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EXPLICIT SOLUTION TO AN INVERSE FIRST-PASSAGE TIME PROBLEM FOR

LÉVY PROCESSES. APPLICATION TO COUNTERPARTY CREDIT RISK

M.H.A DAVIS AND M.R. PISTORIUS

Abstract. For a given Markov process X and survival functionH on R+, the inverse first-passage time problem

(IFPT) is to find a barrier function b : R+ → [−∞,+∞] such that the survival function of the first-passage time

τb = inf{t ≥ 0 : X(t) ≤ b(t)} is given by H . In this paper we consider a version of the IFPT problem where

the barrier is fixed at zero and the problem is to find an entrance law µ and a time-change I such that for the

time-changed process X ◦ I the IFPT problem is solved by a constant barrier at the level zero. For any Lévy

process X satisfying a Cramér assumption, we identify explicitly the solution of this problem, which is given in

terms of a quasi-invariant distribution of the process X killed at the epoch of first entrance into the negative

half-axis. For a given multi-variate survival function H of generalised frailty type we construct subsequently an

explicit solution to the corresponding IFPT with the barrier level fixed at zero. We apply these results to the

valuation of financial contracts that are subject to counterparty credit risk.

1. Introduction

Financial models incorporating the idea that a firm defaults on its debt when the value of the debt exceeds the

value of the firm were originally introduced by Merton [25]. Because ‘firm value’ cannot be directly measured,

later contributors such as Longstaff & Schwartz [24] and Hull & White [17] have moved to stylized models in

which default occurs when some process Y (t) – interpreted as ‘distance to default’ – crosses a given, generally

time-varying, barrier b(t). The risk-neutral distribution of the default time can be inferred from the firm’s credit

default swap spreads, and Hull & White [17] provide a numerical algorithm to determine b(t) such that the first

hitting time distribution H is equal to this market-implied default time distribution.

As we will show, these calculations are greatly simplified if, instead of starting at a fixed point Y (0) = x > 0

and calibrating the barrier b(t) we fix the barrier at b(t) ≡ 0 and start Y at a random point Y (0) = Y0, where

Y0 has a distribution function F on R+, to be chosen. If we combine this with a deterministic time change then

it turns out that essentially any continuous distribution H can be realized in this way, often with closed-form

expressions for F .

In precise terms, the inverse first-passage time (IFPT) problem may be described as follows. Let (Y, Pµ) be a

real-valued Markov process with càdlàg1 paths that has entrance law µ on R+\{0} (i.e., Pµ(Y0 ∈ dx) = µ(dx)).

Given a CDF H on R+, the IFPT for the process (Y, Pµ) is to find a barrier function b : R+ → [−∞,+∞] such

that the first-passage time τYb of the process Y below the barrier b has CDF H :

Pµ(τYb ≤ t) = H(t), t ∈ R+,(1.1)

with τYb = inf{t ≥ 0 : Yt ∈ (−∞, b(t))}.

Recently there has been a renewed interest in the IFPT problem, in good part motivated by the above questions

of credit risk modeling. Chen et al. [11] proved existence and uniqueness of the IFPT of an arbitrary continuous

CDF on R+ for a diffusion with smooth bounded coefficients and strictly positive volatility function. In [1, 16,

17, 29, 30] a number of methods have been developed to compute this boundary, which is in general non-linear.

Zucca & Sacerdote [30] analyse a Monte Carlo approximation method and a method based on the discretization
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of the Volterra integral equation satisfied by the boundary, which was derived in Peskir [27], while related

integral equations are studied in Jaimungal et al. [20]. Avellaneda & Zhu [1] derive a free boundary problem

for the density of a diffusion killed upon first hitting the boundary, where the free boundary is the solution to

the IFPT, and Cheng et al. [12] established the existence and uniqueness of a solution to this free-boundary

problem. A related “smoothed” version of the IFPT problem is considered in Ettinger et al. [15]: for any

prescribed life-time it is shown that there exists a unique continuously differentiable boundary for which a

standard Brownian motion killed at a rate that is a given function of this boundary exactly has the prescribed

life-time.

In this paper we consider a related inverse problem where the barrier is fixed to be equal to zero, and the

problem is to identify in a given family a stochastic process of which the first-passage time below the level zero

has the given probability distribution. For a given Markov process X , the class of stochastic processes that we

consider consists of the collection (Pµ, X ◦ I) that is obtained by time-changing X by a continuous increasing

function I and by varying the entrance law µ of X over the set of all probability measures on the positive

half-line. Here I : R+ → [0,∞] is a function that is continuous and increasing on its domain, i.e. at all t for

which I(t) is finite, and the time-changed process X ◦ I = {(X ◦ I)(t), t ∈ R+} is defined by X ◦ I(t) = X(I(t))

if I(t) is finite, and by lim supt→∞X(t) otherwise.

Definition 1.1. For a continuous CDF H , the randomised and time-changed inverse first-passage problem

(RIFPT) is to find a probability measure µ on (R+,B(R+)) and an increasing continuous function I : R+ →
[0,∞] such that for the time-changed process Y = X ◦ I the first-passage time of Y into the negative half-line

(−∞, 0) has CDF H :

Pµ(τY0 ≤ t) = H(t), t ∈ R+,(1.2)

with τY0 = inf{t ∈ R+ : Yt ∈ (−∞, 0)}.

The fact that the boundary is constant and known is helpful for practical implementation of the model, e.g.

in subsequent counterparty risk valuation computations and for the matching of model- and market prices.

In this paper we concentrate on the case where X is a Lévy process satisfying a Cramér condition. The class

of Lévy processes has been extensively deployed in financial modeling, see the monograph Cont & Tankov [13].

For the general theory of Lévy processes we refer to the monographs Applebaum [2], Bertoin [4], Kyprianou [21]

and Sato [28].

The key step is to determine, for some λ ∈ R+, a λ-invariant distribution for the process X killed at the

first hitting time of 0; see Definition 2.4 below. If µ is λ-invariant then under Pµ the first passage time τX0
is exponentially distributed with parameter λ, so (µ, I) with I(t) = t solves the RIFPT problem when H is

Exp(λ). The solution for other continuous distribution functions H is then obtained by an obvious deterministic

time change.

The paper is structured as follows. In Section 2 we formulate the problem and state the main results for the

RIFPT problem, Theorems 2.2 and 2.6. The proof of Theorem 2.2 is also given, together with an illustrative

example where the Lévy process is drifting Brownian motion. In Section 3 a multi-dimensional version of the

RIFPT theorem is stated for a specific class of multivariate default-time distributions; its proof follows quite

easily given the results of Section 2. The proof of Theorem 2.6 involves the relationship between first-passage

times and the so-called Wiener-Hopf factors; these matters are discussed in Section 4. In Section 5 the results

of Theorem 2.6 are established for the special case of mixed-exponential Lévy processes. The proof is then

completed in Section 6, exploiting the fact that mixed-exponential Lévy processes are dense in the class of Lévy

processes. The concluding Section 7 demonstrates the application of our results to a problem of counterparty

risk valuation.

2. IFPT Problem formulation and main results

Let (Ω,F ,F, P ) be a filtered probability space with completed filtration F = {Ft}t≥0, and X be an F-Lévy

process, i.e., an F-adapted stochastic process with càdlàg paths that has stationary independent increments,
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with X0 = 0 and the property that for each s ≤ t < u the increment Xu − Xt is independent of Fs. Let

{Px, x ∈ R} be the family of probability measures corresponding to shifts of the Lévy process X by x and,

more generally, denote by Pµ the family of measures with entrance law (the distribution of X0) equal to µ;

thus Px = P δx where δx is the Dirac measure at x. To avoid degeneracies we exclude the case that |X | is a

subordinator. As standing notation we denote X∗(t) = infs≤tX(s) and X∗(t) = sups≤tX(s). Furthermore we

make throughout the following assumption.

Assumption 2.1. The Gaussian coefficient σ2 and Lévy measure ν of X satisfy at least one of the following

conditions:

(i) σ2 > 0, (ii) ν(−1, 1) = +∞, (iii) ν has no atoms and Sν ∩ (−∞, 0) 6= ∅,

where Sν denotes the support of ν.

When neither of Assumptions 2.1(i) and (ii) hold, the process X is of the form Xt = dt+
∑

s∈(0,t] ∆Xs, where

∆Xs = Xs −Xs− denotes the jump-size of X at time s, for some constant d, which is called the infinitesimal

drift of X .

The first observation is that for any entrance law there exists a unique time-change that solves the RIFPT

problem. For a given probability measure µ on the positive real line, define the function Iµ : R+ → [0,∞] by

Iµ(t) = F
−1

µ (H(t)), t ∈ R+,(2.1)

with F
−1

µ (x) = inf{t ∈ R+ : Fµ(t) < x},(2.2)

where H = 1 −H and Fµ denote the survival functions corresponding to the CDF H and to the CDF of the

first-passage time τX0 of X into the negative half-line (−∞, 0) under the probability measure Pµ. Here and

throughout this paper, we use the convention inf ∅ = +∞.

Theorem 2.2. Let H be a given CDF on R+\{0}, and let µ be a probability measure on (R+\{0},B(R+\{0})).
Assume that µ is continuous if Assumption 2.1(i) and (ii) are not satisfied. If H is continuous, then the function

Iµ defined in Eqn. (2.1) is the unique time-change such that (µ, Iµ) is a solution of the RIFPT problem.

For the proof, we need some properties of the distribution of the running infimum.

Lemma 2.3. (i) If X satisfies Assumption 2.1(i) or (ii), the CDF of X∗(t) is continuous, for any strictly

positive t.

(ii) If ν(−1, 1) is finite and Assumption 2.1(iii) holds, then the CDF of X∗(t) is continuous on the set

R−\min{dt, 0}, with R− = (−∞, 0].

The proof of Lemma 2.3(i) can be found in Sato [28, Lemma 49.3] and Pecherskii & Rogozin [26, Lemma 1],

while Lemma 2.3(ii) follows by conditioning on the first jump of the process X .

Proof of Theorem 2.2. Denote by c the value 0 or max{−d, 0} according to whether or not X satisfies at least

one of the Assumptions 2.1(i) and (ii). The key observation in the proof is that, for any x ∈ R+\{ct}, the
map t 7→ Px(τ

X
0 > t) is (a) continuous and (b) strictly decreasing. To verify claim (a) it suffices to show that

Px(τ
X
0 = t) is zero for any non-negative t and strictly positive x 6= ct. The latter follows as consequence of the

bound Px(τ
X
0 = t) ≤ P0(X∗(t) = −x) that holds for any strictly positive x and t, and the fact (from Lemma 2.3)

that the CDF of X∗(t) is continuous on (−∞, 0]\{−ct} for any strictly positive t. To see that claim (b) is true,

observe that, by the Markov property, we have for strictly positive x, t and s

Px

(
τX0 > t

)
− Px

(
τX0 > t+ s

)
= Px

(
τX0 > t, τX0 ≤ t+ s

)

≥ E
(
1{X∗(t)>−x}P (X∗(s) < −x− z)|z=X(t)

)
.(2.3)

Since for any strictly positive epoch s the random variable Xs has an infinitely divisible distribution and any

infinitely divisible distribution (not equal to a point mass or subordinator) has unbounded support that contains
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θ γ

(θ∗,−λ∗)

ψ(θ)

θθ

Figure 1. The graph of the Laplace exponent ψ on the interval [θ, θ) of a Lévy process satisfying Assump-

tion 2.5, with γ denoting the largest root of the Cramér-Lundberg equation ψ(θ) = 0, θ∗ the solution of Petrov’s

equation ψ′(θ) = 0 and −λ∗ = ψ(θ∗). The left- and right-inverses of ψ are denoted by φ and φ.

the positive half-axis (e.g., [28, Corollary 24.4]), it follows that we have

(2.4) P (X∗(s) < −x) ≥ P (X(s) < −x) > 0, s > 0, x ≥ 0.

By combining Eqns. (2.3) and (2.4) we have for any strictly positive x, t and s,

Px

(
τX0 > t

)
> Px

(
τX0 > t+ s

)
,

so that it follows that claim (b) holds true.

The above key observation in conjunction with Lebesgue’s Dominated Convergence Theorem and the as-

sumption that µ is continuous if X does not satisfy Assumption 2.1(i) and (ii) imply that the map t 7→ Fµ(t)

is continuous and strictly decreasing. Denote by Y µ the time-changed process X ◦ Iµ. Since Iµ is monotone

increasing and continuous, we have

(2.5) Pµ
(
τY

µ

0 ≥ t
)
= Pµ

(
τX0 ≥ Iµ(t)

)
= Fµ

(
F

−1

µ (H(t))
)
= H(t)

for t ∈ R+, where we used in the final equality that Fµ is continuous. �

We next turn to the specification of the second degree of freedom, the entrance law µ. By an appropriate

choice of the randomisation µ the form of the function Fµ in the specification of the time-change Iµ in Eqn. (2.1)

can be considerably simplified. In particular, the function Fµ is equal to an exponential if µ is taken to be

equal to any quasi-invariant distribution of the process X killed at the epoch of first-passage below the level 0,

the definition of which, we recall, is as follows:

Definition 2.4. For given λ ∈ R+, the probability measure µ on the measurable space (R+,B(R+)) is a λ-

invariant distribution for the process X killed at the epoch of first entrance into the negative half-axis (−∞, 0)

if it holds

(2.6) Pµ
(
Xt ∈ A, t < τX0

)
= µ(A)e−λt for all A ∈ B(R+).

To guarantee existence of such distributions we restrict ourselves in the subsequent analysis to Lévy processes

X satisfying the following assumption:

Assumption 2.5 (Cramér Assumption). The distribution of X1 satisfies Cramér’s condition

E0[e
γX1 ] = 1 for some γ ∈ (0,∞),

where E0[·] denotes the expectation under the probability measure P0.

Under the Cramér Assumption, there exists a continuum of quasi-invariant distributions of the process X

killed upon the first moment of entrance into the negative half-axis, which are given in terms of the Laplace

exponent and the positive Wiener-Hopf factor of X . The Laplace exponent ψ : R → (−∞,∞] of X , given by

ψ(θ) = logE[eθX1 ] for real θ, is finite valued and convex when restricted to the interior (θ, θ) of its maximal
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domain, where θ = sup{θ ∈ R : E[exp{θX1}] < ∞} and θ = inf{θ ∈ R : E[exp{θX1}] < ∞} (In Figure 1 the

Laplace exponent of a Lévy process satisfying Assumption 2.5 is plotted.) Since ψ is a convex function that is

zero at zero and, under Assumption 2.5, also takes the value zero at a strictly positive point γ, it follows that

the function ψ attains a strictly negative minimum

−λ∗ := min
θ∈[θ,θ]

ψ(θ) = ψ(θ∗),

where θ∗ ∈ (0, θ) solves ψ′(θ∗) = 0.(2.7)

We refer to the relation in Eqn. (2.7) satisfied by θ∗ as the Petrov equation, and to the constants θ∗ and

λ∗ = ψ(θ∗) as the Petrov shift and the Petrov-coefficient. On the intervals [θ∗, θ) and (θ, θ∗] the function ψ is

continuous and strictly monotone with inverses denoted by

(2.8) φ :
[
−λ∗, ψ(θ)

)
→
[
θ∗, θ̄

)
, φ̄ : [−λ∗, ψ(θ)) → (θ, θ∗] .

The positive Wiener-Hopf factor is the map Ψ+ : (0,∞)× R → C given by

(2.9) Ψ+(q, θ) = E[exp(iθX∗
e(q))], q > 0, θ ∈ R,

with e(q) an Exp(q) random time that is independent of X . It is shown in Lemma 4.4 below that, under the

Cramér Assumption 2.5, the definition of the map Ψ+ can be uniquely extended to the set Dcl = {(q, θ) : ℜ(q) ≥
−λ∗,ℑ(θ) ≥ 0} (by analytical and continuous extension).

Consider for any λ ∈ (0, λ∗] the probability measure µλ on (R+,B(R+)) that is characterised by its Laplace

transform µ̂λ that is given by

(2.10) µ̂λ(θ) =
φ̄(−λ)

φ̄(−λ) + θ
·Ψ+(−λ, iθ), λ ∈ (0, λ∗].

The members of the family {µλ, λ ∈ (0, λ∗]} are quasi-invariant distributions for the Lévy process killed upon

first entrance into the negative half-line (−∞, 0):

Theorem 2.6. For any λ ∈ (0, λ∗], µλ is the unique probability measure on (R+,B(R+)) that is a λ-invariant

distribution of {Xt, t < τX0 }.

The proof of Theorem 2.6 is provided in Section 6 below. Under any of the entrance laws µλ given in

Theorem 2.6 the distribution of the first-passage time τX0 is exponential and thus the corresponding survival

function Fµλ
and time change Iµλ

defined in Eqn. (2.1) take an explicit form:

Fµλ
(t) = exp(−λt), t ∈ R+, λ ∈ (0, λ∗],

Iµλ
= − 1

λ
logH(t), t ∈ R+.

The combination of Theorems 2.2 and 2.6 immediately yields the following result:

Corollary 2.7. For any given continuous survival function H and λ ∈ (0, λ∗], the RIFPT problem is solved by

the pair (µλ, Iµλ
):

Pµλ

(
τY

µλ

0 > t
)
= H(t), t ∈ R+.

2.1. Example. As a simple example, let us consider the case where Xt is Brownian motion with drift, with

entrance law µ, or equivalently Xt = X0+Wt+ ηt whereWt is a standard Brownian motion, η ∈ R and X0 ∼ µ

is a random variable independent of {Wt, t ∈ R+}. In this case

ψ(θ) = logE[eθX1 ] = ηθ +
1

2
θ2

and θ = −∞, θ = +∞, so the Petrov coefficients are θ∗ = −η, λ∗ = 1
2η

2 and the inverse of φ to the left of θ∗ is

φ(y) = −η −
√
η2 + 2y.
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The positive Wiener-Hopf factor is

Ψ+(q, θ) =
−i(η −

√
η2 + 2q)

θ − i(η −
√
η2 + 2q)

The Laplace transform of the λ-invariant distribution is therefore given by

µ̂λ(θ) =

(
−η −

√
η2 − 2λ

θ − (η +
√
η2 − 2λ)

)(
−η +

√
η2 − 2λ

θ − (η −
√
η2 − 2λ)

)

=
2λ

θ+ − θ−

(
1

θ − θ+
− 1

θ − θ−

)
,(2.11)

where θ± = η ±
√
η2 − 2λ. The condition η ≤

√
2λ is necessary and sufficient for the expression at (2.11) to

be the Laplace transform of a probability measure on R+, and we note that this is the same as the condition

λ ∈ (0, λ∗] of Theorem 2.6. Under this condition µλ is a mixture of exponentials (or a gamma distribution if

η =
√
2λ). This special case was presented in our earlier paper [14].

3. Multi-dimensional RIFPT

Given a joint survival function H : (R+)
d → [0, 1] and a d-dimensional Lévy process, a d-dimensional version

of the RIFPT problem is phrased as the problem to find a probability measure on Rd and a collection of

increasing continuous functions I1, . . . , Id such that the following identity holds:

Pµ
(
τY

1

> t1, . . . , τ
Y d

> td

)
= H(t1, . . . , td), for all t1, . . . , td ∈ [0, 1],(3.1)

Y i := X ◦ Ii for i = 1, . . . , d.(3.2)

In order to present a solution we will impose some structure on the joint survival function H , assuming that it

is from the class of multivariate generalised frailty survival functions that is defined as follows:

Definition. A joint survival function H : Rd
+ → [0, 1] is called a (d-dimensional) generalised frailty distribution

if there exists a random vector Υ = (Υ1, . . . ,Υm) for some m ∈ N such that we have

H(t1, . . . , td) = E

[
d∏

i=1

Hi(ti|Υ)

]
, t1, . . . , td ∈ [0, 1],

where Hi(·|u) : R+ → [0, 1], i = 1, . . . , d, u ∈ U
m denotes a collection of survival functions, where U

m denotes

the image of the random vector Υ.

When we denote by (T1, . . . , Td) a random vector with joint survival functionH , the condition in the definition

can be phrased as the requirement that there exists a finite-dimensional random vector Υ such that, conditional

on Υ, the random variables T1, . . . , Td are mutually independent. In the context of credit risk modeling, for

example, one may interpret the vector Υ as the common factors driving the solvency of a collection of d

companies (such as economic environment, as opposed to idiosyncratic factors).

We remark that the terminology of generalised frailty is derived from the theory of (multi-variate) survival

modeling, in which frailty refers to a common factor driving the survival probabilities of the individual entities.

One of the commonly studied models is that of multiplicative frailty where the frailty appears as a multiplicative

factor in the individual hazard functions, in which case the conditional individual survival functions Hi(·|u)
take the form Hi(·)u for u ∈ R+.

Assume henceforth that H is a d-dimensional generalised frailty survival function, and denote the corre-

sponding collection of conditional survival functions by {Hi(·|u), i = 1, . . . , d, u ∈ Um} for some m ∈ N. A

solution to the multi-dimensional IFPT of the survival function H can be constructed by application of the con-

struction that was used in Corollary 2.7 to the conditional survival functions Hi(·|u). To formulate this result,

let {X i|u, i ∈ {1, . . . , d}, u ∈ Um} be a collection of independent Lévy processes, each satisfying the Cramèr
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Assumption, Assumption 2.5, and denote by {µi(·|u), i ∈ {1, . . . , d}, u ∈ Um} the probability distributions that

have Laplace transforms µ̂i(·|u) given by

µ̂i(θ|u) =
φ̄i|u(−λi|u)

φ̄i|u(−λi|u) + θ
·Ψ+

i|u(−λi|u, iθ), for some λi|u ∈ (0, λ∗i|u],

where φ̄i|u, Ψ
+
i|u, λ

∗
i|u are the corresponding left-inverse of the Laplace exponent, positive Wiener-Hopf factor

and Petrov coefficient of the Lévy processX i|u, respectively. Finally, let {Ii(·|u), i ∈ {1, . . . ,m}, u ∈ Um} denote

the collection of time-changes given by

Ii(t|u) = − 1

λi|u
logHi(t|u), t ∈ R+.

The solution of the multi-dimensional IFPT is given as follows:

Theorem 3.1. It holds

P
(
τY

1

0 > t1, . . . , τ
Y d

0 > td

)
= H(t1, . . . , td), t1, . . . , td ∈ [0, 1],

with Y i(t) = Y
i|Υ
0 +X i|Υ (Ii(t|Υ)) , i = 1, . . . , d,

where, conditional on Υ = u ∈ U
m, the random variable Y

i|u
0 follows the probability distribution µi(·|u) and is

independent of the vector (X1|u, . . . , Xd|u) of Lévy processes.

Proof. By the tower-property of conditional expectations and the fact that, conditional on the random variable

Υ, the set {Y i|Υ, i = 1, . . . , d} forms a collection of independent random variables, we have, for any vector

(t1, . . . , td) ∈ [0, 1]d),

P
(
τY

1

0 > t1, . . . , τ
Y d

0 > td

)
= E

[
d∏

i=1

P

(
τY

i

0 > ti

∣∣∣∣Υ
)]

= E

[
d∏

i=1

Pµi(·|Υ)
(
τX

i|Υ

0 > Ii(ti|Υ)
)]

= E

[
d∏

i=1

Hi(ti|Υ)

]
= H(t1, . . . td)

where in the second line we used Corollary 2.7. �

4. Wiener-Hopf factorisation and first-passage times

This section is devoted to a number of auxiliary results concerning the Wiener-Hopf factorisation ofX . Denote

by Ψ the characteristic exponent of X , i.e., the unique map Ψ : R → C that satisfies E[exp{iθXt}] = exp{tΨ(θ)}
for any t ∈ R+. According to the Lévy-Khintchine formula, the characteristic exponent is given by

(4.1) Ψ(θ) = icθ − σ2

2
θ2 +

∫

R

[eiθz − 1− iθz]ν(dz), θ ∈ R,

where c and σ2 are the instantaneous drift and variance of the continuous martingale part of X , and ν denotes

the Lévy measure of X . Under Assumption 2.5 the random variable X1 has negative mean and the Lévy

measure ν of X satisfies the condition (e.g., Sato [28, Theorem 25.3])

(4.2)

∫

(1,∞)

eγxν(dx) <∞.

Under the exponential moment condition in Eqn. (4.2) the function Ψ can be analytically extended to the strip

S = {θ ∈ C : ℑ(θ) ∈ (−iθ,−iθ) ∪ {0}}
with θ = sup{θ ∈ R : E[exp{θX1}] <∞}, θ = inf{θ ∈ R : E[exp{θX1}] <∞},

with ℑ(θ) denoting the imaginary part of θ and where we have θ ≤ 0 < θ given the fact Ψ(0) = 0 and

Assumption 2.5. This analytical extension of Ψ will also be denoted by Ψ. The characteristic exponent Ψ is

related to the Laplace exponent ψ : R → (−∞,∞] of X by ψ(θ) = Ψ(−iθ).
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The probability distributions of the running supremum X∗
t and the running infimum X∗(t) of X up to time

t, are related to the characteristic exponent Ψ by the Wiener-Hopf factorization of X , which represents Ψ as

the product of the Wiener-Hopf factors Ψ+ and Ψ− : (0,∞)× R → C, as follows:

q

q −Ψ(θ)
= Ψ+(q, θ)Ψ−(q, θ), θ ∈ R, q > 0,(4.3)

with Ψ+(q, θ) given in Eqn. (2.9) and Ψ−(q, θ) = E[exp{iθX∗(e(q))}], where, as before, e(q) denotes an inde-

pendent exponential random variable with mean q−1 that is independent of X . By analytical extension the

Wiener-Hopf factorization in (4.3) continues to hold for all θ in the strip S, when we denote the analytical

extension of the two Wiener-Hopf factors to the strip S also by Ψ+(q, θ) and Ψ−(q, θ).

The probabilistic form of the Wiener-Hopf factorization of X , states that, under the probability measure

P = P0, (i) the random variables X(e(q)) − X∗(e(q)) and X∗(e(q)) are independent, and (ii) the random

variables X(e(q)) − X∗(e(q)) and X∗(e(q)) have the same probability distribution. Using this form of the

Wiener-Hopf factorisation the Laplace transforms in x of the functions Kθ,q, Lθ,q(x) : R+ → R given by

Kθ,q(x) = Ex[e
−θX(e(q))1{τX

0 >e(q)}], Lθ,q(x) = Ex[e
−qτX

0 +θX
τX
0 ], x ∈ R+,

for non-negative q, θ, can be expressed in terms of the Wiener-Hopf factors Ψ+ and Ψ−.

Lemma 4.1. For θ, q ∈ R+\{0} the Laplace transforms K̂θ,q, L̂θ,q of the functions Kθ,q and Lθ,q are finite and

given by

(4.4) K̂θ,q(u) =
Ψ+(q, iθ)Ψ−(q,−iu)

θ + u
, L̂θ,q(u) =

1

u− θ

(
1− Ψ−(q,−iu)

Ψ−(q,−iθ)

)
, u ∈ R+.

Proof. The probabilistic form of the Wiener-Hopf factorisation and the fact that the events {τX0 > e(q)} and

{X∗(e(q)) ≥ 0} are equal Px-a.s. for any nonnegative x (i.e., the probability Px(∆) of the difference ∆ of these

two sets is 0) imply that we have the identities

Kθ,q(x) = Ex[e
−θX(e(q))1{τX

0 >e(q)}] = Ex[e
−θ(X−X∗)(e(q)+X∗(e(q)))1{X∗(e(q))≥0}]

= e−θxE0[e
−θX∗(e(q))]E0[e

−θX∗(e(q))1{X∗(e(q))≥−x}](4.5)

for any nonnegative real x. Hence the Laplace transform K̂θ,q of the function Kθ,q is equal to

K̂θ,q(u) = Ψ+(q, iθ)
1

θ + u
E0[e

uX∗(e(q))], u ∈ R+,(4.6)

which yields the identity in Eqn. (4.4) in view of the definition of the Wiener-Hopf factor Ψ−. The form of the

Laplace transform L̂θ,q follows by combining Eqns. (4.5)–(4.6) with the following identities:

Ex[e
θX∗(e(q))1{τX

0 ≥e(q)}] = Ex[e
θX∗(e(q))]− Ex[e

θX∗(e(q))1{τX
0 <e(q)}],

Ex[e
θX∗(e(q))1{τX

0 <e(q)}] = Ex[e
θX(τX

0 )1{τX
0 <e(q)}]E0[e

θX∗(e(q))],

where the latter identity follows from the strong Markov property and the lack-of-memory property of the

exponential distribution. �

By using the identity in Eqn. (4.4) we identify the forms of the integrals of Kθ,q(x) and Lθ,q(x) against a

probability measure µ(dx) in terms of the Wiener-Hopf factors of X .

Lemma 4.2. Let µ be a probability measure on R+ with Laplace transform µ̂ and assume that there is a C

satisfying

(4.7) |Ψ−(q,−iu)(1 + |u|)| < C for all u with ℜ(u) ≥ 0.

Then we have the identities

Eµ[e−θX(e(q))1{X∗(e(q))≥0}] = Ψ+(q, iθ) · 1

2πi

∫ a+i∞

a−i∞

µ̂(−u)Ψ−(q,−iu)
du

u+ θ
,(4.8)

Eµ[e
−qτX

0 +θ(X
τX
0

−X0)
] =

1

2πi

∫ a+i∞

a−i∞

µ̂(−u− θ)

(
1− Ψ−(q,−i(u+ θ))

Ψ−(q,−iθ)

)
du

u
,(4.9)
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where a is equal to 0 and θ strictly positive. If the integral
∫
R+

epxµ(dx) is finite for some strictly positive p,

then the identities in Eqns. (4.8) and (4.9) are valid for any a in the interval [0, p].

Proof. It follows from Lemma 2.3 and Lebesgue’s Dominated Convergence Theorem that the map x 7→ Kθ,q(x)

is continuous on R+. The Laplace inversion theorem yields that, for any strictly positive x, Kθ,q(x) is equal to

the integral of the rhs of the identity in Eqn. (4.4) over the Bromwich contour ℜ(u) = 0, that is,

(4.10) Kθ,q(x) = Ψ+(q, iθ) · 1

2πi

∫ a+i∞

a−i∞

euxΨ−(q,−iu)
du

u+ θ
,

for a = 0 and x ∈ R+\{0}. Noting that the integrand in Eqn. (4.10) is absolutely integrable (in view of the

bound in Eqn. (4.7)) it follows by another application of Lebesgue’s Dominated Convergence Theorem and the

right-continuity of Kθ,q(x) at x = 0 that the identity in Eqn. (4.10) is also valid at x = 0.

In view of Eqn. (4.10) the identity in Eqn. (4.8) follows by an interchange of the order of integration. This

interchange follows in turn by an application of Fubini’s theorem which is justified by the estimate

(4.11)

∫

(0,∞)

∫ a+i∞

a−i∞

∣∣∣∣e
uxΨ

−(q,−iu)

u+ θ

∣∣∣∣ duµ(dx) ≤
∫

(0,∞)

eaxµ(dx) ·
∫

R

C
a+ θ + |u|

(u2 + (a+ θ)2)(1 + |u|)du <∞.

To derive the estimate, we used the bound in Eqn. (4.7), that µ is a probability measure and the observations

(i) 1/(u + c) = (u# + c)/(|ℑ(u)|2 + |ℜ(u) + c|2) for any c ∈ R and u ∈ C, with u# denoting the complex

conjugate of u, and (ii) | exp{ux}| = exp{ℜ(u)x} for any x ∈ R and u ∈ C+. The proof of the identity in

Eqn. (4.8) is complete. The identity in Eqn. (4.9) can be proved by an analogous reasoning, of which the details

are omitted. �

Deploying Lemma 4.2 we identify an equation satisfied by a quasi-invariant distribution of the process X

killed upon first entrance into the negative half-axis.

Proposition 4.3. Let λ be strictly positive and assume that µ is a λ-invariant distribution of the process

{Xt, t < τX0 } with Laplace transform µ̂, and that the bound in Eqn. (4.7) holds true.

Then µ̂ satisfies the equation

(4.12) µ̂(θ) · q

q + λ
= Ψ+(q, iθ) · 1

2πi

∫ a+i∞

a−i∞

µ̂(−u)Ψ−(q,−iu)
du

u+ θ

with a = 0, for any nonnegative real θ and q.

Proof of Proposition 4.3. The statement follows directly by combining Lemma 4.2 with the definition of λ-

invariant distribution in Eqn. (2.6). �

Analytical extension of the Wiener-Hopf factorisation.

Ladder processes. Related to the running supremum is the ladder process (L
−1
, H) of X that consists of the

pair of processes (L
−1

t , t ≥ 0) and (Ht, t ∈ [0, L∞) that is defined by the right-inverse L
−1

t = inf{s ≥ 0 : Ls > t}
of a local time L of X at its running supremum (with the convention inf ∅ = ∞) and the position X

L
−1
t

of X

at the epoch L
−1

t . The Laplace exponent κ+ : C+ → R of the process (L
−1
, H) is defined by

exp{−κ+(u, v)t} = E
[
exp{−uL−1

t − vHt}I{t<L∞}

]
, u, v ∈ C

+,

where The ladder process (L−1, H) of −X can be defined similarly with corresponding Laplace exponent denoted

by κ−. The Wiener-Hopf factors Ψ+ and Ψ− are explicitly expressed in terms of the Laplace exponents κ+

and κ− by

(4.13) Ψ+(q, iθ) =
κ+(q, 0)

κ+(q, θ)
, Ψ−(q,−iθ) =

κ−(q, 0)

κ−(q, θ)
, q > 0, θ ∈ C

+,

where C+ = {u ∈ C : ℜ(u) ≥ 0} denotes the right-half of the complex plane. The factorisation of the

characteristic exponent q −Ψ(θ) in terms of the exponents of the ladder processes is given by

(4.14) κ+(q,−iθ)κ−(q, iθ) = q −Ψ(θ), q ∈ R+, ℑ(θ) ∈ (−θ,−θ).
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Petrov-transform. In order to derive the analytical extension of the Wiener-Hopf factors we are lead to consider

the exponential family {P (θ), θ ∈ (θ, θ)} of probability measures (also called the collection of Esscher-transforms)

that are absolutely continuous with respect to P with Radon-Nikodym derivative on Ft given by

dP (θ)

dP

∣∣∣∣
Ft

= Λ
(θ)
t = exp(θ(Xt −X0)− tψ(θ)), θ ∈ (θ, θ).

The Esscher transform P ∗ = P (θ∗) with corresponding Radon-Nikodym derivative Λ∗ = Λ(θ∗) corresponding to

the shift θ = θ∗ we will refer to as the Petrov transform. Under the Petrov transform the process X is still a

Lévy process with characteristic exponent denoted by Ψ∗ and with Laplace exponent ψ∗ given by

(4.15) ψ∗(s) = ψ(s+ θ∗)− λ∗, s ∈ (θ − θ∗, θ − θ∗).

Extension. The Laplace exponents of the ladder processes of X and −X under P ∗ will be denoted by κ+∗ and

κ−∗ , respectively. The maps (q, θ) 7→ κ+(q, iθ) and (q, θ) 7→ κ−(q, iθ) can be analytically extended to the domain

D = {(q, θ) : ℜ(q) > −λ∗,ℑ(θ) > 0} using the Petrov-transform, and the definition is uniquely extended to the

closure Dcl by using continuity of the maps. This in turn implies that the functions Ψ+(q, θ) and Ψ−(q, θ)/q

can also be analytically extended to the domain D, and can be uniquely extended by continuity to the closure

Dcl. For all θ ∈ C+ and q ∈ [0, λ∗] we set

κ+(q − λ∗, θ) := κ+∗ (q, θ + θ∗), κ−(q − λ∗, θ) := κ−∗ (q, θ − θ∗),(4.16)

Ψ+(−λ, θ) := κ+(−λ, 0)
κ+(−λ,−iθ)

, Ψ−(−λ, θ) := κ−(−λ, 0)
κ−(−λ, iθ) , λ ∈ (0, λ∗].(4.17)

In the following it is shown that with the given definitions in Eqn. (4.17), the Wiener-Hopf factorisation still

holds true:

Lemma 4.4. (i) For all θ ∈ R+ and q ∈ [0, λ∗], κ+(q − λ∗, θ) and κ
−(q − λ∗, θ) are finite and non-negative.

(ii) For any θ ∈ R and λ ∈ (0, λ∗] we have

(4.18) Ψ+(−λ, θ)Ψ−(−λ, θ) = λ

λ+Ψ(θ)
.

Proof. (i) Lebesgue’s Dominated Convergence Theorem, quasi left-continuity of the Lévy process X and the

definitions of the Petrov transform P ∗ and the Laplace exponents κ+ and κ+∗ yield, for any q larger or equal to

λ∗,

exp{−tκ+(q − λ∗, θ)} = lim
T→∞

E
[
exp

{
−(q − λ∗)(L

−1

t ∧ T )− θX
L

−1
t ∧T

}]
,(4.19)

exp{−tκ+∗ (q, θ + θ∗)} = lim
T→∞

E∗
[
exp

{
−q(L−1

t ∧ T )− (θ + θ∗)X
L

−1
t ∧T

}]
.(4.20)

The expectations on the right-hand sides of Eqns. (4.19) and (4.20) are in fact equal for any positive T > 0

since, in view of Doob’s Optional Stopping Theorem and the fact that L
−1

t ∧ T is an F-stopping time, we have

E

[
Λ∗
T

∣∣∣∣FL
−1
t ∧T

]
= Λ∗

L
−1
t ∧T

,

whence κ(q−λ∗, θ) = κ+∗ (q, θ+θ
∗) for all θ ∈ R+ and q ∈ [0, λ∗]. The finiteness and nonegativity of κ+∗ (q, θ+θ

∗)

for all q, θ ∈ R+ imply those of κ+(q − λ∗, θ) for all θ ∈ R+ and q ∈ [0, λ∗]. The proof of the finiteness of κ− is

analogous, and is omitted.

(ii) In view of Eqns. (4.15)–(4.16), the identity in Eqn. (4.14) under the measure P ∗ reads as

q − λ∗ −Ψ(θ − iθ∗) = q −Ψ∗(θ) = κ+∗ (q,−iθ)κ−∗ (q, iθ)

= κ+(q − λ∗,−iθ + θ∗)κ−(q − λ∗, iθ − θ∗)(4.21)

for all q ∈ R+ and θ with ℑ(θ) ∈ [0, θ∗], where Ψ∗ denotes the characteristic exponent of X under the Petrov

transform P ∗. We obtain the identity in Eqn. (4.18) for given λ ∈ (0, λ∗] and θ ∈ R by taking the ratio of

Eqn. (4.21) corresponding to the substitutions (q, θ) → (λ∗−λ, iθ∗) and (q, θ) → (λ∗−λ, iθ∗+θ), respectively. �
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5. Quasi-invariant distributions for mixed-exponential Lévy processes

We next turn to a class of Lévy processes with two-sided jumps that forms a dense class in the class of all

Lévy processes. A mixed-exponential jump-diffusion X = {Xt, t ∈ R+} is a Lévy process given by

(5.1) Xt = dt+ σWt +

Nt∑

j=1

Uj, t ∈ R+,

where W is a Wiener process, d ∈ R denotes the drift and σ > 0 is the volatility, and N is a Poisson process

with rate λ that is independent of W . The series (Uj)j∈N consists of IID random variables that are independent

of W and N and follow a double-mixed-exponential distribution, which is a probability distribution on R that

has probability density function given by

f(x) = pf+(x) + (1− p)f−(x), with f±(x) =

m±∑

k=1

a±k α
±
k e

−α
±
k
|x|1R+(±x), x ∈ R.

The class of double-mixed-exponential distributions is dense in the class of all probability measures on R (see

Botta & Harris [7]). Here p is a number in the unit interval [0, 1] and f+ and f− are themselves probability

density functions that are linear combinations ofm+ andm− exponentials respectively, with real-valued weights

a+1 , . . . , am+ and a−1 , . . . , a
−
m− and strictly positive parameters α+

1 , . . . , α
+
m+ and α−

1 , . . . , α
−
m− . To ensure that

f is a PDF the parameters {a±k , k = 1, . . . ,m±} need to satisfy certain restrictions; necessary and sufficient

conditions for f to be a PDF are

p±1 > 0,
m±∑

k=1

p±k α
±
k ≥ 0 and

l∑

k=1

p±k α
±
k ≥ 0 ∀l = 1, ...,m±

respectively (see Bartholomew [3]). Since the Fourier transform of the PDF f of the jump-sizes is a rational

function, the characteristic function θ 7→ E[eiθXe(q) ] of Xe(q) is also a rational function, which is given by

E[eiθXe(q) ] =
1(

1− iθ

ρ
−
0 (q)

)
m−∏

j=1

(
1 + iθ

α
−
j

)

(
1− iθ

ρ
−
j (q)

) 1(
1− iθ

ρ
+
0 (q)

)
m+∏

j=1

(
1 + iθ

α
+
j

)

(
1− iθ

ρ
+
j (q)

) , θ ∈ R, q > 0,

where ρ+j (q), j = 1, . . . ,m+ + 1, and ρ−j (q), j = 1, . . . ,m− + 1, are the roots of the Cramér-Lundberg equation

(5.2) Ψ(−iθ)− q = ψ(θ)− q = 0

with positive and negative real parts, respectively (where multiple roots are listed as many times as their

multiplicity). The analytical continuation of the characteristic exponent Ψ of X defined in Eqn. (4.1) to the

set C̃ := C\{−iα+
1 , . . . ,−iα+

m+ , iα
−
1 , . . . , iα

−
m−} is again denoted by Ψ. The mixed-exponential Lévy process

satisfies Assumption 2.5 precisely if the parameters satisfy the restiction

(5.3) ψ′(0) = d+ p

m+∑

k=1

a+k
α+
k

− (1− p)

m−∑

k=1

a−k
α−
k

< 0.

Furthermore, denote by ρ+j (−λ), j = 0, . . . ,m+, and ρ−j (−λ), j = 0, . . . ,m−, the roots with real parts larger

and smaller than θ∗ of the equation ψ(θ) = −λ, which is equivalently phrased as the ‘shifted’ Cramér-Lundberg

equation ψφ(−λ)(θ + φ(−λ)) = 0.

The positive Wiener-Hopf factor of the process X is identified as follows. The form of the positive Wiener-

Hopf factor given in Eqn. (2.9) was derived in Lewis & Mordecki [22] for positive q.

Proposition 5.1. (i) For any real θ and any real q larger or equal than −λ∗, we have

(5.4) Ψ+(q, θ) =
1(

1− iθ

ρ
+
0 (q)

)
m+∏

j=1

(
1− iθ

α
+
j

)

(
1− iθ

ρ
+
j (q)

) .
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(ii) For any λ ∈ (0, λ∗], the Laplace transform µ̂λ of a λ-invariant distribution µλ of {Xt, t < τX0 } is given by

µ̂λ(θ) =
ρ−0 (−λ)

ρ−0 (−λ) + θ
· ρ+0 (−λ)
ρ+0 (−λ) + θ

m+∏

j=1

(
1 + θ

α
+
j

)

(
1 + θ

ρ
+
j (−λ)

) , λ ∈ (0, λ∗], q > 0.(5.5)

Remark. In the case that the roots ρ+k (−λ) are all distinct the probability measure µλ is a mixed-exponential

distribution that can be obtained from the Laplace transform µ̂λ by partial fraction decomposition and termwise

inversion:

µλ(dx) = 1R+(x) ·mλ(x)dx, mλ(x) = A−
0 ρ0(−λ)e−ρ

−
0 (−λ)x +

m+∑

k=0

A+
k ρ

+
k (−λ)e−ρ

+
k
(−λ)x,(5.6)

Here, the constants A+
k , k = 0, . . . ,m+, and A

−
0 = A+

−1 are given by

(5.7) A+
k =

(
1− ρ+k (−λ)

α+
k

)
·

m+∏

j=−1,j 6=k

(
1− ρ

+
k
(−λ)

α
+
j

)

(
1− ρ

+
k
(−λ)

ρ
+
j (−λ)

) .

where ρ+−1(−λ) := ρ−0 (−λ) and the constants α+
−1 and α+

0 are to be taken equal to +∞ (so that the factors

(1 + ρ+k (−λ)/α+
0 ) and (1 + ρ+k (−λ)/α+

−1) are equal to 1).

Proof of Proposition 5.1(i). Since κ+ is the Laplace exponent of a subordinator it follows that κ+(q, θ)/θ con-

verges to some non-negative c as θ tends to infinity. In view of the relation Ψ+(q, θ) = κ+(q, 0)/κ+(q, θ) we

deduce that κ+(q, 0) is equal to c · lim supθ→∞ Ψ+(q, θ). Hence, the explicit expression for Ψ+ in Eqn. (5.4)

implies that we have

κ+(q, θ) =
(
ρ+0 (q) + θ

)
·
m+∏

j=1

(
ρ+j (q) + θ

)
(
α+
j + θ

) .

Inserting the expression for κ+ into the definition in Eqn. (4.17) of Ψ+(q, θ) for q in the interval I := [−λ∗, 0]
implies that the stated expression in Eqn. (5.4) remains valid for q in I. �

The proof of Proposition 5.1(ii), i.e. the quasi-invariance of the collection {µλ, λ ∈ (0, λ∗]}, is based on the

following auxiliary identity:

Lemma 5.2. Consider arbitrary λ ∈ (0, λ∗]. For any q > 0, and θ ≥ 0 we have the identity

(5.8)
1

q + λ
· µ̂λ(θ) =

1

q
· Eµλ [e−θX(e(q))1{e(q)<τX

0 }].

The proof of this result is provided below.

Proof of Proposition 5.1(ii). The assertion holds true since it follows as a consequence of Lemma 5.2 that for any

fixed strictly positive t the two measures m
(1)
t and m

(2)
t on (R+,B(R+)) given by m

(1)
t (dx) = exp(−λt)µλ(dx)

and m
(2)
t (dx) = Pµλ(Xt ∈ dx, t < τX0 ) coincide, in view of the following observations:

(a) The lhs and rhs of Eqn. (5.8) are equal to the double Laplace transforms of the measures on (R2
+,B(R2

+))

given by m
(1)
t (dx)dt and m

(2)
t (dx)dt, respectively.

(b) The Laplace transforms m̂
(1)
t and m̂

(2)
t are continuous as function of t. This assertion follows by noting that,

for any x ∈ R+ we have Px-a.s. that the map t 7→ Xt is continuous at any fixed positive t since the probability

of a jump ∆Xt at time t is zero and moreover the probability that τX0 is equal to a given positive t is zero in

view of the estimate Px(τ
X
0 = t) ≤ Px(Xt = 0) and the fact that the mixed-exponential Lévy process X has

absolutely continuous marginal densities. �
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C+
TC−

T ρ
+
1 (−λ) ρ

+
2 (−λ)−θ

ρ
−
1 (q)

ρ
−
2 (q)

Figure 2. Pictured is the complex plane with an example of the two contours C+
T

(gray) and C−

T
(black) and

the poles in P+ and P−. The contour C+
T

encloses the poles p ∈ P+ while the contour C+
T

encloses the poles

p ∈ P−.

Residue calculus. Let µ̂λ also denote the analytical continuation to the domain C+ of the Laplace transform

µ̂λ defined in Eqn. (2.10). The identity in Eqn. (5.8) is derived by an evaluation of the Bromwich integral

on the rhs of the identity in Eqn. (4.8), by an application of Cauchy’s residue theorem. It is immediate from

Eqns. (2.10) and (5.4) that the function f : C+ → C given by

(5.9) f(u) = fθ,λ,q(u) = [Ψ+(q, iθ)µ̂λ(−u)Ψ−(q,−iu)]/(u+ θ)

is rational with the poles given as follows:

Lemma 5.3. The function f is rational with poles given by P+ ∪ P− with

P+ = {ρ+k (−λ); k = 0, . . . ,m+ + 1} ⊂ C
++, P− = {−θ, ρ−j (q), j = 1, . . . ,m− + 1} ⊂ C

−−,

where we denote C−− := {u ∈ C : ℜ(u) < 0} and C++ := {u ∈ C : ℜ(u) > 0}.

Denote by C+
T the contour consisting of the segment IT = {u ∈ C : ℑ(u) ∈ [−T, T ],ℜ(u) = 0} on the

imaginary axis, and the semi-circle that joins −iT and iT such that C+
T is contained in the right half-plane C+.

For T sufficiently large, the contour C+
T will enclose all the poles in the set P+. Similarly, let C−

T denote the

contour consisting of the segment IT and the semi-circle that joints −iT and iT such that C−
T is contained in

the left half-plane C−. We evaluate the contour integrals over the distinct contours C−
T and C+

T , and show that

both yield the same value.

Lemma 5.4. Assume that all the elements of the sets P+ and P− are distinct. For any q, θ ∈ R+ and λ ∈ (0, λ∗]

the following hold true:

(5.10) I+o (T ) :=

∮

C+
T

f =
q

q + λ
µ̂λ(θ), I−o (T ) :=

∮

C−
T

f =
q

q + λ
µ̂λ(θ).

where f is given in Eqn. (5.9). Furthermore, it holds for any q, θ ∈ R+ and λ ∈ (0, λ∗]

(5.11)
1

2πi

∫ a+i∞

a−i∞

f(u)du =
q

q + λ

µ̂λ(θ)

Ψ+(q, iθ)
, a = 0.

Proof of Lemma 5.4. In view of the properties of f listed in Lemma 5.3, the integrals I+o (T ) and I−o (T ) of the

function f over the contour C+
T are by Cauchy’s theorem equal to

(5.12) I+o (T ) =
1

2πi

∑

p∈P+

n(C+
T , p)Resp(f) I−o (T ) =

1

2πi

∑

p∈P−

n(C−
T , p)Resp(f),

where Resp(f) denotes the residue of the function f at the pole p and, for any p ∈ C and any curve Γ : [0, 2π] → C,

n(Γ, p) denotes the winding number of Γ around p. Note that we have n(C+
T , p) = −1 for any p ∈ P+ and

n(C+
T , p) = +1 for any p ∈ P− (see Figure 2).
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Since by assumption the poles are all distinct, straightforward calculations show

Resp=ρ
+
j (−λ)(f) = −2πi ·Ψ+(q, iθ) ·




Ψ−(q,−iρ+j (λ))

m++1∏

k=0,k 6=j

1− ρ
+
j (−λ)

α
+
k

1− ρ
+
j (−λ)

ρ
+
k
(−λ)





·
ρ+j (−λ)

ρ+j (−λ) + θ
,(5.13)

Resp=−θ(f) = 2πi · µ̂λ(θ)Ψ
+(q, iθ)Ψ−(q, iθ) = 2πi · µ̂λ(θ)q(q − ψ(θ))−1,(5.14)

Resp=ρ−
ℓ
(q)(f) = −2πi ·Ψ+(q, iθ) ·




µ̂λ(−ρ−ℓ (q))

m−+1∏

k=0,k 6=ℓ

1 +
ρ
−
ℓ
(q)

α
−
k

1− ρ
−
ℓ
(q)

ρ
−
k
(q)





· ρ−ℓ (q)

ρ−ℓ (q) + θ
,(5.15)

for j = 0, . . . ,m+ + 1 and ℓ = 1, . . . ,m− + 1. We claim that the following hold true:

Ψ+(q, iθ)−1 1

2πi

∑

p∈P+

(−1) · Resp(f) = Ψ+(q, iθ)−1 1

2πi

∑

p∈P−

Resp(f)(5.16)

=
q

q + λ

µ̂λ(θ)

Ψ+(q, iθ)
.(5.17)

The identities in Eqn. (5.17) can be seen to hold true by combining Eqn. (5.13) with the following two obser-

vations:

(a) the facts ψ(ρ+j (−λ)) = −λ and ψ(ρ−j (q)) = q and the Wiener-Hopf factorisation imply the identities

Ψ−(q,−iρ+j (−λ)) =
q

q + λ
Ψ+(q,−iρ+j (−λ))−1, Ψ+(−λ, iρ−ℓ (q)) =

λ

λ+ q
Ψ−(−λ, iρ−ℓ (q))−1,

for any λ ∈ (0, λ∗];

(b) the right-hand side of Eqn. (5.17) is a rational function in θ with the coefficients of its partial fraction

decomposition into the functions 1/[1+θ/ρ+j (q)], j = 0, . . . ,m++1, given by the respective terms in Eqn. (5.13)

between the curly brackets (using part (a), the forms of µ̂λ and Ψ+ in Eqns. (5.4) and (5.5));

(c) the right-hand side of Eqn. (5.17) can be decomposed as

q

q + λ

µ̂λ(θ)

Ψ+(q, iθ)
= µ̂λ(θ)

q

q − ψ(θ)

[
1− λ

λ+ q
· λ+ ψ(θ)

λ

]
,

where the map

θ 7→ Ψ−(q, iθ)µ̂λ(θ)
λ

λ + q
· λ+ ψ(θ)

λ

is a rational function with the coefficients of its partial fraction into the functions 1/[1 + θ/ρ−ℓ (q)] for any

ℓ = 1, . . . ,m− +1, given by the expressions in the curly brackets in Eqn. (5.15) (using part (a), the forms of µ̂λ

and Ψ+ in Eqns. (5.4) and (5.5) and Wiener-Hopf factorisation in Eqn. (4.18)).

Combining Eqns. (5.12) and (5.17) shows

I+o (T ) = I−o (T ) =
q

q + λ
µ̂λ(θ).

To complete the proof we next show that I+o (T ) and I−o (T ) both tends to the integral on the right-hand

side of Eqn. (4.8) as T → ∞: Since the function f is continuous and satisfies the growth-condition |f(u)| =
O(|u|−2)(|u| → ∞), while the length of the semi-circles is proportional to T , it follows that the integrals I+c (T )

and I−c (T ) over the semi-circles only (that is, over C+
T \IT and C−

T \IT ) tend to zero as T tends to infinity. Thus,

we conclude that I+o (T ) and I−o (T ) both converge to the right-hand side of Eqn. (4.8) as T tends to infinity,

and the proof is complete. �

Proof of Lemma 5.2. Fix q, λ and θ ∈ R+ arbitrary. If the elements of the sets P+ and P− are distinct, the

identity follows by combining the identities in Eqns. (5.11) and (4.8) (for µ = µλ). By approximating (in the

sense of weak convergence) the process X by a sequence (X(n))n of mixed-exponential Lévy processes for which

the corresponding roots are distinct, and using the definition of weak-convergence and the fact that both sides

in Eqn. (5.8) are equal to the integral of µ against a bounded continuous function, it follows that the identity

in Eqn. (5.8) remains true in the case of multiple roots. �
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6. Proof of Theorem 2.6

The proof, given at the end of this section, combines the results of three lemmas. The first two of these,

Lemmas 6.1 and 6.2, concern approximation of general Lévy processes by mixed-exponential jump diffusions,

while the third, Lemma 6.3, establishes uniqueness of λ-invariant distributions.

Lemma 6.1. Let X be a Lévy process that satisfies Assumption 2.5 and has Petrov coefficient λ∗.

(i) There exists a sequence (X(n))n of mixed-exponential Lévy processes satisfying Assumption 2.5 such

that X(n) converges weakly to X in the Skorokhod J1 topology as n tends to infinity.

(ii) For any positive t the convergence in distribution of (X(n))∗(t) and X
(n)
∗ (t) to X∗(t) and X∗(t) holds,

where (X(n))n denotes the sequence from (i).

(iii) The sequence (X(n))n in part (i) can be chosen such that the corresponding Petrov-coefficients and

Laplace exponents of the ladder processes under the Petrov transform satisfy λ
(n)
∗ ↑ λ∗ and κ

(n)+
∗ (q, θ) →

κ+∗ (q, θ) for any non-negative q and θ, and we have θ
(n) ≥ θ.

Proof. (i) It is well known (see e.g. Jacod & Shiryaev [19, Cor. VII.3.6]) that to prove weak convergence of

a sequence of Lévy processes in the Skorokhod topology J1 on the Skorokhod space D(R) it suffices to show

connvergence in distribution of the values at one fixed time. Moreover, the marginal distribution at this fixed

time can be approximated by a sequence of compound Poisson distributions. The jump-distribution in turn can

be approximated arbitrarily closely by a double-mixed exponential distribution since these distributions form a

sense class in the sense of weak-covergence in the set of all probability distributions on the real line, as noted

before. Uniform integrability of the distributions of X
(n)
1 and the fact that E[X1] is strictly negative imply

that for all n sufficiently large the expectation of X
(n)
1 is strictly negative, which implies that X(n) satisfies

Assumption 2.5 for all n sufficiently large .

(ii) Since the real-valued maps on the Skorokhod space D(R) given by ω 7→ ω∗(t) and ω 7→ ω∗(t) are

continuous in the Skorokhod topology at any t ∈ {s : ∆ω(s) = 0} (see [19, Ch. VI.2]) and we have P (∆X(t) = 0)

(since X is quasi-left-continuous), it follows that, as n tends to infinity, (Xn)∗(t) and (Xn)∗(t) converge in

distribution to X∗(t) and X
∗(t), for any non-negative t.

(iii) Consider first a direct construction of the sequence of processes (X(n))n weakly converging to the

processX . Let (H
(n)

)n and (H(n))n be sequences of mixed-exponential Lévy-subordinators that weakly converge

to the up-crossing and down-crossing ladder processes H and H of X under the Petrov transform P ∗. Then the

Laplace exponents of (H
(n)

)n and (H(n))n converge pointwise to those of H and H under P ∗, i.e., κ+(n)(0, θ) →
κ+∗ (0, θ) and κ−(n)(0, θ) → κ−∗ (0, θ). Let X̃(n) be the Lévy process with characteristic exponent given by

−Ψ
(n)
∗ (θ) := κ(n)+(0,−iθ)κ(n)−(0, iθ). In view of the Wiener-Hopf factorisation in Eqn. (4.14), it follows

that Ψ
(n)
∗ (θ) converges to Ψ∗(θ) for any real θ, which implies that X̃(n) converges weakly to the process X

under the measure P ∗. Thus, the mixed-exponential Lévy processes X(n) that have the same law as the

processes X̃(n) under the probability measure P (−θ∗) weakly converges to the process X under the measure

P as n tends to infinity. By construction the ladder processes of X(n) under the P ∗ have Laplace exponents

κ
+(n)
∗ (0, θ) = κ+(n)(0, θ) and κ

−(n)
∗ (0, θ) = κ−(n)(0, θ), so that the convergence follows by construction.

Next we show that also the other two conditions can be satisfied by suitable choice of X(n). Let (X(n))n be

chosen in such a way that (a) the Laplace exponents ψn(−θ∗) at −θ∗ are strictly positive and (b) ψn(θ− θ∗) is

finite (where ψn denotes the Laplace exponent of X(n)). Then the Petrov-coefficient λ
(n)
∗ and the supremum of

the domain θ
(n)

corresponding to the process X̃(n) are larger or equal than the values λ∗ and θ corresponding

to X , in view of the transformation in Eqn. (4.15) of the Laplace exponent under the Petrov transform. This

completes the proof. �

Let (X(n))n be a sequence of Lévy processes as in Lemma 6.1(iii). For any λ in the interval (0, λ∗], let (µ
(n)
λ )n

be the collection of measures on (R+,B(R+)) that are characterised by their Laplace transforms

(6.1) µ̂n(θ) =
φ̄n(λ)

φ̄n(λ) + θ
Ψ+

n (−λ, iθ), θ ∈ R+,
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where φ̄n and Ψ+
n are understood to be taken with respect to the process X(n).

Lemma 6.2. For any λ in the interval (0, λ∗], the sequence µ
(n)
λ admits a limit in distribution µλ, and we have

(6.2) Eµ
(n)
λ

[
exp{−θXe(q)}1{e(q)<τX(n)

0 }

]
n→∞−→ Eµλ

[
exp{−θXe(q)}1{e(q)<τX

0 }

]
.

In particular, the measure µλ satisfies Eqn. (5.8).

Proof. For any θ ∈ [0, γ] we have the convergence of ψn(θ) to ψ(θ), where ψn denotes the Laplace exponent

of X(n), since, for any fixed positive t, X
(n)
t converges in distribution to Xt. As the functions ψn and ψ are

strictly convex, it follows that we also have the convergence of the sequence (φ̄n(λ))n to φ̄(λ), for any λ in the

interval (0, λ∗]. Furthermore, since κ
(n)+
∗ (0, θ) converges to κ+∗ (0, θ) [by definition of the sequence (X(n))n], the

definition in Eqn. (4.17) of the Wiener-Hopf factors Ψ(n)+(−λ, θ) and Ψ+(−λ, θ) for λ in the interval (0, λ∗]

imply that Ψ(n)+(−λ, θ) converges to Ψ+(−λ, θ), as n tends to infinity.

Hence, it follows from Eqns. (2.10) and (6.1) that µ̂(n)(θ) converges to µ̂(θ) for every θ > 0, so that Lévy’s

Continuity Theorem implies that the sequence of measures (µ(n))n converges to µ in distribution as n tends to

infinity.

Note next that we have the relation

Eµ(n)
[
e
−θX

(n)

e(q)1
{e(q)<τX(n)

0 }

]
=

∫

[0,∞)

P (x+X
(n)
e(q) > e′(θ),−X(n)

∗ (e(q)) > x)µ(n)(dx)

= P (M (n) +X
(n)
e(q) > e′(θ),−X(n)

∗ (e(q)) +M (n) > 0),(6.3)

where e′(θ) denotes an independent Exp(θ) random time, M (n) ∼ µ(n) is independent of X
(n)
∗ (e(q)). Moreover,

the same identity holds with µ(n) and X(n) replaced by µ and X , respectively. Noting that (a)Mn converges in

distribution toM , (b) the sequence (X(n)(e(q)),−X(n)
∗ (e(q))n converges weakly to (X(e(q)),−X∗(e(q)), and (c)

M+X∗(e(q)) is absolutely continuous (which is the case sinceM is equal to the convolution of some distribution

with an exponential random distribution), we conclude that the probability in the rhs of Eqn. (6.3) converges

to P (X(e(q)) +M > e′(θ),−X∗(e(q)) +M > 0) as n tends to infinity, which is equivalent to the statement in

Eqn. (6.2). Finally, by combining Lemma 5.2, Eqn. (6.2) with the fact that µ
(n)
λ converges in distribution to

µλ, it follows that µλ satisfies Eqn. (5.8). �

With the above results in hand, we nowmove to the question of uniqueness of the quasi-invariant distributions.

Lemma 6.3. For any λ in the interval (0, λ∗], there exists a unique probability measure on (R+,B(R+)) that

satisfies the relation

(6.4) µ(A) =
q + λ

q
Pµ[Xe(q) ∈ A, τX0 < e(q)] A ∈ B(R+), q > 0.

The proof rests on a contraction argument.

Proof of Lemma 6.3. First consider the case λ ∈ (0, λ∗). By changing the measure using Petrov’s transform

Λθ∗

the expression on the rhs of Eqn. (6.4) can be expressed as
∫

R+

∫

R+

(q + λ)e−qte−λ∗tEθ∗

x [e−θ∗(Xt−x)1{τX
0 <t}]dtµ(dx)

Denote by m∗ the measure on (R+,B(R+)) given by m∗(dx) = eθ
∗xµ(dx), and by M the collection of measures

on the measure space (R+,B(R+)) that satisfy the integrability condition
∫

R+

e−θ∗xm(dx) ≤ 1.

Then the equality in Eqn. (6.4) can be rephrased as m∗ = Hm∗, where H is the operator H : M → M given by

(6.5) (Hπ)(A) = q + λ

q∗

∫

R+

∫

R+

q∗e
−q∗tP θ∗

x [Xt ∈ A, τX0 < t]dt π(dx), A ∈ B(R+), π ∈ M,

where q∗ = q + λ∗. The operator H is a contraction on the Banach space M endowed with the norm given

by ‖π − π′‖ := supΥ |π(f) − π′(f)|, where the supremum is taken over the collection of functions given by
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Υ := {f ∈ L0 : |f(x)| ≤ e−θ∗x ∀x ∈ R+} which is a subset of set L0 of Borel-measurable real-valued functions

with domain R+. Indeed, it is a direct consequence of the definition of H that we have the estimate

‖Hπ −Hπ′‖ ≤ q + λ

q∗
‖π − π′‖ < ‖π − π′‖, π, π′ ∈ M,

where in the second inequality we used that q + λ is strictly smaller than q∗. Thus, Banach’s Contraction

Theorem in conjunction with Lemma 6.2 implies that µλ is the unique measure π in M that satisfies the

relation π = Hπ. Hence, µλ is the unique probability measure satisfying Eqn. (6.4), for any λ in the interval

(0, λ∗).

We next consider the boundary case λ = λ∗. The proof in this case follows by a modification of above

argument. In particular, the Implicit Function Theorem implies that, for any strictly positive and sufficiently

small ǫ and any λ satisfying λ − λ∗ ∈ (0, ǫ], there exists an υ in a neighbourhood of θ∗ in the complex plane

such that Ψ(−iυ) = −λ. Fix such an ǫ and a corresponding υ = υǫ. By repeating above argument, replacing

the Petrov-transform Λ(θ∗) by the complex-valued change of measure Λ(υǫ), we find that the corresponding map

H is still a contraction but now on the space Mǫ given by

Mǫ =

{
π = π1 + iπ2 :

∣∣∣∣∣

∫

R+

e−υǫxπ(dx)

∣∣∣∣∣ ≤ 1

}

and with respect to the norm ‖π − π′‖ǫ := supΥǫ
|π(f) − π′(f)| where the supremum is taken over the set of

functions Υǫ := {f ∈ L0(C) : |f(x)| ≤ |e−υǫx| ∀x ∈ R+}, where L0(C) denotes the set of Borel-measurable

complex-valued functions with domainR+. Thus, also in the case λ = λ∗, an application of Banach’s Contraction

Theorem in combination with Lemma 6.2 shows that µλ is the unique probability measure satisfying Eqn. (6.4).

�

Proof of Theorem 2.6. For any λ in the interval (0, λ∗], it follows by combining Lemmas 6.2 and 6.3 that the

probability measure µλ is the unique λ-invariant distribution for the process {Xt, t < τX0 }. �

7. Application to credit-risk modeling

The structural approach that was initially proposed by Black & Cox [5] is to model the time of default of a

firm as the first time that the value of the equity of the firm falls below the value of its debt, which is equal

in the setting of [5] to the first-hitting time of a geometric Brownian motion to some level. Subsequent studies

such as [1, 17] present stylized ‘default barrier models’ for the time of default as the epoch of first-passage of a

stochastic process over a default-barrier.

A Credit Default Swap (CDS) is a commonly traded financial contract that provides insurance against

the event that a specific company defaults on its financial obligations. An important problem for a financial

institution is to ensure that the model-value of a traded credit derivative such as the CDS that it holds in its

portfolio is consistent with market quotes. In a default-barrier model for the value of the CDS one is led to the

inverse problem of identifying the boundary that will equate model and market values.

Apart from featuring in the valuation of credit derivatives such as the CDS, the credit risk of a company may

also affect the value of other assets in the portfolio, especially in the cases where the company in question acts

as counterparty in a trade. The quantification of this type of risk, named counterparty risk, requires the joint

modeling of asset values and the risk of default of the company in question (see Cesari et al. [10] for background

on counterparty risk). Various aspects of the modeling of counterparty risk in default barrier models have

been investigated for instance in [6, 9, 15, 23]; in these papers the model and market quotes can be matched

by calibration of the model parameters. Next we present an explicit example of the valuation of a call option

under counter-party risk in a default-barrier model that is by construction consistent with a given risk-neutral

probability of default, using the solution to the RIFPT problem given in Corollary 2.7.
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7.1. Valuation of a call option under counterparty risk. This problem involves three entities, a company

A, whose stock price is denoted St, a bank B and the bank’s counterparty C. The problem under consideration

is the fair valuation of the counterparty risk to B of a trade in which C has sold to the bank a European call

option on the stock of company A. This source of risk refers to the potential loss that the bank, as the owner

of the call option, incurs when its counterparty C goes into default before the maturity T of the call option,

and fails to deliver the pay-off of the call option. If τ denotes the epoch of default of C then the fair value π

of the potential loss of the holder of the option (discounted to time 0 at the risk-free rate r) and the so-called

expected positive exposure Pt are given by

π = E[Vτ1{τ≤T}],(7.1)

Pt = E[Vτ |τ = t], t ∈ [0, T ],(7.2)

where Vτ denotes the value at time τ of a T -maturity call-option with strike K on the value of stock, discounted

to time 0:

(7.3) Vτ = e−rτE[e−r(T−τ)(ST −K)+|Fτ ].

The conditional expectation in Eqn. (7.2) is understood as the regular version of the conditional expectation

E[Vτ |τ ] (under Assumption 7.1(iii) below this conditional expectation can in fact be defined in the usual way

for continuous random variables). We will phrase the model in terms of two independent Lévy processes X and

Z satisfying Assumption 2.5. Throughout this section we work under the following additional assumptions:

Assumption 7.1. (i) We have θX < −1, θX > 1 + α, θZ > 1 + α for some α > 0.

(ii) The CDF H has a continuous density h, and satisfies H(T ) > 0 and λ∗X > − logH(T )/H(T ), where

λ∗X denotes the Petrov coefficient of X .

(iii) For any λ in (0, λ∗X ], A ∈ B(R) and x > 0, the function t 7→ P (XτX
−x

∈ A, τX−x ≤ t) is continuously

differentiable.

Let the credit-worthiness of the counterparty C be described by the credit-index process Y , in the sense that

default of C occurs at the first moment that the process Y falls below the level 0, that is given in terms of X by

Yt = Y0 +XI(t), I(t) = IµX

λ0
(t) = T · logH(t)

logH(T )
, t ∈ [0, T ],(7.4)

Y0 ∼ µX
λ0 , λ0 = −T−1 · logH(T ),(7.5)

where, as before, Y0 is independent of X and µX
λ0 denotes the λ0-invariant distribution corresponding of the

process {Xt, t < τX0 }. Here we have chosen λ0 so as to normalise the ratio I(T )/T to unity. Note that the CDF

of the first-passage time τY0 of the process Y defined in Eqn. (7.4) is given by H (in view of Corollary 2.7 and

Assumption 7.1(ii)).

In the case that the price process S is independent of credit index process Y we note that the expectation

in Eqn. (7.1) is equal to the integral of the expectation E[Vt] against the measure H(dt). Next we consider the

complementary case that S and Y are dependent. More specifically, we assume that S is given by




St = S0 exp {(r − d)t+ Lt − κt(−i)} , t ∈ [0, T ], S0 > 0,

Lt = ρXI(t) + Zt, ρ ∈ [−1, 1],

κt(u) = ΨZ(u)t+ΨX(uρ)I(t), ℑ(u) ∈ [−1− α, 0],

(7.6)

where ΨZ and ΨX denote the characteristic exponents of the Lévy processes X and Z and r and d denote the

risk-free rate and the dividend yield, respectively. The degree of dependence between the stock price process

S and the credit index process Y is controlled by the parameter ρ. Note that κt has been specified such that

the discounted stock-price process e−rt[edtSt] with reinvested dividends is a martingale. In the following result

an explicit expression is derived for π and P (t) in terms of the inverse Fourier-transform F−1
ξ and the inverse

Laplace-transform L−1
q with respect to ξ and q, respectively.
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Proposition 7.2. The values π and Pt, t ∈ [0, T ], are given by

π =

∫ I(T )

0

N(t)dt, Pt =
N(t)

λ0H(t)
(7.7)

N(t) = F−1
ξ

(
Dt,T (ξ) · CI(t)(ξ)

)
(k),(7.8)

with k = logK/s′, s′ = sc′, c′ = exp(−rT + (r − d)(T − t)− κT (−i) + κt(−i)) and

Dt,T (ξ) =
exp{ΨZ(ξ − (1 + α)i)(T − t) + ΨX(ξ − (1 + α)i)(I(T )− I(t))}

(1 + α+ iξ)(α+ iξ)
,(7.9)

and with CI(t)(ξ) given by the rhs of Eqn. (7.11) below, with the substitutions t → I(t) and u → 1 + α + iξ.

Here α is the constant appearing in Assumption 7.1.

The proof relies on the following lemma:

Lemma 7.3. For any u with ℜ(u) ∈ (θX , θX) and t ∈ [0, T ] we have, with τ = τY0 ,

E

[
euXI(τ)

∣∣∣∣τ = t

]
=

1

λ0H(t)
L−1
q

(
f̂t,u(q))

)
(I(t)), f̂t,u(q) =

∫

R+

µX
λ0(dx)E

[
e
uX

τX
−x

−qτX
−x

]
,(7.10)

where f̂t,u(q) is given in terms of the Wiener-Hopf factor Ψ− of X in Eqn. (4.9) above. In particular, for u

satisfying in addition ℜ(u) ∈ (θZ , θZ) we have

(7.11) Es[S
u
τ |τ = t] =

su

λ0H(t)
· exp{(r − d)tu − κt(−i)u+ΨZ(−iu)t} · f̂t(u).

Proof of Lemma 7.3: Denote by {pt,x(dy), t ∈ R+} the collection of measures on (R−,B(R−)) satisfying the

equality pt,x(dy)dt = P (XτX
−x

∈ dy, τX−x ∈ dt) (the existence of such a collection is guaranteed by Assump-

tion 7.1(iii)). Since the CDF of τY0 is given by H , it follows by Bayes’ lemma that the conditional expectation

in the lhs of Eqn. (7.10) can be expressed as

E[euXI(τ) |τ = t] =
1

h(t)

∫

R+

µX
λ0(dx)

∫

R

euxpI(t),x(dy)I
′(t).(7.12)

Since we have I ′(t) = h(t)/[λ0H(t)], it follows that the rhs of Eqn. (7.12) and Eqn. (7.10) are equal. The

identity in Eqn. (7.11) is a direct consequence of the form of S in given in Eqn. (7.6) and the independence of

Z and τ . �

Proof of Proposition 7.2. Note first that the form of π is obtained by integrating Pt against h(t) over the interval

[0, T ] and performing the change of variables u = I(t), noting that I ′(t) = h(t)/[λH(t)].

The independence of the increments of logS implies

Pt = E[G(τ, Sτ )|τ = t], G(t, s) = s′ · E[(eLT−Lt − ek)+],

s′ = sc′, c′ = exp(−rT + (r − d)(T − t)− κT (−i) + κt(−i)), k = log(K/s′).

By a standard Fourier-transform argument it can be shows that G(t, s) admits an explicit integral representation

representation in terms of the characteristic exponents of X and Z. More specifically, since the dampened

function k 7→ exp(αk) ·G(t, s) and its Fourier transform are integrable, the Fourier Inversion Theorem implies

G(t, s) = [F−1
ξ (G∧

t,s)](k), G∧
t,s(ξ) = s ·Dt,T (ξ), ξ ∈ R,(7.13)

where Dt,T (ξ) is given in Eqn. (7.9). Using the integral representation of the Fourier-inverse and by an inter-

change of the expectation and integration (justified by Fubini’s theorem) we find that Pt, t ∈ [0, T ], is equal

to

Pt = c′
∫

R

Es[S
θ
τ |τ = t] ·

(
K

c′

)−α−iξ

Dt,T (ξ)dξ.(7.14)

The expression for Pt in Eqn. (7.8) follows by inserting the expression in Eqn. (7.11) in Lemma 7.3(ii). �
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