
Practical Parallel Algorithms for Minimum Spanning Trees

Frank Dehne� Silvia Götz†

Abstract

We study parallel algorithms for computing the minimum
spanning tree of a weighted undirected graph G with n
vertices and m edges. We consider an input graph G
with m=n � p, where p is the number of processors.
For this case, we show that simple algorithms with data-
independent communication patterns are efficient, both in
theory and in practice. The algorithms are evaluated theo-
retically using Valiant’s BSP model of parallel computation
and empirically through implementation results.

1. Introduction

Computing a minimum spanning tree (MST) is one
of the most studied problems in combinatorial optimiza-
tion [19]. Formally, an MST of a given undirected con-
nected GraphG = (V;E) with verticesV = f0; : : :;n� 1g
and weighted edgesE, jEj=m, can be defined as an acyclic
subgraph ofG which connects all vertices inV with the least
total weight. Thedensity k of a graph is the ratio betweenm
andn. In this paper we consider input graphs withsufficient
density, i.e., graphs that comply withm=n � p, wherep is
the number of processors in the parallel machine.

It has been pointed out (e.g., [28, 13]) that communica-
tion is the main bottleneck for the performance of parallel
algorithms. Therefore, various parallel computation mod-
els, accounting for communication differently, have been
proposed. Most of them support a coarse-grained approach,
i.e., the memory/processor ratio is “large”. Examples in-
clude the Bulk Synchronous Parallel (BSP) model [28], the
Coarse-Grained Multicomputer (CGM) model [14], and the
LogP model [13].

For the design and analysis of our parallel MST al-
gorithms we employ Valiant’s BSP model [28]. A BSP

�School of Computer Science, Carleton University, Ottawa, Canada
K1S 5B6. Research partially supported by the Natural Sci-

ences and Engineering Research Council of Canada. Email:
dehne@scs.carleton.ca.

†Department of Mathematics and Computer Science, University of
Paderborn, 33095 Paderborn, Germany. Research was supported by
the Studienstiftung des Deutschen Volkes (German National Scholarship
Foundation). Email:sylvie@uni-paderborn.de.

computer models a distributed memory machine and con-
sists of a set ofp processors, a router with computa-
tion/communication throughputg, and facilities for barrier
synchronization. A synchronization can occur everyL time
units. A BSP algorithm consists of a sequence of supersteps
which are separated by barrier synchronization. Messages
sent in one superstep cannot be received until the next super-
step. Each superstepi incurs a cost ofwi+ghi+L, wherewi

is the maximal number of local operations performed by any
of the processors, andhi is the maximal number of messages
received or sent by any of the processors. The total cost of
the algorithm is given byW +gH +LT , whereW = ∑i wi,
H = ∑i hi, andT is the number of supersteps.

In many parallel machines, the latency/synchronization
costL is considerably higher than the bandwidth parameter
g, caused by the high startup cost for messages (e.g., Intel
Paragon [21]). Therefore, special attention should be paid
to the number of supersteps.

Several papers have been published describing graph al-
gorithms for the BSP and similar models [7, 4, 15, 1], but
very little effort has been put into experimental validation
of these algorithms. C´acereset al. note in [7] that graph
problems “have considerably less ‘internal structure’ ” than
many other problems studied. This results in highly data-
dependent communication patterns and makes it difficult to
achieve communication efficiency.

In this paper, we study communication-efficient MST al-
gorithms using the BSP model and show how they behave in
practice. We show that graphs with sufficient density allow
for a very simple and efficient MST computation on the BSP
model, usingO(logp) supersteps which is an important im-
provement over PRAM simulations requiringΩ(logn) su-
persteps. One reason for this is that the MST algorithms for
these graphs do not require data-dependent communication
patterns. Our experiments also show that, although the BSP
model is useful for designing parallel algorithms, it does
not always rank algorithms correctly in terms of practical
performance. Proofs and a more comprehensive discussion
of these and other parallel MST algorithms can be found in
[17].

Known Results. The MST problem has been extensively
studied in the sequential setting (see [19] for a survey up

F D
F. Dehne and S. Goetz, "Practical parallel algorithms for minimum spanning trees," in Proc. 17th IEEE Symp. on Reliable Distributed Systems, Advances in Parallel and Distributed Systems, West Lafayette, IN, USA, 1998, pp. 366-371.

to 1984, [22, 8]) with the best result being the linear time
randomized algorithm in [22]. The MST problem has also
a rich history in parallel computing and a number of PRAM
algorithms have been proposed [9, 2, 12, 20, 10, 25]. The
best of these results implies the existence of a linear work
BSP algorithm usingO(logn) supersteps given sufficient
slackness.

Independent of this work, Adleret al. [1] also developed
BSP algorithms for the MST problem requiringO(logp)
supersteps, and proved a lower bound of min(n;m=p) on the
per-processor communication volume for MST algorithms.
They did not provide any implementation results for their
algorithms.

There are only a few empirical investigations of sequen-
tial [16, 3, 23, 24], fine-grained parallel [3], and coarse-
grained parallel [18, 11] MST algorithms. The work in [11]
focuses on variants of list-ranking as applied to MST com-
putations. It usesΩ(logn) supersteps and its overall run-
ning time is not analyzed. The algorithm tested in [18] is
only partially documented and its running time is not ana-
lyzed.

2. The Algorithms

For sake of exposition, we assume throughout this sec-
tion that the input graphG is connected. Note that our solu-
tions generalize easily to unconnected graphs. Without loss
of generality we assume unique edge weights (make edge
weights distinct by numbering the edges).Tseq(n;m) de-
notes the time to compute sequentially an MST of a graph
with n vertices andm edges. We assume a BSP computer
with p processors,p � 2, and asufficiently dense input
graph withm=n � p. Initially, each of thep processors
stores the values ofn andm, anddm=pe edges which are
arbitrarily distributed among the processors. To make the
algorithm’s description easier, we assume that an input edge
e = fu;vg is stored as two copies(u;v) and (v;u) on the
same processor, which is called thehome processor ofe.
Our algorithms consist of two main procedures,dense BSP
Borůvka steps andmerge steps. Dense BSP Bor˚uvka steps
are a BSP implementation of Bor˚uvka steps adapted to suf-
ficiently dense graphs. Merge steps make use of the locality
of data by computing the local MSTs on each processor and
combine them along aD-ary tree. We will see that combin-
ing the two procedures results in efficient BSP algorithms.

2.1. Dense BSP Boruvka Step

Borůvka’s algorithm [6] iterates in so-calledBorůvka
steps. At the beginning of Bor˚uvka’s algorithm, each vertex
forms a supervertex. A Bor˚uvka step proceeds in 3 steps.
B1. Already found subtrees of the MST (which formsu-
pervertices) are enlarged by selecting the minimum-weight

edgee incident to each subtree. These edges belong to the
MST. B2. Selected edgese = fu;vg are contracted, i.e.,u
andv are replaced by a new supervertexv0. The remaining
edges incident tou andv are inherited byv0. B3. Self-loops
are deleted and only the lightest among multiple edges re-
mains.

In each Borůvka step the number of supervertices is re-
duced by a factor of at least 1/2. In the worst case, this
results inΘ(logn) iterations which impliesΩ(logn) super-
steps when using at least a constant number of supersteps in
each iteration.

We outline in the following our realization of a dense
Borůvka step on the BSP model for sufficiently dense
graphs (m=n� p).

BSP-B1. First, each processor computes the local
minimum-weight edges (calledcandidates) incident to each
supervertex. Then, for each supervertex the candidates are
grouped together in segments on consecutive processors in
a way that each processor does not hold more thandm=pe
elements (segment scheme [5]). The minimum of a segment
is then computed along ad-ary tree,d to be determined by
the analysis. The home processor combines the information
for the two edge copies. The establishment of the segment
scheme for sufficiently dense graphs can be performed data-
independently by assuming wlog that each processor holds
a candidate for each supervertex. To reduce the number of
supersteps, we allot each processorn=2i elements in theith
iteration.

BSP-B2. The selected edges are broadcast to all proces-
sors, each of which computes sequentially the connected
components labels 0 ton0, n0 being the number of the con-
nected components. Edges can be updated locally. Contrary
to the general case, this work does not have to be shared for
efficiency reasons sinceO(n) 2 O(m=p).

BSP-B3. Selfloops can be detected completely locally.
Without affecting the correctness of the algorithm, we dis-
card the step of removing multiple edges.

Let p0 be the number of participating processors, which
we callactive.

Lemma 1 Given p0 � p active processors and a graph
with n0 � n=2i supervertices, i � 0, and m edges, with a
maximum of M 0 local edges per processor, a dense BSP
Borůvka step requires O(M0

+n=2i
+ p0=2logn�i

) space per
processor and W + gH + LT time on the BSP model, with
W = O(M 0

+n=2i
+ p0=2logn�i

), H = O(n=2i
+ p0=2logn�i

),
and T = O(1).

2.2. Merging of Local MSTs

A simple approach for computing the MST ofG is to
merge local MSTs along a balancedD-ary tree, 2� D � p.
First, each processor computes sequentially the MST of the
graph induced by the locally stored edges. In amerge step

the edges ofD local MSTs, sayFi(0); : : :;Fi(D�1), are gath-
ered by one processor which then computes the MST of the
graph induced by

SD�1
j=0 Fi(j). After sending its local MST

Fi to another processor, processorPi will not be needed for
further computations and becomespassive. The remaining
processors stayactive.

Lemma 2 Let D be an integer with 2 � D � p. Given a
graph with n 0 vertices and m edges, with a maximum of
M 0 local edges per processor, a D-ary merge step requires
O(D �M 0

) space per processor and W+gH+LT time on the
BSP model, with W = Tseq(n0;DM 0

)+O(DM 0
), H � DM0,

and T = 1.

2.3. MST Algorithms for Sufficiently Dense Graphs

A dense BSP Bor˚uvka step reduces the number of super-
vertices by a factor of at least 1=2, and a merge step discards
a factor ofD� 1=D of the total number of edges. Thus,
when executing both procedures interleaved, the problem
size decreases geometrically, and so does the local com-
putation time and the communication volume. Algorithm
BORUVKA MIXED MERGEuses this approach.

BORUVKA MIXED MERGE

1. Every Processor computes sequentially the MST of the
graph induced by the locally stored edges.

2. All processors are active. DodlogD pe times (on set of
active processors)

a) Execute a dense BSP Bor˚uvka step.
b) Execute aD-ary merge step.

Theorem 1 Let G be a connected undirected weighted
graph with n vertices, m edges, and a density of m=n � p.
Algorithm BORUVKA MIXED MERGE computes the MST
of G on the BSP model with O(m=p+Dn) space per proces-
sor in W + gH + LT time, with W = Tseq(n;m=p) + 2 �
Tseq(n;Dn)+O(Dn), H = O(Dn), and T = O(logD p).

Note that for a constantD, BORUVKA MIXED MERGE

requires an optimal communication volume ofO(n). The
work O(p �Tseq(n;m=p)) is optimal ifO(p �Tseq(n;m=p)) =
O(Tseq(n;m)).

Other MST algorithms with worse BSP times con-
sisting of dense BSP Bor˚uvka steps and/or merge steps
are briefly described in the following. Algorithm
DENSE BORUVKA consists only of dense BSP Bor˚uvka
steps and performs inO((m=p+ L) logn+ gn) BSP time.
By merely using merge steps the MST can be com-
puted inO(Tseq(n;m=p)+Tseq(n;Dn) logD p+gDn logD p+
L logD p) time (Algorithm MERGE MST). A generalization
of the idea in [1] is Algorithm BORUVKA THEN MERGE

which first computes the local MSTs, then executes dense
BSP Borůvka steps untiln=log2

Dp supervertices are left,
and concludes the computation by merging local MSTs.

This results inO(Tseq(n;m=p)+Tseq(n;Dn)+n loglogD p+
g(nD=logD p+n)+L(logD p+ loglogD p)) time.

3. Experimental Results

We have implemented the algorithms described in Sec-
tion 2.3 for sufficiently dense graphs and also investigated
some variations. The algorithms compute the minimum
spanning forest (MSF) for a possibly unconnected input
graph. For computing the local MSF sequentially, the al-
gorithms employ Kruskal’s algorithm which works well on
a wide variety of inputs [3]. Moreover, Kruskal’s algorithm
determines the MSF edges in order of increasing weight
which enhances all but the first local MSF computation.

We investigated the algorithms’ behavior on the Cogni-
tive Computing parallel machine CC-48 by Parsytec Ltd.,
using 2 to 16 processors. The CC-48 [27] is a 48-node
distributed memory computer based on Motorola PowerPC
604 processors which are interconnected by a fat mesh of
clos of 2� 24 processors. Our programs are written in the
programming language C and make use of the Paderborn
University BSP-library (PUB) [26].

Experiments were done on following types of input
graphs. 1.RANDOM: For each of them edges, a pair of ver-
tices inf0;1; : : :;n� 1g2 is randomly chosen and assigned
a random (integer) weight fromf0;1; : : :;maxWg, where
maxW denotes the maximum allowable edge weight. The
random numbers are generated by the C-functionrand().
2. PAIRS: This type of graph is constructed so that in each
Borůvka step only pairs (except one triple for an odd num-
ber of supervertices) are collapsed. The remaining edges
are random ones that are created in the same way as for
graph typeRANDOM. Their weight is chosen higher than
the weights of the edges that cause the pair formation.

The behavior of the algorithms was tested on graphs of
size ofn = 1000,m = 400000, andmaxW = 1000000. The
runtimes forRANDOM express the average of 4RANDOM

graphs. For the same size one graph of typePAIRS was
tested. All results state the average of at least 5 runs.

After the description of the experimental results (Sec-
tions 3.1 to 3.4) follows an assessment of the results in Sec-
tion 3.5.

3.1. Dense BSP Borůvka Steps

Three versions of dense BSP Bor˚uvka steps were im-
plemented. The first version (“BSP plain”) follows the de-
scription in Section 2.1 and sends even small messages. The
second version (“message packing”) groups small messages
with the same destination processor into one large mes-
sage. This saves the high startup cost for many small mes-
sages. Rather then using the segment scheme for computing

minimum-weight edges, our third version (“vector”) em-
ploys, in addition to message packing, a vector computation
(parallel prefix computation) provided by the PUB library.1

The effects of the different dense BSP Bor˚uvka steps are
shown on Algorithm DENSE BORUVKA. Figure 1 depicts
the total running times of each version on inputRANDOM.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10 12 14 16

ru
nn

in
g

tim
e

[in
 s

ec
]

number of processors

n = 1000, m = 400000, maxW = 1000000

BSP Plain
Message Packing

Vector

Figure 1. Different dense BSP Borůvka steps.

A significant improvement can be observed by using
message packing. In fact, without using message packing,
the running times do not decrease noticeably as the number
of processors increases. For theRANDOM graphs the run-
ning times are reduced by 22.2% (2 processors) to 72.6%
(16 processors) through the use of message packing. Hence,
the impact of message packing is substantial. Even better
results are obtained by the use of the vector function of the
PUB library. The improvement over the message packing
version is 3.6% for 2 processors to 48.2% for 16 proces-
sors. This enhancement shows the superior performance of
a machine-dependently optimized algorithm over a generic
algorithm. Similar results hold for thePAIRS graph.

3.2. Merge Steps

All algorithms containing merge steps were imple-
mented with merge trees of various degrees. AlthoughD =

2 results in the best asymptotical local computation time and
communication volume on the BSP model, for most of our
tests higher degrees were more beneficial. Higher degrees
cause more load in the network, but result in less supersteps.
More specifically, in MERGE MSF using a degree other
than 2 reduces the running time by at most 15.6% which
was obtained with 14 processors. The value ofD allows for
optimizations based on machine-dependent parameters like
latency and bandwidth. Its impact on the running time is
considerable considering that the absolute runtime is small.

1Vector computation (instead of segment scheme) was suggested in the
algorithm for sufficiently-dense graphs by Adleret al. [1].

3.3. Dense MSF Algorithms

The previous sections have given insight into the perfor-
mance of the different executions of dense BSP Bor˚uvka
steps and merge steps. Now, we examine the performance
of each algorithm in Section 2.3 on our inputs. The algo-
rithms make use of message packing and the PUB library’s
vector function. We summarize only the results obtained
using the best degree of the merge trees tested.

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16

ru
nn

in
g

tim
e

[in
 s

ec
]

number of processors

n = 1000, m = 400000, maxW = 1000000

DENSE_BORUVKA
MERGE_MSF

BORUVKA_THEN_MERGE
BORUVKA_MIXED_MERGE

Figure 2. Runtimes on PAIRS

First, we analyze the performance of the algorithms
on the input graph of typePAIRS which causes Algo-
rithm DENSE BORUKVA to have the maximum number
of Borůvka steps. As we can see in Figure 2, Algo-
rithm DENSE BORUKVA performs worst for all numbers of
processors tested, whereas almost the same running times
were measured for the three algorithms containing merge
steps. However, the gap between DENSE BORUVKA and
the other three algorithms becomes smaller with an increas-
ing number of processors. DENSE BORUVKA requires with
2 processors more than four times the running time used by
the other algorithms. For 12 processors, it needs twice as
much and with 16 processors additional 38% time.

Among the three algorithms that use merges steps, Algo-
rithm BORUVKA MIXED MERGE requires most time, even
though it has the best asymptotical BSP cost. The propor-
tional deviation was largest with 16 processors for which
its runtime was 14.6% more than the best. For all tested
numbers of processors, except 2, Algorithm MERGE MSF
performs best. It improves the running time of BORU-
VKA THEN MERGE often only slightly. We observe that
all algorithms which use merge steps have a larger runtime
for 16 processors than for 14 processors.

For the average running times of the fourRANDOM

graphs, a similar behavior was observed, except for higher
numbers of processors (shown in Figure 3). As expected,
the absolute runtimes are halved for DENSE BORUVKA.

0.26

0.28

0.3

0.32

0.34

0.36

0.38

10 11 12 13 14 15 16

ru
nn

in
g

tim
e

[in
 s

ec
]

number of processors

n = 1000, m = 400000, maxW = 1000000

DENSE_BORUVKA
MERGE_MSF

BORUVKA_THEN_MERGE
BORUVKA_MIXED_MERGE

Figure 3. Runtimes on RANDOM (10 – 16 proc.)

The times for the other algorithms stayed almost in the same
range. As before, the algorithms MERGE MSF, BORU-
VKA THEN MERGE, and BORUVKA MIXED MERGE re-
quire similar runtimes. Algorithm DENSE BORUVKA per-
forms much better than for thePAIRS input. With 2
processors, it needs twice as much as the best of the oth-
ers. This decreases to 18% for 10 processors. Start-
ing from 12 processors, DENSE BORUVKA is even bet-
ter than Algorithm BORUKVA MIXED MERGE and be-
comes the best algorithm of all on theRANDOM input
for 16 processors. Contrary to MERGE MSF and BORU-
VKA MIXED MERGE, the runtime of Algorithm BORU-
VKA THEN MERGE decreases steadily achieving the best
time of all algorithms with 14 processors. For 16 proces-
sors it is beaten by DENSE BORUVKA with a runtime that
is better by 1.2%.

3.4. Speedups

In order to investigate absolute speedups, compared
to sequential implementations, we implemented the three
standard sequential algorithms: Bor˚uvka’s, Kruskal’s, and
Prim’s algorithms. For all inputs tested, Kruskal’s algorithm
performed best (1.603327 seconds forRANDOM, 1.494378
seconds forPAIRS) and Borůvka’s algorithm required the
most time.

For both input types we obtained a speedup of better than
2 for 2 processors, and of approximately 3.5 for 4 proces-
sors. We believe that if we increase the problem size we
also obtain a higher, close to optimal, speedup for other
small numbers of processors. The super-linear speedup for
2 processors is probably caused by caching effects. With the
fixed-sized input of typePAIRS, the highest speedup (5.4%)
was achieved by Algorithm MERGE MSF for 14 proces-
sors. ForRANDOM graphs, a speedup of 6.1% could be ob-
tained using Algorithm DENSE BORUVKA for employing

16 processors.

3.5. Assessment

Recall that the tests and therefore the following as-
sessments are based on fixed-sized inputs. Algorithm
MERGE MSF performed very well for dense graphs and
a small number of processors. This is because the al-
gorithm is simple and hides only small constant factors
in the big-Oh notation. Similarly good results were ob-
tained by Algorithm BORUVKA THEN MERGE. For the
RANDOM input BORUVKA THEN MERGE was even the
only algorithm containing merge steps that had a de-
creasing runtime from 14 to 16 processors. BORU-
VKA MIXED MERGE performed worst among the algo-
rithms that employ merge steps. BORUVKA THEN MERGE

has the advantage over BORUKVA MIXED MERGE that the
number of dense Bor˚uvka steps performed is adjusted to
the actual number of supervertices. The three algorithms
containing merge steps have the advantage of being able to
adapt to the conditions of the underlying parallel machine
by varying the degree of the merge tree.

Algorithm DENSE BORUVKA performs quite badly on
small numbers of processors and for thePAIRS input in gen-
eral. However, its runtime becomes better with an increas-
ing number of processors. For the input of typeRANDOM it
requires only half the time for the worst case input, which
makes it reasonable for more than 10 processors. It even
outperforms all other algorithms on theRANDOM input for
16 processors.

For a fixed-size input, it seems that with an increasing
number of processors the dense BSP Bor˚uvka steps are
more efficient than the merge steps, especially for random
inputs. This is because efficiency of merging decreases
as the number of processor increases (more local MSFs to
merge, less edges can be discarded in one local MSF com-
putation), while the efficiency of Bor˚uvka steps stay the
same. This is especially noticeable inRANDOM graphs,
where the number of Bor˚uvka steps is small. Algorithm
DENSE BORUVKA is able to adapt to the problem in the
number of executed Bor˚uvka steps.

Message packing is extremely important on the CC-48.
Juurlink [21] has also noticed the advantage of message
packing for the Intel Paragon and Chung and Condon ob-
served it for the CM-5 [11].

4. Concluding Remarks

We conclude that the BSP model gives rise to efficient
parallel MST algorithms. The presented algorithms use
merging of local MSTs, therefore they could not have been
designed under a model that supports only fine-grained par-
allel computing. Furthermore, the parallel implementations

have the advantage that they can cope with large input data.
The sequential implementations could only handle inputs
up to 500,000 edges. However, it seems that a large den-
sity is necessary to make the algorithms worthwhile. The
minimum density ofp predicted by the BSP model does not
seem to be likely to produce good results for a small number
of processors. Another shortcoming of the BSP model, at
least for our experiments, is that it did not correctly predict
the relative performance of the algorithms tested. However,
this is more a problem of asymptotic analysis, since theo-
retically n, m, and p go to infinity, while in practicep is
bounded by a small constant.

5. Acknowledgments

The use of the parallel machine CC-48 was possible
through the Paderborn Center for Parallel Computing (PC2).
The authors would also like to thank Patrick Morin and Rolf
Wanka for their helpful comments.

References

[1] M. Adler, W. Dittrich, B. Juurlink, M. Kutyłowski, and
I. Rieping. Communication-optimal parallel minimum span-
ning tree algorithms. InProc. of ACM Symp. on Parallel
Algorithms and Architectures (SPAA), pages 27 – 36, 1998.

[2] B. Awerbuch and Y. Shiloach. New connectivity and MSF
algorithms for shuffle-exchange network and PRAM.IEEE
Transactions on Computers, C-36(10):1258–1263, 1987.

[3] R. S. Barr, R. V. Helgason, and J. L. Kennington. Minimal
spanning trees: An empirical investigation of parallel algo-
rithms. Parallel Computing, 12(1):45–52, 1989.

[4] A. Bäumker and W. Dittrich. Parallel algorithms for image
processing: Practical algorithms with experiments. InProc.
of Intern. Parallel Processing Symp. (IPPS), pages 429–433,
1996.

[5] A. Bäumker, W. Dittrich, and F. Meyer auf der Heide. Truly
efficient parallel algorithms: c-optimal multisearch for an
extension of the BSP model. InProc. of European Symp. on
Algorithms (ESA), pages 17–30, 1995.

[6] O. Borůvka. O jistém problému minimálnı́m. Práce
Moravské Pr̆ı́rodovĕdecké Spolec̆nosti v Brnĕ (Acta Societ.
Scient. Natur. Moravicae), 3:37–58 (in Czech.), 1926.

[7] E. Cáceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping,
A. Roncato, N. Santoro, and S. W. Song. Efficient paral-
lel graph algorithms for coarse grained multicomputers and
BSP. In Proc. of Intern. Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 390 – 400, 1997.

[8] B. Chazelle. A faster deterministic algorithm for minimum
spanning trees. InProc. of Symp. on Foundations of Com-
puter Science (FOCS), pages 22 –31, 1997.

[9] F. Y. Chin, J. Lam, and I. Chen. Efficient parallel algo-
rithms for some graph problems.Communications of the
ACM, 25(9):659–665, 1982.

[10] K. W. Chong. Finding minimum spanning trees on the
EREW PRAM. InProc. of Intern. Computer Symp. (ICS),
pages 7 – 14, 1996.

[11] S. Chung and A. Condon. Parallel implementation of Boru-
vka’s minimum spanning tree algorithm. InProc. of Intern.
Parallel Processing Symp. (IPPS), pages 302–308, 1996.

[12] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum
spanning forests in logarithmic time and linear work using
random sampling. InProc. of SPAA, pages 243–250, 1996.

[13] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. San-
tos, K. E. S. R. Subramonian, and T. von Eicken. A practi-
cal model of parallel computation.Communications of the
ACM, 39(11):78 – 85, 1996.

[14] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel
geometric algorithms for coarse grained multicomputers. In
Proc. of ACM Symp. on Comput. Geometry, pages 298–307,
1993.

[15] F. Dehne and S. W. Song. Randomized parallel list ranking
for distributed memory multiprocessors. To appear inIntern.
Journal of Parallel Programming.

[16] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms.Journal
of the ACM, 34:596–615, 1987.

[17] S. Götz. Communication-efficient parallel algorithms for
minimum spanning tree computations. Diplomarbeit, Dep.
of Math. and Comp. Science, University of Paderborn, Ger-
many, 1998.http://www.scs.carleton.ca/esylvie/work.html.

[18] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas.
Towards efficiency and portability: Programming with the
BSP model. InProc. of SPAA, pages 1–12, 1996.

[19] R. L. Graham and P. Hell. On the history of the minimum
spanning tree problem.Annals of the History of Computing,
7(1):43–57, 1985.

[20] D. B. Johnson and P. Metaxas. A parallel algorithm for
computing minimum spanning trees.Journal of Algorithms,
19:383 –410, 1995.

[21] B. Juurlink. Experimental validation of parallel computation
models on the Intel Paragon. InProc. of IPPS/SPDP, 1998.

[22] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized
linear-time algorithm for finding minimum spanning trees.
Journal of the ACM, 42(2):321–328, 1995.

[23] D. E. Knuth.The Stanford GraphBase: A Platform for com-
binatorial Computing. ACM Press, New York, NY, 1993.

[24] B. M. E. Moret and H. D. Shapiro. An empirical assess-
ment of algorithms for constructing a minimum spanning
tree. InComputational Support for Discrete Mathem., vol-
ume 15 ofDIMACS Series in Discrete Mathem. and Theoret-
ical Comp. Science, pages 99–117. American Mathematical
Society, 1994.

[25] C. Poon and V. Ramachandran. A randomized linear work
EREW PRAM algorithm to find a minimum spanning forest.
In Proc. of Intern. Symp. on Algorithms and Computation
(ISAAC), pages 212 – 222, 1997.

[26] Heinz Nixdorf Institut, University of Paderborn, AG Meyer
auf der Heide. PUB-Library 5.0, Paderborn University BSP-
library. http://www.uni-paderborn.de/ebsp.

[27] Paderborn Center for Parallel Computing (PC2). CC-
48 - a parallel PowerPC 604 system.http://www.uni-
paderborn.de/pc2/services/systems/cc/.

[28] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33:103–111, 1990.

