ; δ1Γ ` exp2 ⇒↓ e2 : τ2/(Σ2; δ2) δ2δ1Γ ` δ2τ1 ≡ (τ2→α) ⇒ δ3

Θ; Γ ` exp1(exp2) ⇒ δ3δ2e1(δ3e2) : δ3α/(δ3δ2Σ1, δ3Σ2; δ3δ2δ1|Γ)

Γ ` P :↓ [[τ]]

Θ; Γ ` P ⇒ Val(P) : τ/(∅; id)

Γ ` P :↓ ∀X:S.[[τ]] S⇒∃α.S Γ, X:S ` τ ↓ τ ′

Θ; Γ ` P ⇒ Val(P〈X〉) : τ ′/(X:S; id)

Θ; Γ ` mod ⇒↓ M : S/(Σ1; δ1) Θ; δ1Γ, X:S ` exp ⇒↓ e : τ/(Σ2; δ2) Xc 6∈ FV(τ, Σ2)

Θ; Γ ` let X=mod in exp ⇒ let X=δ2M in e : τ/(δ2Σ1, Σ2; δ2δ1|Γ)

Θ; Γ ` typ ⇒ τ : T Θ; Γ ` exp : τ ⇒↓ e/(Σ; δ)

Θ; Γ ` exp : typ ⇒ e : τ/(Σ; δ)

Figure 16. Type Inference Rules for Terms

partition(α; Σ)
def
= (Σ1; Σ2),

where Σ2 = {X:S | X:S ∈ Σ ∧ ∃α ∈ α. S = {t:s(α), . . .}} and Σ1 = Σ− Σ2

makesig(α; Σ)
def
= {tyvars.Y:{1:[[T]], . . . , m:[[T]]}, consts:{1:S′1, . . . , n:S′n}},

where α = α1, . . . , αm and Σ = X1:S1, . . . , Xn:Sn and S′i = Si[Y.j/αj]
n
j=1

genvars(Γ; Σ; τ)
def
= α2,

where α2 is the greatest set such that α1 ∪α2 = UV(Σ, τ) and α1 ∩α2 = ∅
and α2 ∩UV(Γ, Σ1) = ∅, where partition(α2; Σ) = (Σ1; Σ2)

Figure 17. Auxiliary Definitions for Use in the Polymorphic Generalization Rule

21 2006/10/26

Modules With Constraint and Signature Normalization: Θ; Γ ` mod ⇒↓ M : S/(Σ; δ)

Θ; Γ ` mod ⇒ M : S/(Σ1; δ1) Θ; δ1Γ ` Σ1 ↓ (Σ2; σ; δ2) δ2δ1Γ ` δ2S ↓ S′

Θ; Γ ` mod ⇒↓ σδ2M : S′/(Σ2; δ2δ1|Γ)

Modules: Θ; Γ ` mod ⇒ M : S/(Σ; δ)

Γ ` P :↓ S
Θ; Γ ` P ⇒ P : S/(∅; id)

Θ; Γ ` con ⇒ C : K
Θ; Γ ` [con] ⇒ [C] : [[K]]/(∅; id)

Θ; Γ ` exp ⇒↓ e : τ/(Σ; δ) e not valuable
Θ; Γ ` [exp] ⇒ [e] : [[τ]]/(Σ; δ)

Θ; Γ ` exp ⇒↓ v : τ/(Σ; δ1) genvars(δ1Γ; Σ; τ) = α partition(α; Σ) = (Σ1; Σ2) makesig(α; Σ2) = S
α = α1, . . . , αm Σ2 = X1:S1, . . . , Xn:Sn δ = {αi 7→X.tyvars.i}m

i=1 σ = {Xi 7→X.consts.i}n
i=1

Θ; Γ ` [exp] ⇒ ΛX:S.[σδv] : ∀X:S.[[δτ]]/(Σ1; δ1)

Θ; Γ ` {} ⇒ {} : {}/(∅; id)

Θ; Γ ` mod1 ⇒↓ M1 : S1/(Σ1; δ1) Θ; δ1Γ, X1:S1 ` {`.X=mod} ⇒↓ {`.X=M} : {`.X:S}/(Σ2; δ2) Xc
1 6∈ FV(Σ2)

Θ; Γ ` {`1.X1=mod1, `.X=mod} ⇒ {`1.X1=δ2M1, `.X=M} : {`1.X1:δ2S1, `.X:S}/(δ2Σ1, Σ2; δ2δ1|Γ)

Θ; Γ ` sig ⇒ S1 Θ; Γ, X:S1 ` mod ⇒↓ M : S2/(Σ; δ) S2 = {. . .} Xc 6∈ FV(Σ)

Θ; Γ ` λX:sig .mod ⇒ λ(X:S1):>S2.M : ΠX:S1.S2/(Σ; δ|Γ)

Θ; Γ ` sig ⇒ S1 Θ; Γ, X:S1 ` mod ⇒↓ V : S2/(Σ; δ) S2 = {. . .} Xc 6∈ FV(Σ)

Θ; Γ ` ΛX:sig .mod ⇒ ΛX:S1.V : ∀X:S1.S2/(Σ; δ|Γ)

Γ ` P1 :↓ ΠX:S1.S S = {. . .} Γ ` P2 : S2 Θ; Γ ` P2 � S1 ⇒ V : S1/δ

Θ; Γ ` P1(P2) ⇒ P1(V) : δS[V/X]/(∅; δ)

Γ ` P1 :↓ ∀X:S1.S S = {. . .} Γ ` P2 : S2 Θ; Γ ` P2 � S1 ⇒ V : S1/δ

Θ; Γ ` P1〈P2〉 ⇒ P1〈V〉 : δS[V/X]/(∅; δ)

Θ; Γ ` mod1 ⇒↓ M1 : S1/(Σ1; δ1) Θ; δ1Γ, X:S1 ` mod2 ⇒↓ M2 : S/(Σ2; δ2) Xc 6∈ FV(S, Σ2)

Θ; Γ ` let X=mod1 inmod2 ⇒ let X=δ2M1 in M2 :>S : S/(δ2Σ1, Σ2; δ2δ1|Γ)

Θ; Γ ` mod ⇒↓ M : S1/(Σ; δ1) Θ; Γ ` sig ⇒ S Θ; δ1Γ, X:S1 ` X � S ⇒ V : S/δ2

Θ; Γ ` mod :> sig ⇒ let X=δ2M in V :>S : S/(δ2Σ; δ2δ1|Γ)

Θ; Γ ` sig ⇒ S Γ ` S concrete S⇒∃α.S Θ; Γ ` X:S ↓ (∅; σ; δ) α ⊆ dom(δ)

Θ; Γ ` canon(sig) ⇒ σX : δS/(∅; id)

Θ; Γ ` sig ⇒ S Γ, X:S ` X.`s :↓ [[τ]] Γ ` S class

Θ; Γ ` overload `s from sig ⇒ ΛX:S.(X.`s) : ∀X:S.[[τ]]/(∅; id)

Θ; Γ ` sig ⇒ S1 Γ, X1:S1 ` X1.`s :↓ ∀X2:S2.[[τ]] S = {1.X1:S1, 2.X2:S2} Γ ` S class

Θ; Γ ` overload `s from sig ⇒ ΛX:S.(X.1.`s〈X.2〉) : ∀X:S.[[τ [X.i/Xi]]]/(∅; id)

Γ ` P :↓ ∀X:S.{it:[[τ]]} Γ ` S class

Θ; Γ ` implicit(P) ⇒ ΛX:S.(P〈X〉.it) : ∀X:S.[[τ]]/(∅; id)

Γ ` P :↓ ∀X1:S1.{it:∀X2:S2.[[τ]]} S = {1.X1:S1, 2.X2:S2} Γ ` S class

Θ; Γ ` implicit(P) ⇒ ΛX:S.(P〈X.1〉.it〈X.2〉) : ∀X:S.[[τ [X.i/Xi]]]/(∅; id)

Θ; Γ ` sig ⇒ ∀X:S.{it:[[τ]]} Γ ` S class Θ; Γ ` P � ∀X:S.[[τ]] ⇒ V : /δ

Θ; Γ ` explicit(P : sig) ⇒ ΛX:S.{it=V〈X〉} : ∀X:S.{it:[[τ]]}/(∅; δ)

Θ; Γ ` sig ⇒ ∀X1:S1.{it:∀X2:S2.[[τ]]} S = {1.X1:S1, 2.X2:S2} Γ ` S class Θ; Γ ` P � ∀X:S.[[τ [X.i/Xi]]] ⇒ V : /δ

Θ; Γ ` explicit(P : sig) ⇒ ΛX1:S1.{it=ΛX2:S2.V〈{1=X1, 2=X2}〉} : ∀X1:S1.{it:∀X2:S2.[[τ]]}/(∅; δ)

Figure 18. Type Inference Rules for Modules

22 2006/10/26

Coercive Signature Matching: Θ; Γ ` P � S ⇒ V : S/δ

Γ ` P :↓ [[K]] Γ ` K ≤ K

Θ; Γ ` P � [[K]] ⇒ P : [[K]]/id

Θ; Γ ` P : τ ⇒↓ v/(∅; δ)
Θ; Γ ` P � [[τ]] ⇒ [v] : [[τ]]/δ

Γ c̀lass X : S ; Θ′ Θ, Θ′; Γ, X:S ` P : τ ⇒↓ v/(∅; δ)
Θ; Γ ` P � ∀X:S.[[τ]] ⇒ ΛX:S.[v] : ∀X:S.[[τ]]/δ

Γ ` P : {. . .}
Θ; Γ ` P � {} ⇒ {} : {}/id

Γ ` P.`1 : S′1 Θ; Γ ` P.`1 � S1 ⇒ V1 : S1/δ1 Θ; δ1Γ, X1:S1 ` P � {`.X:S} ⇒ {`.X=V} : {`.X:S}/δ2

Θ; Γ ` P � {`1.X1:S1, `.X:S} ⇒ {`1.X1=δ2V1, `.X=V} : {`1.X1:S1, `.X:S}/δ2δ1|Γ
S2 = {. . .} Γ ` P :↓ ∀Y:R1.R2 Θ; Γ, X:S1 ` X � R1 ⇒ V1 : /δ1 Θ; δ1Γ, X:S1, Z:δ1R2[V1/Y] ` Z � S2 ⇒ V2 : /δ2

Θ; Γ ` P � ∀X:S1.S2 ⇒ ΛX:S1.{1.Z=P〈δ2V1〉, 2=V2}.2 : ∀X:S1.S2/δ2δ1|Γ
S2 = {. . .} Γ ` P :↓ ∀Y:R1.R2 Θ; Γ, X:S1 ` X � R1 ⇒ V1 : /δ1 Θ; δ1Γ, X:S1, Z:δ1R2[V1/Y] ` Z � S2 ⇒ V2 : /δ2

Θ; Γ ` P � ΠX:S1.S2 ⇒ λ(X:S1):>S2.(let Z=P〈δ2V1〉 in V2 :>S2) : ΠX:S1.S2/δ2δ1|Γ
S2 = {. . .} Γ ` P :↓ ΠY:R1.R2 Θ; Γ, X:S1 ` X � R1 ⇒ V1 : /δ1 Θ; δ1Γ, X:S1, Z:δ1R2[V1/Y] ` Z � S2 ⇒ V2 : /δ2

Θ; Γ ` P � ΠX:S1.S2 ⇒ λ(X:S1):>S2.(let Z=P(δ2V1) in V2 :>S2) : ΠX:S1.S2/δ2δ1|Γ

Figure 19. Type Inference Rules for Coercive Signature Matching

Constraint Normalization: Θ; Γ ` Σ1 ↓ (Σ2; σ; δ)

∀X:S ∈ Σ. ∃α. Γ, Σ ` X.t ≡ α : T
∀X1:S1, X2:S2 ∈ Σ. (X1 6= X2 ∧ S1 ≈ S2) ⇒ Γ, Σ ` X1.t 6≡ X2.t : T

Θ; Γ ` Σ ↓ (Σ; id; id)

Θ; Γ ` Σ1 (Σ2; σ1; δ1) Θ; δ1Γ ` Σ2 ↓ (Σ3; σ2; δ2)

Θ; Γ ` Σ1 ↓ (Σ3; σ2δ2σ1; δ2δ1)

Constraint Reduction: Θ; Γ ` Σ1 (Σ2; σ; δ)

Θ; Γ ` Σ, X:[[s(τ)]] (Σ; {X 7→ [τ]}; id)

Γ ` S ↓ {`1:S1, . . . , `n:Sn} t 6∈ `1, . . . , `n

Θ; Γ ` Σ, X:S (Σ, X1:S1, . . . , Xn:Sn; {X 7→ {`1=X1, . . . , `n=Xn}}; id)

Γ ` S ↓ {t:[[s(τ)]], . . .} τ not an α
P ∈ Θ Γ ` P :↓ S′ Γ ` S ≡ S′ ⇒ δ

Θ; Γ ` Σ, X:S (δΣ; {X 7→P}; δ)

Γ ` S ↓ {t:[[s(τ)]], . . .} τ not an α
P ∈ Θ Γ ` P :↓ ∀Y:S1.S2 S1⇒∃α.S1 Γ, Y:S1 ` S ≡ S2 ⇒ δ

Θ; Γ ` Σ, X:S (δΣ, Y:δS1; {X 7→P〈Y〉}; δ)

∃α. Γ, Σ ` X1.t ≡ α ≡ X2.t : T Γ ` S1 ≡ S2 ⇒ δ

Θ; Γ ` Σ, X1:S1, X2:S2 (δΣ, X1:δS1; {X2 7→X1}; δ)

Figure 20. Constraint Normalization

Top-Level Modules: Θ; Γ ` mod ⇒ M : S

Analogous to corresponding module inference rules, but without any mentions of Σ or δ. The only exceptions to this rule are the ones for
canon(sig) and mod :> sig , which invoke their module-level counterparts directly in the premises:

Θ; Γ ` canon(sig) ⇒↓ M : S/(∅; id)

Θ; Γ ` canon(sig) ⇒ M : S

Θ; Γ ` mod :> sig ⇒↓ M : S/(∅; id)

Θ; Γ ` mod :> sig ⇒ M : S

Calls to coercive signature matching (in various rules) require empty constraint and id substitution in the result.
The only new rule, which is identical to the corresponding declarative elaboration rule:

Θ; Γ ` P usable Θ, P; Γ ` top ⇒ M : S

Θ; Γ ` using P in top ⇒ M : S

Figure 21. Type Inference Rules for Top-Level Modules

23 2006/10/26

We say that an IL kind K is legal if it has the form of an EL kind.

We say that an IL signature S is legal if:

1. For all signatures within S of the form [[K]], K is legal.
2. For all signatures within S of the form ΠX:S1.S2, S2 must have the form {. . .}.
3. For all signatures within S of the form ∀X:S1.S2, either S2 has the form {. . .} or S2 has the form [[τ]]. In the latter case, it must be

additionally true that S1 is a valid class (the judgment Γ ` S1 class must hold for an appropriate Γ).

Essentially, this definition is just trying to ensure that if we (informally) “ran S through the elaboration judgment for signatures”, then it
would be accepted. This is not the case if S is an arbitrary IL signature.
We say that a context Γ is legal if all constituent signatures and kinds are legal.

We implicitly assume and maintain the invariant that the elaborator and the inference algorithm only deal with legal IL objects, and so we
will not mention legality explicitly from here on.

We say that something is ground if it has no (free) unification variables.

We say that a signature S is synthesis if all signatures within it are ground, with the following exception: signatures within S of the form [[τ]]
or ∀X:R.[[τ]] may be non-ground so long as they do not appear in the argument of a functor signature.

We say that a context Γ is synthesis if ∀α:K ∈ Γ. K is ground and ∀X:S ∈ Γ. S is synthesis.

We say that a context (Θ; Γ) is valid for inference if ` (Θ; Γ) ok, Γ is synthesis, and for all P ∈ Θ, the signature of P in Γ is ground.

We write Γ′ ` δ : Γ to mean that ` Γ′ ok, Γ′ ⊇ δΓ and ∀α ∈ dom(δ). Γ′ ` δα : T.

We write Θ; Γ c̀an σ : Σ to mean that ∀X:S ∈ Σ. Θ; Γ c̀an σX : S.

Figure 22. Definitions for Soundness

Theorem (Soundness)
Suppose (Θ; Γ) is valid for inference. For all inference judgments that take Θ; Γ as input and return a substitution δ, we have δΓ ` δ : Γ.
Suppose further that Θ′ ⊇ Θ, Γ′ ` δ′ : δΓ, ` (Θ′; Γ′) ok, and Θ′; Γ′

c̀an σ′ : δ′Σ. Then:

1. If Γ ` meta1 ≡ meta2 ⇒ δ, then Γ′ ` δ′δmeta1 ≡ δ′δmeta2.
2. If Θ; Γ ` knd ⇒ K, then Θ′; Γ′ ` knd ; K and K is ground.
3. If Θ; Γ ` con ⇒ C : K, then Θ′; Γ′ ` con ; C : K and C and K are ground.
4. If Θ; Γ ` sig ⇒ S, then Θ′; Γ′ ` sig ; S and S is ground.
5. If Θ; Γ ` exp ⇒ e : τ/(Σ; δ) or Θ; Γ ` exp ⇒↓ e : τ/(Σ; δ), then Θ′; Γ′ ` exp ; σ′δ′e : δ′τ .
6. If Θ; Γ ` exp : τ ⇒↓ e/(Σ; δ), Γ ` τ : T, and τ is ground, then Θ′; Γ′ ` exp ; σ′δ′e : τ .
7. If Θ; Γ ` mod ⇒ M : S/(Σ; δ) or Θ; Γ ` mod ⇒↓ M : S/(Σ; δ), then Θ′; Γ′ ` mod ; σ′δ′M : δ′S.
8. If Θ; Γ ` P � S ⇒ V : S/δ, Γ ` P : S′, Γ ` S sig, and S is ground, then Θ′; Γ′ ` P � S ; δ′V : S and S is ground.
9. If Θ; Γ ` Σ0 ↓ (Σ; σ; δ) or Θ; Γ ` Σ0 (Σ; σ; δ), then Θ′; Γ′

c̀an σ′δ′σ : δ′δΣ0.

Finally: Suppose that ` (Θ; Γ) ok, Γ is ground, and Θ; Γ ` top ⇒ M : S. Then, Θ; Γ ` top ; M : S and S is ground.

Figure 23. Soundness of the Inference Algorithm w.r.t. Declarative Elaboration

24 2006/10/26

