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in Besançon February 2003. The results were also presented during seminars held with people
involved in risk management in private firms.

Typeset by AMS-TEX

1



1. Introduction and Notation

The concept of coherent risk measures together with its axiomatic characteriza-
tion was introduced in the paper [ADEH1] and further developed in [ADEH2] and
[Delb]. The idea of dynamic coherent risk measures or parallel to it, dynamic risk
adjusted values was introduced in [ADEHK]. A characterisation of the risk mea-
sures defined on the space of càdlàg processes is given by Cheridito-Delbaen-Kupper
[CDK1], [CDK2] and [CDK3] . The relation between their theory and the present
paper is the subject of ongoing reserach, [Kupper]. Some of the examples given
in [ADEHK] require the use of sets satisfying a property that is called multiplica-
tive stability. Another name for the same concept is fork convexity, a terminology
that was introduced by Zitkovic [Zit]. In decision theory this property is known
as rectangularity, see Epstein and Schneider, Wang ([ES],[Wang]). These papers
deal with the case of finite Ω. In turns out that there are natural examples of
multiplicatively stable convex sets. One of these examples is the set of absolutely
continuous risk neutral measures for an arbitrage free price process, see below for
precise statements. In this paper we give necessary and sufficient conditions for a
closed convex set of measures to satisfy this stability property. The conditions are
related to concepts such as “price of risk” and fit well in economic theory. Apply-
ing this characterisation to the situation of arbitrage free price processes, we will
give a characterisation of those sets that can arise as sets of risk neutral measures.
Especially in the case of filtrations where all martingales are continuous, we will
solve the problem completely. The more general case will be the subject of a later
paper.

Throughout the paper, we will work with a fixed, filtered probability space, denoted
as

(
Ω,F∞, (Ft)t≥0 , P

)
. The filtration F is supposed to satisfy the usual assump-

tions, i.e. the filtration is right continuous and F0 contains all the null sets of the
complete sigma–algebra F∞. The time set is supposed to be R+. The reader can
check that this is the most general case. By using suitable imbeddings it covers the
case of discrete, finite as well as infinite, time sets. With L∞(Ω,F , P) (or L∞(P) or
even L∞ if no confusion is possible), we mean the space of all equivalence classes of
bounded real valued random variables. The space L0(Ω,F , P) (or L0(P) or simply
L0) denotes the space of all equivalence classes of real valued random variables.
The space L0 is equipped with the topology of convergence in probability. The
space L∞(P), equipped with the usual L∞ norm, is the dual space of the space of
integrable (equivalence classes of) random variables, L1(Ω,F , P) (also denoted by
L1(P) or L1 if no confusion is possible). The spaces Lp for 0 < p < ∞ are defined in
the usual way. A useful result in integration theory is the so-called Scheffé’s lemma.
It says that if a sequence of nonnegative random variables fn tends in probability
to a random variable f , if moreover E[fn] tends to E[f ] < ∞, then necessarily the
convergence takes place in L1 and the sequence is therefore uniformly integrable.
We will frequently use this lemma.

In the general theory of stochastic processes, stochastic intervals play a special role.
If T ≤ S are two stopping times, then the stochastic intervals are defined as follows

[[T, S]] = {(t, ω) | t ∈ R+ and T (ω) ≤ t ≤ S(ω)} .

The other intervals are defined in a similar way. In case T = S we simply write
[[T, S]] = [[T ]] = {(t, ω) | T (ω) < ∞}. If T is a stopping time and if A ∈ FT , then
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TA denotes the stopping time defined as TA = T on the set A and TA = ∞ on the
set Ac = Ω \ A. In particular for t ∈ R+ and A ∈ Ft we have [[tA]] = {t} × A.

With the given filtration we will construct the sigma–algebras of predictable and
optional sets. The predictable sigma–algebra, denoted by P, is the smallest sigma–
algebra on R+ × Ω that contains sets of the form [[0A]] = {0} × A with A ∈ F0, as
well as for each stopping time T , the stochastic interval

[[0, T ]] = {(t, ω) | t ≤ T (ω) and t < ∞}.

The optional sigma–algebra, denoted by O, is the smallest sigma–algebra on R+×Ω
that contains sets of the form {0} × A with A ∈ F0, as well as for each stopping
time T , the stochastic interval

[[0, T [[= {(t, ω) | t < T (ω)}.

We remark that the indicator functions of elements of the generating set of P are
left continuous adapted processes and that the indicator functions of elements of
the generating sets of O are right continuous adapted processes. For these notions
from the general theory of stochastic processes, we refer the reader to [DM]. It can
easily be checked that P ⊂ O.

Let us recall that the class of predictable sets

{[[0A]] | A ∈ F0} ∪ {]]T, S]] | T ≤ S stopping times} ,

forms a semi–algebra that generates P. The Boolean algebra generated by this
class is simply

A =
{

[[0A]]∪ ]]T0, T1]]∪ ]]T1, T2]] . . . ∪ ]]Tn−1, Tn]]

| n ≥ 1;A ∈ F0 and 0 ≤ T0 ≤ T1 ≤ . . . Tn ≤ +∞ are all stopping times
}

.

The importance of this class lies in the following density result from general measure
theory. The proof of the lemma is included in the proof of the Carathéodory
extension theorem.

Lemma 1.1. Let µ be a nonnegative finite sigma–additive measure on P, then for
each ε > 0 and for each set B ∈ P, there is a set A ∈ A such that µ(A∆B) ≤ ε.

If Q is a probability defined on the σ-algebra F∞, we will use the notation EQ or
Q, to denote the expected value operator defined by the probability Q. So we will
write EQ[f ] or Q[f ] to denote the expected value of f . Since the filtration satisfies
the usual assumptions, we will suppose that all the (sub–, super–) martingales are
càdlàg, meaning they are right continuous and have left limits. When we deal
with the construction of the Snell envelope, we will pay attention to this continuity
property and the reader will notice similar difficulties as in the work of Mertens see
[M] and [DM], appendix. We will identify, through the Radon–Nikodym theorem,
finite measures ν on F∞, that are absolutely continuous with respect to P, with
their densities dν

dP
, i.e. with functions in L1. Furthermore we will sometimes identify
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this measure with the càdlàg martingale Zt = EP

[
dν
dP

| Ft

]
. We hope that these

identifications will not cause too many problems.

We can now state the definition of multiplicatively stable sets. The definition is
related to the concept of stable sets as in [DM]. To simplify the writing of the
definition we suppose that S is a set of probability measures, all elements of which
are absolutely continuous with respect to P. The elements Q of the set S will
(as already said above) be identified with their Radon–Nikodym derivative dQ

dP
and

therefore we see S as a subset of L1 Most of the time, the set S will be supposed to
be convex, also we will always have that P ∈ S. In that case we have for all ε > 0
and all Q ∈ S that (1 − ε)Q + εP ∈ S. This means that every element in S can be
approximated (in L1-norm) by elements in S that are also equivalent to P. The set
of elements in S that are also equivalent to P is denoted by Se. If Q ∈ Se then the
martingale Zt = E

[
dQ
dP

| Ft

]
has the property inft∈R+ Zt > 0, P a.s. (see [DM] page

85). If Q ∼ P, Bayes’ rule implies that EQ[f | FT ] = EP[f Z∞
ZT

| FT ].

Standing assumption and notation. We will always assume that P ∈ S and if Z is
a nonnegative (local) martingale, the expression that Z is positive (we will rather
say strictly positive to avoid linguistic difficulties) means that Z∞ > 0 a.s. . As a
consequence we have that if Z is stricly positive then we have that a.s. : inft Zt > 0.
The latter is of course stronger than Zt > 0 a.s. for every t ≥ 0.

Definition 1.2. We say that a set of probability measures S ⊂ L1, is multiplica-
tively stable, (m–stable for short) if for elements Q

0 ∈ S, Q ∈ Se with associate
martingales Z0

t = E

[
dQ0

dP
| Ft

]
and Zt = E

[
dQ
dP

| Ft

]
, and for each stopping time T ,

the element L defined as Lt = Z0
t for t ≤ T and Lt = Z0

T Zt/ZT for t ≥ T is a mar-
tingale that defines an element in S. We also assume that every F0−measurable
nonnegative function Z0 such that EP[Z0] = 1, defines an element dQ = Z0 dP that
is in S.

Remark. The reader can check that indeed E[L∞] = 1.

Remark. The second part of the definition is required to be sure that when F0 is
not trivial the set S is big enough. That part of the definition does not follow
from the concatenation property. In most of the cases the sigma–algebra F0 will
be trivial and then the assumption only implies that P ∈ S.

Remark. If the set S is m–stable and closed in L1, it also satisfies the property:
for elements Q

0 ∈ S, Q ∈ Se with associated martingales Z0
t = E

[
dQ0

dP
| Ft

]
and

Zt = E
[

dQ
dP

| Ft

]
, and for each predictable stopping time T , the element L defined

as Lt = Z0
t for t < T and Lt = Z0

T−Zt/ZT− for t ≥ T , is a martingale that defines
an element in S. On the set {T = 0}, ZT− is, as usual, taken to be equal to Z0.
The proof that L ∈ S is quite straightforward. If Tn is a sequence that announces
T then Ln

t = Z0
t for t ≤ Tn and Ln

t = Z0
Tn

Zt/ZTn for t ≥ Tn defines elements in S.
Because T is predictable, we have that on the set {T > 0}, ZTn = EP[Z∞ | FTn ]
tends to EP[Z∞ | FT−] = ZT−, whereas on the set {T = 0}, we always have that
ZTn

= Z0 = ZT−. It is now clear that Ln
∞ tends to L∞ a.s. and therefore also in

L1 by Scheffé’s lemma. Since S is closed this implies L ∈ S.

Remark. The reader familiar with the concept of stable sets of martingales, can see
the resemblance between the concept of being m–stable and the usual concept of
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stable spaces. In a later section the reader will find why sometimes this concept is
also called fork convexity.

Remark. Let us now analyse how to concatenate two elements in Q
0, Q ∈ S that

are only absolutely continuous (and not necessarily equivalent) to P. We suppose
that the set S is convex. For each 1 > ε > 0, let us define the probability Q

ε =
εP + (1 − ε)Q ∈ S. The associated martingales are denoted by Z0, Z and Zε. If T
is a stopping time we define Lε

t as above, namely for t < T we put Lε
t = Z0

t and
for t ≥ T we put Lε

t = Z0
T Zε

t /Zε
T . On the set {ZT > 0} we have that Lε

∞ tends to
L∞ = Z0

T Z∞/ZT and on the set {ZT = 0}, we must have that Zt = 0 for all t ≥ T
and hence we have that Lε

∞ tends to L∞ = Z0
T . We still have that EP[L∞] = 1.

Indeed

EP[L∞] = EP[Z0
T Z∞/ZT 1{ZT >0}] + EP[Z0

T 1{ZT =0}]

= EP

[
Z0

T 1{ZT >0}EP[Z∞/ZT | FT ]
]
+ EP[Z0

T 1{ZT =0}]

= EP[Z0
T 1{ZT >0}] + EP[Z0

T 1{ZT =0}]

= EP[Z0
T ] = 1.

It seems that the calculations are done as in the case where Q ∈ Se but with the
extra notation that on the set {ZT = 0} we put, in a naive way, Z∞/ZT = 1.

We will frequently use stochastic exponentials. For strictly positive martingales Z,
with Z0 = 1 — such as density processes of measures Q that are equivalent to P

— we can take the stochastic logarithm defined as N = 1
Z−

· Z. This stochastic
integral is always defined and we have that Z = E(N) where E is the stochastic
exponential or Doléans-Dade exponential (see [Pr] for precise definitions).

The main theorem of this paper deals with the structure of m–stable convex closed
sets S ⊂ L1 of probability measures. Before we state the theorem, let us give an
example of such a set (the proof that such sets are indeed m–stable is deferred).
First let us recall what is usually called a multivalued mapping. For each (t, ω) ∈
R+ × Ω we give a nonempty closed convex set C(t, ω) of R

d. The graph of C is
then the set {(t, ω, x) | x ∈ C(t, ω)}. Set-theoretically we can identify the graph of
C with C itself. In case the sets C(t, ω) are one–point sets, the object C simply
defines a mapping from R+×Ω into R

d. In our, more general, case we say that C is
a multivalued mapping from R+×Ω into R

d. We realise that from the set–theoretic
viewpoint this terminology is horrible. However it is quite standard and it is widely
used in the literature. We will make use of the integration theory for multivalued
mappings later on. The multivalued mapping C is called predictable if the graph
of C belongs to the product sigma–algebra P ⊗ B(Rd), where B(Rd) is the Borel
sigma–algebra of R

d.

The following result gives a method to construct m–stable sets. The statement
uses the technical assumption of what we call the predictable range of a sigma–
martingale. This concept is explained in the appendix. The concept is needed to
deal with predictable processes q that are not identically zero but are such that the
stochastic integral q · M is zero.

Theorem 1.3. Let C be a predictable convex closed multivalued mapping from
R+ × Ω into R

d. Let an R
d−valued martingale M be given. Suppose that for each
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(t, ω), 0 ∈ C(t, ω) and suppose that the projection of C on the predictable range of
the process M is closed. Then the L1–closure S of the set

Se =




E(q · M)∞

∣∣∣∣∣∣∣

q is predictable

q(t, ω) ∈ C(t, ω)

E(q · M) a strictly positive uniformly integrable martingale





is an m–stable convex closed set such that P ∈ S. Furthermore the set {Q ∈ S |
Q ∼ P} is precisely the set Se defined above.

Remark. There are two extreme cases that deserve attention. The first case is
when C(t, ω) = {0} in which case we have that S = {P}. The second case is when
C(t, ω) = R

d in which case we have that S is the set of all absolutely continuous
probability measures Q, whose density process Zt = E

[
dQ
dP

| Ft

]
, is a stochastic

integral with respect to the martingale M .
In case the m–stable set S has only elements of the form E(q · M), where M is a
continuous martingale, we can also prove an converse to the preceding result.

Theorem 1.4. Let S ⊂ L1 be an m–stable convex closed set of probability measures
such that P ∈ S. Suppose that there is an R

d−valued continuous martingale M
such that for each Q ∈ Se there is a predictable, R

d−valued process q such that
E

[
dQ
dP

| Ft

]
= E(q · M)t. Then there is a predictable, convex closed multivalued

mapping C from R+ × Ω into R
d such that 0 ∈ C(t, ω) and such that

Se =




E(q · M)∞

∣∣∣∣∣∣∣

q is predictable

q(t, ω) ∈ C(t, ω)

E(q · M) a strictly positive uniformly integrable martingale





Of course the latter theorem is more difficult since we have to find the multivalued
mapping C. This will be done through the theory of multivalued measures and
their corresponding Radon-Nikodym theorems. This theory was developed during
the end of the sixties and is fundamental in control theory and in mathematical
economics. Let us briefly describe what we will need from this theory.

Let us suppose that (G,G, µ) is a probability space. For a multivalued measurable
mapping, C from G into R

d, we define the integral of C as follows

∫

G

C(g)µ(dg) =
{∫

G

q(g)µ(dg)
∣∣∣∣
q(g) ∈ C(g), µ a.e.
q is integrable

}
.

It turns out that if µ is atomless, then, by the Lyapunov theorem, the integral is
automatically a convex set. The existence of elements q that are measurable fol-
lows from the measurable selections theorems, see [Aum] for the integration theory
of set–valued mappings. The completeness of the probability space is not really
needed. However in case the measure space is not complete, there are not nec-
essarily measurable selections. The best one can obtain is an almost everywhere
selection that is measurable. The existence of integrable selections has to be dealt
with through boundedness conditions on the sets C(g). A mapping Φ that assigns
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with each element A from G, a set Φ(A) ⊂ R
d, is called a set–valued measure if

whenever A = ∪nAn is a union of pairwise disjoint sets in G, we can write that

Φ(A) =
∑

n

Φ(An)

=
{∑

xn | xn ∈ Φ(An) the sum being absolutely convergent
}

.

The set-valued measure Φ is called µ absolutely continuous if µ(A) = 0 implies that
Φ(A) = {0}. We say that C is the Radon-Nikodym derivative of Φ if for each A
we have

∫
A

C(g)µ(dg) = Φ(A). In case the set–valued measure is bounded, convex
and closed valued, the absolute continuity of Φ with respect to µ guarantees the
existence of a Radon-Nikodym derivative. This is a consequence of the theorem of
Debreu–Schmeidler ([DeS]). In case the set–valued measure is not convex compact
valued, the situation is different. The reader can consult Debreu–Schmeidler ([DeS])
and Artstein’s paper, ([Art]) to have an idea of the difficulties that arise.

2. Elementary Stability Properties of m-Stable sets.

The definition of m–stable sets allows for immediate extensions. More precisily we
have the following property, that may explain why m–stable sets are also closed
fork convex.

Proposition 2.1. Let S ⊂ L1 be an m–stable set. Let Z0, Z1, . . . Zn be density
processes that are elements of Se. Suppose that T is a stopping time and suppose
that A1, . . . , An are elements of FT that form a partition of Ω. The element

Lt = Z0
t if t ≤ T

=
n∑

k=1

1Ak
Z0

T

Zk
t

Zk
T

if t ≥ T,

defines an element of S.

Proof. The proof is by induction on n. Let us put L0 = Z0 and for k ≥ 1 let us
define Lk

t = Z0
t if t ≤ T and if t ≥ T let us put

Lk
t = 1Ac

k
Lk−1

t + 1Ak
Lk−1

T

Zk
t

Zk
T

=
k∑

j=1

1Aj Z
0
T

Zk
t

Zk
T

+ 1∪j>kAj Z
0
t .

From the definition of m–stable sets, applied to the stopping time

TAk
= T 1Ak

+ ∞1Ac
k
,

it follows that if Lk−1 ∈ S, then also Lk ∈ S. An induction argument now shows
that L = Ln ∈ S. �
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Corollary 2.2. Let S ⊂ L1 be an (L1−)closed m–stable set. Let Z0 ∈ S and let
Zn, n ≥ 1 be density processes that are elements of Se. Suppose that T is a stopping
time and suppose that An, n ≥ 1 are elements of FT that form a partition of Ω.
The element

Lt = Z0
t if t ≤ T

=
∑
k≥1

1Ak
Z0

T

Zk
t

Zk
T

if t ≥ T,

defines an element of S.

Proof. This is easily seen. We define exactly as in the proof of the proposition, the
sequence Lk. It is clear that E[Lk

∞] = 1 and by conditioning on the σ−algebra FT

it also follows that E[L∞] = E[ E[L∞ | FT ] ] = E[L0
T ] = 1. Furthermore we have

that Lk
∞ → L∞ a.s. . From this and Scheffé’s lemma it follows that Lk

∞ → L∞ in
the L1−norm, implying that L ∈ S. �

We will now prove the

Theorem 2.3. Let C be a predictable convex closed multivalued mapping from
R+ × Ω into R

d. Let an R
d−valued martingale M be given. Suppose that for each

(t, ω), 0 ∈ C(t, ω) and suppose that the projection of C on the predictable range of
the process M is closed. Then the L1 closure S of the set

Se =




E(q · M)∞

∣∣∣∣∣∣∣

q is predictable

q(t, ω) ∈ C(t, ω)

E(q · M) a strictly positive uniformly integrable martingale





is an m–stable convex closed set such that P ∈ S. Moreover {Q ∈ S | Q ∼ P} = Se

(as the notation suggests).

Proof. The proof mainly follows from Itô’s lemma. First of all it is trivial that
P ∈ S. Let Z1 = E(q1 · M) and Z2 = E(q2 · M) be two strictly positive uniformly
integrable martingales coming from elements in Se. Let 0 < α < 1 be fixed. Put
Z = αZ1 + (1 − α)Z2, which is a strictly positive uniformly integrable martingale.
We have to show that Z∞ ∈ Se. Itô’s lemma gives

dZt = αZ1
t−q1

t dMt + (1 − α)Z2
t−q2 dMt

We can proceed as follows

dZt = Zt−

(
αZ1

t−
Zt−

q1
t +

(1 − α)Z2
t−

Zt−
q2
t

)
dMt

= Zt−qt dMt,

where

qt =
(

αZ1
t−

Zt−
q1
t +

(1 − α)Z2
t−

Zt−
q2
t

)

is in the set C since it is a convex combination of two elements in C. This proves
convexity. Since 0 ∈ C we have that P ∈ Se. We still have to show that elements
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of the closure of Se and that are equivalent to P are of the form stated in the
description of Se. To do this, consider a sequence Zn ∈ S and suppose that Zn

converges to the strictly positive martingale Z. Each Zn can be written as

Zn = E (qn · M) ,

where qn ∈ C. The sequence qn does not have to converge but its projection onto
the predictable range of M do. Indeed we have that a.s. the brackets

[(qn − qm) · M, (qn − qm) · M ]∞

tend to zero in the space of nonnegative definite matrices. It follows that there is a
vector valued predictable process q′ such that qn ·M tends to q′ ·M in the space of
local martingales. But the hypothesis that the projection of C onto the predictable
range of M is closed, implies (together with the measurable selection theorem) that
q′ is the projection of a predictable selection q of the set valued mapping C. This
implies that Z = E(q · M) as desired. �

3. The Characterisation of m−Stable Sets in the Continuous Case.

In this section we suppose that the set S is a closed convex m−stable set. Further-
more we suppose that there is a continuous R

d−valued martingale M so that each
element Q of Se can be written as

dQ

dP
= E(q · M),

where q is an R
d−valued predictable process. Such a situation occurs when there

is a finite dimensional martingale that has the predictable representation property.
But for the moment we do not need this more restrictive assumption. The main
object of this section is to prove theorem 1.4 of the introduction. As the reader
can verify, it does not harm to suppose that the bracket of the martingale M is
bounded by 1, i.e. Trace〈M, M〉∞ < 1. If this is not the case we may replace M
by the martingale defined by the stochastic integral

∫
1

1 + exp (200 Trace〈M, M〉) dM.

This assumption simplifies the notation of the proof considerably. Before we prove
the theorem let us make the precise statement (including the simplifications we
introduced).

Theorem 3.1. Let S ⊂ L1 be an m–stable convex closed set of probability mea-
sures. Suppose that there is an R

d−valued continuous martingale M , verifying
M0 = 0 and such that for each Q ∈ Se there is a predictable, R

d−valued process
q such that E

[
dQ
dP

| Ft

]
= E(q · M)t. Suppose further that Trace〈M, M〉∞ < 1.

Then there is a predictable, convex closed set-valued mapping C from R+ × Ω into
R

d such that 0 ∈ C(t, ω) and such that

Se =




E(q · M)∞

∣∣∣∣∣∣∣

q is predictable

q(t, ω) ∈ C(t, ω)

E(q · M) is a strictly positive integrable martingale





.

9



The proof is divided into several steps. Because of this we will introduce an extra
notation. The finite measure µ on P is defined through the formula

µ(A) = E

[∫

R+

1A d Trace〈M, M〉
]

.

This measure will serve as a control measure. The first step of the proof is to
generalise the stability property.

Lemma 3.2. Let Q ∈ Se, suppose that dQ/dP = E(q · M) and let A ∈ P be such
that E [E (q1A · M)∞] = 1, then we have that

E (q1A · M) ∈ Se.

Proof. The proof follows from Proposition 2.1 as soon as the predictable set A ∈ A.
For the general case we take a sequence of predictable sets An ∈ A so that
µ(An∆A) → 0. Of course we have that each element E(q1An · M) ∈ Se. The se-
quence E(q1An

·M)∞ tends in probability to the element E(q1A ·M)∞ and Scheffé’s
lemma implies that the convergence takes place in L1. Since S is closed we have
that E(q1A · M) ∈ S. But 〈q1A · M, q1A · M〉∞ ≤ 〈q · M, q · M〉∞ < ∞ a.s. and
therefore E(q1A · M)∞ > 0 a.s. . Therefore E(q1A · M) ∈ Se. The proof of the
lemma is complete. �
Remark. It is not true that the stochastic exponential E(q1A · M) is uniformly
integrable as soon as the stochastic exponential E(q · M) is uniformly integrable.
The assumption E [E (q1A · M)∞] = 1 cannot be omitted.

Lemma 3.3. Let Q
1, Q2 ∈ Se, suppose that dQ

1,2/dP = E(q1,2 ·M) and let A ∈ P
be such that E

[
E

(
(q11A + q21Ac) · M

)
∞

]
= 1, then we have that

E
(
(q11A + q21Ac) · M

)
∈ Se.

Proof. We omit the proof since it is almost a copy of the proof of the previous
lemma. In fact we could have proved this lemma first. The previous lemma is then
a special case.

The next step is to reduce our attention to elements of S that come from bounded
integrands. More precisely, for each λ > 0 we introduce

Sλ =
{

Q ∈ S | dQ

dP
= E(q · M) and ‖q‖ ≤ λ

}
=

(
Sλ

)e
.

The previously lemma allows us to prove the following density result

Lemma 3.4. The sets Sλ are m–stable, form an increasing family and the union
∪λ>0Sλ is L1−dense in S.

Proof. The stability of the sets Sλ is obvious from the definition of m−stability.
That they are increasing in λ is also obvious. That the sets are subsets of S follows
from the previous lemma. Indeed if E(q · M) ∈ S then necessarily we must have
that E(q1‖q‖≤λ · M) ∈ S. Indeed by Novikov’s criterion (see [RY]), the stochastic
exponential E(q1‖q‖≤λ·M) is uniformly integrable (remember that Trace〈M, M〉 ≤
1). For λ → ∞ we also have that E(q1‖q‖≤λ ·M)∞ converges in probability to E(q ·
M)∞. Scheffé’s lemma transforms the convergence into L1−convergence, proving
the density. �
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Lemma 3.5. The sets Sλ are convex and closed.

Proof. The convexity will be checked using Itô’s formula. So let us take

Z1 = E(q1 · M) ∈ Sλ, ‖q1‖ ≤ λ and

Z2 = E(q2 · M) ∈ Sλ, ‖q2‖ ≤ λ.

Take 0 < α < 1. Itô’s formula now gives

d(αZ1 + (1 − α)Z2)t

= αZ1
t q1

t dMt + (1 − α)Z2
t q2

t dMt

=
(
αZ1

t + (1 − α)Z2
t

) (
αZ1

t q1
t

αZ1
t + (1 − α)Z2

t

+
(1 − α)Z2

t q2
t

αZ1
t + (1 − α)Z2

t

)
dMt

= qt dMt where

qt =
(

αZ1
t q1

t

αZ1
t + (1 − α)Z2

t

+
(1 − α)Z2

t q2
t

αZ1
t + (1 − α)Z2

t

)
.

Obviously ‖qt‖ ≤ λ since both ‖q1
t ‖ ≤ λ and ‖q2

t ‖ ≤ λ. Because S is convex we have
that E(q · M) is already in S. The boundedness on q then implies E(q · M) ∈ Sλ.

We still have to show that the set Sλ is closed. Let us take a sequence E(qn·M) ∈ Sλ

that converges in L1 to a martingale Z. Of course we suppose that ‖qn‖ ≤ λ for
all n. First observe that by taking the stochastic logarithm, we can easily see that
the sequence qn · M converges in the semi-martingale topology to a martingale N
and that Z = E(N). But by the uniform boundedness of the sequence qn, we must
then also have that the convergence takes place in all spaces Lp. The sequence qn

forms a bounded sequence in the space L∞(µ) and therefore there is a sequence of
convex combinations

kn ∈ conv{qn, qn+1, . . . },

so that kn → k in µ−measure. Of course k is predictable and ‖k‖ ≤ λ. We also
have that kn · M converges in probability to k · M (even in all Lp). Therefore we
also have that N = k · M . This shows that Z is of the form Z = E(k · M) where k
remains bounded by λ. This completes the proof of the lemma.

We now introduce the set

Cλ =
{
q: R+ × Ω → R

d | ‖q‖ ≤ λ predictable and E(q · M) ∈ Sλ
}

.

The following lemma seems an obvious consequence of the closedness of the sets
Sλ, so we omit the proof.

Lemma 3.6. Cλ ⊂ L∞(µ) is closed for the topology of convergence in µ−measure.

The difficult part of the proof of the main result is to show that the sets Cλ are
convex. The rather technical proof of this convexity result is based on the following
BMO-style inequality.

11



Lemma 3.7. Let (Gt)t be a filtration satisfying the usual assumptions. Suppose
that V is a continuous martingale adapted to G and such that V0 = 0. Suppose that
〈V, V 〉∞ ≤ K for some constant K. Then a.s.

E

[(E(V )∞ + E(−V )∞
2

)2
∣∣∣∣∣ G0

]
≤ cosh(K).

Proof. The proof uses the DDS-time change theorem, see [RY]. This theorem allows
us to reduce the problem to the Brownian Motion case. Here are the details. First
of all, remark that the martingale V converges at ∞ and therefore we can close the
interval R+ by adding the point +∞. We then transform the interval [0,+∞] to
the interval [0, 1]. After time one we continue the process by adding an independent
Brownian Motion. The new process is still denoted by V and the filtration is still
denoted by G, no confusion is possible. For this new process we define the finite
stopping time

τ = inf{t | 〈V, V 〉t > K}.

By the assumption on the bracket of V , τ ≥ 1. From the DDS theorem it follows
that Vτ is a random variable that has a gaussian distribution with mean 0 and
variance K. However this random variable is independent of G0. By Jensen’s
inequality for conditional expectations, applied to the martingale E(V )+E(−V )

2 , we
get that

E

[(E(V )1 + E(−V )1
2

)2
∣∣∣∣∣ G0

]
≤

E

[(E(V )τ + E(−V )τ

2

)2
∣∣∣∣∣ G0

]
=

E

[(E(V )τ + E(−V )τ

2

)2
]

.

The latter quantity can easily be calculated and gives

E

[(E(V )τ + E(−V )τ

2

)2
]

=
1
4
e−K

E [exp(2Vτ ) + exp(−2Vτ ) + 2]

=
1
4
e−K

(
e2K + e2K + 2

)

=
1
2
(eK + e−K) = cosh(K).

�

Lemma 3.8. Let the sequence of stopping times
(
T k

n

)
0≤k≤2n be defined as follows.

For each n and 0 ≤ k ≤ 2n, we define:

T k
n = inf

{
t | 〈M, M〉t ≥

k

2n

}
.

12



Obviously T 0
n = 0 and T 2n

n = ∞ since 〈M, M〉∞ < 1. Let q1 and q2 be predictable
R

d valued processes bounded by λ. For each n we define

fn =
2n−1∏
k=0

(
1
2
E

(
1]]T k

n ,T k+1
n ]]q

1 · M
)
∞

+
1
2
E

(
1]]T k

n ,T k+1
n ]]q

2 · M
)
∞

)
.

Let

f = E
(

q1 + q2

2
· M

)

∞

Then fn tends to f in L1(P).

Proof. Clearly f > 0 and EP[f ] = 1. Define the measure Q as dQ = f dP. We will
show that

‖fn − f‖L1(P) = ‖fn

f
− 1‖L1(Q)

tends to zero. Obviously EQ

[
fn

f

]
= 1. The statement therefore follows as soon as

we can prove that EQ

[(
fn

f

)2
]
→ 1. Indeed this convergence immediately implies

that ‖ fn

f − 1‖2
L2(Q) → 0.

Under the measure Q, the martingale M can be decomposed into a martingale
N and a process of finite variation. The continuous martingale N has the same
bracket as M . Moreover a straightforward calculation shows that each factor, say
gk

n in the expression of fn

f can be written as

gk
n =

1
2
E

(
1]]T k

n ,T k+1
n ]]

q1 − q2

2
· N

)

∞
+

1
2
E

(
1]]T k

n ,T k+1
n ]]

q2 − q1

2
· N

)

∞
.

We now repeatedly will use the lemma 3.8. The bracket we must control is

〈1]]T k
n ,T k+1

n ]]

q1 − q2

2
· N,1]]T k

n ,T k+1
n ]]

q1 − q2

2
· N〉∞ ≤ λ22−n.

By telescoping and repeated application of lemma 3.8, we now find

EQ

[
2n−1∏
k=0

(gk
n)2

]
≤ EQ

[
2n−2∏
k=0

(gk
n)2 EQ

[(
g2n−1

n

)2

| FT 2n−1
n

]]

≤ EQ

[
2n−2∏
k=0

(gk
n)2 cosh(λ22−n)

]

≤ . . .

≤
(
cosh(λ22−n)

)2n

Since for small x we have cosh(x) ≈ 1 + x2/2, we get that
(
cosh(λ22−n)

)2n

tends
to 1 as n tends to infinity. �
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Lemma 3.9. The set Cλ is convex.

Proof. We use the notation of the previous lemma. Obviously we have that fn ∈ Sλ,
therefore also f ∈ Sλ and therefore q1+q2

2 ∈ Cλ. Since Cλ is already closed for
convergence in probability, we get that convex combinations with other coefficients
than 1/2 remain also in Cλ. �
The next step in the proof is to analyse the structure of the set Cλ. The following
lemma is obvious in the sense that either the statements were proved before or are
trivial

Lemma 3.10. The set Cλ satisfies the following properties
(1) Cλ ⊂ L∞(P, µ; Rd)
(2) Cλ is contained in the ball of radius λ
(3) Cλ is closed for µ convergence
(4) Cλ is convex, therefore it is also weak∗, i.e. σ(L∞(P, µ; Rd),L1(P, µ; Rd))

compact.
(5) if q1, q2 ∈ Cλ, if A ∈ P, then q11A + q21Ac ∈ Cλ

The following lemmma can be seen as an extension of the convexity property. This
property is sometimes called, predictably convex.

Lemma 3.11. If q1, q2 ∈ Cλ if h is real valued predictable process such that 0 ≤
h ≤ 1, then also h q1 + (1 − h) q2 ∈ Cλ.

Proof. If h =
∑n

i=1 αi1Ai
where Ai ∈ P and where the nonnegative numbers αi

sum up to 1, the property follows from convexity. However the set of such convex
combinations is dense (for the topology in µ−convergence) in the set of all functions
between 0 and 1. The closedness property completes the argument. �
We are now ready to prove the theorem for the set Sλ.

Theorem 3.12. With the notation of above, there exists a compact convex set-
valued function Φλ : R+ × Ω → R

d so that
(1) The graph of Φλ is in P ⊗ B(Rd)
(2) 0 ∈ Φλ(t, ω) for each (t, ω).
(3) Cλ =

{
q : R+ × Ω → R

d | q is predictable and µ a.s. q(t, ω) ∈ Φλ(t, ω)
}

Proof. For each A ∈ P we define the set C(A) as follows

C(A) =
{∫

A

q dµ | q ∈ Cλ

}
.

The set-valued mapping C : P → R
d satisfies

(1) 0 ∈ C(A) since 0 ∈ Cλ

(2) if x ∈ C(A) then ‖x‖ ≤ λµ(A). Indeed ‖
∫

A
q dµ‖ ≤

∫
A
‖q‖ dµ ≤ λµ(A).

(3) C(A) is convex since Cλ is convex.
(4) C(A) is compact since Cλ is weak∗ compact.
(5) if (An)n is a sequence of pairwise disjoint predictable sets with A = ∪NAn,

if xn =
∫

An
qn dµ ∈ C(An) then the sum x =

∑
n xn converges and x ∈

C(A). Indeed the convergence follows from the bound under item 2 and
x =

∫
A

q dµ where q =
∑

n 1Anqn. The latter follows from Lebesgue’s
dominated convergence theorem and the closedness of Cλ.
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The theorem of Debreu-Schmeidler, [DeS] now gives the existence of a compact
convex set-valued, P ⊗ (Rd) measurable mapping Φλ so that for all A we have

C(A) =
{∫

A

q dµ | q ∈ Φλ µ a.s.
}

.

We still have to show that this allows to find the set Cλ.

Let us first suppose that q ∈ Cλ. We have to show that µ a.s. we have that q ∈ Φλ.
In case this were false the set

A = {(t, ω) | q(t, ω) /∈ Φλ(t, ω)}

is measurable and has a positive measure µ(A) > 0. Because of the density of the
points with rational coordinates and the convexity of the sets Φλ, this means that
there is a vector p ∈ R

d (with rational coordinates) such that the set

Ap = {(t, ω) | 〈p, q(t, ω)〉 > sup〈p,Φλ(t, ω)〉}

also has a positive measure µ(Ap) > 0. Indeed by the separation theorem we can
write that

A = ∪p∈Rd,p rationalAp.

But then necessarily we have that
∫

Ap
q dµ /∈ C(Ap), since obviously we have

that 〈p,
∫

Ap
q dµ〉 =

∫
Ap

〈p, q〉 dµ >
∫

Ap
sup〈p, Φλ(t, ω)〉 dµ ≥ supg∈Φλ

∫
Ap

〈p, g〉 dµ =
sup〈p, C(Ap)〉.

The converse is proved in a similar way. So let q0 be a predictable selector of Φλ,
we have to show that q0 ∈ Cλ. If this is not the case then we separate the point
q0 from the compact convex set Cλ. This we can do by the Hahn-Banach theorem.
We obtain a function f ∈ L1(µ; Rd) so that

∫
〈f, q0〉 dµ > sup

q∈Cλ

∫
〈f, q〉 dµ.

The sup is actually attained because of compactness of Cλ. Let a maximising
element be q1. But then we must necessarily have that for every q ∈ Cλ the
inequality 〈f, q1〉 ≥ 〈f, q〉 holds µ a.s. . This follows from the property 5 of lemma
3.10. Indeed if there would be an element q ∈ Cλ so that the set B = {〈f, q1〉 <
〈f, q〉} is not negligable, we could replace q1 by q11Bc + q1B yielding a greater
expression than the one for q1.

The set {〈f, q0〉 > 〈f, q1〉} must have a strictly positive µ measure. Since the simple
functions are dense in L1 we can find a vector p ∈ R

d as well as an ε > 0 so that
the set Ap = {〈f, q0〉 > ε + 〈f, q1〉} ∩ {‖f − p‖Rd ≤ ε

4λ} has a nonzero measure,
µ(Ap) > 0.
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But this inequality and the fact that all the functions in Cλ are pointwise bounded
by λ, implies that

〈p,

∫

Ap

q0 dµ〉 ≥
∫

Ap

〈f, q0〉 dµ − ε

4
P[Ap]

>

∫

Ap

〈f, q1〉 dµ +
3ε

4
P[Ap]

≥ sup
q∈Cλ

∫

Ap

〈f, q〉 dµ +
3ε

4
P[Ap]

≥ sup
q∈Cλ

∫

Ap

〈p, q〉 dµ +
ε

2
P[Ap].

And therefore we must have that
∫

Ap
q0 dµ /∈ C(Ap). But this is a contradiction

to q0 ∈ Φλ and the definition of the Radon-Nikodym derivative for set-valued
measures. �
Remark. The proof was based on the Radon-Nikodym theorem for set-valued mea-
sures. However the proof of the version we need can be given using the support
functionals. Since we also needed the support functionals in a later stage of the
proof there is a shortcut in the sense of merging the proof of the RN-theorem to-
gether with the arguments on the support functionals. However this would have
obscured the idea of the proof.

The next step consists in getting rid of the truncation.

Lemma 1.13. If λ ≤ ν then Φλ = Φν ∩Bλ, where Bλ denotes the ball of radius λ
in the Euclidean space R

d. As a consequence we have Φλ ⊂ Φν µ a.s. .

Proof. If this is not the case we will make a measurable selection, say q, of the
set-valued function Φλ \ (Φν ∩ Bλ), at least on the predictable set A, where Φλ =
\ (Φν ∩ Bλ) is nonempty. Let us put q equal to 0 where the set is empty. Since q is
in Cλ it has to be in Cν as well. Since obviously the element q = q1A is also in Cν

it has to be a selector of Φnu. But this is a contradiction to the construction of q.
The converse inclusion is proved in the same way. �

For each (t, ω) we now define

Φ(t, ω) = ∪λ>0Φλ(t, ω) = ∪n≥1Φn(t, ω).

Because Φ is the union of an increasing sequence of convex sets, it is convex. The
closedness of Φ is something that needs a proof, since the countable union of closed
sets does not have to be closed. But since we have the equality Φλ = Φν ∩Bλ, the
union is indeed closed.

The last part consists in showing that we get the m–stable set S back.

Lemma 3.14. Let q ∈ Φ, µ a.s. . Suppose that E [(E(q · M))∞] = 1, meaning that
E(q · M) is a uniformly integrable martingale. Then E(q · M) ∈ S
Proof. By construction we have that qn = q1‖q‖≤n is a selector of Φn. Therefore it
is in Cn. But then we have that E(qn ·M) is in S. Since E(qn ·M) tends to E(q ·M)
in L1 (by Scheffé’s lemma), we must have that E(q · M) ∈ S. �
The following statement concludes the proof of theorem 3.1 (or 1.4).
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Theorem 3.15. We have the following equality

S = {E(q · M) | q ∈ Φ and E [(E(q · M))∞] = 1}

Proof. One inclusion is in the previous lemma. The other inclusion is quite obvious.
Take q so that E(q · M) is in S. Obviously lemma 3.2 implies that for each n we
have that q1‖q‖≤n is in Cn. Therefore we have that q1‖q‖≤n ∈ Φn ⊂ Φ, µ a.s. .
This of course implies that q ∈ Φ, µ a.s. . �

Remark. Kabanov pointed out that the proof of the above theorem can be simplified
when the following reformulation of his result on extreme points is used, see [Kab].
This is also the topic of ongoing research.

Theorem 3.16. We use the notation of theorem 3.1 and we suppose that for each
(t, ω) the set C(t, ω) is bounded and convex. If ∂ denotes the operator that associates
with a set S the set of its extreme points ∂S, we have that

∂S = {E(q · M)∞ | q predictable , q ∈ ∂C and EP [E(q · M)∞] = 1} .

4. The m–stable hull and the relation with some riskmeasures

In this section we will investigate if the classical examples of risk measures ([De])
come from m–stable sets. We start with the obvious

Lemma 4.1. If S is a set of probability measures S ⊂ L1, then the intersection
of all m–stable, convex, closed sets containing S is still an m–stable, closed, convex
set. It is the smallest closed, convex, m–stable set containing S and is called the
m–stable hull of S.

Proof. This follows immediately from the definition of m–stable sets.

The following theorem deals with the case of Tailvar or CV@R. For the definition
see [De]. Just for the information of the reader, let us recall that the sigma-algebra
F0 is trivial and therefore that for every element Z ∈ S we have that Z0 = 1.

Theorem 4.2. Suppose that all martingales for the filtration F are continuous (as
well known, this is equivalent to the property that all stopping times are predictable).
Suppose that K > 1 and let

SK =
{

Q | dQ

dP
≤ K

}
.

Then the m–stable hull of SK is the set of all probability measures absolutely con-
tinuous with respect to P.

Proof. We will show that every probability measure Q can be approximated by
probability measures that are concatenations of elements of SK . Since the measures
Q with densities that are bounded away from zero form a dense set, it does not
harm to suppose that Q has a density process

Zt = E

[
dQ

dP
| Ft

]
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satisfying 0 < ε ≤ Z. By hypothesis the martingale Z is continuous. Let us now
define a sequence of stopping times starting with T0 = 0 and inductively defined as

Tk = inf
{

u | u > Tk−1 and
Zu

ZTk−1

≥ K

}
.

Because of the continuity we have that the random variables

fk =
ZTk

ZTk−1

are bounded by K and are therefore densities of elements in SK . Furthermore,
because the intervals ]]Tk−1, Tk]] are disjoint, the products ZTN

=
∏N

k=1 fk are
concatenations of elements of SK and therefore they are densities of probability
measures which, by Proposition 2.1, are necessarily in the m–stable hull of SK .
Because the martingale Z is continuous and converges at t = ∞ (at this point we
only need that it has left limits for each t ≤ ∞), we must have that P[TN = ∞]
tends to 1. Since Z is a uniformly integrable martingale, the convergence of ZTN

to Z∞ is both a.s. and in L1. This shows that Q is in the m–stable hull of SK . �
For law-invariant risk measures we can prove the following

Theorem 4.3. Suppose that the filtration F is generated by a d−dimensional
Brownian Motion W . If S is an m–stable convex closed set, if S is law invari-
ant, then either S = {P} or S equals the set of all probability measures that are
absolutely continuous with respect to P.

Proof. The proof is based on the following

Lemma 4.4 (Skorohod stopping problem). If B is a Brownian Motion (with
respect to a filtration G). If ν is a probability on R+ such that

∫
R+

x ν(dx) = 1, then
there is a (G)-stopping time τ such that E(B)τ is uniformly integrable and E(B)τ

has as its law, the probability ν.

Proof of the lemma. The proof is almost identical to the proof of the usual stopping
time problem, see [RY] and the references given there. For completeness we present
an easy proof. Let Rn be an increasing sequence of finite σ−algebras on R+, chosen
such that they generate the Borel σ−algebra and such that each atom of Rn is split
into exactly two atoms of Rn+1. For convenience we take R0 = {∅, R+}. Define
the Rn measurable, conditional expectation yn = Eν

[
idR+ | Rn

]
. Inductively we

define an increasing sequence of stopping times σn so that E(B)σn has the same
law as yn. For n = 0 we take σ0 = 0. Then y1 takes two values (at most) and we
take σ1 as the first time that E(B)t takes one of these values. Clearly E(B)σ1 takes
the same two values (at most). On each of the atoms, generated by the random
variable E(B)σ1 , we define σ2 as the first time after σ1, where E(B) takes one of
the (at most two) corresponding values of y2. We continue this procedure and we
obtain a martingale (not only a localmartingale) (E(B)σn

)n. The sequence σn can
clearly be defined since the only difficulty is when σn = ∞ with some probability,
in which case we have E(B)σn takes the value zero. When this is the case, the
martingale yn = 0 on the corresponding set and consequently the further values of
yk are all zero as well. From the construction it follows that for each n, E(B)σn has
the same law as yn. Indeed since there are at most two values, the probabilities of
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these values are determined by the fact that their average is the preceding value
of the martingale. These are the same for the sequence (yn)n as for the sequence
(E(B)σn)n. Let us now define τ = limσn. Since the law of E(B)τ is the limit of
the laws of E(B)σn

, this law is precisely the limit law of yn, hence ν. This implies
that the process E(B)τ is a uniformly integrable martingale since obviously it is a
nonnegative local martingale, starting at 0 and E[E(B)τ ] =

∫
R+

x ν(dx) = 1. �

We can now continue the proof of the theorem. We suppose that S contains an
element f > 0, a.s. , that is different from 1. The law of f will be denoted by ν. We
have to show that S equals the set of all probability measures that are absolutely
continuous with respect to P. What we will do is show that the set C, from the
representation theorem 3.1 is equal to R

d. Take a vector x ∈ R
d of unit length.

Let us consider the process B = x.W . This process is clearly a 1−dimensional
Brownian Motion for the filtration F . Let τ1 be a stopping time such that E(B)τ1

has the law ν. By Skorohod’s theorem (see the lemma above), this is possible.
Since f > 0 a.s. , we must have that τ1 < +∞. The stopping time τ1 can be taken
to be a stopping time with respect to the filtration generated by B. Because of
Blumenthal’s zero-one law (see [RY]) we must have that τ1 > 0 a.s. . The process
q = x1[[0,τ1]] is therefore a selector of the set C. If we restart the Brownian Motion
B at time τ , i.e. if we look at the process B′

s = 0 for s ≤ τ and B′
s = Bτ+s − Bτ

we can again apply Skorohod’s theorem and we get a second stopping time τ2 > τ1

such that E(B′)τ2 has the same law ν. Moreover the random variable E(B′)τ2 is
independent of E(B)τ1 . This means that also the process q = x1]]τ1,τ2]] is a selector
of C. If we continue in the same way, we get a strictly increasing sequence of
stopping times τn such that for each k we have that x1]]τk−1,τk]] is a selector of C
and such that the random variables fk = E(1]]τk−1,τk]] · B)τk

are iid with law ν.
Since as easily seen, the product Π∞

0 fk diverges to zero a.s. , we must have that
the sequence τk tends to ∞. It follows that x ∈ C on R+ × Ω. We now apply the
same reasoning to the process B” = nB = nx.W . Since B” is, up to scaling by

√
n,

a Brownian Motion we can find a stopping time τ” such that E(B”)τ” has the law
ν and 0 < τ” < +∞. This means that q = nx1[[0, τ”]] is a selector of C. But the
same reasoning as above, meaning that we restart at time τ” then gives that the
process nx is a selector of C. Since C is convex and since for each vector z ∈ R

d

we now have that z ∈ C a.s. on R+ × Ω, we must have that C = R
d, a.s. . �

Remark. The proof can easily be adapted to the case where M is a d−dimensional
continuous local martingale with the predictable representation property and with
the condition that for each coordinate k we have that 〈Mk, Mk〉∞ = +∞. Although
we have some generalisations of this situation but we do not know whether the
theorem holds in the general case of a filtration where all martingales are continuous.

5. The construction of the Snell envelope

In this section we will assume without further notice that the set S is m–stable.
The properties of m–stable sets allow us to define a risk adjusted value as a process.
The construction goes as follows. For an m–stable set of probability measures S
and for a bounded random variable f ∈ L∞ and under the assumption that F0 is
degenerate, we define the risk adjusted value at time zero, Φ0(X) as

Φ0(f) = inf {EQ[f ] | Q ∈ S} .
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At intermediate times 0 ≤ t ≤ ∞, we could try to define the random variable

Φt(f) = ess.inf {EQ[f | Ft] | Q ∈ S} .

For t = 0 there is no ambiguity in the definitions since the sigma-algebra F0 is
trivial. The infimum is an infimum of random variables and therefore it has to
be seen as an essential infimum. But the measures Q ∈ S are not all equivalent
to P and hence the conditional expectations are not defined P a.s. . However the
random variable Φt(f) can also be defined in another way, thereby avoiding this
difficulty. One way is to observe that the measures in S, equivalent to P, are dense
in S. Therefore we can define

Φt(f) = ess.inf {EQ[f | Ft] | Q ∈ S, Q ∼ P} .

By the density argument we have that for every Q0 ∈ S:

ess.inf {EQ[f | Ft] | Q ∈ S, Q ∼ P} ≤ EQ0 [f | Ft] Q0 a.s. .

Another solution is to take

Φt(f) = ess.sup {g | ∀Q ∈ S : g ≤ EQ[f | Ft], Q a.s. } .

The following theorem deals with risk adjusted values of a stochastic process. We
will use a different but similar notation as the one introduced in the beginning of
this section.

Theorem 5.1. If S is an m–stable set and if X is a bounded càdlàg adapted
stochastic process, then there is a càdlàg process, denoted by Ψt(X), so that for
every stopping time 0 ≤ T < ∞ we have

ΨT (X) = ess.inf {EQ[Xτ | FT ] | τ ≥ T is a stopping time and Q ∈ S} .

We call the process Ψt(X), the risk adjusted process corresponding to the process
X. The process Ψ(X) is a Q−submartingale for every Q ∈ S.

Remark. The proof follows the same lines as the proof of the existence of the Snell
envelope, see [DM] pages 431 up to 436. Since we have the extra difficulty that we
have to deal with all the measures in S, we prefer to give the details. The reader
can skip the proof.

Remark. That the process Ψ(X) is a submartingale for every “test-probability”
has a direct interpretation. It shows that as time evolves the uncertainty on the
remaining part decreases. The risk adjusted value therefore increases in expected
value.

Proof. We start with the definition of a family of random variables, indexed by the
set of all stopping times 0 ≤ T ≤ ∞:

YT = ess.inf {EQ[Xτ | FT ] | τ ≥ T is a stopping time and Q ∈ S} .

We emphasize that this is a only a family of random variables and that for the
moment there is no process Y that gives the values YT at times T . The construction
of such a process involves the selection of representatives of the a.s. equivalence
classes YT .
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Lemma 5.2. For a fixed stopping time T , the set
{EQ[Xτ | FT ] | τ ≥ T is a stopping time and Q ∈ S}

is a lattice.

Proof. Indeed for τ1, τ2 ≥ T and Q
1, Q2 ∈ Se, (with density processes Z1, Z2 resp),

we have that
min (EQ1 [Xτ1 | FT ], EQ2 [Xτ2 | FT ]) = EQ[Xτ | FT ],

where the measure Q is defined as
dQ

dP
=

Z1
∞

Z1
T

on the set {EQ1 [Xτ1 | FT ] < EQ2 [Xτ2 | FT ]}

=
Z2
∞

Z2
T

on the set {EQ1 [Xτ1 | FT ] ≥ EQ2 [Xτ2 | FT ]}.

That the measure Q is still in S follows from the m-stability of the set S.
In the same way we define

τ = τ1 on the set {EQ1 [Xτ1 | FT ] < EQ2 [Xτ2 | FT ]}

= τ2 on the set {EQ1 [Xτ1 | FT ] ≥ EQ2 [Xτ2 | FT ]}. �

Corollary 5.3. Because of this lattice property we also have that for every stopping
time 0 ≤ T < ∞ and for every probability measure µ � P (not necessarily in S)
that

Eµ[YT ] = inf {Eµ [EQ[Xτ | FT ]] | Q ∼ P; Q ∈ S;T ≤ τ stopping time} .

Proof. Obvious.

Lemma 5.4. The m-stability of the set S implies the equality of the following two
sets: (here ∞ > ν ≥ σ is another stopping time){(

Zν

Zσ
,
Zσ

Zτ

)
| Z ∈ Se

}
=

{(
Z ′

ν

Z ′
σ

,
Zσ

Zτ

)
| Z ∈ Se, Z ′ ∈ Se

}
.

Proof. The proof is obvious.

Lemma 5.5. For every pair of stopping times 0 ≤ τ ≤ σ < ∞, we have that
Yτ ≤ ess.inf {EQ[Yσ | Fτ ] | Q ∈ Se} .

Proof. From the lattice property and the previous lemma, we can easily justify the
following calculations

Yτ ≤ E

[
Xν

Zν

Zτ
| Fτ

]
all Z ∈ Se, all ν ≥ τ

≤ E

[
E

[
Xν

Zν

Zσ
| Fσ

]
Zσ

Zτ
| Fτ

]
all Z ∈ Se, all ν ≥ σ

≤ E

[
E

[
Xν

Z ′
ν

Z ′
σ

| Fσ

]
Zσ

Zτ
| Fτ

]
all Z ∈ Se, all Z ′ ∈ Se, all ν ≥ σ

≤ E

[
Yσ

Zσ

Zτ
| Fτ

]
all Z ∈ Se, all ν ≥ σ.

Taking the ess.inf over all Z ∈ Se implies the desired inequality. �
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Lemma 5.6. The family YT constructed above satisfies the following submartingale
property: for every pair of stopping times 0 ≤ τ ≤ σ < ∞ and every Q ∈ S we have

Yτ ≤ EQ[Yσ | Fτ ].

In particular it satisfies this property for P.

Proof. Follows directly from the previous lemma. �
Lemma 5.7. The family YT constructed above satisfies the following right conti-
nuity property: if ∞ > Tn is a nonincreasing sequence of stopping times converging
to T , then limn E[YTn

] = E[YT ]. Consequently YTn
tends to YT in L1.

Proof. Because of the corollary 5.3, we have for each ε > 0 the existence of a
stopping time σ ≥ T and Z ∈ S, so that E

[
Xσ

Zσ

ZT

]
≤ E[YT ] + ε. Because of the

right continuity of the process X we can also suppose that σ > T . Indeed on the
set {σ = T} we can replace σ by σ + δ where δ is small enough. This not only
uses the right continuity of the process X, it also uses that for δ → 0, we have that
ZT+δ

ZT
→ 1 in L1. So we may and do suppose that σ > T . The following sequence

of inequalities is now clear

ε + E[YT ] ≥ E

[
Xσ

Zσ

ZT

]

= E

[
Xσ

Zσ

ZT
1σ≥Tn

]
+ E

[
Xσ

Zσ

ZT
1σ<Tn

]

= E

[
Xσ

Zσ

ZTn

ZTn

ZT
1σ≥Tn

]
+ E

[
Xσ

Zσ

ZT
1σ<Tn

]

= E

[
E

[
Xσ

Zσ

ZTn

1σ≥Tn
| FTn

]
ZTn

ZT

]
+ E

[
Xσ

Zσ

ZT
1σ<Tn

]

≥ E

[
YTn

1σ≥Tn

ZTn

ZT

]
+ E

[
Xσ

Zσ

ZT
1σ<Tn

]

≥ E [YTn ] + ≥ E

[
YTn

(
1σ≥Tn

ZTn

ZT
− 1

)]
+ E

[
Xσ

Zσ

ZT
1σ<Tn

]
.

Now the second term tends to zero as n → ∞. Indeed ZTn

ZT
→ 1 in L1 and the

variables Y. are bounded by the uniform bound on X. The third term tends to zero
since the set {σ < Tn} decreases to the empty set. As a result we get that for all
ε > 0:

ε + E[YT ] ≥ lim
n

E[YTn
].

The last statement is easy since the sequence YT , (YTn)n forms a submartingale
that has a right continuous modification (see [DM]). This completes the proof of
the lemma. �
Lemma 5.8. There is a càdlàg process V so that for all stopping times T < ∞ we
have that VT = YT a.s. .

Proof. This follows from the modification theorem for submartingales. For the ap-
propriate version (stated for supermartingales) see [DM] page 73, Théorème 1. We
first take variables Yt for each rational t, then we apply the modification theorem.
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This gives us a càdlàg P−submartingale process V so that for all t ∈ R+: Vt = Yt.
We still have to prove that VT = YT for finite stopping times. This is not difficult.
The equality for deterministic times t implies the equality for stopping times taking
rational values. Now take a sequence of stopping times Tn decreasing to T and so
that each Tn is finite and takes only rational values. We then have

VT = lim VTn = lim YTn = YT ,

where the limits are taken in L1 and where the last equality follows from the
previous lemma.

The proof of the theorem is now complete. It is sufficient to take the process V
constructed above as a version for the “process” Ψ(X) and to apply the lemma 5.6.

Remark. The notation Ψ is reserved for processes, whereas the notation Φ was
reserved for random variables. The construction is also different in the sense that
in the construction of Ψ, we use an infinum over stopping times as well as an infimum
over all elements of S. If with a random variable f ∈ L∞, we associate the càdlàg
process Xt = EP[f | Ft], we could associate with any random variable a process
Ψt(f) (defined as Ψ(f) = Ψ(X)). In the next section, we will give conditions under
which, for random variables, both families ΦT (f) and ΨT (X) are the same. For
the moment let us show the following property

Lemma 5.9. Let S be m–stable. With the notation introduced above, i.e.
Xt = EP[f | Ft], we have for every bounded random variable f that

Ψt(X) = Φt(f).

Proof. We obviously have that

Ψσ(X) = ess.infσ≤τ,Q∈S EQ [EP[f | Fτ ] | Fσ] ≤ ess.infQ∈S EQ[f | Fσ] = Φσ(f).

Indeed take τ = ∞ as a special case in the left hand side.
Conversely, we have that

Ψσ(X) = ess.infσ≤τ,Q∈S EQ [EP[f | Fτ ] | Fσ]

≥ ess.infτ≥σ ess.infQ∈S EQ [ess.infQ′∈S EQ′ [f | Fτ ] | Fσ]

≥ ess.infτ≥σ ess.infQ∈S EQ [EQ[f | Fτ ] | Fσ]

≥ ess.infτ≥σ ess.infQ∈S EQ [f | Fσ]

≥ ess.infQ∈S EQ [f | Fσ] = Φσ(Φτ (f)). �

Examples. If S = {P} then the process Ψ(X) coincides with the Snell envelope
(up to minus sign, since we take the lower envelope and not the upper envelope.
As well known this “upside down” Snell envelope can be calculated as Ψσ(X) =
ess.infσ<∞ EP[Xσ]. The other extreme example is when S is the set of all probability
measures, abosukltely continuous wth respect to P. In this case we have

Ψ0(X) = ess.inf(inf
t≥0

Xt),
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the worst possible loss over time and over all “states of nature”. This requires some
extra proof, since the time where a process attains its minimum (if the minimum
is attained) is not a stopping time. (In finance this would have spectacular conse-
quences as we would be able to buy at the lowest price and sell at the highest price,
a strategy opening a lot of perspectives). The proof goes as follows. We suppose
that the càdlàg process X is bounded by 1. Let a = ess.inf(inft≥0 Xt). The set,
defined for ε > 0:

π(A) = {ω | there is t such that Xt(ω) < a + ε}

is the projection of the optional set

A = {(t, ω) | Xt(ω) < a + ε} .

It is therefore measurable, i.e in F∞. Moreover the stopping time

T (ω) = inf {t | (t, ω) ∈ A} ,

is well defined and satisfies {T < ∞} = π(A). Moreover on {T < ∞} we
have that XT ≤ a + ε, since the process X is càdlàg . We now take n so that
P[T ≤ n] ≥ P[π(A)](1 − ε) > 0. The probability measure Q is defined as the
conditional probability measure with respect to {T ≤ n}, i.e. it has density
Z∞ = 1{T≤n}/P[T ≤ n]. As easily seen EQ[XT∧n] ≤ a + ε. Since ε was arbi-
trary we have Ψ0(X) = a. The identification of Ψτ (X) is more or less the same.
Roughly speaking we can say that Ψτ (X) is, given the information Fτ , the infimum
of {Xt | τ ≤ t < ∞}. This requires the use of conditional distributions but it can
also be defined as

ess.inf ( inf
τ≤t<∞

Xt) =

ess.sup {h | h is Fτ measurable and h ≤ Xt for all t ≥ τ}

This random variable is equal to the random variable Ψτ (X). Since obviously
ess.inf (infτ≤t<∞ Xt) ≤ Ψτ (X), it is sufficient to prove that for every stopping
time ∞ > σ ≥ τ we have that Ψτ (X) ≤ Xσ a.s. . If this would not be true then
the set C = {Ψτ (X) > Xσ} would not be negligible and we could then take the
probability measure Q with density 1C/P[C]. For this probability we would get

EQ[Xσ | Fτ ] < EQ[Ψτ (X) | Fτ ] = Ψτ (X),

a contradiction to the definition of Ψτ (X).

Remark. The reader could ask why we took the infimum over all probabilities in
S and over all stopping times. It can be argued that if the economic agent can
choose the stopping time, e.g. to stop a project, it would be more realistic to take
the supremum over all stopping times. This gives a mathematical problem that
is related to a maximin/minimax strategy. The mathematics involved are more
complicated as the outcome is not the result of a concave problem but rather of
a concave-convex optimisation problem. This approach clearly makes sense if the
economic agent can choose the stopping time. If however the economic agent cannot
choose the stopping time or if the stopping time is selected by the “enemy”, then
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the infimum makes more sense. In case the economic agent can choose the stopping
time, it becomes interesting to have a look at the following generalisation. For
convenience and to facilitate the mathematics, let us suppose that we are working
on a finite horizon interval [0, T ]. The stopping time τ ≤ T can be identified
with the nondecreasing process At = 1τ≤t and with the property that AT = 1.
The convex closed envelope of these processes brings us to the set of all càdlàg ,
adapted, nondecreasing processes such that AT = 1. The value At could describe
the amount of the process that is already stopped — closed down — at time t. If
the set S is weakly compact in L1, we can apply the minimax theorem and we get
that

inf
Q∈S

sup
A

EQ

[∫ T

0

Xu dAu

]
= sup

A
inf
Q∈S

EQ

[∫ T

0

Xu dAu

]
.

We do not develop this theory any further as it does not fit in the approach we
present here.

6. The Equivalence between the m-stability
property, recursivity and time-consistency

The setup of this section is a little bit more general as we will deal with random
variables instead of dealing with stochastic processes. Let us first recall some no-
tations. Let S be a closed convex set of probability measures S ⊂ L1(Ω,F , P). No
stability on S is assumed. If f is a bounded random variable then for each stopping
time T ≤ ∞ we denote by ΦT (f) the random variable

ΦT (f) = ess.infQ∈S EQ [f | FT ] .

The non linear functional ΦT satisfies the following coherence properties. We omit
the straightforward proofs.

(1) if f ≥ g are bounded random variables then ΦT (f) ≥ ΦT (g)
(2) for λ ≥ 0 and f ∈ L∞, we have that ΦT (λf) = λΦT (f), (the same holds

for λ a nonnegative bounded FT measurable random variable)
(3) for f, g bounded random variables we have ΦT (f + g) ≥ ΦT (f) + ΦT (g)
(4) if g is a bounded FT measurable random variable, then for any bounded

random variable f we have ΦT (f + g) = ΦT (f) + g
(5) if fn is a sequence of random variables 1 ≥ fn ≥ −1 then ΦT (lim supn fn) ≥

lim supn ΦT (fn).

Definition 6.1. The set S is called time consistent if the following holds. For any
pair of stopping times σ ≤ τ and any pair of random variables f, g ∈ L∞, we have
that Φτ (f) ≤ Φτ (g) implies that Φσ(f) ≤ Φσ(g).

The following theorem characterises the convex closed sets S that are also m–stable.
This theorem is related to decision theory with multipriors, where the m-stability
is referred to as rectangularity. However the technicalities are different from the
ones addressed here. See [ES], [Wang]. Especially the last paper is difficult to read
since it does not use the structures introduced in general stochastic process theory.

Theorem 6.2. The following are equivalent
(1) The set S is m–stable.
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(2) For every bounded random variable f , the family ΦT (f) satisfies: for every
two stopping times σ ≤ τ we have Φσ(f) = Φσ(Φτ (f)).

(3) For every bounded random variable f , for every stopping time σ we have
Φ0(f) ≤ Φ0(Φσ(f)).

(4) The set S is time consistent.
(5) The family ΦT (f) satisfies the submartingale property: for all Q ∈ S and

all pair of stopping times σ ≤ τ we have that Φσ(f) ≤ EQ[Φτ (f) | Fσ].

Proof. First of all let us show that 1) implies 2). So let σ ≤ τ be two stopping times
and let f be a bounded random variable. By lemma 5.4 and the lattice property of
lemma 5.2, we have that

ess.infQ EQ[f | Fσ] = ess.infQ EQ [EQ[f | Fτ ] | Fσ]

= ess.infQ ess.infQ1 EQ [EQ1 [f | Fτ ] | Fσ]

= ess.infQ EQ [ess.infQ1 EQ1 [f | Fτ ] | Fσ]

= ess.infQ EQ [Φτ (f) | Fσ]

= Φσ(f).

Let us now show the equivalence between 2 and 4. Suppose that for two bounded
random variables f, g and two stopping times σ ≤ τ , we have Φτ (f) ≤ Φτ (g). Then
we have, because of 4, Φσ(f) = Φσ(Φτ (f)) ≤ Φσ(Φτ (g)) = Φσ(f). Conversely
to prove 4 out of 2, we take for the two random variables, the functions f and
g = Φτ (f). We have equality Φτ (Φτ (f)) = Φτ (f) and therefore (applying item 2
twice) that Φσ(Φτ (f)) = Φσ(f).
Obviously we have that 2 implies 3.
We now come to the proof that 3 implies 1, this is the most serious part of the
proof. So let us suppose that Z1 and Z2 are two elements in S – coming from the
measures Q

1, Q2 – and let σ be a stopping time. Also suppose that the element
Z1

σ
Z2

∞
Z2

σ
is not in the closed convex set S. By the Hahn–Banach theorem, there is a

random variable f ∈ L∞, so that

EP

[
Z1

σ

Z2
∞

Z2
σ

f

]
< inf

Q∈S
EQ [f ] .

We can write the left hand side as EQ1 [EQ2 [f | Fσ]]. This is clearly at least equal
to EQ1 [Φσ(f)], a quantity at least equal to Φ0[Φσ(f)], hence by property 3, at least
equal to Φ0(f). This is a contradiction since the right hand side is precisely Φ0(f).
We still have to show the equivalence with property 5. That 1 implies 5 follows
from Theorem 5.1 (see lemma 5.6) of the previous section and lemma 5.9. Suppose
now that 5 holds. We have to show property 2. This means for every f ∈ L∞

and every stopping time σ, we have the inequality Φ0(f) ≤ Φ0 (Φσ(f)). Now
this inequality follows from the submartingale property for the family ΦT (f), T a
stopping time. Indeed, for every Q ∈ S we have, by the submartingale property,
that Φ0(f) ≤ EQ[Φσ(f)]. Taking the infimum over all elements Q ∈ S then gives
Φ0(f) ≤ Φ0 (Φσ(f)), as desired. This completes the proof. �

Again, we can give a version of the above theorem when risk adjusted processes are
used. Before we give the precise statement, we need the following proposition.
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Proposition 6.3. Let S be a convex closed set of probability measures, all of them
absolutely continuous with respect to P, i.e. S ⊂ L1. Let X be a bounded optional,
càdlàg process. Then there is a càdlàg process Y ≤ X that is a Q−submartingale
for each Q ∈ S and such that every other càdlàg process V ≤ X, that is a
Q−submartingale for each Q ∈ S, is necessarily smaller than Y , i.e. satisfies
V ≤ Y .

Proof. The proof is a standard construction, we only give a sketch. We look at the
set

V = {V | V is a càdlàg submartingale for each Q ∈ S, V ≤ X} .

This set is nonempty since the process X is bounded from below by a constant.
If V 1 and V 2 are both elements in V, then V 1 ∨ V 2 is still in V. It follows that
there is a sequence V n ∈ V such that for each rational t we have that EP[V n

t ]
tends to sup{EP[Vt] | V ∈ V}. Let Y ′

t = supn V n
t . The family (Y ′

t )t rational is still
a Q− submartingale for each Q ∈ S. For every t we now define the a.s. limit
Yt = lims↓t,s>t Y ′

s . The process Y is right continuous and is a Q submartingale for
each Q ∈ S. It is therefore càdlàg . The process Y is smaller than the process X
and every càdlàg process V ∈ V necessarily satisfies V ≤ Y . �
Remark. In the same way as in the proposition, we can construct a smallest pro-
cesss, that is bigger than X and that is a Q−supermartingale for each Q ∈ S. In
particular we can make the following construction. For f ∈ L∞ we define M to
be the càdlàg version of the P−martingale Mt = EP[f | Ft]. Then we construct a
process càdlàg F such that for each Q ∈ S, the process F is a Q−supermartingale,
F ≥ M and F is minimal for these properties. The reader can check that the
construction yields that F∞ = f , but it might happen that the process F has a
jump at time ∞. The reader can also check that F is the smallest process such
that F is a Q−supermartingale for each Q ∈ S and F∞ ≥ f . We will make use of
this construction in the next theorem.

Theorem 6.4. The following are equivalent
(1) The set S is m–stable
(2) The family of random variables defined for stopping times T , as

ΨT (X) = ess.inf {EQ[Xτ | FT ] | τ ≥ T is a stopping time and Q ∈ S}

satisfies ΨT (X) = YT , where Y is the process introduced in the previous
proposition, i.e. Y is the biggest càdlàg process, smaller than X, that is a
Q−submartingale for each Q ∈ S.

Proof. We first prove that 1 implies 2. Since by construction we always have that
ΨT (X) ≥ YT , it suffices to observe that by theorem 5.1, Ψ(X) defines a càdlàg
process that is a Q− submartingale for each Q ∈ S.
The converse implication goes as follows. We take a bounded random variable f and
define F as in the preceding remark. This means that F is a Q−supermartingale
for each Q ∈ S, F∞ ≥ f and F is minimal for these properties. We now construct
the process Ψ(F ) and observe that by hypothesis, Ψ(F ) is a Q−submartingale for
each Q ∈ S. However we have that for each stopping time σ:

Ψσ(F ) = ess.infQ∈S;τ≥σ EQ[Fτ | Fσ] = ess.infQ∈S EQ[f | Fσ] = Φσ(f),
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where τ is stopping time and where the second inequality follows from the fact that
for each Q ∈ S, the process F is a Q−supermartingale. This means that the family
Φσ(f), where σ runs through the set of stopping times, satisfies the submartingale
inequality and hence by theorem 6.2, the set S is m–stable. �

7. The Chractaerisatiion using the cone of Acceptable Elements.

From [Delb] we recall that there is a one to one correspondence between risk mea-
sures and weak∗ closed cones of L∞. The question arises how we can characterise
m–stable sets using the cone of acceptable elements. This question was addressed
in [ADEHK xxx] for the discrete time case. The proofs can be copied without big
changes. Let us start with some definition and notation.

Definition 7.1. If S ⊂ L1(P) is a closed, convex set of probability measures, P ∈ S,
then with A we denote the set of acceptable elements:

A = {f | f ∈ L∞, for all Q ∈ S : EQ[f ] ≥ 0} .

Of course, in the case where F0 is trivial, we could also have required that ΦT (f) ≥
0.

AS obeserved in [Delb] we have that A is weak∗ closed in L∞ and we can recover
S as

S = {Q | Q � P : Q is a probability measure and for all f ∈ A : EQ[f ] ≥ 0} .

Definition and Notation 7.2. Let τ be a stopping time. An element f ∈
L∞(Fτ ) ∩ A = Aτ is called τ−acceptable. The set A′

τ is defined as

A′
τ =

{
f + g | f ∈ Aτ ; g ∈ L∞

+ (FT )
}

.

Definition 7.3. Let τ be a stopping time. An element f ∈ L∞(FT ) is called
acceptable at time τ if for every event A ∈ Fτ we have that f1A ∈ A. By Aτ we
denote the set of all elements that are acceptable at time τ :

Aτ = {f | for all A ∈ Fτ ; f1τ ∈ A} .

The interpretation of both definitions is straightforward. An element f is acceptable
at time τ if given the information at time τ , the element f is still acceptable.
In could happen that an element f is acceptable at time 0, i.e. f ∈ A, but as
uncertainty is revealed and A ∈ Fτ is realised, we see that the “bad” part of f
is realised and hence at time τ the random variable f or better f1A, should be
considered as unacceptable. The following characterisation is straightforward

Proposition 7.4. Let τ be a stopping time. We have that

Aτ = {f | Φτ (f) ≥ 0} .

Proof. If Φτ (f) ≥ 0, then we have for all Q ∈ S and all event A ∈ Fτ that
EQ[Φτ (f)1A] ≥ 0. By the definition of Φ this implies that for all Q ∈ S and all
event A ∈ Fτ we have EQ[EQ[f | Fτ ]]1A]] ≥ 0. This implies that for all Q ∈ S we
have EQ[f1A] ≥ 0. Conversely if f ∈ Aτ , we must have that for each Q ∈ Se that
EQ[f1A] ≥ 0 for each A ∈ Fτ . This implies that P a.s we have that EQ[f | Fτ ] ≥ 0.
The definition of Φ then implies that Φτ (f) ≥ 0. �
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Corollary 7.5. Let τ be a stopping time. For each f ∈ L∞ we have that f −
Φτ (f) ∈ Aτ .

Definition 7.6. We say that the cone A of acceptable elements satisfies the de-
composition property if for every stopping time τ we have that A ⊂ Aτ + Aτ .

The interpretation is clear. Every acceptable element can, for every stopping time
τ , be decomposed into two elements. The first element is acceptable when the
obeservation period is stopped at τ . The second element is acceptable when the
observation starts at time τ . Of course, since Aτ ,Aτ ⊂ A, the definition is equiva-
lent to the statement that A = Aτ + Aτ for every stopping time τ . Since trivially
L∞

+ (FT ) ⊂ Aτ we have that Aτ + Aτ = Aτ + A′
τ = Aτ + Aτ + L∞

+ (FT ).

Theorem 7.7. Let τ be a stopping time, then f ∈ Aτ +Aτ if and only if Φτ (f) ∈
Aτ .

Proof. One direction of the proof follows from Corollary 7.5. Indeed if Φτ (f) ∈ Aτ ,
the equality f = Φτ (f)+(f − Φτ (f)) implies that f ∈ Aτ +Aτ . The other direction
is proved as follows. Let f = g + h where g ∈ Aτ and h ∈ Aτ . Because of the
superadditivity of the functions Φ we have Φτ (f) ≥ Φτ (g) + Φτ (h) ≥ g, since
Φτ (g) = g and Φτ (h) ≥ 0. Because g ∈ Aτ and because Φτ (f) is Fτ measurable
we get Φτ (f) ∈ Aτ . �
Corollary 7.8. The cone Aτ + Aτ is always weak∗ closed.

Proof. We apply the criterion of Krein-Smulian (exactly as in [Delb]). So let fn ∈
Aτ +Aτ , ‖fn‖∞ ≤ 1, be a sequence of functions, tending a.s to a function f . Since
lim sup Φτ (fn) ≤ Φτ (f) we deduce from ‖Φτ (fn)‖∞ ≤ ‖f‖∞ ≤ 1 and Φτ (fn) ∈ Aτ

that also Φτ (f) ∈ Aτ . �
Theorem 7.9. The set S is m–stable if and only if for each stopping time τ we
have A = Aτ +Aτ . Or in other words, if and only if A satisfies the decomposition
property.

Proof. Let τ be a stopping time. We will use the equivalence (1) and (3) of the-
orem 6.2. If S is m–stable we have for each f ∈ L∞ that Φ0(Φτ (f)) = Φ0(f).
Consequently we have that f ∈ A implies that Φτ (f) ∈ A and hence in Aτ . Con-
versely we deduce from the decomposition property that Φ0(f) ≥ 0 implies that
Φ0(Φτ (f)) ≥ 0. But the translation property then implies that Φ0(f) ≤ Φ0(Φτ (f))
for every f ∈ L∞. �
Remark. In [Delb] the theory of general riskmeasures was developed using finitely
additive measures instead of using σ−additive probability measures. It is not clear
how to develop a theory of stable sets in this context. The equivalence of the de-
composition property with the m–stability gives us an answer. Since the definition
of Aτ and Aτ are purely algebraic, they apply to every cone. So these concepts
could be used in Definition 7.6 and Theorem 7.9 to give an alternative definition
of m–stability in the case of risk measures that do not necessarily satisfy the Fatou
property. We do not pursue this analysis further.

8. The Relation with Bellman’s Principle.

In this paragraph we prove that the m–stability is equivalent to the validity of
Bellman’s principle. Especially in the case of Markov processes such a result can
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be of great importance. In order not to overload the notation in the theorem we
suppose that S is a closed convex set of probability measures, S ⊂ L1 and (as
always) P ∈ S. We also suppose that F0 is trivial. For a bounded process X and a
stopping time σ we defined

Ψσ(X) = ess.infQ∈Se;τ≥σ EQ[Xτ | Fσ].

We also recall that if σ is a stopping time, the process σX is defined as σXs = 0 if
s ≤ σ and σXs = Xs −Xσ if s ≥ σ. The process Xσ is defined as Xσ

s = Xs if s ≤ σ
and Xσ

s = Xσ if s ≥ σ. The proof is the same as in [ADEHK2]. It requires the
time interval to be closed from the right, i.e. of the form [0, t] where 0 ≤ t < +∞.

Theorem 8.1. In case the time interval is closed from the right, say [0, t], with
0 ≤ t < +∞, the following two properties are equivalent

(1) S is m–stable
(2) (Bellman’s principle) For every bounded càdlàg adapted process X and every

finite stopping time τ ≤ t, we have that

Ψ0(X) = Ψ0(Xτ + Ψτ (τX)1[[τ,t]]).

Proof. We first show that Bellman’s principle implies stability. For f ∈ L∞(Ft) we
introduce the process X defined as Xu = ‖f‖∞ for u < t and Xu = f for u ≥ t. The
value Ψτ (X) then coincides with the value Φτ (f) and the Bellman principle gives
the recursivity for Φ. According to theorem 6.2 this implies that S is m–stable.
Conversely let us suppose that S is m–stable and let us show the Bellman principle.
To simplify the notation we will suppose that the measures Q, Q′, Q′′ are taken in
Se, σ ≤ τ ≤ t are given stopping times and ν runs through the set of all stopping
times σ ≤ ν ≤ t.

Ψσ(X) = ess.infQ,ν≥σ EQ[Xν | Fσ]

= ess.infQ,ν≥σ EQ[EQ[Xν | Fτ ] | Fσ]

= ess.infQ,ν≥σ EQ[Xν1ν≤τ + EQ[Xν1ν>τ | Fτ ] | Fσ]

= ess.infQ,ν≥σ EQ[Xν1ν≤τ + 1ν>τ (Xτ + EQ[Xν − Xτ | Fτ ]) | Fσ]

= ess.infQ,ν≥σ EQ[Xν∧τ + 1ν>τEQ[Xν − Xτ | Fτ ] | Fσ]

The Lemma 5.4 allows us to rewrite the result of the simple ess.inf as a compounded
expression:

Ψσ(X) = ess.infQ′,ν≥σ EQ′ [Xν∧τ

+ 1ν>τ ess.infQ′′,ν′≥τ 1ν > τEQ′′ [Xν′ − Xτ | Fτ ]) | Fσ]

= ess.infQ′,ν≥σ EQ′ [Xν1ν<τ + 1ν≥τ (Xτ + Ψτ (τX) | Fσ]

= ess.infQ′,ν≥σ EQ′ [(Xτ + Ψτ (τX))ν | Fσ]

= Ψσ(Xτ + Ψτ (τX))

�
Remark and Counter-example. An analysis of the proof shows that if the time
interval is not closed on the right, the Bellman principle still follows from the
fact that the set S is stable. Whether the Bellman principle implies the stability
property is a much more delicate problem. We will give two answers. In case
the set S is weakly compact in L1, the answer is yes. Afterwards we will give a
counter-example in the case where S is not weakly compact.
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Proposition 8.2. Suppose that the time interval is R+, suppose that the Bellman
principle holds and suppose that the set S is weakly compact in L1, then the set S
is m–stable.

Proof. We will adapt the proof of theorem 8.1 above. The idea is to show that
Φ0(f) = Φ0(Φτ (f)) for every finite stopping time τ and for every bounded function
f that is F∞−measurable. Since S is weakly compact thet set

{Zσ | σ a finite stopping time, Z ∈ S}

is still relatively weakly compact. If we replace f by the sequence fn = EP[f |
Fn] then uniformly for Q ∈ S, fn approximates f in L1(Q). It follows that
Φ0(fn),Φτ (fn),Φ0(Φτ (fn)) tend to Φ0(f),Φτ (f),Φ0(Φτ (f)). It is therefore suffi-
cient to prove the statement for functions that are Fn−measurable. This is done
exactly in the same way as in the proof of the theorem. �
It is clear that a counter-example will have to use the fact that the set S is big.
For notational ease we will work on the time interval [0, 1[. This is equivalent to
the time interval R+, just use a time transform u = t/(t + 1). The use of the time
interval [0, 1[ allows us to use a Brownian Motion W defined for all times t < ∞
even if we only need the part before time 1. Finite stopping times will now be
replaced by stopping times ν < 1. The filtration we will use is the usual filtration
coming from the process W . The set S, we will use, is defined as

{Z1 | EP[Z1] = 1, Z1 ≥ 0, EP[Z1 sign(W1)] = 0} .

It is clear that this set is not m–stable. This can be seen using the definition of
m–stability but it will follow from the results below. We first give the sequence of
lemma’s used to prove the Bellman principle and then we will give the details of
the proofs of these lemma’s. Since the Bellman principle will be valid and will in
fact be equivalent to the risk adjusted value

Ψ0(X) = ess.inf{ inf
0≤t<1

Xt},

we cannot have m-stability. Indeed Φ0(f) = 0 for f = sign(W1).

Lemma 8.3. The ν < 1 be a stopping time, then the set

{Zν | Z ∈ S}

is dense in the set of all Fν measurable densities of probabilities absolutely contin-
uous with respect to P.

Lemma 8.4. Bellman’s principle is valid.

Lemma 8.5. Let Q be the set of all density processes Z such that
(1) Z1 = E(q · W )1 > 0, EP[Z1] = 1
(2)

∫ 1

0
qu du = 0 a.s. .

Then we have that Q ⊂ S. Let τ < 1 be a stopping time then

{Zτ | Z ∈ Q}

is dense in the set of all probability densities on the sigma algebra Fτ .
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Lemma 8.6. Let ν < 1 be a stopping time and let q be a predictable process, defined
on [0, 1] × Ω so that

(1) qu = 0 for u ≤ ν
(2) q is measurable for the sigma algebra R × Fν where R is the Borel sigma

algebra on [0, 1],
(3) a.s.

∫ 1

ν
q2
u du < ∞,

then EP [E(q · W )1] = 1 and therefore E(q ·W )1 is the density of a probability mea-
sure, equivalent to P. Moreover we have

EP [E(q · W )1 | Fν ] = 1.

Proof of Lemma 8.6. This is almost trivial. Seen from time ν the process q is
deterministic. Here are the details. For each n we put

An =
{∫ 1

ν

q2
u du ≤ n

}
.

Clearly An ∈ Fν and the stochastic exponential E(1An
q · W ) satisfies Novikov’s

condition. Therefore we have

EP [1AnE(q · W )1] = EP [1AnE(1Anq · W )1] = P[An].

We now apply Beppo Levi’s theorem to conclude that EP [E(q · W )1] = 1 as de-
sired. The statement on the conditional expectation follows from the fact that
since EP [E(q · W )1] = 1, E(q · W ) must be a uniformly integrable martingale. �
Proof of Lemma 8.5 and 8.3. Let Zτ be the density of a probability measure equiv-
alent to P on Fτ . The process Z is supposed to be defined up to time τ . We will
now extend it in such a way that it defines an element Z ∈ Q. The process Z is
a stochastic exponential and therefore Zτ can be written as Zτ = E(q · W )τ . The
predictable process q is defined up to time τ . Since Zτ > 0 we must have that∫ τ

0
q2
u du < ∞ and therefore we also have that r =

∫ τ

0
qu du is defined. If we now

put for u > τ

qu =
−r

1 − τ

we have that q1]]τ,1[[ satisfies the assumptions of lemma 8.6. We therefore have that

EP [E(q · W )1] = EP [EP [E(q · W )1 | Fτ ]] = EP[1] = 1.

Moreover
∫ 1

0
qu du =

∫ τ

0
qu du +

∫ 1

τ
qu du = r + (−r) = 0. Also we have that∫ 1

0
q2
u du =

∫ τ

0
q2
u du +

∫ 1

τ
q2
u du =

∫ τ

0
q2
u du + r2/(1− τ) < ∞. Therefore Z1 > 0 and

Z ∈ Q. This proves the density part of the lemma. We now prove that Q ⊂ S. For
an element Q ∈ Q we have that W is a Brownian motion with drift qu du. Therefore
the variable Wt is, under the measure Q, equal to a gaussian random variable +∫ t

0
qu du. For t = 1 this simply means that under Q, the random variable W1 is still

a symmetric gaussian random variable with L2(Q) norm 1. In particular we have
that EQ [sign(W1)] = 0, i.e. Q ∈ S. Lemma 8.3 immediately follows from Lemma
8.5. �
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Proof of lemma 8.4. Let us suppose that X is càdlàg , bounded adapted. Further-
more let us fix a stopping time ν < 1. It is clear that

Ψν(X) = Xν + Ψν(νX).

So we have to calculate Ψν(νX). By definition we have

Ψν(νX) = ess.infν≤σ<1 ess.infQ∈Se {EQ[νXσ | Fν ]} .

Because of lemma 8.3 this can also be written as

Ψν(νX) = ess.infν≤σ<1 ess.infQ∼P {EQ[νXσ | Fν ]} .

Indeed the set
{Zσ | Z ∈ Se}

is dense in the set

{Zσ | Z a nonnegative uniformly integrable martingale with EP[Z1] = 1} .

This means that the Ψ−operator is the same when calculated with the set S as
with the set of all probability measures that are absolutely continuous with respect
to P. The latter set is stable and therefore the Ψ− operator satisfies Bellman’s
inequality. �

We end these analysis with the following

Corollary 8.7. The m–stable hull of the set Q is the set of all probability measures
that are absolutely continuous with respect to P.

9. The Set of Local Martingale Measures for a
finite dimensional locally bounded Price Process.

In this section we will prove that for locally bounded processes, the set of martin-
gale measures forms an m–stable set. This allows us to apply our previous results
to situations occurring in finance. We will also see what m–stable sets can occur as
sets of martingale measures for finite dimensional processes. The latter characteri-
sation is not fully complete since it will only be done in the context of continuous
filtrations. Throughout this section we will use the following notation, see [DS] for
more information.
On the filtered probability space

(
Ω,F∞, (Ft)t≥0 , P

)
, let S: R+ × Ω → R

d be

an adapted càdlàg process that takes values in the d−dimensional space R
d. We

suppose that the process is locally bounded and that the original measure is a local
martingale measure for the process S. This is a simplification when compared to
the situation in finance, but it simplifies notation without destroying its generality.
Since the process S is locally bounded, the set

S = {Q � P | the process S is a local martingale for Q}

is a closed convex set. As the following shows, it is also m–stable..
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Proposition 9.1. The set S is m–stable.

Proof. We can suppose that the process S is bounded (in the same way as in [DS]).
That the set S is convex and closed is then obvious. The m–stability is also quite
obvious. Let us take Q

1, Q2 ∈ Se. Let Z1, Z2 be the associated density processes.
If σ is a stopping time, we have to show that the density process defined as Zt = Z1

t

for t ≥ σ and Zt = Z1
σ

Z2
t

Z2
σ
, is still in S. To show this, it is sufficient to show that the

process ZS is a P−martingale. This is easy. Indeed first observe that the process
Z1S is a P−martingale (since Q

1 ∈ S). The same applies to Z2 and hence the
process 1t≥σ

(
Z2

t St − Z2
σSσ

)
is also a P−martingale. It follows that the process:

ZtSt = Z1
t∧σSt∧σ +

Z1
σ

Z2
σ

1t≥σ

(
Z2

t St − Z2
σSσ

)

is also a P−martingale. �
To avoid complicated notation we first introduce some extra notions. We restrict
ourselves to the case of a continuous price process S. As above we may and do sup-
pose that S is bounded. If X is a local martingale then there is a decomposition of
X with respect to S. This decomposition, called the Kunita-Watanabe-Galtchouk
decomposition, allows to write X as a sum of two local martingales. One is a sto-
chastic integral with respect to S, the other part M is strongly orthogonal to S. So
let us write X = H ·S + M . Saying that X is strongly orthogonal to S means that
H ·S is strongly orthogonal to S. This means that the vector H is orthogonal to the
predictable range of S. In other words it means that the measure H ′ d〈S, S〉H = 0
and this implies that H · S = 0. This can only happen when the price process has
some redundance.

Theorem 9.2. With the notation of the preceding paragraphs and under the as-
sumption that S is continuous we have that

S = {E(X) | E(X)∞ ≥ 0, X is strongly orthogonal to S, E(X) is unif. integrable} .

Proof. The proof is very easy. If E(X) is a uniformly integrable, nonnegative mar-
tingale, where X = H · S + M is the Kunita-Watanabe-Galtchouk decomposition,
then E(X)S is a martingale if and only if X is strongly orthogonal to S. This is
equivalent to H · S being strongly orthogonal to S. The latter is equivalent to the
fact that every coordinate of S is strongly orthogonal to H ·S and hence to the fact
that H ′ d〈S, S〉H = 0. This in turn is equivalent to the property PH = H. �
There is also a converse to this theorem. The interpretation of such a converse
theorem is the following. Given a convex closed set of probabilities, when does
there exist a finite dimensional process, say S, such that the given set is the set of
absolutely continuous martingale measures for the process S? A necessary condition
is certainly that the set is m–stable. In the continuous case the answer is given by
the following theorem.

Theorem 9.3. Let S be a stable set of probability measures. Let the filtration be so
that every local martingale is the stochastic integral with respect to the d−dimensional
local martingale M . Let S be given by the closure of

Se = {E(q · M)∞ | q ∈ Φ and E [(E(q · M))∞] = 1} ,
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where the set-valued predictable process Φ is convex and closed valued. Then the
set S is a set of equivalent local martingale measures for a price process if and only
if each Φ(t, ω) is a subspace. If the predictable projection valued process P is the
orthogonal projection on the space Φ(t, ω), then the price process S can be chosen
as S = (IdRd − P ) · M .

Proof. The proof is a reformulation of the above theorem 8.1 and theorem 3.1. The
details are left to the reader. �
Remark. the situation can be generalised to the setting of theorem 9.2 above in the
sense that we may suppose that M only generates the continuous local martingales.
This means that every local martingale is given by a decomposition of the form
H · M + N , where N is purely discontinuous. In that case we get the following
theorem

Theorem 9.4. With the above notation we have that the closure S of the set

Se =




E(q · M + N)

∣∣∣∣∣∣∣

q ∈ Φ

E(q · M + N) uniformly integrable and strictly positive
N is purely discontinuous





,

is a set of risk neutral measures if and only if each Φ(t, ω) is a subspace. If the
predictable projection valued process P is the orthogonal projection on the space
Φ(t, ω), then the price process S can be chosen as S = (IdRd − P ) · M .
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