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Abstract. When installing network intrusion detection systems (NIDSs), opera-
tors are faced with a large number of parameters and analysis options for tuning
trade-offs between detection accuracy versus resource requirements. In this work
we set out to assist this process by understanding and predicting the CPU and
memory consumption of such systems. We begin towards this goal by devising a
general NIDS resource model to capture the ways in which CPU and memory us-
age scale with changes in network traffic. We then use this model to predict the re-
source demands of different configurations in specific environments. Finally, we
present an approach to derive site-specific NIDS configurations that maximize the
depth of analysis given predefined resource constraints. We validate our approach
by applying it to the open-source Bro NIDS, testing the methodology using real
network data, and developing a corresponding tool, nidsconf, that automati-
cally derives a set of configurations suitable for a given environment based on a
sample of the site’s traffic. While no automatically generated configuration can
ever be optimal, these configurations provide sound starting points, with promise
to significantly reduce the traditional trial-and-error NIDS installation cycle.

1 Introduction

Operators of network intrusion detection systems (NIDSs) face significant challenges
in understanding how to best configure and provision their systems. The difficulties
arise from the need to understand the relationship between the wide range of analy-
ses and tuning parameters provided by modern NIDSs, and the resources required by
different combinations of these. In this context, a particular difficulty regards how re-
source consumption intimately relates to the specifics of the network’s traffic—such as
its application mix and its changes over time—as well as the internals of the particular
NIDS in consideration. Consequently, in our experience the operational deployment of
a NIDS is often a trial-and-error process, for which it can take weeks to converge on an
apt, stable configuration.

In this work we set out to assist operators with understanding resource consumption
trade-offs when operating a NIDS that provides a large number of tuning options. We
begin towards our goal by devising a general NIDS resource model to capture the ways
in which CPU and memory usage scale with changes in network traffic. We then use
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this model to predict the resource demands of different configurations for specific envi-
ronments. Finally, we present an approach to derive site-specific NIDS configurations
that maximize the depth of analysis given predefined resource constraints.

A NIDS must operate in a soft real-time manner, in order to issue timely alerts and
perhaps blocking directives for intrusion prevention. Such operation differs from hard
real-time in that the consequences of the NIDS failing to “keep up” with the rate of
arriving traffic is not catastrophe, but rather degraded performance in terms of some
traffic escaping analysis (“drops”) or experiencing slower throughput (for intrusion pre-
vention systems that forward traffic only after the NIDS has inspected it). Soft real-time
operation has two significant implications in terms of predicting the resource consump-
tion of NIDSs. First, because NIDSs do not operate in hard real-time, we seek to avoid
performance evaluation techniques that aim to prove compliance of the system with
rigorous deadlines (e.g., assuring that it spends no more than 7" microseconds on any
given packet). Given the very wide range of per-packet analysis cost in a modern NIDS
(as we discuss later in this paper), such techniques would severely reduce our estimate
of the performance a NIDS can provide in an operational context. Second, soft real-
time operation means that we also cannot rely upon techniques that predict a system’s
performance solely in terms of aggregate CPU and memory consumption, because we
must also pay attention to instantaneous CPU load, in order to understand the degree
to which in a given environment the system would experience degraded performance
(packet drops or slower forwarding).

When modeling the resource consumption of a NIDS, our main hypothesis concerns
orthogonal decomposition: i.e., the major subcomponents of a NIDS are sufficiently
independent that we can analyze them in isolation and then extrapolate aggregate be-
havior as the composition of their individual contributions. In a different dimension, we
explore how the systems’ overall resource requirements correlate to the volume and the
mix of network traffic. If orthogonal decomposition holds, then we can systematically
analyze a NIDS’ resource consumption by capturing the performance of each subcom-
ponent individually, and then estimating the aggregate resource requirements as the sum
of the individual requirements. We partition our analysis along two axes: type of analy-
sis, and proportion of connections within each class of traffic. We find that the demands
of many components scale directly with the prevalence of a given class of connections
within the aggregate traffic stream. This observation allows us to accurately estimate
resource consumption by characterizing a site’s traffic “mix.” Since such mixes change
over time, however, it is crucial to consider both short-term and long-term fluctuations.

We stress that, by design, our model does not incorporate a notion of detection qual-
ity, as that cannot reasonably be predicted from past traffic as resource usage can. We
focus on identifying the types of analyses which are feasible under given resource con-
straints. With this information the operator can assess which option promises the largest
gain for the site in terms of operational benefit, considering the site’s security policy and
threat model.

We validate our approach by applying it to Bro, a well-known, open-source
NIDS [7]. Using this system, we verify the validity of our model using real network
data, and develop a corresponding prototype tool, nidsconf, to derive a set of config-
urations suitable for a given environment. The NIDS operator can then examine these
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configurations and select one that best fits with the site’s security needs. Given a rela-
tively small sample of a site’s traffic, nidsconf performs systematic measurements on
it, extrapolates a set of possible NIDS configurations and estimates their performance
and resource implications. In a second stage the tool is also provided with a longer-term
connection-level log file (such as produced by NetFlow). Given this and the results from
the systematic measurements, the tool can project resource demands of the NIDS’ sub-
components without actually running the NIDS on long periods of traffic. Thus the
tool can be used not only to derive possible NIDS configurations but also to estimate
when, for a given configuration and a given estimation of traffic growth, the resources
of the machine running the NIDS will no longer suffice. While we do not claim that
nidsconf always produces optimal configurations, we argue that it provides a sound
starting point for further fine-tuning.

We structure the remainder of this paper as follows. In §2] we use an example to
demonstrate the impact of resource exhaustion. In §3| we introduce our approach, and
validate its underlying premises in §4lby using it to predict the resource usage of the Bro
NIDS. In 3l we present our methodology for predicting the resource consumption of a
NIDS for a specific target environment, including the automatic derivation of suitable
configurations. We discuss related work in §6land conclude in

2 Impact of Resource Exhaustion

We begin with an examination of how resource exhaustion affects the quality of network
security monitoring, since this goes to the heart of the problem of understanding the onset
and significance of degraded NIDS performance. We do so in the context of the behavior
of the open-source Bro NIDS [7]] when it runs out of available CPU cycles or memory.

CPU Overload. The primary consequence of CPU overload are packet drops, and thus
potentially undetected attacks. As sketched above, a NIDS is a soft real-time system:
it can buffer packets for a certain (small) amount of time, which enables it to tolerate
sporadic processing spikes as long as traffic arriving in the interim fits within the buffer.
On average, however, processing needs to keep up with the input stream to avoid chronic
overload and therefore packets drops. To understand the correlation between packet
drops and CPU load, we run the Bro NIDS live on a high-volume network link (see §4)
using a configuration that deliberately overloads the host CPU in single peaks. We then
correlate the system’s CPU usage with the observed packet drops.

Figure [Tl shows the real-time (Y-axis) that elapses while Bro processes each second
of network traffic (X-axis). The vertical lines denote times at which the packet capture
facility (libpcap) reports drops; the corresponding CPU samples are shown with a filled
circle.

The NIDS can avoid drops as long as the number of processing outliers remains
small—more precisely, as long as they can be compensated by buffering of captured
packets. For example, the 20MB buffer used in our evaluations enabled us to process
an extreme outlier—requiring 2.5 s for one real-time second worth of network traffic—
without packet drops. Accordingly, we find that the first packet drop occurs only after
a spike in processing real time of more than 4s. Closer inspection shows that the loss
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Fig. 1. Relation between elapsed real-time and packet drops

does not occur immediately during processing the “expensive” traffic but rather six
network seconds later. It is only at that point that the buffer is completely full and
the lag (i.e., how far the NIDS is behind in its processing) exceeds 5.5s. Such a large
amount of buffering thus makes it difficult to predict the occurrence of drops and their
likely magnitude: (i) the buffer can generally absorb single outliers, and (ii) the buffer
capacity (in seconds) depends on the traffic volume yet to come. But clearly we desire
to keep the lag small.

Memory Exhaustion. When a stateful NIDS completely consumes the memory avail-
able to it, it can no longer effectively operate, as it cannot store additional state. It can,
however, try to reclaim memory by expiring existing state. The challenges here are
(i) how to recognize that an exhaustion condition is approaching prior to its actual on-
set, (ii) in the face of often complex internal data structures [3]], and then (iii) locating
apt state to expire that minimizes the ability for attackers to leverage the expiration for
evading detection.

One simple approach for limiting memory consumption imposes a limit on the size
of each internal data structure. Snort [8]], for example, allows the user to specify a
maximum number of concurrent connections for its TCP preprocessor. If this limit is
reached, Snort randomly picks some connections and flushes their state to free up mem-
ory. Similarly, Snort addresses the issue of variable stream reassembly size by providing
an option to limit the total number of bytes in the reassembler. Bro on the other hand
does not provide a mechanism to limit the size of data structures to a fixed size; its state
management instead relies on timeouts, which can be set on a per-data structure basis,
and with respect to when state was first created, or last read or updated. However, these
do not provide a guarantee that Bro can avoid memory exhaustion, and thus it can crash
in the worst case. Bro does however include extensive internal memory instrumenta-
tion [3] to understand its consumption, which we leverage for our measurements.

Memory consumption and processing lag can become coupled in two different ways.
First, large data structures can take increasingly longer to search as they grow in size,
increasing the processing burden. Second, in systems that provide more virtual memory
than physical memory, consuming the entire physical memory does not crash the system
but instead degrades its performance due to increased paging activity. In the worst case,
such systems can thrash, which can enormously diminish real-time performance.
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3 Modeling NIDS Resource Usage

In this section we consider the high-level components that determine the resource usage
of a NIDS. We first discuss the rationale that leads to our framing of the components,
and then sketch our resulting distillation. The next section proceeds to evaluate the
framework against the Bro NIDS.

3.1 The Structure of NIDS Processing

Fundamental to a NIDS’s operation is tracking communication between multiple net-
work endpoints. All major NIDS’s today operate in a stateful fashion, decoding network
communication according to the protocols used, and to a degree mirroring the state
maintained by the communication endpoints. This state naturally grows proportional to
the number of active connectionsl, and implementations of stateful approaches are nat-
urally aligned with the network protocol stack. To reliably ascertain the semantics of an
application-layer protocol, the system first processes the network and transport layers of
the communication. For example, for HTTP the NIDS first parses the IP header (to ver-
ify checksums, extract addresses, determine transport protocol, and so on) and the TCP
header (update the TCP state machine, checksum the payload), and then reassembles
the TCP byte stream, before it can finally parse the HTTP protocol.

A primary characteristic of the network protocol stack is its extensive use of en-
capsulation: individual layers are independent of each other; while their input/output
is connected, there ideally is no exchange of state between layers. Accordingly, for
a NIDS structured along these lines its protocol-analyzing components can likewise
operate independently. In particular, it is plausible to assume that the total resource
consumption, in terms of CPU and memory usage, is the sum of the demands of the
individual components. This observation forms a basis for our estimation methodology.

In operation, a NIDS’s resource usage primarily depends on the characteristics of
the network traffic it analyzes; it spends its CPU cycles almost exclusively on analyzing
input traffic, and requires memory to store results as it proceeds. In general, network
packets provide the only sustained stream of input during operation, and resource usage
therefore should directly reflect the volume and content of the analyzed packetsH

We now hypothesize that for each component of a NIDS that analyzes a partic-
ular facet or layer of network activity—which we term an analyzer—the relation-
ship between input traffic and the analyzer’s resource demands is linear. Let £y be
the time when NIDS operation begins, and P; the number of input packets seen up
to time ¢t > ty. Furthermore, let C; be the fotal number of transport-layer connec-
tions seen up to time ¢, and ¢; the number of connections currently active at time t.
Then we argue: Network-layer analyzers operate strictly on a per-packet basis, and so
should require O(P;) CPU time, and rarely store state. (One exception concerns re-
assembly of IP fragments; however, in our experience the memory required for this is

" For UDP and ICMP we assume flow-like definitions, similar to how NetFlow abstracts
packets.

% In this work, we focus on stand-alone NIDSs that analyze traffic and directly report alerts. In
more complex setups (e.g., with distributed architectures) resource consumption may depend
on other sources of input as well.
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negligible even in large networks.) Transport-layer analyzers also operate packet-wise.
Thus, their amortized CPU usage will scale as O(P;). However, transport-layer analyz-
ers can require significant memory, such as tracking TCP sequence numbers, connection
states, and byte streams. These analyzers therefore will employ data structures to store
all currently active connections, requiring O (max(c;)) memory. For stream-based pro-
tocols, the transport-layer performs payload reassembly, which requires memory that
scales with O(max(c; - m¢)), where m; represents the largest chunk of unacknowl-
edged data on any active connection at time ¢ (cf. [1]). Finally, application-layer ana-
lyzers examine the payload data as reconstructed by the transport layer. Thus, their CPU
time scales proportional to the number of connections, and depends on how much of the
payload the analyzer examines. (For example, an HTTP analyzer might only extract the
URL in client requests, and skip analysis of the much larger server reply.) The total size
of the connection clearly establishes an upper limit. Accordingly, the state requirements
for application analyzers will depend on the application protocol and will be kept on a
per-connection basis, so will scale proportional to the protocol mix (how prevalent the
application is in the traffic stream) and the number of connections c;.

In addition to protocol analyzers, a NIDS may perform inter-connection correlation.
For example, a scan detector might count connections per source IP address, or an FTP
session analyzer might follow the association between FTP client directives and subse-
quent data-transfer connections. In general, the resource usage of such analyzers can be
harder to predict, as it will depend on specifics of the analysis (e.g., the scan detector
above requires O(C};) CPU and memory if it does not expire any state, while the FTP
session analyzer only requires CPU and memory in proportion to the number of FTP
client connections). However, in our experience it is rare that such analyzers exceed
CPU or memory demands of O(C}), since such analysis quickly becomes intractable
on any high-volume link. Moreover, while it is possible that such inter-connection an-
alyzer may depend on the results of other analyzers, we find that such analyzers tend
to be well modular and decoupled (e.g., the scan detector needs the same amount of
memory independent of whether the NIDS performs HTTP URL extraction or enables
FTP session-tracking).

3.2 Principle Contributors to Resource Usage

Overall, it appears reasonable to assume that for a typical analyzer, resource usage
is (i) linear with either the number of input packets or the number of connections it
processes, and (ii) independent of other analyzers. In this light, we can frame two main
contributors to the resource usage of a NIDS:

1. The specific analyzers enabled by the operator for the system’s analysis. That these
contribute to resource usage is obvious, but the key point we want to make is that
most NIDSs provide options to enable/disable certain analyzers in order to trade off
resource requirements. Yet NIDSs give the operators almost no concrete guidance
regarding the trade-offs, so it can be extremely hard to predict the performance of
a NIDS when enabling different sets of analyzers. This difficulty motivated us to
build our tool nidsconf (per §5.2)) that provides an understanding of resource
usage trade-offs to support configuration decisions.
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2. The traffic mix of the input stream—i.e., the prevalence of different types of appli-
cation sessions—as this affects the number of connections examined by each type
of analyzers.

The above reasoning need not hold universally. However, we examined the architec-
ture of two popular open source NIDS, Snort and Bro, and found that their resource
consumption indeed appears consistent with the model discussed above. We hypothe-
size that we can characterize most operational NIDSs in this fashion, and thus they will
lend themselves well to the kind of performance prediction we outline in §3l To support
our claims, we now explore the resource usage of the Bro NIDS in more depth.

4 Example NIDS Resource Usage

To assess our approach of modeling a NIDS’s resource demands as the sum of the
requirements of its individual analyzers, and scaling linearly with the number of ap-
plication sessions, we now examine an example NIDS. Among the two predominant
open-source NIDSs, Snort and Bro, we chose to examine Bro for two reasons: (i) Bro
provides a superset of Snort’s functionality, since it includes both a signature-matching
engine and an application-analysis scripting language; and (ii) it provides extensive,
fine-grained instrumentation of its internal resource consumption; see [3|] for the
specifics of how the system measures CPU and memory consumption in real-time. Snort
does not provide similar capabilities. For our examination we have to delve into details
of the Bro system, and we note that some of the specifics of our modeling are neces-
sarily tied to Bro’s implementation. While this is unavoidable, as discussed above we
believe that similar results will hold for Snort and other modern NIDSs.

For our analysis we captured a 24-hour full trace at the border router of the
Miinchener Wissenschaftsnetz (MWN). This facility provides 10 Gbps upstream ca-
pacity to roughly 50,000 hosts at two major universities, along with additional research
institutes, totaling 2-4 TB a day. To avoid packet drops, we captured the trace with a
high-performance Endace DAG card. The trace encompasses 3.2 TB of data in 6.3 bil-
lion packets and 137 million connections. 76% of all packets are TCP. In the remainder
of this paper, we refer to this trace as MWN-full .

4.1 Decomposition of Resource Usage

We first assess our hypothesis that we can consider the resource consumption of the
NIDS’s analyzers as independent of one another. We then check if resource usage gen-
erally scales linearly with the number of connections on the monitored network link.

Independence of Analyzer Resource Usage. For our analysis we use Bro version
1.1, focusing on 13 analyzers: finger, frag, fip, http-request, ident, irc, login, pop3,
portmapper, smip, ssh, ssl, and tftp. To keep the analyzed data volume tractable, we use
a 20-minute, TCP-only excerpt of MWN-ful1l, which we refer to as Trace-20m,

We run 15 different experiments. First, we establish a base case (BROBASE), which
only performs generic connection processing. In this configuration, Bro only analyzes
connection control packets, i.e., all packets with any of the TCP flags SYN, FIN or
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Fig. 2. Scatter plot of accumulated CPU usages vs. measured CPU usage

RST set. This suffices for generating one-line summaries of each TCP connection in
the trace. BROBASE thus reflects a minimal level of still-meaningful analysis. Next,
we run a fully loaded analysis, BROALL, which enables all analyzers listed above, and
by far exceeds the available resources. Finally, we perform 13 additional runs where we
enable a single one of the analyzers on top of the BROBASE configuration. For each test,
Bro is supplied with a trace prefiltered for the packets the configuration examines. This
mimics live operation, where this filtering is usually done in the kernel and therefore
not accounted to the Bro process.

We start with examining CPU usage. For each of the 13 runs using BROBASE plus
one additional analyzer, we calculate the contribution of the analyzer as the difference
in CPU usage between the run and that for the BROBASE configuration. We then form
an estimate of the time of the BROALL configuration as the sum of the contributions
of the individual analyzers plus the usage of the BROBASE configuration. We term this
estimate BROAGG.

Figure [2] shows a scatter plot of the measured CPU times. Each point in the plot
corresponds to the CPU time required for one second of network input. The circles
reflect BROAGG (Y-axis) versus BROALL (X-axis), with five samples between 1.7s and
2.6s omitted from the plot for legibility. We observe that there is quite some variance
in the matching of the samples: The mean relative error is 9.2% (median 8.6%) and
for some samples the absolute error of BROAGG’s CPU time exceeds 0.2s (20% CPU
load). There is also a systematic bias towards slight underestimation by BROAGG, with
about 64% of its one-second intervals being somewhat lower than the value measured
during that interval for BROALL.

To understand the origin of these differences, we examine the relative contribution
of the individual analyzers. We find that there are a number of analyzers that do not
add significantly to the workload, primarily due to those that examine connections that
are not prevalent in the analyzed network trace (e.g., finger). The resource consumption
with these analyzers enabled is very close to that for plain BROBASE. Furthermore, due
to the imprecision of the operating system’s resource accounting, two measurements
of the same workload are never exactly the same; in fact, when running the BROBASE
configuration ten times, the per-second samples differ by Mr = 18 msec on aver-
age. This means that if an analyzer contributes very little workload, we cannot soundly
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distinguish its contribution to CPU usage from simple measurement variation. The
fluctuations of all individual runs with just one additional analyzer may well accumulate
to the total variation seen in Figure 2l

To compensate for these measurement artifacts, we introduce a normalization of
CPU times, as follows. For each single-analyzer configuration, we first calculate the dif-
ferences of all its CPU samples with respect to the corresponding samples of BROBASE.
If the mean of these differences is less than the previously measured value of Mg then
we instead predict its load based on aggregation across 10-second bins rather than 1-
second bins. The *+” symbols in Figure 2] show the result: we both reduce overall fluc-
tuation considerably, and no sample of BROAGG exceeds BROALL by more than 0.2s.
The mean relative error drops to 3.5% (median 2.8%), indicating a good match. As in
the non-normalized measurements, for most samples (71%) the CPU usage is extrapo-
lated to slightly lower values than in the actual BROALL measurement. The key point
is we achieve these gains solely by aggregating the analyzers that introduce very light
additional processing. Thus, we conclude that (i) these account for the majority of the
inaccuracy, (ii) correcting them via normalization does not diminish the soundness of
the prediction, and (iii) otherwise, analyzer CPU times do in fact sum as expected.

Turning to memory usage, we use the same approach for assessing the additivity of
the analyzers. We compute the difference in memory allocation between the instance
with the additional analyzer enabled versus that of BROBASE. As expected, summing
these differences and adding the memory consumption of BROBASE yields 465 MB,
closely matching the memory usage of BROALL (461 MB).

Overall, we conclude that we can indeed consider the resource consumption of the
analyzers as independent of one another.

Linear Scaling with Number of Connections. We now assess our second hypothesis:
that a NIDS resource consumption scales linearly with the number of processed connec-
tions. For this evaluation, we run Bro with identical configurations on traces that differ
mainly in the number of connections that they contain at any given time. To construct
such traces, we randomly subsample an input trace using per-connection sampling with
different sampling factors, run Bro on the subtrace, and compare the resulting resource
usage in terms of both CPU and memory. To then extrapolate the resource usage on the
full trace, we multiply by the sample factor.

To sample a trace with a sample factor P, we hash the IP addresses and port num-
bers of each packet into a range [0; P — 1] and pick all connections that fall into a
particular bucket. We choose a prime for the sample factor to ensure we avoid aliasing;
this approach distributes connections across all buckets in a close to uniform fashion as
shown in [11]. For our analysis we sampled Trace-20m with sampling factors P = 7
(resulting in STRACE7) and P = 31 (resulting in STRACE31).

CPU Usage. Figure [3] shows a scatter plot of the CPU times for BROBASE on
Trace-20m without sampling, vs. extrapolating BROBASE on STRACE7 (circles) and
STRACE31 (triangles). We notice that in general the extrapolations match well, but are
a bit low (the mean is 0.02 sec lower). Unsurprisingly, the fluctuation in the deviation
from the originally measured values grows with the sampling factor (further measure-
ments not included in Figure B with sampling factors between 7 and 31 confirm this).
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Naturally, the measured CPU times are very small if only a few connections are
analyzed. For example, in the unsampled trace Bro consumes on average 370 msec
for one second of network traffic when analyzing all the connections. With a sampling
factor of 31, we would expect consumption to drop to 370/31 = 12 msec, at which
point we are at the edge of the OS’s accounting precision. In fact, however, we find that
extrapolation still works fairly well: for sample factor 31, the median of the extrapolated
measurements is only 28 msec lower than the median of the measurements for the full
trace. We have verified that similar observations hold for other segments of MWN-full,
as well as for other traces.

Next we check if this finding still holds for more complex configurations. To this
end, the QQ-plot in Figure H] compares the distribution of CPU times for BROALL
(i.e., 13 additional analyzers) on the full Trace-20m (X-axis) vs. sub-sampled traces

Table 1. Memory scaling factors: 10 BROBASE runs (left) / 10 BROALL runs (right)

|Sampling factor[[1] 7] 11] 17] 31| [Sampling factor[[1] 7] 11] 17] 31|
[Memory ratio [[1]7.0]11.0[16.6[30.7] [Memory ratio [[1]3.64]4.87]6.30]9.34|
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(Y-axis, with sample factors of 7, 11, 17, and 31). Overall, the majority of the samples
match fairly well, though with a bias for smaller values towards underestimation (left
of the 80th percentile line), and with unstable upper quantiles (usually overestimates).

Memory Usage. Turning to memory consumption, for each sampling factor we con-
ducted 10 runs with BROBASE on Trace-20m, measuring the maximum consump-
tion figures on the sampled traces as reported by the 0SH Table [[(left) shows the ratio
between the memory consumption on the entire trace versus that for the sampled traces.
Ideally, this figure would match the sampling factor, since then we would extrapolate
perfectly from the sample. We see that in general the ratio is close, with a bias towards
being a bit low. From this we conclude that for BROBASE, predicting memory use from
a sampled trace will result in fairly accurate, though sometimes slightly high, estimates.

As discussed in Section 3, we would not expect memory usage of application-layer
analyzers to always scale linearly with the number of connections, since some analyzers
accumulate state not on a per-connection basis but rather according to some grouping
of the connections (e.g., Bro’s HTTP analyzer groups connections into “sessions”). In
such cases the memory estimate we get by scaling with the connection sample factor
can be a (potentially significant) overestimation. This effect is visible in Table[l(right),
which shows the same sort of analysis as above but now for BROALL. We see that the
extrapolation factors can be off by more than a factor of three. By running each ana-
lyzer separately, we identified the culprits: both the HTTP and SSL analyzers associate
their state per session, rather than per connection. However, we note that at least the
required memory never exceeds the prediction, and thus we can use the prediction as a
conservative upper bound.

In summary, we find that both CPU and memory usage can generally be predicted
well with a model linear in the number of connections. We need to keep in mind how-
ever that it can overestimate the memory demand for some analyzers.

5 Resource Prediction

After confirming that we can often factor NIDS resource usage components with per-
analyzer and per-connection scaling, we now employ these observations to derive sug-
gestions of reasonable configurations for operating in a specific network environment.

We start by devising a methodology for finding a suitable configuration based on
a snapshot of an environment’s network traffic. Then we turn to estimating the long-
term performance of such a configuration given a coarser-grained summary of the net-
work traffic that contains the time-of-day and day-of-week effects. The latter is crucial,
as traffic characteristics, and therefore resource consumption, can change significantly
over time.

5.1 From Traffic Snapshots to Configurations

In this section we consider the degree to which we can analyze a short sample trace
from a given environment in order to identify suitable NIDS configurations, in terms of

3 As in the case of CPU usage, we find inherent fluctuation in memory usage as well: running
instances under identical conditions exhibits some noticeable, though not huge, variation.
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maximizing the NIDS’s analysis while leaving enough “head room” to avoid exhausting
its resources. More generally, we wish to enable the network operator to make informed
decisions about the prioritization of different types of analysis. Alternatively, we can
help the operator decide whether to upgrade the machine if the available resources do
not allow the NIDS to perform the desired analysis.

We stress that due to the variability inherent in network traffic, as well as the mea-
surement limitations discussed in §4] no methodology can aim to suggest an optimal
configuration. However, automating the process of exploring the myriad configuration
options of a NIDS provides a significant step forward compared to having to assess
different configurations in a time-consuming, trial-and-error fashion.

Capturing an Appropriate Trace. Our approach assumes access to a packet trace
from the relevant network with a duration of some tens of minutes. We refer to this as
the main analysis trace. At this stage, we assume the trace is “representative” of the
busiest period for the environment under investigation. Later in this section we explore
this issue more broadly to generalize our results.

Ideally, one uses a full packet trace with all packets that crossed the link during the
sample interval. However, even for medium-sized networks this often will not be feasi-
ble due to disk capacity and time constraints: a 20-minute recording of a link transfer-
ring 400 Mbit/s results in a trace of roughly 60 GB; running a systematic analysis on
the resulting trace as described below would be extremely time consuming. In addition,
full packet capture at these sorts of rates can turn out to be a major challenge on typical
commodity hardware [9].

We therefore leverage our finding that in general we can decompose resource usage
on a per-connection basis and take advantage of the connection sampling methodology
discussed in Section [l Given a disk space budget as input, we first estimate the link’s
usage via a simple libpcap application to determine a suitable sampling factor, which
we then use to capture an accordingly sampled trace. We can perform the sampling
itself using an appropriate kernel packet filter [2f], so it executes quite efficiently and
imposes minimal performance stress on the monitoring system.

Using this trace as input, we then can scale our results according to the sample factor,
as discussed in §4] while keeping in mind the most significant source of error in this
process, which is a tendency to overestimate memory consumption when considering a
wide range of application analyzers.

Finding Appropriate Configurations. We now leverage our observation that we can
decompose resource usage per analyzer to determine analysis combinations that do not
overload the system when analyzing a traffic mix and volume similar to that extrapo-
lated from the captured analysis trace. Based on our analysis of the NIDS resource us-
age contributors (§3.2) and its verification (§4)), our approach is straight-forward. First
we derive a baseline of CPU and memory usage by running the NIDS on the sampled
trace using a minimal configuration. Then, for each potentially interesting analyzer,
we measure its additional resource consumption by individually adding it to the mini-
mal configuration. We then calculate which combinations of analyzers result in feasible
CPU and memory loads.

The main challenge for determining a suitable level of CPU usage is to find the right
trade-off between a good detection rate (requiring a high average CPU load) and leaving
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sufficient head-room for short-term processing spikes. The higher the load budget, the
more detailed the analysis; however, if we leave only minimal head-room then the sys-
tem will likely incur packet drops when network traffic deviates from the typical load,
which, due to the long-range dependent nature of the traffic [12] will doubtlessly hap-
pen. Which trade-off to use is a policy decision made by the operator of the NIDS, and
depends on both the network environment and the site’s monitoring priorities. Accord-
ingly, we assume the operator specifies a target CPU load c together with a quantile g
specifying the percentage of time the load should remain below c. With, for example,
¢ = 90% and ¢ = 95%), the operator asks our tool to find a configuration that keeps the
CPU load below 90% for 95% of all CPU samples taken when analyzing the trace.

Two issues complicate the determination of a suitable level of memory usage. First,
some analyzers that we cannot (reasonably) disable may consume significant amounts
of memory, such as TCP connection management as a precursor to application-level
analysis for TCP-based services. Thus, the option is not whether to enable these ana-
lyzers, but rather how to parameterize them (e.g., in terms of setting timeouts). Sec-
ond, as pointed out in §4] the memory requirements of some analyzers do not scale di-
rectly with the number of connections, rendering their memory consumption harder to
predict.

Regarding the former, parameterization of analyzers, previous work has found that
connection-level timeouts are a primary contributor to a NIDS’s memory consump-
tion [3]. Therefore, our first goal is to derive suitable timeout values given the connec-
tion arrival rate in the trace. The main insight is that the NIDS needs to store different
amounts of state for different connection types. We can group TCP connections into
three classes: (i) failed connection attempts; (ii) fully established and then terminated
connections; and (iii) established but not yet terminated connections. For example, the
Bro NIDS (and likely other NIDSs as well) uses different timeouts and data structures
for the different classes [3l], and accordingly we can examine each class separately
to determine the corresponding memory usage. To predict the effect of the individual
timeouts, we assume a constant arrival rate for new connections of each class, which is
reasonable given the short duration of the trace. In addition, we assume that the mem-
ory required for connections within a class is roughly the same. (We have verified this
for Bro.) This then enables us to estimate appropriate timeouts for a given memory
budget.

To address the second problem, analyzer memory usage which does not scale linearly
with the sampling factor, we can identify these cases by “subsampling” the main trace
further, using for example an additional sampling factor of 3. Then, for each analyzer,
we determine the total memory consumption of the NIDS running on the subsampled
trace and multiply this by the subsampling factor. If doing so yields approximately the
memory consumption of the NIDS running the same configuration on the main trace,
then the analyzer’s memory consumption does indeed scale linearly with the sampling
factor. If not, then we are able to flag that analysis as difficult to extrapolate.

5.2 A Tool for Deriving NIDS Configurations

We implemented an automatic configuration tool, nidsconf, for the Bro NIDS based
on the approach discussed above. Using a sampled trace file, it determines a set of Bro
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configurations, including sets of feasible analyzers and suitable connection timeouts.
These configurations enable Bro to process the network’s traffic within user-defined
limits for CPU and memory.

We assessed nidsconf in the MWN environment on a workday afternoon with a
disk space budget for the sampled trace of 5 GB; a CPU limit of ¢ = 80% for ¢ =
90% of all samples; a memory budget of 500 MB for connection state; and a list of
13 different analyzers to potentially activate (mostly the same as listed previously, but
also including http-reply which examines server-side HTTP traffic).

Computed over a 10-second window, the peak bandwidth observed on the link was
695 Mbps. A 20-minute full-packet trace would therefore have required approximately
100 GB of data. Consequently, nidsconf inferred a connection sampling factor of 23
as necessary to stay within the disk budget (the next larger prime above the desired sam-
pling factor of 21). The connection-sampled trace that the tool subsequently captured
consumed almost exactly 5 GB of disk space. nidsconf then concluded that even
by itself, full HTTP request/reply analysis would exceed the given c and ¢ constraints.
Therefore it decided to disable server-side HTTP analysis. Even without this, the com-
bination of all other analyzers still exceeded the constraints. Therefore, the user was
asked to chose one to disable, for which we selected http-request. Doing so turned out
to suffice. In terms of memory consumption, nidsconf determined that the amount of
state stored by three analyzers (HTTP, SSL, and the scan detector) did not scale linearly
with the number of connections, and therefore could not be predicted correctly. Still,
the tool determined suitable timeouts for connection state (873 secs for unanswered
connection attempts, and 1653 secs for inactive connections).

Due to the complexity of the Bro system, there are quite a few subtleties involved in
the process of automatically generating a configuration. Due to limited space, here we
only outline some of them, and refer to [2] for details. One technical complication is that
not all parts of Bro are sufficiently instrumented to report their resource usage. Bro’s
scripting language poses a more fundamental problem: a user is free to write script-
level analyzers that consume CPU or memory in unpredictable ways (e.g., not tied
to connections). Another challenge arises due to individual connections that require
specific, resource-intensive analysis. As these are non-representative connections any
sampling-based scheme must either identify such outliers, or possibly suggest overly
conservative configurations. Despite these challenges, however, nidsconf provides a
depth of insight into configuration trade-offs well beyond what an operator otherwise
can draw upon.

5.3 From Flow Logs to Long-Term Prediction

Now that we can identify configurations appropriate for a short, detailed packet-level
trace, we turn to estimating the long-ferm performance of such a configuration. Such
extrapolation is crucial before running a NIDS operationally, as network traffic tends to
exhibit strong time-of-day and day-of-week effects. Thus, a configuration suitable for a
short snapshot may still overload the system at another time, or unnecessarily forsake
some types of analysis during less busy times.

For this purpose we require long-term, coarser-grained logs of connection informa-
tion as an abstraction of the network’s traffic. Such logs can, for example, come from
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NetFlow data, or from traffic traces with tools such as tcpreduce [10]], or perhaps the
NIDS itself (Bro generates such summaries as part of its generic connection analysis).
Such connection-level logs are much smaller than full packet traces (e.g., < 1% of the
volume), and thus easier to collect and handle. Indeed, some sites already gather them
on a routine basis to facilitate traffic engineering or forensic analysis.

Methodology. Our methodology draws upon both the long-term connection log and
the systematic measurements on a short-term, (sampled) full-packet trace as described
above. We proceed in three steps: First, we group all connections (in both the log and
the packet trace) into classes, such that the NIDS resource usage scales linearly with the
class size. Second, for different configurations, we measure the resources used by each
class based on the packet trace. In the last step, we project the resource usage over the
duration of the connection log by scaling each class according to the number of such
connections present in the connection log.

In the simplest case, the overall resource usage scales linearly with the fofal number
of connections processed (for example, this holds for TCP-level connection processing
without any additional analyzers). Then we have only one class of connections and can
project the CPU time for any specific time during the connection log proportionally: if
in the packet trace the analysis of N connections takes P seconds of CPU time, we esti-
mate that the NIDS performing the same analysis for M connections uses %M seconds
of CPU time. Similarly, if we know the memory required for I concurrent connections
at some time 7} for the packet trace, we can predict the memory consumption at time
T5 by determining the number of active connections at T5.

More complex configurations require more than one connection class. Therefore we
next identify how to group connections depending on the workload they generate. Based
on our observation that we can decompose a NIDS’s resource requirements into that
of its analyzers (§3), along with our experience validating our approach for Bro (§4)),
we identified three dimensions for defining connection classes: duration, application-
layer service, and final TCP state of the connection (e.g., whether it was correctly es-
tablished). Duration is important for determining the number of active connections in
memory at each point in time; service determines the analyzers in use; and the TCP
state indicates whether application-layer analysis is performed.

As we will show, this choice of dimensions produces resource-consumption predic-
tions with reasonable precision for Bro. We note, however, that for other NIDSs one
might examine a different decomposition (e.g., data volume per connection may have a
strong impact too). Even if so, we anticipate that a small number of connection classes
will suffice to capture the principle components of a NIDS’s resource usage.

Predicting Long-Term Resource Use. We now show how to apply our methodology
to predict the long-term resource usage of a NIDS, again using Bro as an example. We
first aggregate the connection-level data into time-bins of length 7", assigning attributes
reflecting each of the dimensions: TCP state, service, and duration. We distinguish be-
tween five TCP states (attempted, established, closed, half-closed, reset), and consider
40 services (one for each Bro application-layer analyzer, plus a few additional well-
known service ports, plus the service “other”). We discretize a connection’s duration D
by assigning it to a duration category C' < |log1oD]. Finally, for each time-bin we
count the number of connections with the same attributes.
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Fig. 5. Measured CPU time vs. predicted CPU time with BROBASE

Simple CPU Time Projection. To illustrate how we then project performance, let
us first consider a simple case: the BROBASE configuration. As we have seen (§4),
for this configuration resource consumption directly scales with the total number of
connections. In Figure 5] we plot the actual per-second CPU consumption exhibited by
running BROBASE on the complete MWN-full trace (circles) versus the per-second
consumption projected by using connection logs plus an independent 20-minute trace
(crosses). We see that overall the predicted CPU time matches the variations in the
measured CPU time quite closely. The prediction even correctly accounts for many
of the outliers. However, in general the predicted times are somewhat lower than the
measured ones with a mean error of -25 msec of CPU time per second, and a mean
relative error of -9.0%.

CPU Time Projection for Complex Configurations. Let us now turn to predicting
performance for more complex configurations. We examine BROALL ™, the BROALL
configuration except with ss/ deactivated (since the analyzer occasionally crashes the
examined version of Bro in this environment). In this case, we group the connections
into several classes, as discussed above. To avoid introducing high-variance effects from
minimal samples, we discard any connections belonging to a service that comprises less
than 1% of the traffic. (See below for difficulties this can introduce.) We then predict
overall CPU time by applying our projection first individually to each analyzer and
for each combination of service and connection state, and then summing the predicted
CPU times for the base configuration and the predicted additional CPU times for the
individual analyzers.

Figure[6]shows the resulting predicted CPU times (crosses) and measured BROALL ™
CPU times (circles). Note that this configuration is infeasible for a live setting, as the
required CPU regularly exceeds the machine’s processing capacity. We see, however,
that our prediction matches the measurement fairly well. However, we underestimate
some of the outliers with a mean error of -29 msec of CPU time and a mean relative
error of -4.6%. Note that the mean relative error is smaller than for predicting BROBASE
performance since the absolute numbers of the measured samples are larger for the
complex configuration.

Above we discussed how we only extrapolate CPU time for connections that con-
tribute a significant portion (> 1%) of the connections in our base measurement. Doing
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Fig. 6. Measured CPU time vs. predicted CPU time with BROALL™

so can result in underestimation of CPU time when these connection types become
more prominent. For example, during our experiments we found that SSH and Telnet
connections did not occur frequently in the 20-minute trace on which the systematic
measurements are performed. Yet the long-term connection log contains sudden surges
of these connections (likely due to brute-force login attempts). nidsconf detects such
cases and reports a warning, but at this point it lacks sufficient data to predict the CPU
time usage, since it does not have an adequate sample in the trace from which to work.

Memory Projection. Our approach for predicting memory consumption is to derive
the number of active connections per class at any given time in the connection log, and
then extrapolate from this figure to the overall memory usage. However, Bro’s resource
profiling is not currently capable of reporting precise per-connection memory usage
for application-layer analyzers, so here we limit ourselves to predicting the number of
TCP connections in memory, rather than the actual memory consumption. To do so,
we draw upon the dimensions of connection duration and state. These two interplay
directly since Bro keeps its per connection state for the lifetime of the connection plus
a timeout that depends on the state. To determine the relevant timeout, we use the states
discussed above (attempted, established, etc.), binning connections into time intervals
of length 7" and then calculating their aggregate memory requirements.

However, a problem with this binning approach arises due to connections with dura-
tions shorter than the bin size (since we use bin sizes on the order of tens of seconds,
this holds for the majority of connections). Within a bin, we cannot tell how many of
these are concurrently active. Therefore, we refine our basic approach, as follows. We
pick a random point in the base trace and compute the average number N of short-lived
connections per second occurring in the trace up to that point. We also measure the
number F' of these short-lived connections instantaneously in memory at the arbitrary
point. Let IV; be the number of short-lived connections per second for each bin ¢ in the
connection log. Assuming that F' is representative, we can then scale N;/N by F to
estimate the number of short-lived connections concurrently active in each bin.

Figure [7] shows the results of our prediction for the number of established connec-
tions in memory (crosses) assuming Bro’s default inactivity timeout of 300s, along with
the the actual number of in-memory connections when running on MWN-ful1 (circles).
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We observe that the prediction matches the measurements well, with a mean relative er-
ror of +5.0%. While not shown on the plot, we obtain similar prediction results for other
classes of connections, e.g., unanswered connection attempts.

6 Related Work

Numerous studies in the literature investigate IDS detection quality, generally analyzing
the trade-off between false positives and false negatives. Some studies [[6/4L5]] take steps
towards analyzing how the detection quality and detection coverage depends on the cost
of the IDS configuration and the attacks the network experiences. Gaffney and Ulvila [4]]
focus on the costs that result from erroneous detection, developing a model for finding
a suitable trade-off between false positives and false negatives dependent on the cost of
each type of failure. In contrast, Lee et al. [6/5] focus on developing and implementing
high-level cost models for operating an IDS, enabling dynamic adaptation of a NIDS’s
configuration to suit the current system load. The models take as input both metrics
of the benefits of a successful detection and (self-adapting) metrics reflecting the cost
of the detection. Such metrics may be hard to define for large network environments,
however. To adapt to the cost metrics, they monitor the performance of their prototype
systems (Bro and Snort) using a coarse-grained instrumentation of packet counts per
second. As was shown by Dreger et al. [3]], this risks oversimplifying a complex NIDS.
While the basic idea of adapting NIDS configurations to system load is similar to ours,
we focus on predicting resource usage of the NIDS depending on both the network
traffic and the NIDS configuration.

In the area of general performance prediction and extrapolation of systems (not nec-
essarily NIDSs), three categories of work exam (i) performance on different hardware
platforms, (ii) distribution across multiple systems, and (iii) predicting system load.
These studies relate to ours in the sense that we use similar techniques for program de-
composition and for runtime extrapolation. We omit details of these here due to limited
space, but refer the reader to [2] for a detailed discussion. In contrast to this body of
work, our contributions are to predict performance for soft real-time systems, both at a
fine-grained resolution (prediction of “head room” for avoiding packet drops) and over
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long time scales (coupling a short, detailed trace with coarse-grained logs to extrapo-
late performance over hours or days), with an emphasis on memory and CPU trade-offs
available to an operator in terms of depth of analysis versus limited resources.

7 Conclusion

In this work we set out to understand and predict the resource requirements of net-
work intrusion detection systems. When initially installing such a system in a network
environment, the operator often must grapple with a large number of options to tune
trade-offs between detection rate versus CPU and memory consumption. The impact
of such parameters often proves difficult to predict, as it potentially depends to a large
degree on the internals of the NIDS’s implementation, as well as the specific charac-
teristics of the target environment. Because of this, the installation of a NIDS often
becomes a trial-and-error process that can consume weeks until finding a “sweet spot.”

We have developed a methodology to automatically derive NIDS configurations that
maximize the systems’ detection capabilities while keeping the resource load feasi-
ble. Our approach leverages the modularity likely present in a NIDS: while complex
systems, NIDSs tend to be structured as a set of subcomponents that work mostly inde-
pendently in terms of their resource consumption. Therefore, to understand the system
as a whole, we can decompose the NIDS into the main contributing components. As
our analysis of the open-source Bro NIDS shows, the resource requirements of these
subcomponents are often driven by relatively simple characteristics of their input, such
as number of packets or number and types of connections.

Leveraging this observation, we built a tool that derives realistic configurations for
Bro. Based on a short-term, full-packet trace coupled with a longer-term, flow-level
trace—both recorded in the target environment—the tool first models the resource usage
of the individual subcomponents of the NIDS. It then simulates different configurations
by adding together the contributions of the relevant subcomponents to predict configu-
rations whose execution will remain within the limits of the resources specified by the
operator. The operator can then choose among the feasible configurations according to
the priorities established for the monitoring environment. While no automatically gen-
erated configuration can be optimal, these provide a sound starting point, with promise
to significantly reduce the traditional trial-and-error NIDS installation cycle.
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