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Self-stabilizing systems in spite of distributed control,

The synchrorization task between loosely coupled cyclic sequential
processes (as can be distinguished in, for instance, cperating systems) can
be viewed as keeping the relation "the system is ir a legitimate state" in-
variant. As a result each individual pracess step that could possibly cause
violation of that relation has to be preceded by & test deciding whether the
process in question is allowed to proceed or has tg be delayed. The resulting
design is readily =-and quite systematicly-— implemented if the different
processes can be granted mutually exclusive access to a common store {in which

"the current system state" is recorded.

A complication arises if there is ro such commonly accessible store and
"the current system state" must be recorded in-variables distributed over the
various processes and furthermore the communication facilities are limited in
the sense that each process con only exchange information with Mits neighbours",
i.e. a small subset of the total set of processes. The complication is that the
behaviour of & process can only be influenced by that part of the total current
system state description that is available to it: local actiens taken on account
of local information must accomplish a global ohjective. Such systems {with what
is quite aptly called "distributed control") have been designed, but all such
designs I was familiar with were not "self-stahilizing" in the sense that, when

ance (erruneously) in an illegitimate state, they could —-and usvally did!--
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remain go forever. Whether the property of self-stabilization =~~for a more
precise definition, see below~~ is interesting as a starting procedure, for

the sake of robustness or merely as an intriguing problem falls outside the scope
of this article. It could be of relevance on a scale ranging from a world-wide
network to common bus control. (I have been told that the first solution shown
below was used a few weeks after its discovery in a system where two resource-
sharing computers were coupled via & rather primitive channel along whigh they

had to arrange their co—operatinn.)

We consider a connected graph in which the majority of the possible edges
are missing and with a finite state machine placed at each node; machines placed
in directly connected nodes are called each other's neighbours. For each machine
one or more so—called "privileges" are defined, i.e. boplean functions of its
own state and the states of its neighhours; when such a boolean function is true,
we say that the privilege is "present™. In order to model the undefined speed
ratios of the various machines, we introduce a central daemon --its replacement
by a distributed daemon falls outside the scope of this article-- that can
"select" one of the privileges present. The machine enjoying the selected pri-
vilege will then make its "move®, i.e, is brought into a new state that is a
function of its nld state and the states of its neighbours; if far such a mechine
mare than one privilege is present, the new state may also depend on the privilege

selected. After completion of the move the daemon will select a8 new privilege.

furthermore there is a global criterion, telling whether the system as
a whole is in a "legitimate" state. We require that
1) in each legitimate state one or more privileges will be present, and
2) in each legitimate state each passible move will bring the system again
in & legitimate state, and
3) each privilege must be present in at least ane Jegitimate state, and
4) for any pair of legitimate states there exists a seguence of moves

transferring the system from the one into the other.

We call the systiem "self-stabilizing" if and only if regardiess of the
initial state and regardless of the privilege selected each time for the next
move, always at least one privilege will he present and the system is guaranteed
to find itself in a legitimate state after a finite numbér of moves. For more
than a year it has ——at least to my knowledge-— been an open question whether

non-trivial (e.g. all states legitimate is considered trivial) self-stabilizing
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systems could exist. It is not directly obvious whether the local moves can assure
convergence towards satisfaction of such a global criterion; the non—determinacy
as embodied by the daemon is an added complication. The question is settled by
each of the following three censtructs. For brevity's sake most of the heuristics
that lead me to find them and the proufs that they satisfy the reguirements have
been omitted and ——tc quote Douglas T.Ross's comment on an earlier draft==- "the
appreciation is left as an exercise for the reader". (For the cyclic arrangement
discussed below the discovery that not all machines could be identical was the

crucial one,)

In &1l three solutions we consider NH machines, numbered from O through N.
In order to avoid avoidable subscripts I shall use for machine nr. i:
L: to refer to the state of its lefthand neighbour, machine nr. (i-1)mod(N+1),
5: to refer to the state of itself, machine nr. i,
R: to refer to the state of its righthand neighbour, machine nr. (i+1)ﬂgg(N+1).
In other words, we confine aurselves to machines placed in a ring (a ring being
roughly the sparsest connected graph 1 could think Df); machine nr, ¢ will also
be called "the bottom machine™, machine nr, N will also be called "the top
machine". For the legitimate states I have chosen;those)states in which exactly
one privilege is present. In describing the designs We shall use the format:

"if privilege then corresponding move fi".
[ Se}- d%

Solution with K-state machines (K > N},

Here each machine state is represented by an integer value 5, satisfying
0 < 5 < K. For each machine, one privilege is defined, viz.
for the bottom machine: if L = 5 then S:= (5+1)EQQ K fi
for the aother machines: if L # S then S5:= L fi ,
Note f. With a central daemon the relation K> N is sufficient.
Note 2. This solution has been generalized by C.S.5cholten [1] for an arbitrary
network in which the degree of freedom in the legitimate state is that of the
special Petri-nets called "event graphs™: along each independent cycle the
number of privileges eventually converges towards an arbitrary predetermined

constant.

Solution with four—state machines.

Here each machine state is represented by two booleans xS and upS. fFor

the bottom machine upS = true by definition, for the top machine upS = false
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by definition: these two machines are tHerefore only two-state machines. The
privileges are defined as follows:

for the bottom machine:  if x5 = xR ggg_ﬁgg upR then x5:= pon xS fi

for the top machine: if x5 # xL then x5:= pon x5 fi

for the other machines: if x5 £

xL then x5:= non x5; upS:= true fi;
Af x5 = xR and upS =nd non upR then up5:= false fi .
The four—-state machires may enjoy two privileges. The neighhour relation
between bottom and top machine is not expleited; we may merge them into & single

machine which is then also a four—state machine for which also two privileges

have been defined.

Solution with three—state machines.

Here each machine state is represented by an inmteger value S, satisfying

0<5<73. The privileges are defined as follaws:

for the bottom machine:  if (S+1)mod 3 = R then S:= (S“1)m0d 3 fi
for the top machine: if L =R and (L+)pod 3 £ S then S:= {L+1)mod 3 fi

for the other machines: if (5+1)mod 3 = L then S:i= L fi;
if (5+1)mod 3 = R then Si= R fi .

Again the machine nr. i with O < i <N may enjoy two privileges, the

neighbour relation between hottom and top machine has been exploited.
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