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Phutball Endgames are Hard

Erik D. Demainé Martin L. Demainé David Eppsteif

Abstract

We show that, in John Conway’s board game Phutball (or Riyilosr’s Football), it is NP-
complete to determine whether the current player has a nhatémmediately wins the game.
In contrast, the similar problems of determining whetherdtis an immediately winning move
in checkers, or a move that kings a man, are both solvablelympmial time.

1 Introduction

John Conway’s game Phutbd]] [1+3] 13], also known as Phplesics Football, starts with a single
black stone (thédoall) placed at the center intersection of a rectangular grith &isca Go board.
Two players sit on opposite sides of the board and take tubwrseach turn, a player may either
place a single white stone (aan) on any vacant intersection, or perform a sequenderops. To
jump, the ball must be adjacent to one or more men. It is mowealstraight line (orthogonal or
diagonal) to the first vacant intersection beyond the med th@ men so jumped are immediately
removed (Figur§]1). If a jump is performed, the same playey comtinue jumping as long as the
ball continues to be adjacent to at least one man, or may entiith at any point. Jumps are not
obligatory: one can choose to place a man instead of jumpiige game is over when a jump
sequence ends on or over the edge of the board closest topthaen (the opponentgoal line)

at which point the player who performed the jumps wins. ltegdl for a jump sequence to step
onto but not over one’s own goal line. One of the interestirapprties of Phutball is that any move
could be played by either player, the only partiality in tlerge being the rule for determining the
winner.

It is theoretically possible for a Phutball game to returratprevious position, so it may be
necessary to add a loop-avoidance rule such as the one is @Ghe=e repetitions allow a player to
claim a draw) or Go (certain repeated positions are disatwHowever, repetitions do not seem
to come up much in actual practice.

It is common in other board ganﬂemat the problems of determining the outcome of the game
(with optimal play), or testing whether a given move pressrthe correct outcome, are PSPACE-
complete [p], or even EXPTIME-complete for loopy games sasiChess [8] and G¢ [[11]. How-
ever, no such result is known for Phutball. Here we prove ferdiht kind of complexity result:
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More precisely, since most games have a finite prescribenl Isiwe, these complexity results apply to generalizations
in which arbitrarily large boards are allowed, and in whiklh tomplexity is measured in terms of the board size.
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Figure 1: A jump in Phutball. Left: The situation prior to themp. Right: The situation after
jumping two men. The same player may then jump the remainiaig. m

the problem of determining whether a player has a move thatediately wins the game (a mate
in one, in chess terminology) is NP-complete. Such a regdins quite unusual, since in most
games there are only a small number of legal moves, whicldailbe tested in polynomial time.
The only similar result we are aware of is that, in Twixt, iN®-complete to determine whether a
player’s points can be connected to form a winning chaih.[Hijwever, the Twixt result seems to
be less applicable to actual game play, since it depends tayarpmaking a confusing tangle of
his own points, which does not tend to occur in practice. Tdrapetition between both players in
Phutball to form a favorable arrangement of men seems tantesth more naturally to complicated
situations not unlike the ones occurring in our NP-compless proof.

2 The NP-Completeness Proof

Testing for a winning jump sequence is clearly in NP, sincermag sequence can only be as long
as the number of men on the board. As is standard for NP-coemgss proofs, we prove that the
problem is hard for NP by reducing a known NP-complete prokie it. For our known problem
we choose 3-SAT: satisfiability of Boolean formulae in cawgiive normal form, with at most three
variables per clause. We must show how to translate a 3-S#t@nne into a Phutball position, in
polynomial time, in such a way that the given formula is sblegrecisely if there exists a winning
path in the Phutball position.

The overall structure of our translation is depicted in Fidf, and a small complete example
is shown in Figurd]6. We form a Phutball position in which tlesgible jump sequences zigzag
horizontally along pairs of lines, where each pair represene of the variables in the given 3-SAT
instance. The path then zigzags vertically up and down atdplgs of lines, where each triple
represents one of the clauses in the 3-SAT instance. Thagpdiential winning paths are formed
by choosing one of the two horizontal lines in each pair @gponding to selecting a truth value for
each variable) together with one of the three vertical linesach triple (corresponding to selecting
which of the three variables has a truth value that satidfieglause). By convention, we associate
paths through the upper of a pair of horizontal lines withgasaents that set the corresponding
variable to true, and paths through the lower of the pair \wihignments that set the variable to
false. The horizontal and vertical lines interact at cartaarked crossings in a way that forces any
path to correspond to a satisfying truth assignment.

We now detail each of the components of this structure.

Fan-in and fan-out. Atthe ends of each pair or triple of lines, we need a configomatf men that
allows paths along any member of the set of lines to convenge then to diverge again at
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Figure 2: Overall plan of the NP-completeness reductionath pigzags through horizontal pairs
of lines (representing variables) and vertical triplesrmé$ (representing clauses). Certain variable-
clause crossings are marked, representing an interactisrebn that variable and clause.

the next pair or triple. Figurf 3 depicts such a configuratarthe triples of vertical lines;
the configuration for the horizontal lines is similar. Nob&t if a jump sequence enters the
configuration from the left, it can only exit through one oéttihree lines at the bottom. If
a jump sequence enters via one of the three vertical linegsnitexit horizontally or on one
of the other vertical lines. However, the possibility ofngimore than one line from a group
does not cause a problem: a jump sequence that uses the séd¢mochorizontal lines must
get stuck at the other end of the line, and a jump sequenceagbattwo of three vertical lines
must use all three lines and can be simplified to a sequencg asly one of the three lines.

Non-interacting line crossing. Figure[## depicts a configuration of men that allows two lines t
cross without interacting. A jump sequence entering altwegtorizontal or vertical line can
and must exit along the same line, whether or not the othemas already been jumped.

Interaction. Figure[$ depicts a configuration of men forming an interacbetween two lines. In
the initial configuration, a jump sequence may follow eittiner horizontal or the vertical line.
However, once the horizontal line has been jumped, it willamger be possible to jump the
vertical line.

Theorem 1 Testing whether a Phutball position allows a winning jump sequence is NP-complete.
Proof: As described above, we reduce 3-SAT to the given problem byifm a configuration

of men with two horizontal lines of men for each variable, #mae vertical lines for each clause.
We connect these lines by the fan-in and fan-out gadget ®epin Figure[]3. If variablé occurs
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Figure 3: Configuration of men to allow a choice between thiegtical lines. Similar configurations
are used at the other end of each triple of lines, and at eatbfgrairs of horizontal lines.
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Figure 4. Left: configuration of men to allow horizontal areftical lines to cross without interact-
ing. Right: after the horizontal jump has been taken, thetgap in the vertical line still allows it
to be traversed via a pair of jumps.
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Figure 5: Left: configuration of men to allow horizontal arettical lines to interact. Right: after
the horizontal jump has been taken, the long gap in the @biiie prevents passage.



as thejth term of clausé, we place an interaction gadget (Figlife 5) at the point wireréottom
horizontal line in theith pair of horizontal lines crosses tljgh vertical line in thekth triple of
vertical lines. If instead the negation of variableccurs in clausé&, we place an interaction gadget
similarly, but on the top horizontal line in the pair. At ather crossings of horizontal and vertical
lines we place the crossing gadget depicted in Fijure 4.lIivee form a path of men from the
final fan-in gadget (the arrow in Figufg 2) to the goal linetw Phutball board.

The lines from any two adjacent interaction gadgets museparsited by four or more units,
but other crossing types allow a three-unit separation. li&psing the order of the variables in each
clause, we can make sure that the first variable differs flmmdst variable of the previous clause,
avoiding any adjacencies between interaction gadgetss, wrican space all lines three units apart.
If the 3-SAT instance hasvariables anan clauses, the resulting Phutball board requines-@(1)
rows and ¢+ O(1) columns, polynomial in the input size.

Finally, we must verify that the 3-SAT instance is solvalideqisely if the Phutball instance has
a winning jump sequence. Suppose first that the 3-SAT insthas a satisfying truth assignment;
then we can form a jump sequence that uses the top horizaméafdr every true variable, and
the bottom line for every false variable. If a clause is $igtisby thejth of its three variables, we
choose thgth of the three vertical lines for that clause. This forms dvamp sequence: by the
assumption that the given truth assignment satisfies timeular the jump sequence uses at most
one of every two lines in every interaction gadget. Convgrseippose we have a winning jump
sequence in the Phutball instance; then as discussed adboustiuse one of every two horizontal
lines and one or three of every triple of vertical lines. Wenfoa truth assignment by setting a
variable to true if its upper line is used and false if its lowee is used. This must be a satisfying
truth assignment: the vertical line used in each clause ejaagist not have had its interaction
gadget crossed horizontally, and so must correspond teséysag variable for the clausen

Figure[$ shows the complete reduction for a simple 3-SATamsg. We note that the Phutball
instances created by this reduction only allow orthogounalgs, so the rule in Phutball allowing
diagonal jumps is not essential for our result.

3 Phutball and Checkers

Phutball is similar in many ways to Checkers. As in Phutli2iieckers players sit at opposite ends
of a rectangular board, move pieces by sequences of jumpsyveejumped pieces, and attempt
to move a piece onto the side of the board nearest the oppoenin Phutball, the possibility
of multiple jumps allows a Checkers player to have an expialenumber of available moves.
Checkers is PSPACE-complef¢ [7] or EXPTIME-complété [ti2hending on the termination rules,
but these results rely on the difficulty of game tree seartterahan the large number of moves
available at any position. Does Checkers have the same fssirtgle-move NP-completeness as
Phutball?

It is convenient to view Checkers as being played on a nodatdndiamond-shaped grid of
square cells, with pieces that move horizontally and valificrather than the usual pattern of diag-
onal moves on a checkerboard (Fig[lre 7). This view does mohi@ changing the rules of checkers
nor even the geometric positions of the pieces, only the mgskof the board on which they rest.
Then, any jump preserves the parity of both ¥aendy-coordinates of the jumping piece, so at
most one fourth of the board’s cells can be reached by jumpsyafen piece (Figurf 8, left).

For any given piec@, form a bipartite graplt, by connecting the vacant positions tipatan

5



AN

-
g
}
>

;ﬁ

A\

ol Nl RN Al Pl P

TR IAL IR XN

OO0V

o I Pt D DSl l P

OIO00000 OO0

S LT LRI AL LS

S S LA IR /LS

P
O

DOQOOROONO OOV

DOQO O OO0V
ORI+

~OC

O

N
?
—O(C



0
00
O 00
l0|o]0 o 00
olo]o o
olo]o
0lo

Figure 7: The checkerboard can equivalently be viewed aaraalid-shaped grid of orthogonally
adjacent square cells.
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Figure 8: Left: only cells of the same parity can be reacheglbmps. Right: grapl, formed by
connecting jumpable pieces with cells that can be reachganys from the upper black king.

reach by jumping with the adjacent pieces of the oppositerdblatp can jump. Ifp is a king,
this graph should be undirected, but otherwise it shoulditeetd according to the requirement
that the piece not move backwards. Note that each jumpabte ias degree two in this graph, so
the possible sequences of jumps are simply the graph pahddhin at the given piece and end
at a vacant square. Figufk 8, right, depicts an example;thateopposing pieces that can not be
jumped (because they are on cells of the wrong parity, orusecan adjacent cell is occupied) are
not included inGp. Using this structure, itis not hard to show that Checkerses@re not complex:

Theorem 2 For any Checkers position (on an arbitrary-size board), one can test in polynomial time
whether a checker can become a king, or whether there is a move which wins the game by jumping
all the opponent’s pieces.

Proof: Piecep can king precisely if there is a directed pathGg from p to one of the squares
along the opponent’s side of the board. A winning move exigggisely if there exists a piegefor
which Gp includes all opposing pieces and contains an Euler pathngiatp; that is, precisely if
Gp is connected and has at most one odd-degree vertex otheththanitial location ofp. m

The second claim in this theorem, testing for a one-move isialso proved in[[7]. That paper
also show that the analogous problem for a generalizatiachefkers to arbitrary graphs is NP-
complete.



4 Discussion

We have shown that, in Phutball, the exponential number mfjsequences possible in a single
move, together with the ways in which parts of a jump sequaeraeinterfere with each other,
leads to the high computational complexity of finding a wirtnmove. In Checkers, there may be
exponentially many jump sequences, but jumps can be pestbindependently of each other, so
finding winning moves is easy. What about other games?

In particular, Fanorond][4] 6] seems a natural candidatestfaly. In this game, capturing is
performed in a different way, by moving a piece in one stefatols or away from a contiguous line
of the opponent’s pieces. Board squares alternate betvirmgallowing diagonal moves) and
weak (allowing only orthogonal moves), and a piece makingquence of captures must change
direction at each step. Like Checkers (and unlike Phutltiad)game is won by capturing all the
opponent’s pieces rather than by reaching some designatdd ¢s finding a winning move in
Fanorona hard? If so, a natural candidate for a reductioneigptoblem of finding Hamiltonian
paths in grid graphg][9].

The complexity of determining the outcome of a general Pdiugiosition remains open. We
have not even proven that this problem is NP-hard, since #uem winning move exists in the
positions we construct, the player to move may win in more thrae move.
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