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Multi pe Hypergeometric Functions: Probabilistic 
Interpretations and Statistical Uses 

JAMES M. DICKEY* 

This article reviews and interprets recent mathematics of 
special functions, with emphasis on integral representa- 
tions of multiple hypergeometric functions. B.C. Carl- 
son's centrally important parameterized functions R and 
k, initially defined as Dirichlet averages, are expressed 
as probability-generating functions of mixed multinomial 
distributions. Various nested families generalizing the 
Dirichlet distributions are developed for Bayesian infer- 
ence in multinomial sampling and contingency tables. In 
the case of many-way tables, this motivates a new gen- 
eralization of the function Rk. These distributions are also 
useful for the modeling of populations of personal prob- 
abilities evolving under the process of inference from sta- 
tistical data. A remarkable new integral identity is 
adapted from Carlson to represent the moments of quad- 
ratic forms under multivariate normal and, more gener- 
ally, elliptically contoured distributions. This permits the 
computation of such moments by simple quadrature. 

KEY WORDS: Generalized Dirichlet distributions; Mul- 
tiple hypergeometric functions; Special functions; Carl- 
son's R and 2R; Multivariate distributions; Bayesian in- 
ference; Multinomial sampling; Contingency tables; 
Populations of personal probabilities; Generalized mean 
value; Moments of quadratic forms. 

1. INTRODUCTION 

Statisticians should keep informed of developments in 
the mathematics of special functions. This is true for ap- 
plied mathematicians generally, but particularly so for 
statisticians, who make heavy use of parameterized fam- 
ilies of probability distributions. Such families are badly 
needed in multivariate contexts, where joint distributions 
are required to model a wide variety of uncertainty re- 
lations. Many special functions give rise naturally to par- 
ameterized distributions under the following scheme. 

A function F(b; z) may have an integral representation, 

F(b; z) = f g(b, z; u)du, (1.1) 

where g 2 0. Then one can simply define the probability 
density for a random vector u by 

p(u; b, z) = g(b, z; u)/F(b; z). (1.2) 

* James M. Dickey is Professor, Department of Mathematics and Sta- 
tistics, State University of New York at Albany, Albany, NY 12222. 
The author is grateful to B.C. Carlson, B.K. Shah, and an editor for 
references to the literature, and to J.-M. Jiang for informing him of errors 
in a previous version of this article. 

Note that u enters the representation (1.1) merely as the 
dummy variable of integration. The parameters and ar- 
guments of F have now become parameters of p. If the 
integrand g contains an arbitrary power of u as a factor, 
then the moments of p take a simple form as ratios of 
special functions F. For example, from F(z) = F(z) we 
obtain the familiar gamma distribution p(u; z) = uZ - e - U 

F(z), u, z > 0, having moments Euy = r(z + y)/r(z). 
Integral and series representations of special functions 

can be important as characteristic functions of distribu- 
tions, moment-generating functions, and probability-gen- 
erating functions (Johnson and Kotz 1969,1970ab,1972). 
Relations satisfied by the special functions then provide 
iterative and other methods for calculating entities of sta- 
tistical interest (e.g., Euy = z(z + 1) (z + y - 1).) . 

Efforts have been made over the years to unify the 
diverse field of special functions, as in early approaches 
based on hypergeometric series (Rainville 1960, Truesdell 
1948), or the more modern matrix representations of Lie 
groups (Vilenkin 1968). A new analytic approach by B.C. 
Carlson (1977) treats special functions as averages of el- 
ementary functions. Carlson's work is based, to a large 
extent, on his homogeneous multiple hypergeometric 
function, denoted by R (1963). This is a reformulation of 
Appell's and Lauricella's functions, themselves gener- 
alizations of Gauss's well-known hypergeometric series. 

We review relevant results on R and on its two-way 
generalization 2R and give probabilistic interpretations 
and statistical applications. We begin (Section 2) by set- 
ting up notation for the expectation operator of the Dir- 
ichlet distribution, relating it to the conjugate Bayesian 
inference for multiple-valued Bernoulli (multinomial) 
sampling, and providing a method for calculation of the 
associated Bayesian predictive-probability mass function 
as th-e Dirichlet mixed moment. We introduce the func- 
tions R and a as moments of linear forms in Dirichlet 
variables (Sections 3, 6, and 7) and then exhibit them as 
generating functions of the aforesaid predictive proba- 
bilities and corresponding characteristic function. Pi- 
card's identity and its generalization express R and A, 
respectively, as lower-dimensional integrals. Carlson's 
hypergeometric mean value extends the more familiar 
Hardy-Littlewood-Polya family of homogeneous mean 
values, which includes the harmonic, geometric, and 
usual arithmetic mean. We give a remarkable new one- 
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dimensional integral representation for the moments of 
quadratic forms under multivariate normal distributions 
and more generally elliptically contoured distributions 
(Section 4). 

The scheme of (1.1) and (1.2) is carried out for R and 
Rk to yield nested families of distributions generalizing the 
Dirichlet (Sections 5, 8, 9, and 10). The closure properties 
of these families are established in two contexts under 
operations of updating to account for statistical data. 
First, the distribution is considered as an ordinary Baye- 
sian prior distribution; and second, it is used to model 
the variability of personal opinions over a population of 
persons. The theory for the first operation, of course, 
provides Bayesian inference tools for multiple-valued 
Bernoulli sampling. 

We treat the case of Bayesian inference for contingency 
tables (Sections 7, 8, 9, and 10). A new family of prior 
distributions is proposed for the model of independence 
of sampling between row and column outcomes, provid- 
ing prior dependence between the unknown row and col- 
umn sampling probabilities. This family is extended to 
many-way tables, thereby motivating our conclusion 
(Section 10), in which we define a new generalization of 
2R. A many-way array generalizing the notion of a matrix 
serves as the argument variable for the new function. 

2. DIRICHLET MOMENTS AND TWO FAMILIES OF 
PROBABILITY MASS FUNCTIONS 

For a fixed integer K 2 2, denote the Dirichlet family 
of probability distributions D(b), parameterized by the 
vector b = (b1, . . . , bK). This is the multivariate gen- 
eralization of the beta family (K = 2) defined on the prob- 
ability simplex of K coordinate variables u = (ul, . . .. 
UK), where each ui > 0 and u. = 1, where u. denotes 
E ui. There are only K - I free variables, and the 
density expressed in terms of any set consisting of all but 
one of the K variables takes the identical form, 

K 

p(u) = B(b)' UJbi-1J l (2.1) 
i= I 

in terms of Dirichlet's complete integral of the K-fold 
product in (2.1), B(b) = [FIF(bi)]/F (bj). (Product and 
summation signs are understood to extend over the full 
range of index variables unless otherwise indicated.) The 
random quantities ui are nearly independent, with a slight 
negative association, from the constraint on their sum. 
This is intuitively clear from the familiar representation 
ui = xi/x., x. -xi, where the xi's are independent chi- 
squared random variables on 2bi degrees of freedom. For 
a leisurely development of the Dirichlet family and prop- 
erties, see Wilks (1962). 

The reader may recall that the Dirichlet distributions 
comprise the Bayesian conjugate prior family for the mul- 
tiple-valued Bernoulli sampling model (Good 1965). If yi, 
Y2, * *. are independently distributed each according to 
a common finite distribution with unknown atomic prob- 
abilities u1, . . . , UK, then the vector formed from a 

length-n sequence y = (Yi,. . . , Yn) (n chosen by a "non- 
informative" process) has sampling probability mass 
pr(y I u) = H uimi, in terms of the frequency counts m 
= (mI,... , mK),where m. = n. We write y I u - Ber(n, 
u) to mean that y given u has the above sampling distri- 
bution. Then the prior distribution u - D(b) implies the 
posterior distribution, 

ufy-u| m---m D(b + m). (2.2) 

We shall say the family {D} is closed under sampling in 
the sense of personal updating, to distinguish this from 
the effect of data on distributions used later to model 
populations of opinion. 

Of course, the frequency counts m, themselves, have 
a multinomial sampling distribution, say m I u - M(n, u), 
with mass pr(m I u) = (m ) H|uimi, and as sufficient sta- 
tistics, they yield the same inference as y. (The usual 
Bayesian notational practice is followed here whereby a 
generic notation, p or pr is used for a probability density 
or mass, and the argument variable indicates the distri- 
bution intended.) 

The Bayesian prior-predictive distribution, the mar- 
ginal distribution of vector y, is obtained as the Dirichlet 
mixture of the Bernoulli sampling distribution, pr(y) = 
EUlb[pr(y I u)]. The probability mass of this distribution 
is the same as the Dirichlet moment, one representation 
of which is immediate from the form of the Dirichlet den- 
sity, 

pr(y) = EUIb(K - 1) 11 Uim' = B(b + m)/B(b). (2.3) 

(For emphasis we explicitly indicate the dimensionality 
of integral averages, here K - 1.) Call this the Dirichlet- 
Bernoulli distribution, parameterized by b, and write y - 
DB(b). Under DB(b), the coordinates of y are not inde- 
pendent, but they are exchangeable, that is, permutation 
symmetric. 

The corresponding predictive distribution for the fre- 
quencies m, the Dirichlet-Multinomial distribution, has 
probability mass pr(m) = (`)pr(y) = (m)Eulb(K- 1) 
H uim'. In this case we write m - DM(n, b). Subsets of 
coordinates of m are exchangeable if the respective pa- 
rameters bi are equal. Raiffa and Schlaifer (1961) treat 
this family in the case K = 2, under the name Beta-bi- 
nomial distributiot. Of course, each of the predictive fam- 
ilies DB(b) and DM(n, b) contains its associated sampling 
model as the limiting special case of prior certain knowl- 
edge regarding u: b -(o, . . ., o o), bib. fixed, where b. 
denotes Eb. 

A new expression for the Dirichlet moment yields an 
interpretation as a product of successive posterior means. 
We have 

(K-1) 1 
_ Hi=J (be , min) 

Eulb( uim 
(, bi- YEmi) (2.4) 

in Appell's notation, (b, m) = F(b + m)IF(b) = b(b + 
1) ... (b + m- - 1). Note that the new numerator and 
denominator have the same number mn. of factors, and 
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thus we have a product of m. = n ratios. Hence, obtain 
the following result, important for practical computa- 
tions. (This result corresponds to the known equivalence 
of the Dirichlet-Multinomial and the Polya urn models, 
cf Feller 1966, p. 226. See also Hill 1974, p. 1024.) 

Theorem 2.1. If the product Htuitm under the expec- 
tation operator in the Dirichlet mixed moment, (2.3), 
(2.4), is written in any order whatever as a product of m. 
individual ui's to first powers, then the mixed moment 
can be calculated by merely substituting for each factor 
its successive posterior mean based on the preceding fac- 
tors as "data." Writing H|uimi = u y uY2 .yn9 for any 
fixed vector y with frequency counts m(m. = n), yields 

EuIb(K-1) Humi 

= (EuIb UyX)(EuIb,y Uy2)(EU|b,yX,y2 Uy3 ... 

(Eulb,yl, . . . ,yn- I uyn)9 (2.5) 
in which each Eulb* uy = by*lb.*, where b* denotes the 
Dirichlet parameter posterior (2.2) to the data given, so 
far, in the condition of the respective factor. Each new 
jth factor is both the posterior mean of the respective ui 
and the posterior predictive probability for the event "ob- 
servation" yi = i. 

For example, for m. = 3, 

Eub K-) 12Z_ 
b1 b +lI b2 

EuIb(1) u12u2 - lb. b. + 1 b. + 2 

b1 b2 b1 + I 
b. b. + I b. + 2 (2.6) 

This result motivates our new notation, 

EuIb(K ) ilUimi = [b :b.]m, (2.7) 

whereby 

pr(y) = [b: b.] and pr(m) = (m) [b: b]m. 

Several new families that generalize the Dirichlet and 
are useful as prior distributions are given below. Theorem 
2.1 will be applicable in two ways to the new distribu- 
tions. First, expressions for the moments of the new dis- 
tributions will involve the Dirichlet moment (2.7), which 
can be calculated by Theorem 2.1. Secondly, obvious 
modifications of the theorem apply directly to the new 
distributions in place of the Dirichlet. 

3. THE HYPERGEOMETRIC FUNCTIONS R 

Carlson (1977) defines the transform F(z) of an arbitrary 
function of a single variable f(x) by performing a Dirichlet 
average through the argument 

F(b, z) = Eulb(K-1) f(u * Z), (3.1) 

where z = (zi, . . ., ZK), U z = Ulzl+ * + UKZK, 

and u - D(b). The new function F of K variables with K 
parameters is an average of f(x) over the interval [min 
zi, max z5]. See Figure 1 for K = 2. Carlson considers 

zap 

-z aw~ ~ ~ ~~~~~~~~z 

/ 
/ 

(za)zb 1/ 

aZn zz,) 

l 

(Zth Zm ) 

trbtin ( i - I K i Q- Db, b- 

/ I 
/ I 

/ 

/ 

FiguJre 1. Carlson 's F as an Average of / over a Segment of the 
Equiangular Line. Case K = 2. 

complex-valued functions f and complex coordinates bi 
and zi, but here we treat, for the most part, merely real 
functions and variables. If each bo> 0 and if the function 
f is Cd (nth derivative continuous) over an open interval 
I, then F will also be Cu over the cube tKr Clearly, by 
the obvious marginalization property of the Dirichlet dis- 
tribution, (u,, . .. , , z E u1) - D(bu , . . .,3 
n be), and by the invariance to simultaneous reorder- 

ings of u and b coordinates, we have a lowering in di- 
mensionality of F whenever a subset of equal coordinates 
of z occurs. For example, F(b; x, x, . . . , x) = f(x). 

The transf2ansform F and its confluent and other forms 
provide derivations for a wide variety of known special 
functions from familiar elementary functions. A central 
role is played by the particular case of the transform of a 
simple power f(x) = X". Define for u =- D(b) and each 

Ra(bn z) = Eub(Kb ) (u * Z)a (3.2) 

One reason for the interest in R has been that power series 
for f yield, by term-by-term integration, expansions of F 
as a series of R functions. Expansions of the integrand 
of R (3 .2) and term-by-term integration yield the following 
representations for R. 

Theorem 3.1 (Polynomial form for R). For nonnegative 
integer n, we obtain the probability generating function 
of the Dirichlet-Multinomial distribution, 

Rn(b z) = (mm ) [b:b.] 

= EmIn,b Jjzmi, (3.3) 

where m - DM(n, b). 

Corollary 3.2. A complex argument provides the char- 
acteristic function of the Dirichlet-Multinomial, R"(b, z) 
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for z = (exp (it,), . . . , exp (jtK)). Recall that the Mul- 
tinomial characteristic function is the power 

[ul exp (it,) + ... + UK exp (itK)]n. 

Equation (3.3), which holds for restricted a = n, gives 
a polynomial homogeneous in the vector z. It shows that 
the definition of R can be extended to nonpositive pa- 
rameter values bi, where the integral representation (3.2) 
fails to exist. Carlson gives a thorough treatment of the 
valid ranges for parameters and arguments of R. From 
the binomial-series expansion of (1 - X)a, obtain the fol- 
lowing representation exhibiting R as a multiple hyper- 
geometric series (and thereby further motivating the func- 
tion f(x) = Za). 

Corollary 3.3 (Series form). For each I zi < 1, with 1 
= (1, ... , 1), we have the multiple series, 

(-a,n) Ra(b, 1 - z) = R,(b, z) 

7mi 

= 1 : (-a, m.)[b: b.] n'. 
ml=0 mK=O mi! 

(3.4) 
Of course, the series terminates for nonnegative integer 
a. 

Depending on the dimension K, the function R becomes 
a special form of Lauricella's FD, Appell's Fl, or Gauss's 
familiar 2F1. The following classical identity, attributed 
to Picard by Appell and Kampe de Feriet (1926), re- 
duces the dimension of the integral representation, thus 
permitting the computation of R by simple quadrature. 
Although this refers only to a restricted range of the pa- 
rameter a, a contour integral applies more generally 
(Carlson 1977, Theorem 6.8-2, p. 155). The author is pres- 
ently developing computer algorithms for calculation of 
R and its generalizations in parameter ranges important 
for statistics. 

Theorem 3.4 (Picard's identity). For - bi < a < 0, 
v = (vI, v2),v = w, V2 = 1 - w, andc= (a, Eb + 
a), 

K 

Ra(b, z) = I 171 (vIzi + v2)-bi 
i = 1 

=B(c)- 10 WWa-I (1 - j+a- 

X [I (WZ, + 1 - wYbi]dw. (3.5) 

The distributions of linear combinations u * z of Diri- 
chlet coordinates have been investigated by Bloch and 
Watson (1967). The functions R, now give the moments 
of such a combination. 

We finish this section by presenting Carlson's (1965) 
beautiful generalized mean value. For real parameters a, 
c, and a probability vector of "weights" w, define the 

hypergeometric mean value of the positive quantities zi, 
where z = (zi, . . ., ZK), as 

M(a, c; z, w) = [Ra(cw, Z)]l/a. (3.6) 

This extends, as follows, the more familiar Hardy, Lit- 
tlewood, and Polya (1959) generalized mean value, (WIZla 
+ *. + WKZK a)11a, of which the usual arithmetic, geo- 
metric, and harmonic means are special cases. Both gen- 
eralized mean values are homogeneous in the vector z. 
The familiar monotonicity and convexity properties are 
carried over to M. For example, M is increasing in a if 
c is positive. 

Theorem 3.5. 
lim M = (W1Zla + * + WKZK a)l/a (3.7) 

and 

lim M = WIZI + + WKZK* (3.8) 
C-0oo 

Proof. Note that as c -> 0, the Dirichlet distribution 
approaches the finite distribution with respective prob- 
abilities wi over the set of vertices Vi = (u: ui = 1 and 
uj = O for j =A i), i = 1, .. ., K. The effect of bi O for 
a single value of i, only, would be to pull the probability 
away from Vi, up against the boundary subsegment {u: ui 
= 0}; but since this must happen simultaneously in all i 
= 1, . . . , K, the result is a sharing out of the limiting 
probability among the segment-intersection points Vi. 
Also, as c -> oo, all the Dirichlet probability accumulates 
to the single point u = w. 

4. MOMENTS OF QUADRATIC FORMS 
The following result regarding the distribution of cen- 

tered quadratic forms was given in a nonprobabilistic 
form for multiple integrals by Carlson (1972). We state 
the result first for a multivariate normal vector. 

Theorem 4.1. Consider a K-variate normal random vec- 
tor x, x - Normal(K) (0, V); consider the matrix A (K x 
K), symmetric and positive definite; and let n > - K12. 
Then 

E(K) [(X TAX)n] 

= E(Qn) * . . . , 2; X1, . . ., AK), (4.1) 

where the Xi's are the eigenvalues of the matrix AV, and 
where Q -XK2, so that 

E(Qn) = r(-K + n)l[F(-K) (Iln]. 
(4.2) 

This, in conjunction with Theorem 3.4, provides a new 
one-dimensional integral representation for the moments 
of a quadratic form. Previous work has concentrated on 
series expansions of the distribution and moment (see, 
e.g., Kotz, Johnson, and Boyd 1967 and references 
there). (This is also true of the more recent work on quad- 
ratic forms with matrix argument, e.g., Khatri 1966, Shah 
and Kahtri 1974.) 

The proof of Theorem 4.1 is based on the following 
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Lemma from Carlson (1977), which yields also an alter- 
native definition for Rn (n = 0, 1, 2, .. .) applying with 
no restriction whatever on (complex valued) arguments 
b = (bl, . . . , bK) and z = (Zl, . . . , ZK) 

Lemma 4.2 (Generating function for Rn). If each I tzi | 
< I (i =1, . .. , K),9 
K 

II (1 - tz,)bi 
i= 1 

- E [r(b. + n)Ir(b.)]Rn(b, z)-. (4.3) 
n=O n. 

Proof of Theorem 4.1. The moment-generating function 
of xTAx is defined as 

tn 
E exp(jt(xTAx)) = EE[(xTAx)n]2-n - , (4.4) 

the left side of which is equal to 

(2Q,r)-(l12)K I v-1 11/2 exp(-AxT(V-1 - tA)x)dx 
K 

_ I v- 11j2 / I v- tA 11/2 = J_ (1 _ tX,)1/2. (4.5) 

Comparison of the resulting equation to (4.3) yields the 
theorem. 

Note that Q in Theorem 4.1 has the same distribution 
as xTV- 'x, the maximal invariant of the symmetry group 
for the distribution of x. This observation leads to the 
following generalization. 

Theorem 4.3 (Arbitrary elliptically symmetric distri- 
bution). Let matrices A and B (K x K) be positive-def- 
inite and symmetric. Assume that x has a distribution that 
depends on x only through 

Q = xTBx. (4.6) 

That is, the density of x has contours in the form of con- 
centric ellipsoids defined by fixing values Q. Then if the 
nth absolute moment of Q exists, Equations (4.1) and (4.6) 
hold simultaneously, with the Xi's defined as the eigen- 
values of the matrix AB- . 

This says that the nth moments of xTAx and XTBX have 
the ratio Rn(2, . . . , LXI,..., XK). To compute the 
moments of Q = xTBx, it may be helpful to have its den- 
sity. For p(x) = h(Q), the density of Q takes the form 

[ (1/2)K/F(lK)] I B I-iQ(1/2)K- Ih(Q). (4.7) 

5. EXTENSIONS OF THE DIRICHLET DISTRIBUTIONS 

The function R is associated with various extensions 
of the Dirichlet family of distributions. If the Dirichlet 
coordinate variables vi, where v D(b), are transformed 
by scaling and renormalizing to sum to unity, 

u= viz7'I/v1zf'(i =1,. . ., K), (5.1) 

where each z1 > 0, then the new vector u has the probi- 

ability density for any subset of K - 1 coordinates, 

B(b)-' (rIuPbi-)(u * Z)-b-jJZ,bi (5.2) 

where each ui 2 0 and ui = 1. (The Jacobian for this 
change of variable is av/a = (JJzZ)(u * z)-K.) In this 
case we write u S(b, z). We shall say that the distri- 
butions D transform to S under the operation of popu- 
lation updating. 

These new density functions are homogeneous of de- 
gree zero in the parameter vector z, S(b, cz) - S(b, z) 
for any c > 0; and the Dirichlet family is a special case, 
D(b) S(b, cl) where 1 = (1, . .. , 1). These distribu- 
tions were introduced by Dickey (1968a) and credited 
there to private conversations with L.J. Savage. 

Geometrically, the transformation (5.1) says that the v 
simplex is first displaced and extended or contracted by 
the pure linear scaling operation in the numerator of (5. 1), 
in which the vertices track along their respective axes. 
In this motion, all points in the simplex retain their pro- 
portional positions and their relative probability density 
ordinates. Then, the whole probability mass is returned 
onto the original simplex by a stereographic projection 
with the origin as reference point. This process is illus- 
trated in Figure 2 for K = 2. 

The class of transformations (5.1) is closed under com- 
position. Indeed, it forms a group isomorphic to RKIG 
where R denotes the group of positive real numbers under 
multiplication and G is the subgroup consisting of vectors 
having all K coordinates identical. The inverse of the 
transformation (5.1) is just vi = uizil1 ujzj. For the family 
of densities, also, we have closure: if v S(b, y) then 
for the change of variable (5.1), u - S(b, z x y), where 
z x y denotes the vector (zlyi, . . ., ZKYK). 

Equation (5.1) has an obvious resemblance to Bayes's 
formula. Dickey (1968a) and Dickey and Freeman (1975) 
studied the following model in which (5.1) is interpreted 
as the transformation of prior to posterior probability vec- 

us, U3. 

1+~~~~~~~~~~~~~77 

I / , 
7'PAl 

I~~~~l7, 

Figure 2. Savage's Transformation of the Probability Simplex. 
Case K = 2. 
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tors for a population of Bayesian scientists. If, for a spec- 
ified scientist, the unknown state of nature 0 (0 = 1, 2, 
.. ., K) has his personal prior probability vi = Pr{0 = 
i} (i = 1, ... , K), and if each scientist in the population 
observes the same experimental data with common like- 
lihood function li = pr(data I 0 = i) (i = 1, . . , K), then 
each scientist's coherent personal posterior probability 
vector u, ui = Pr{0 = i I data}, will satisfy equation (5.1) 
with ziJ = Il (i = 1, . . . , K). Then to model the pop- 
ulation of scientists' prior opinions by a Dirichlet distri- 
bution of probability vectors, v - D(b), will induce the 
population distribution of coherent posterior opinions, u 
-S(b, 1`), where I-= (11-', . . 1K -1). More gen- 
erally, we have the following statement. 

Theorem 5.1. The family {S} is closed under the op- 
eration of updating opinion populations. If before the 
data, v - S(b, z), then after the data of likelihood 1, u 
S(b, z x 1-l) where z x 11 = (zillK1, . . . , zKlK 1). 

The following consequence of the form of the density 
(5.2) will be important in the sequel. 

Theorem 5.2 (Simple form for R). Under the parameter 
restriction a = -b., 

R_b.(b, z) = Hz,-bi (5.3) 

The moments of u - S(b, z) are easily obtained as fol- 
lows: 

Eulbz Z(K- 1) (H Ui`0( . z)c 

= [b: b.]mR_b.+!(b + m, z)IJz,bi. (5.4) 

For example, under the restriction c = -m. 

Ef(1uJmi(U - m- = E H (vi/zd)mi 

= [b:b.Im Hzi-mi. (5.5) 

In contrast to Theorem 5.1 and to previous property 
(2.2), the family {S} is not closed under sampling in the 
personal-updating sense, that is, when considered as the 
source of a prior distribution modeling a single person's 
opinion. This motivates the following more general fam- 
ily, which is closed under personal-updating operations 
(but not, however, under population-updating opera- 
tions). 

Write u - D'(b, z, ,3) when u has the density, 

B(b) - I ( I|U,bi - 1 )(u * z) -13R-_3(b, z) . (5.6) 

The moments are ratios of hypergeometric functions, 

Eulb,Zz,P IK ) ( I| uimi)(u * Z)Y 

= [b:b.]]m R_3+(b + m, z)/R _3(b, z). (5.7) 

Theorem 5.3. The family {D' 1} is closed in the personal- 
updating sense. If u - D1(b, z, ,3), then 

u I m - D1(b + m, z, ). (5.8) 
Note that S(b, z) -~ D' (b, z, b ), thus motivating a new 

notation for S, D01(b, z) - D'(b, z, b.). Property (5.8) 

Table 1. Nesting and Closure Properties of the aK 
Distributions. Dimension K Arbitrarily Fixed 

({1D} = {D}, {Do1} = {S}) 

Family 

Generalizations Generalizations 
Dirichlet Based on R. Based on 9R 

Nesting {DO} C {Do'} C {D'} C {Do2} C {D2} C 

Closure 
Personal- Y N Y N Y .. 

Updating 
Population- N Y N Y N 

Updating 

then exhibits the lack of personal-sense closure for {Dol}. 
The situation regarding subfamily relations and personal- 
and population-sense closure for these families of distri- 
butions is recorded in Table 1. The further families re- 
ferred to there will be introduced in a later section, par- 
tially motivated by closure considerations. 

Neither D?(-D), Do' (-S), D1 nor any of the other 
distributions to be given here provides a solution to the 
outstanding Bayesian need for a convenient prior distri- 
bution having locally smooth realizations: that is, high 
positive correlation for adjacent pairs of multinomial 
probabilities, say ui being nearly equal to ui- 1 and ui+ 1, 
but rather unlike uj for farther values j. This need was 
discussed in Dickey (1968b). 

6. THE DOUBLE AVERAGES R4 
Generalizations of the function R will provide further 

generalizations of the Dirichlet family. The generalization 
introduced in this section, denoted by RA, was given by 
Carlson (1971), who used it for essentially the following 
elegant derivation of a generalized Picard's identity. The 
generalized identity had been derived earlier by Dickey 
(1968a), using multiple-series expansions. 

Consider a matrix Z (K x K), having K-dimensional 
row vectors zi* (i = 1, . . , K) and K-dimensional column 
vectors z*j(= 1,...,K), 

Z = Z2* (Z*I I * , Z*K) (6.1) 

[ZK*_J 

Define the K-vectors u, b, and the K-vectors v, P. The 
usual matrix product defines a bilinear form, uTZv, in 
which u and v are taken as vertical arrays. We define the 
double Dirichlet average as 

0ta(b, Z, 0) 
= EUIb(K 1) Ev 1(Kl) (UTZV)a 

= EUIb(K 1) Ra(P; u Z*1, I . . u Z*K)- (6.2) 

Apparently, we have homogeneity of degree a in the ma- 
trix Z: 2ka(b, cZ, S) = CaQka(b, Z, S) for all c > 0. 
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Lemma 6.1 (Transposed argument). 

?a(b, Z, 0) = ?ta(I, ZT, b) 
= Evip(K ) Ra(b; z1* . . . , ZK* * V). (6.3) 

Theorem 5.2 and Lemma 6.1 imply the following pre- 
liminary generalization of Picard's identity. 

Lemma 6.2. 
K 

t-13. (b, Z, ) = Eulb(K) 1 (u * z*j) 13i. (6.4) 

This applies to &ka for which a = - . (the First Restric- 
tion). Furthermore, if ,3. = b. (the Second Restriction), 
we also have the expression symmetric to (6.4), 

K 

L13. (b, Z, ) = EvI 3 (K 1) [J (Z* . v)-bi. (6.5) 

Jt satisfying both restrictions is called a bare form, a = 

-p. = -b.. 

Corollary 6.3. (Dickey 1968a), If P d = b, 
K 

EUb(K 1) (U Z* 

K 

= EVi (K 1) J (Zi* . V) bi. (6.6) 

Let Z' = (Z, 1), where 1 = (1, . . ., l)T. 

Lemma 6.4 (Unit-column property). Under the First 
Restriction, for arbitrary -y, 

R-p. (b, Z, 0) = ?_Jy(b, Z', ')' (6.7) 

where ' = (, -y - P3.), and hence P.' =y. 

Corollary 6.5. The First Restriction yields a bare form, 
& - . (b, Z, 0) = &-_ (b, Z'', '), (6.8) 

where ' = (0, b. - P.), and hence P3.' = b.. 

Theorem 6.6 (Generalized Picard's identity, Dickey 
1968a). 

K 

13tp.(b, Z, ) = Eulb(K ) [J (u* Z*j) 

K 

- Ev,I ,(K) (Zi* V + V'K+ I)-b (6.9) 

where v' = (v, v VK+ 1) and Pi' = (, b. - 

Note that V'K + 1 vanishes from (6.9) if P3. = b., by 3 tK+ 1 
= 0, thus producing (6.6). Picard's original identity (3.5) 
is the special case K = 1. The generalized identity can 
be useful for computations when K < K. 

By Lemma 6.2, the First Restriction implies homoge- 
neity for Jt in each column vector z*j: 

_f. (b; ciz. (f cj (b;z, . . . , CKZ*K; ) 

for all cj > 0 (j = 1, . . . , K). A bare form, of course, 
will have homogeneity both in each column and in each 
row of Z. 

7. CONTINGENCY TABLES AND A NEW 
REPRESENTATION FOR Jt 

The obvious sampling model for contingency tables 
with sampling independence between row and column 
outcomes is the multiple Bernoulli with restricted param- 
eters, 

K K 

pr(y I u, v) - [J [J (uivj)mi, (7.1) 
i=1 j=1 

or, for the frequency counts array M = (i-iij: i = 1,..., 
K, j = 1, . . . , K), its multinomial version: 

pr(M I u, v) =( H1ij (uiv1)mi". (7.2) 

Taking independent prior distributions u - D(b) and v - 
D(p) yields the independent posterior distributions, u I M 
-D(b + m*.) and v M -D(P + m.*), wherem*. - 

(E1mEi: i = 1, ... , K) and m. = (E imij:j = 1, . 

K). The corresponding prior predictive distribution has 
the probability mass function, parameterized by n, b, 0, 

pr(M) = (M;) [b:b.]nm* [P:P.]m*, (7.3) 

where each mij = 0, . .. , n and m.. n. (The indepen- 
dent-Dirichlets prior distribution used here will be ex- 
tended in a later section.) 

We obtain the following generalization of Theorem 3.1. 

Theorem 7.1 (Polynomial form). For nonnegative in- 
teger n, we have the probability generating function of 
the predictive distribution (7.3): 

?n(b, Z ) = EMInbJ Iiij z. tn. (7.4) 

This identity appears in a nonprobabilistic form in Carl- 
son (1974, Eq. (3.4)). Again, the characteristic function 
follows by a substitution. 

8. FURTHER GENERALIZED FAMILIES 

The function Jt under the First Restriction yields an 
extension of the distribution families {Do'} and {D'}, as 
follows. The integral representation (6.4) of Jt under the 
First Restriction differs from the integral representation 
(3.2) of R in allowing multiple factors that are powers of 
linear forms. In this same way, we shall extend consid- 
eration to more general density functions. For K-dimen- 
sional vectors u, b, the matrix of positive entries Z (K x 
K), and the K-dimensional vector 0, define the distribution 

u - DK (b, Z, ) (8.1) 

to mean that u has the density function on the probability 
simplex, 
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Note that the normalizing constant satisfies the First Re- 
striction. We write Dok for the case when the normalizing 
constant Jt is a bare form, that is, when also ,3. = b. 

The distribution (8.2) has an important role as the pos- 
terior distribution of a variance proportion in Bayesian 
inference for normal sampling. This role and the conse- 
quent role of Appell's hypergeometric function of two 
variables F, was discovered by Dickey (1965, p. 49; 
1968a, Eq. (2.9); 1974, Eq. (32)). The corresponding roles 
in Bayesian and non-Bayesian inference about variance 
components were discovered by Culver (1971) and Hill 
(1977, Eq. (2.4)), who contributed to the mathematical 
analysis of the Appell functions, obtaining asymptotic ex- 
pansions. For a representation by F1 of the Behrens- 
Fisher density, see Dickey (1968a, Eq. (3.5)); and for re- 
lated asymptotic expansions, see Dickey (1967, Eq. (7)). 
For an extended statement on the relevance of the dis- 
tribution (8.1) and the related "poly-t" posterior density 
of location parameters (proportional to a product of mul- 
tivariate-t densities), see Dreze (1977). Such posterior 
distributions arise from prior independence of location 
and scale. 

For a given distribution, define the multiplicity as the 
minimal nonnegative integer K permitting such an expres- 
sion (8.2) of the density. Thus, if any two z*j's are pro- 
portional, or any z*j = cl, or 3,j = 0, then the multiplicity 
is diminished. The multiplicity of a family of such distri- 
butions is the maximum of the multiplicities of its member 
distributions. 

Theorem 8.1 (Nesting). Writing D?(b) for the usual Dir- 
ichlet distributions, we have for fixed dimensionality K, 

{D K} c {D C } c {D }, (8.3) 
for the multiplicities K = 1, 29 .... 

Proof. Since for b3. = b., DoK(b, Z, g) DK(b, Z, 0), 
we have {DoK} C {D }. To see that {DK} C {DOK+I } for K 
= 0, 1, ... , proceed as in the unit-column property for 
Jt (Lemma 6.4). Including the formal further factor 1 = 
(u * l)-(b - ) in the density (8.2), write 

DK(b, Z, g) DoK+l(b, Z', n'), (8.4) 
where Z' = (Z, 1) and ' = (, b. -.). 

As in D1, the density functions are obviously all ho- 
mogeneous of degree zero in each column vector z*j of 
the matrix Z, 

D K(b, Z, D K(b; ClZ*1 f ... *, CKZ*K; s (8.5) 

forany cj > 0 (j= 1,. . ., K). 

The moments are proportional to ratios of Rt functions. 
If u - DK(b, Z, ), then 

Eulb,Z,1(K 1) ( Uimi) (u .Z*j)- 

= [b:b.] m R (b + m, Z, i + u)/ 

Note that any linear forms under the expectation here 

involve the same coefficient vectors z*j that appear in the 
density (8.2). This restriction is removed in the following 
remarkable extension of (8.6). 

Theorem 8.2. Define the K x (K + A) matrix, 

Z= (Z, Y), where Y = (y* 1, . . . , Y*A) (8.7) 

and = ( + L, v), where,u = (Iii, . ., i.) and v 
= (VI,... , VA). Then for u - DK(b, Z, 0) and arbitrary 
m, FL, and (Y, A, v), the moment defined by including the 
further factors II,A(U * y*j) -v under the expectation op- 
erator in (8.6) has the expression on the right-hand side 
of (8.6), generalized by substituting into the numerator 
(Z', P', and f3. + >. + v.) for (Z, i + FL, and ,3. + j.), 
respectively. 

Theorem 8.3. The operator (2.2) applied to DK(b, Z, ) 
yields DK(b + m, Z, 0). Hence, {DK} is closed and {DoK} 
is not closed under sampling in the personal-updating 
sense. 

Theorem 8.4. If v - DK(b, Z, 0), then the population- 
updating operation ui = viyi- 1vjyj-' (i = 1,... , K) 
yields u - DoK+I(b, Z', '), where 

z= (Z* x X y, . . . 9 Z*K X y, y), 

y = (Y1, . . . ,YK)T, (8.8) 

and i' = (,b. - .).Of course, if . = 

u -Do (b; z*1 X y9 . . . 9 Z*K X Y; 

Hence, {DK} is not closed and {DoK} is closed under pop- 
ulation-updating operations. 

Theorem 8.4 reminds us that our density functions fail 
to be homogeneous in each row vector of the matrix pa- 
rameter Z, in contrast to the column-vector homogeneity 
(8.5). Theorems 8. 1, 8.3, and 8.4 complete and extend the 
subfamily and closure information in Table 1. 

Further extended families suggest themselves. For ex- 
ample, dropping the First Restriction, define u - D+K(a, 
b, Z, I) for the density 

B(b) (n 
1 

Ui bi) 

x Ra(; U * Z* 1 . . . 9 U * Z*K)/ka(b, Z, P), (8.9) 

the moments of which have an obvious simple form in 
the case of E Iluimi. Of course 

D K(bg Zg ) - D +K(_,13. b Zg P) 

whereby {DK} C {D + K}. 

Note, finally, that D+K is actually a marginal distri- 
bution in the new joint distribution for two vectors, (u, 
v) - DKDK(a, b, Z, 0), which has density, 

x (uTZv)a I K ta(b Z j). (8.10) 
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Closed-form expressions can easily be written down for 
general moments of this joint distribution, in the spirit of 
Theorem 8.2. 

9. A NEW FAMILY OF PRIOR DISTRIBUTIONS FOR 
CONTINGENCY TABLES HAVING INDEPENDENT ROW 

AND COLUMN SAMPLE OUTCOMES 

The joint distribution (8.10) can be used as a prior dis- 
tribution for a contingency table with sampling inde- 
pendence between row and column outcomes, thus ex- 
tending the independent-prior theory in Section 7. If prior 
to M, (u v) DKDK(a, b, Z, t), then posterior we have 

(u, v) M DKDK(a, b + m-., Z, 0 + m.*). (9.1) 

The corresponding predictive distribution, M - 

DKDKM(n, a, b, Z, ,), has mass function, 

pr(M) &?Ja(b + m*., Z, fi + m,*)/Iita(b, Z, Is), (9.2) 

where pr(M) denotes the previous Dirichlet-prior version 
of the predictive distribution, as given in (7.3). 

Note that the distribution (8.10) can express prior de- 
pendence between the (random) row probability vector 
and the column probability vector, but it is not so effec- 
tive for modeling prior prejudice for smoothness within 
either vector. For example, if a is positive and Z = diag(l, 
1, ... , 1), then the joint prior density is high for near 
equality of a pair, ui = vi. 

10. A NEW FUNCTION 

In addition to statistics benefiting from results in the 
field of special functions, it is clear also that statistics can 
motivate further developments in that field. We have seen 
that probability provides a tidy notation, as in the defi- 
nition of R and its representation as a probability gen- 
erating function. We were led, by parallel reasoning, to 
a polynomial representation for the more general A. I 
would like to propose here the study of a new family of 
special functions. Many-way contingency tables and the 
corresponding Bayesian inference suggest an immediate 
extension of the function 0t to many-way-array argu- 
ments. (An even more general function of a three-way 
array appears in Carlson 1971, Eq. (7.1).) 

Write the Dirichlet density 

q(u; b) = B(b)<- lfUib-i 

and the multilinear form constructed from the H-way 
array 2, 

2(u, v, ... ., w) 
KM1) K(2) K(H) 

= z ... * UiVj 
... WkZij,._,k- (10.1) 

i=Ij=1 k=1 

Then we define the H-way function, 

ta(b(' ... ., W'b(H); 1) 

= fdu f * dw q(u; bf'l) * .. q(w; b(H)) 

x [y(u, . .. , w)Ia. (10.2) 

This is, of course, an iterated average of lower-way func- 
tions, 

RAMbl, b . (H-1)~ b(H); OC) 

- fdw q(w; b(H)) 

X wfl (10.3 .b(H); f( 

where 2(*, . . ., *, w) is the (H - 1)-way array having 
(i(l) ,i(H 1))th entry 

K(H) 

WkZi0),.. ,iH-l),k. 
k= 1 

The function is invariant to permutations of the coordi- 
nates of a parameter vector, say b(h), simultaneously with 
the values of the hth index of W. It is also invariant to a 
generalization of the matrix transpose operation, 
whereby the order between index variables of 2 is per- 
muted simultaneously with the order between parameters 
b(h) (h - 1,... , H). Picard's identity has an immediate 
extension. 

Our H-way distribution is defined by 

p(u, . .. , w) = q(u; b)) ... q(w; b(H)) 

[M(ul . . @ w)]a/1Ra(b(') . S bH); I). (10.4) 

The Bayesian inference theory given for the two-way 
family (8.10) has an obvious generalization. For example, 
the predictive mass function for the H-way counts array 
A is 

H\ (i [b(h): b.(h)]m(h) 

xka(b(l) + ml . . . b"H) + m(H); 2) 
a 

jh('), b(H); 2) 
' . 

where m(h) = A (1, . . ., *, 1, . . ., 1), the hth marginal- 
sum vector, having ith coordinate mm. ,............ (i = 1 i (i ,I 
K(h)). This is, again, exhibited as the predictive mass for 
the prior independence case, multiplied by a ratio of a 
functions. Again, this will provide a polynomial form rep- 
resenting a as a predictive probability generating func- 
tion, in an obvious generalization of Theorem 7.1. 

[Received October 1981. Revised November 1982.] 
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