
The Complexity of Computing a Nash Equilibrium∗

Constantinos Daskalakis
Computer Science Division,

UC Berkeley
costis@cs.berkeley.edu

Paul W. Goldberg
Dept. of Computer Science,

University of Liverpool
P.W.Goldberg@liver-

pool.ac.uk

Christos H. Papadimitriou
Computer Science Division,

UC Berkeley
christos@cs.berkeley.edu

ABSTRACT
How long does it take until economic agents converge to an
equilibrium? By studying the complexity of the problem of
computing a mixed Nash equilibrium in a game, we provide
evidence that there are games in which convergence to such
an equilibrium takes prohibitively long. Traditionally, com-
putational problems fall into two classes: those that have
a polynomial-time algorithm, and those that are NP-hard.
However, the concept of NP-hardness cannot be applied to
the rare problems where “every instance has a solution”—for
example, in the case of games Nash’s theorem asserts that
every game has a mixed equilibrium (now known as the Nash
equilibrium, in honor of that result). We show that finding
a Nash equilibrium is complete for a class of problems called
PPAD, containing several other known hard problems; all
problems in PPAD share the same style of proof that every
instance has a solution.

1. INTRODUCTION
In a recent CACM article, Shoham [23] reminds us of the

long relationship between Game Theory and Computer Sci-
ence, going back to John von Neumann at Princeton in the
1940s, and how this connection became stronger and more
crucial in the past decade due to the advent of the Inter-
net: Strategic behavior became relevant to the design of
computer systems, while much economic activity now takes
place on computational platforms.

Game Theory is about the strategic behavior of rational
agents. It studies games, thought experiments modeling var-
ious situations of conflict. One commonly-studied model
aims to capture two players interacting in a single round.
For example, the well-known school yard game of rock-paper-
scissors can be described by the mathematical game shown
in Figure 1. There are two players, one choosing a row, and
one choosing a column; the choices of a player are his/her
actions. Once the two players choose, simultaneously, an
action, they receive the corresponding payoffs shown in the
table: The first number denotes the payoff of Row, the sec-
ond that of Column. Notice that each of these pairs of
numbers sum to zero in the case of Figure 1; such games

∗A full version of this paper is to appear in SICOMP.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

are called zero-sum games. Three other well-known games,
called chicken, prisoner’s dilemma, and penalty shot game,
respectively, are shown in Figure 2; the penalty shot game is
zero-sum, but the other two are not. All these games have
two players; Game Theory studies games with many players,
but these are harder to display.1

rock paper scissors
rock (0, 0) (−1, 1) (1,−1)
paper (1,−1) (0, 0) (−1, 1)
scissors (−1, 1) (1,−1) (0, 0)

Figure 1: Rock-paper-scissors

The purpose of games is to help us understand economic
behavior by predicting how players will act in each particu-
lar game. The predictions game theorists make about player
behavior are called equilibria. One such prediction is the
pure Nash equilibrium: Each player chooses an action that
is a“best response”to the other player’s choice—i.e., it is the
highest payoff, for the player, in the line, row or column, cho-
sen by the other player. In the game of chicken in Figure 2,
a pure Nash equilibrium is when one player chooses “dare”
and the other chooses “chicken.” In the prisoner’s dilemma,
the only pure Nash equilibrium is when both players choose
“defect.”

Unfortunately, not all games have a pure Nash equilib-
rium. For example, it is easy to see that the rock-paper-
scissors game in Figure 1 has none. This lack of universality
is an important defect of the concept of pure Nash equilib-
rium as a predictor of behavior. But the rock-paper-scissors
game does have a more sophisticated kind of equilibrium,
called a mixed Nash equilibrium—and in fact one that is fa-
miliar to all who have played this game: both players pick
an action uniformly at random. That is, a mixed Nash equi-
librium is a probabilistic distribution on the set of actions of
each player. Each of the distributions should have the prop-
erty that it is a best response to the other distributions;
this means that each action assigned positive probability is
among the actions that are best responses, in expectation,
to the distribution(s) chosen by the opponent(s).

1How about games such as chess? We can capture this and
other similar games in the present framework by considering
two players, Black and White, each with a huge action set
containing all possible maps from positions to moves; but
of course, such formalism is not very helpful for analyzing
chess and similar games.

chicken dare
chicken (0, 0) (−5, 1)

dare (1,−5) (−10,−10)

In the chicken game above, there are two Nash equilib-
ria, in which one player chooses “chicken”, and the other
player “dare”. There is also a mixed equilibrium, in which
each player makes a random choice that equalizes the ex-
pected payoffs to the opponent, of either of the opponent’s
actions.

cooperate defect
cooperate (0, 0) (−5, 1)

defect (1,−5) (−4,−4)

In the prisoner’s dilemma game above, there is just one
Nash equilibrium, in which both players defect. This is
despite the fact that each player does better when they
both cooperate.

kick left kick right
dive left (1,−1) (−1, 1)

dive right (−1, 1) (1,−1)

In the penalty shot game above, there is just one Nash
equilibrium which is mixed, and in which both the goal-
keeper and the penalty kicker choose left or right at ran-
dom.

Figure 2: Three other 2-player games

In 1950, John Nash proved that all games have a mixed
Nash equilibrium [20]. That is, in any game, distributions
over the players’ actions exist such that each is a best re-
sponse to what everybody else is doing. This important—
and far from obvious—universality theorem established the
mixed Nash equilibrium as Game Theory’s central equilib-
rium concept, the baseline and gold standard against which
all subsequent refinements and competing equilibrium con-
cepts were judged.

Universality is a desirable attribute for an equilibrium con-
cept. Of course, such a concept must also be natural and
credible as a prediction of behavior by a group of agents—
for example, pure Nash seems preferable to mixed Nash, in
games that do have a pure Nash equilibrium. But there
is a third important desideratum on equilibrium concepts,
of a computational nature: An equilibrium concept should
be efficiently computable if it is to be taken seriously as a
prediction of what a group of agents will do. Because, if
computing a particular kind of equilibrium is an intractable
problem, of the kind that take lifetimes of the universe to
solve on the world’s fastest computers, it is ludicrous to ex-
pect that it can be arrived at in real life. This consideration
suggests the following important question: Is there an ef-
ficient algorithm for computing a mixed Nash equilibrium?
In this article, we report on results that indicate that the
answer is negative—our own work [7, 8, 9, 14] obtained this
for games with 3 or more players, and shortly afterwards,
the papers [3, 4] extended this—unexpectedly—to the im-
portant case of 2-player games.

Ever since Nash’s paper was published in 1950, many re-

searchers have sought algorithms for finding mixed Nash
equilibria—that is, for solving the computational problem
which we will call Nash in this paper. If a game is zero-
sum, like the rock-paper-scissors game, then it follows from
the work of John von Neumann in the 1920s that Nash can
be formulated in terms of linear programming (a subject
identified by George Dantzig in the 1940s); linear programs
can be solved efficiently (even though we only realized this in
the 1970s). But what about games that are not zero-sum?
Several algorithms have been proposed over the past half
century, but all of them are either of unknown complexity,
or known to require, in the worst case, exponential time.

During the same decades that these concepts were being
explored by game theorists, Computer Science theorists were
busy developing, independently, a theory of algorithms and
complexity addressing precisely the kind of problem raised
in the last two paragraphs: Given a computational prob-
lem, can it be solved by an efficient algorithm? For many
common computational tasks (such as finding a solution of
a set of linear equations) there is a polynomial-time algo-
rithm that solves them—this class of problems is called P.
For other such problems, such as finding a truth assignment
that satisfies a set of Boolean clauses (a problem known as
sat), or the traveling salesman problem, no such algorithm
could be found after many attempts. Many of these prob-
lems can be proved NP-complete, meaning they cannot be
solved efficiently unless P = NP—an event considered very
unlikely [12].

From the previous discussion of failed attempts to develop
an efficient algorithm for Nash, one might be tempted to
suppose that this problem too is NP-complete. But the sit-
uation is not that simple. Nash is unlike any NP-complete
problem because, by Nash’s theorem, it is guaranteed to al-
ways have a solution. In contrast, NP-complete problems
like sat draw their intractability from the possibility that
a solution might not exist—this possibility is used heavily
in the NP-completeness proof.2 See Figure 3 for an argu-
ment (due to Nimrod Megiddo) why it is very unlikely that
NP-completeness can characterize the complexity of Nash.
(Note however that, if one seeks a Nash equilibrium with
additional properties—such as the one that maximizes the
sum of player utilities, or one that uses a given strategy
with positive probability—then the problem does become
NP-complete [13, 5].)

Since NP-completeness is not an option, to understand
the complexity of Nash one must essentially start all over
in the path that led us to NP-completeness: We must define
a class of problems which contains, along with Nash, some
other well-known hard problems, and then prove that Nash
is complete for that class. Indeed, in this paper we describe
a proof that Nash is PPAD-complete, where PPAD is a
subclass of NP that contains several important problems
that are suspected to be hard, including Nash.

2“But what about the traveling salesman problem?”
one might ask. “Doesn’t it always have a solution?” To com-
pare fairly the traveling salesman problem with sat and
Nash, one has to first transform it into a search problem of
the form “Given a distance matrix and a budget B, find a
tour that is cheaper than B, or report that none exists”. No-
tice that an instance of this problem may or may not have a
solution. But, an efficient algorithm for this problem could
be used to find an optimal tour.

Suppose we have a reduction from sat to Nash, that is,
an efficient algorithm that takes as input an instance of
sat and outputs an instance of Nash, so that any solution
to the instance of Nash tells us whether or not the sat
instance has a solution. Then we could turn this into a
nondeterministic algorithm for verifying that an instance
of sat has no solution: Just guess a solution of the Nash
instance, and check that it indeed implies that the sat
instance has no solution.
The existence of such a non-deterministic algorithm for
sat (one that can verify that an unsatisfiable formula is
indeed unsatisfiable) is an eventuality that is considered
by complexity theorists almost as unlikely as P = NP. We
conclude that Nash is very unlikely to be NP-complete.

Figure 3: Megiddo’s proof that Nash is unlikely to
be NP-complete

1.1 Problem statement: Nash and Approxi-
mate Nash equilibria

A game in normal form has some number k of players,
and for each player p (p ∈ {1, . . . , k}) a finite set Sp of pure
actions or strategies. The set S of pure strategy profiles is the
Cartesian product of the Sp’s. Thus, a pure strategy profile
represents a choice, for each player, of one of his actions.
Finally, for each player p and s ∈ S the game will specify a
payoff or utility ups ≥ 0, which is the value of the outcome to
player p when all the players (including p) choose the strate-
gies in s. In a Nash equilibrium, players choose probability
distributions over their Sp’s, called mixed strategies, so that
no player can deviate from his mixed strategy and improve
on his expected payoff; see Figure 4 for details.

For two-player games, the numerical quantities that define
a Nash equilibrium (i.e. the probabilities used by the play-
ers) are rational numbers—assuming the utilities are also
rational. So, it is clear how to write down the solution of a
2-player game. However, as pointed out in Nash’s original
paper, when there are more than two players, there may be
only irrational solutions. In this general situation, the prob-
lem of computing a Nash equilibrium has to deal with issues
of numerical accuracy. Thus, we introduce next the concept
of approximate Nash equilibrium.

If Nash equilibrium means “no incentive to deviate,” then
approximate Nash equilibrium stands for “low incentive to
deviate”. Specifically, if ε is a small positive quantity, we can
define an ε-Nash equilibrium as a profile of mixed strategies
where any player can improve his expected payoff by at most
ε by switching to another strategy. Figure 4 gives a precise
definition, and shows how the problem reduces to solving a
set of algebraic inequalities. Our focus on approximate so-
lutions is analogous to the simpler problem of polynomial
root-finding. Suppose that we are given a polynomial f
with a single variable, and we have to find a real root, a
real number r satisfying f(r) = 0. In general, a solution
to this problem (the number r) cannot be written down as
a fraction, so we should really be asking for some sort of
numerical approximation to r (for example, computing a ra-
tional number r such that |f(r)| ≤ ε, for some small ε. If f
happens to have odd degree, we can even say in advance that
a solution must exist, in a further analogy with Nash. Of
course, the analogy breaks down in that for root-finding we

know of efficient algorithms that solve the problem, whereas
for Nash equilibria we do not.

We are now ready to define the computational problem
Nash: Given the description of a game (by explicitly giv-
ing the utility of each player corresponding to each strat-
egy profile), and a rational number ε > 0, compute an ε-
approximate Nash equilibrium. This should be at least as
tractable as finding an exact equilibrium, hence any hard-
ness result for approximate equilibria carries over to exact
equilibria. Note that an approximate equilibrium as de-
fined above, need not be at all close to an exact equilibrium;
see [10] for a complexity theory of exact Nash equilibria.

Recall that a game is specified by the payoffs associated
with each pure strategy profile s, so that for some player
p and s ∈ S, ups ≥ 0 denotes p’s payoff from s. The set of
pure strategy profiles of all players other than p is denoted
by S−p. For j ∈ Sp and s′ ∈ S−p, let upjs′ be the payoff

to p when p plays j and the other players play s′.

The problem of finding a Nash equilibrium boils down to
finding a set of numbers xpj that satisfy the expressions
below. xpj will be the probability that p plays j, so for
these quantities to be valid probabilities we require, for
each player p,

xpj ≥ 0 and
X
j∈Sp

xpj = 1. (1)

For a set of k mixed strategies to be a Nash equilib-
rium, we need that for each p,

P
s∈S u

p
sxs is maximized

over all mixed strategies of p—where for a strategy pro-
file s = (s1, . . . , sk) ∈ S, we denote by xs the product
x1
s1 · x

2
s2 · · ·x

k
sk

. (The expression
P
s∈S u

p
sxs represents

p’s expected payoff.) That is, a Nash equilibrium is a set
of mixed strategies from which no player has a unilateral
incentive to deviate. It is well-known (see, e.g., [20]) that
the following is an equivalent condition for a set of mixed
strategies to be a Nash equilibrium:X

s∈S−p

upjsxs >
X
s∈S−p

upj′sxs =⇒ xpj′ = 0. (2)

The summation
P
s∈S−p

upjsxs in the above equation is

the expected utility of player p if p plays pure strategy
j ∈ Sp and every other player q uses the mixed strategy
{xqj}j∈Sq .

We next turn to approximate notions of equilibrium. We
say that a set of mixed strategies x is an ε-approximately
well supported Nash equilibrium, or ε-Nash equilibrium for
short, if for each p, the following holds:X

s∈S−p

upjsxs >
X
s∈S−p

upj′sxs + ε =⇒ xpj′ = 0. (3)

Condition (3) relaxes (2) by allowing a strategy to have
positive probability in the presence of another strategy
whose expected payoff is better by at most ε.

Figure 4: Writing down the problem algebraically

2. TOTAL SEARCH PROBLEMS

We think of NP as the class of search problems of the form
“Given an input, find a solution (which then can be easily
checked) or report that none exists.” There is an asymmetry
between these outcomes, in that“none exists” is not required
to be easy to verify.

We call such a search problem total if the solution al-
ways exists. There are many apparently hard total search
problems in NP—even though, as we argued in the intro-
duction, they are unlikely to be NP-complete. Perhaps the
best-known is Factoring, the problem of taking an integer
as an input, and outputting its prime factors. Nash and
several other problems introduced below are also total.

A useful classification of total search problems was pro-
posed in [21]. The idea is this: If a problem is total, the fact
that every instance has a solution must have a mathematical
proof. Unless the problem can be easily solved efficiently, in
that proof there must be a “non-constructive step”. It turns
out that, for all known total search problems in the fringes
of P, these non-constructive steps are one of very few simple
arguments:

• “If a graph has a node of odd degree, then it must have
another.” This is the parity argument, giving rise to
the class PPA.

• “If a directed graph has an unbalanced node (a ver-
tex with different in-degree and out-degree), then it
must have another.” This is the parity argument for
directed graphs, giving rise to the class PPAD consid-
ered in this article. Figure 5 describes the correspond-
ing search problems.

• “Every directed acyclic graph must have a sink.” The
corresponding class is called PLS for polynomial local
search.

• “If a function maps n elements to n− 1 elements, then
there is a collision.” This is the pigeonhole principle,
and the corresponding class is PPP.

We proceed with defining more precisely the second class
in the list above.

2.1 The Class PPAD
There are two equivalent ways to define NP: First, it is

the class of all search problems whose answers are verifiable
in polynomial time. For example, the search problem sat
(“Given a Boolean formula in CNF, find a satisfying truth
assignment, or report that none exists”) is in NP because
it is easy to check whether a truth assignment satisfies a
CNF. Since we know that sat is NP-complete, we can also
define NP as the class of all problems that can be reduced
into instances of sat. By “reduce” we refer to the usual
form of polynomial-time reduction from search problem A
to search problem B: An efficient algorithm for transforming
any instance of A to an equivalent instance of B, together
with an efficient algorithm for translating any solution of the
instance of B back to a solution of the original instance of
A.

We define the class PPAD using the second strategy. In
particular, PPAD is the class of all search problems that
can be reduced to the problem end of the line, defined
in Figure 5. Note that, since end of the line is a total
problem, so are all problems in PPAD. Proceeding now in
analogy with NP, we call a problem PPAD-complete if end

Let us say that a vertex in a directed graph is “unbal-
anced” if the number of its incoming edges differs from
the number of its outgoing edges. Observe that given a
directed graph, and an unbalanced vertex, there must exist
at least one other unbalanced vertex. This is the parity
argument on directed graphs (PPAD stands for “polyno-
mial parity argument for directed graphs.”). Hence, the
following is a total search problem:

Input: A directed graph G and a specified unbalanced
vertex of G.
Output: Some other unbalanced vertex.

Note that, before we even begin to search G, the parity
argument assures us that we are searching for something
that really exists. Now, if G were presented in the form of
a list of its vertices and edges, the problem could of course
be solved efficiently. Suppose however that we are given a
graph that is too large to be written out in full, but must
be represented by a program that tells us whether an edge
exists or not.
To be specific, suppose G has 2n vertices, one for every
bit string of length n (the parameter denoting the size of
the problem). For simplicity, we will suppose that every
vertex has at most one incoming edge and at most one
outgoing edge. The edges of G will be represented by
two boolean circuits, of size polynomial in n, each with
n input bits and n output bits. Denote the circuits P
and S (for predecessor and successor). Our convention
is that there is a directed edge from vertex v to vertex
v′, if given input v, S outputs v′ and, vice-versa, given
input v′, P outputs v. Suppose now that some specific,
identified vertex (say, the string 00 · · · 0) has an outgoing
edge but no incoming edge, and is thus unbalanced. With
the restriction of at most one incoming and one outgoing
edge, the directed graph must be a set of paths and cycles;
hence, following the path that starts at the all-zeroes node
would eventually lead us to a solution. The catch is, of
course, that this may take exponential time. Is there an
efficient algorithm for finding another unbalanced node
without actually following the path?

Figure 5: end of the line: an apparently hard total
search problem

of the line (and therefore all problems in PPAD) can be
reduced to it.

2.2 Why should we believe that PPAD contains
hard problems?

In the absence of a proof that P 6= NP we cannot hope
to be sure that PPAD contains hard problems. The reason
is that PPAD lies “between P and NP” in the sense that,
if P = NP, then PPAD itself, as a subset of NP, will be
equal to P. But even if P 6= NP, it may still be the case
that PPAD-complete problems are easy to solve. We be-
lieve that PPAD-complete problems are hard for the same
reasons of computational and mathematical experience that
convince us that NP-complete problems are hard (but as
we mentioned, our confidence is necessarily a little weaker):
PPAD contains many problems for which researchers have
tried for decades to develop efficient algorithms; in the next
section we introduce one such problem called Brouwer.

However, end of the line itself is a pretty convincingly
hard problem: How can one hope to devise an algorithm
that telescopes exponentially long paths in every implicitly
given graph?

3. FROM NASH TO PPAD
Our main result is the following:

Theorem 3.1. Nash is PPAD-complete.

In the remainder of this article we outline the main ideas
of the proof; for full details see [8]. We need to prove two
things: First, that Nash is in PPAD, that is, it can be re-
duced to end of the line. Second (see Section 4), that it is
complete—the reverse reduction. As it turns out, both direc-
tions are established through a computational problem in-
spired by a fundamental result in topology, called Brouwer’s
Fixed Point Theorem, described next.

3.1 Brouwer Fixed Points
Imagine a continuous function mapping a circle (together

with its interior) to itself—for example, a rotation around
the center. Notice that the center is fixed, it hasn’t moved
under this function. You could flip the circle—but then all
points on a diagonal would stay put. Or you could do some-
thing more elaborate: Shrink the circle, translate it (so it
still lies within the original larger circle) and then rotate it.
A little thought reveals that there is still at least one fixed
point. Or stretch and compress the circle like a sheet of rub-
ber any way you want and stick it on the original circle; still
points will be fixed, unless of course you tear the circle—the
function must be continuous. There is a topological reason
why you can’t map continuously the circle on itself without
leaving a point unmoved, and that’s Brouwer’s theorem [17].
It states that any continuous map from a compact (that is,
closed and bounded) and convex (that is, without holes)
subset of the Euclidean space into itself always has a fixed
point.

Brouwer’s theorem immediately suggests an interesting
computational total search problem, called Brouwer: Given
a continuous function from some compact and convex set to
itself find a fixed point. But of course, for a meaningful def-
inition of Brouwer we need to first address two questions:
How do we specify a continuous map from some compact
and convex set to itself? And how do we deal with irra-
tional fixed points?

First, we fix the compact and convex set to be the unit
cube [0, 1]m—in the case of more general domains, e.g. the
circular domain discussed above, we can translate it to this
setting by shrinking the circle, embedding it into the unit
square, and extending the function to the whole square so
that no new fixed points are introduced. We then assume
that the function F is given by an efficient algorithm ΠF

which, for each point x of the cube written in binary, com-
putes F (x). We assume that F obeys a Lipschitz condition:

for all x1, x2 ∈ [0, 1]m : d(F (x1), F (x2)) ≤ K · d(x1, x2),
(4)

where d(·, ·) is the Euclidean distance, and K is the Lips-
chitz constant of F . This benign well-behavedness condition
ensures that approximate fixed points can be localized by
examining the value F (x) when x ranges over a discretized
grid over the domain. Hence, we can deal with irrational so-

lutions in a similar manoeuvre as with Nash, by only seek-
ing approximate fixed points. In fact, we have the following
strong guarantee: for any ε, there is an ε-approximate fixed
point—that is, a point x such that d(F (x), x) ≤ ε—whose
coordinates are integer multiples of 2−d, where d depends on
K, ε and the dimension m; in the absence of a Lipschitz con-
stant K, there would be no such guarantee and the problem
of computing fixed points would become intractable. For-
mally, the problem Brouwer is defined as follows.

Brouwer

Input:

An efficient algorithm ΠF for the evaluation
of a function F : [0, 1]m → [0, 1]m; a constant
K such that F satisfies (4); and the desired
accuracy ε.

Output: A point x such that d(F (x), x) ≤ ε.

It turns out that Brouwer is in PPAD. ([21] gives a sim-
ilar result for a more restrictive class of Brouwer functions.)
To prove this, we will need to construct an end of the line
graph associated with a Brouwer instance. We do this by
constructing a mesh of tiny triangles over the domain, where
each triangle will be a vertex of the graph. Edges, between
pairs of adjacent triangles, will be defined with respect to
a coloring of the vertices of the mesh. Vertices get colored
according to the direction in which F displaces them. We
argue that if a triangle’s vertices get all possible colors, then
F is trying to shift these points in conflicting directions, and
we must be close to an approximate fixed point. We elab-
orate on this in the next few paragraphs, focusing on the
2-dimensional case.

Triangulation.
First, we subdivide the unit square into small squares

of size determined by ε and K, and then divide each lit-
tle square into two right triangles (see Figure 7, ignoring for
now the colors, shading, and arrows). (In the m-dimensional
case, we subdivide them-dimensional cube intom-dimensional
cubelets, and we subdivide each cubelet into them-dimensional
analog of a triangle, called an m-simplex.)

Coloring.
We color each vertex x of the triangles by one of three

colors depending on the direction in which F maps x. In
two dimensions, this can be taken to be the angle between
vector F (x)− x and the horizontal. Specifically, we color it
red if the direction lies between 0 and −135 degrees, blue if
it ranges between 90 and 225 degrees, and yellow otherwise,
as shown in Figure 6. (If the direction is 0 degrees, we allow
either yellow or red; similarly for the other two borderline
cases.) Using the above coloring convention the vertices get
colored in such a way that the following property is satisfied:

(P1): None of the vertices on the lower side of the square
uses red, no vertex on the left side uses blue, and no vertex
on the other two sides uses yellow. Figure 7 shows a coloring
of the vertices that could result from the function F ; ignore
the arrows and the shading of triangles.

Sperner’s Lemma.
It now follows from an elegant result in Combinatorics

called Sperner’s Lemma [21] that, in any coloring satisfying
Property (P1), there will be at least one small triangle whose
vertices have all three colors (verify this in Figure 7; the

Figure 6: The colors assigned to the different direc-
tions of F (x) − x. There is a transition from red to
yellow at 0 degrees, from yellow to blue at 90 de-
grees, and from blue to red at 225 degrees.

trichromatic triangles are shaded). Because we have chosen
the triangles to be small, any vertex of a trichromatic trian-
gle will be an approximate fixed point. Intuitively, since F
satisfies the Lipschitz condition given in (4), it cannot fluc-
tuate too fast; hence, the only way that there can be three
points close to each other in distance, which are mapped
in three different directions, is if they are all approximately
fixed.

The connection with PPAD...
is the proof of Sperner’s Lemma: Think of all the triangles

containing at least one red and yellow vertex as the nodes of
a directed graph G. There is a directed edge from a triangle
T to another triangle T ′ if T and T ′ share a red-yellow edge
which goes from red to yellow clockwise in T (see Figure 7).
The graph G thus created consists of paths and cycles, since
for every T there is at most one T ′ and vice versa (verify
this in Figure 7). Now, we may also assume: On the left side
of the square there is only one change from yellow to red. 3

Under this assumption, let T ∗ be the unique triangle con-
taining the edge where this change occurs (in Figure 7, T ∗

is marked by a diamond). Observe that, if T ∗ is not trichro-
matic (as is the case in Figure 7), then the path starting
at T ∗ is guaranteed to have a sink, since it cannot inter-
sect itself, and it cannot escape outside the square (notice
that there is no red-yellow edge on the boundary that can
be crossed outward). But, the only way a triangle can be
a sink of this path is if the triangle is trichromatic! This
establishes that there is at least one trichromatic triangle.
(There may of course be other trichromatic triangles, which
would correspond to additional sources and sinks in G, as in
Figure 7.) G is a graph of the kind in Figure 5. To finish the
reduction from Brouwer to end of the line, notice that
given a triangle it is easy to compute its colors by invoking
ΠF , and find its neighbors in G (or its single neighbor, if it
is trichromatic).

Finally, from Nash to Brouwer.
To finish our proof that Nash is in PPAD we need a

reduction from Nash to Brouwer. Such a reduction was
essentially given by Nash himself in his 1950 proof: Sup-
pose that the players in a game have chosen some (mixed)
strategies. Unless these already constitute a Nash equilib-

3Suppose F gives rise to multiple yellow/red adjacencies on
the left-hand side. We deal with this situation by adding an
extra array of vertices to the left of the left side of the square,
and color all these vertices red, except for the bottom one
which we color yellow. This addition does not violate (P1)
and does not create any additional trichromatic triangles
since the left side of the square before the addition did not
contain any blue.

Figure 7: The subdivision of the square into smaller
squares, and the coloring of the vertices of the subdi-
vision according to the direction of F (x)−x. The ar-
rows correspond to the end of the line graph on the
triangles of the subdivision; the source T ∗ is marked
by a diamond.

Figure 8: An illustration of Nash’s function FN for
the penalty shot game. The horizontal axis cor-
responds to the probability by which the penalty
kicker kicks right, and the vertical axis to the proba-
bility by which the goalkeeper dives left. The arrows
show the direction and magnitude of FN (x)− x. The
unique fixed point of FN is (1/2, 1/2) corresponding to
the unique mixed Nash equilibrium of the penalty
shot game. The colors respect Figure 6, but our
palette here is continuous.

rium, some of the players will be unsatisfied, and will wish
to change to some other strategies. This suggests that one
can construct a “preference function” from the set of players’
strategies to itself, that indicates the movement that will be
made by any unsatisfied players. An example of how such a
function might look, is shown in Figure 8. A fixed point of
such a function is a point that is mapped to itself—a Nash
equilibrium. And Brouwer’s fixed point theorem, explained
above, guarantees that such a fixed point exists. In fact, it
can be shown that an approximate fixed point corresponds
to an approximate Nash equilibrium. Therefore, Nash re-
duces to Brouwer.

4. FROM PPAD BACK TO NASH
To show that Nash is complete for PPAD, we show how

to convert an end of the line graph into a corresponding
game, so that from an approximate Nash equilibrium of the

game we can efficiently construct a corresponding end of the
line. We do this in two stages. The graph is converted into
a Brouwer function whose domain is the unit 3-dimensional
cube. The Brouwer function is then represented as a game.
The resulting game has too many players (their number de-
pends on the size of the circuits that compute the edges of
the end of the line graph), and so the final step of the
proof is to encode this game in terms of another game, with
three players.

4.1 From Paths to Fixed Points: the PPAD-
completeness of Brouwer

We have to show how to encode a graph G, as described in
Figure 5, in terms of a continuous, easy-to-compute Brouwer
function F—a very different-looking mathematical object.
The encoding is unfortunately rather complicated, but is
key to the PPAD-completeness result...

We proceed by, first, using the 3-dimensional unit cube
as the domain of the function F . Next, the behavior of
F shall be defined in terms of its behavior on a (very fine)
rectilinear mesh of“grid points” in the cube. Thus, each grid
point lies at the center of a tiny “cubelet”, and the behavior
of F away from the centers of the cubelets shall be gotten
by interpolation with the closest grid points.

Each grid point x shall receive one of 4 “colors”{0, 1, 2, 3},
that represent the value of the 3-dimensional displacement
vector F (x) − x. The 4 possible vectors can be chosen to
point away from each other such that F (x)− x can only be
approximately zero in the vicinity of all 4 colors.

We are now ready to fit G itself into the above framework.
Each of the 2n vertices of G shall correspond with 2 special
sites in the cube, one of which lies along the bottom left-
hand edge in Figure 9 and the other one along the top left
edge. (We use locations that are easy to compute from the
identity of a vertex of G.) While most other grid points
in the cube get color 0 from F , at all the special sites a
particular configuration of the other colors appears. If G
has an edge from node u to node v, then F shall also color
a long sequence of points between the corresponding sites in
the cube (as shown in Figure 9), so as to connect them with
sequences of grid points that get colors 1,2,3. The precise
arrangement of these colors can be chosen to be easy to
compute (using the circuits P and S that define G) and such
that all 4 colors are adjacent to each other (an approximate
fixed point) only at sites that correspond to an “end of the
line” of G.

Having shown earlier that Brouwer is in PPAD, we es-
tablish the following:

Theorem 4.1. Brouwer is PPAD-complete.

4.2 From Brouwer to Nash
The PPAD-complete class of Brouwer functions that we

identified above have the property that their function F can
be efficiently computed using arithmetic circuits that are
built up using a small repertoire of standard operators such
as addition, multiplication and comparison. These circuits
can be written down as a “data flow graph”, with one of
these operators at each node. In order to transform this into
a game whose Nash equilibria correspond to (approximate)
fixed points of the Brouwer function, we introduce players
for every node on this data flow graph.

Games that do Arithmetic.

Figure 9: Embedding the end of the line graph in a
cube. The embedding is used to define a continuous
function F , whose approximate fixed points corre-
spond to the unbalanced nodes of the end of the
line graph.

The idea is to simulate each arithmetic gate in the circuit
by a game, and then compose the games to get the effect
of composing the gates. The whole circuit is represented by
a game with many players, each of whom “holds” a value
that is computed by the circuit. We give each player two
actions, “stop” and “go”. To simulate, say, multiplication of
two values, we can choose payoffs for 3 players x, y and z
such that, in any Nash equilibrium, the probability that z
(representing the output of the multiplication) will “go” is
equal to the product of the probabilities that x and y will
“go.” The resulting “multiplication gadget” (see Figure 10)
has a 4th player w who mediates between x, y and z. The
directed edges show the direct dependencies among the play-
ers’ payoffs. Elsewhere in the game, z may input his value
into other related gadgets.

Here is how we define payoffs to induce the players to
implement multiplication. Let X, Y , Z and W denote the
mixed strategies (“go”probabilities) of x, y, z and w. We pay
w the amount $X · Y for choosing strategy stop and $Z for
choosing go. We also pay z to play the opposite from player
w. It is not hard to check that in any Nash equilibrium of the
game thus defined, it must be the case that Z = X ·Y . (For
example, if Z > X ·Y , then w would prefer strategy go, and
therefore z would prefer stop, which would make Z = 0, and
would violate the assumption Z > X · Y .) Hence, the rules
of the game induce the players to implement multiplication
in the choice of their mixed strategies.

By choosing different sets of payoffs, we could ensure that
Z = X + Y or Z = 1

2
X. It is a little more challenging

to simulate the comparison of two real values, which also is
needed to simulate the Brouwer function. Below we discuss
that issue in more detail.

Computing a Brouwer Function with Games.
Suppose we have a Brouwer function F defined on the unit

cube. Include 3 players x1, x2, x3 whose “go” probabilities
represent a point x in the cube. Use additional players to
compute F (x) via gadgets as described above. Eventually,
we can end up with 3 players y1, y2, y3 whose “go” proba-
bilities represent F (x). Finally, we can give payoffs to x1,
x2 and x3 that ensure that in any Nash equilibrium, their
probabilities agree with y1, y2 and y3. Then, in any Nash
equilibrium, these probabilities must be a fixed point of F !

Figure 10: The players of the multiplication game.
The graph shows which players affect other players’
payoffs.

The Brittle Comparator Problem.
There’s just one catch: our comparator gadget, whose pur-

pose is to compare its inputs and output a binary signal
according to the outcome of the comparison, is “brittle” in
that if the inputs are equal then it outputs anything. This
is inherent, because one can show that, if a non-brittle com-
parator gadget existed, then we could construct a game that
has no Nash equilibria, contradicting Nash’s theorem. With
brittle comparators, our computation of F is faulty on in-
puts that cause the circuit to make a comparison of equal
values. We solve this problem by computing the Brouwer
function at a grid of many points near the point of interest,
and averaging the results, which makes the computation“ro-
bust”, but introduces a small error in the computation of F .
Therefore, the construction described above approximately
works, and the three special players of the game have to play
an approximate fixed point at equilibrium.

The Final Step: Three Players.
The game thus constructed has many players (the num-

ber depends mainly on how complicated the program for
computing the function F was), and two strategies for each
player. This presents a problem: To represent such a game
with n players we need n2n numbers—the utility of each
player for each of the 2n strategy choices of the n play-
ers. But our game has a special structure (called a graphical
game, see [16]): The players are vertices of a graph (essen-
tially the data flow graph of F), and the utility of each player
depends only on the actions of its neighbors.

The final step in the reduction is to simulate this game
by a three-player normal form game—this establishes that
Nash is PPAD-complete even in the case of three players.
This is accomplished as follows: We color the players (nodes
of the graph) by three colors, say red, blue, and yellow, so
that no two players who play together, or two players who
are involved in a game with the same third player, have the
same color (it takes some tweaking and argument to make
sure the nodes can be so colored). The idea is now to have
three “lawyers”, the red lawyer, the blue lawyer, and the
yellow lawyer, each represent all nodes with their color, in a
game involving only the lawyers. A lawyer representing m
nodes has 2m actions, and his mixed strategy (a probability
distribution over the 2m actions) can be used to encode the
simpler stop/go strategies of the m nodes. Since no two
adjacent nodes are colored the same color, the lawyers can
represent their nodes without a“conflict of interest,”and so a
mixed Nash equilibrium of the lawyers’ game will correspond
to a mixed Nash equilibrium of the original graphical game.

But there is a problem: We need each of the “lawyers”
to allocate equal amounts of probability to their customers;

however, with the construction so far, it may be best for a
lawyer to allocate more probability mass to his more “lucra-
tive”customers. We take care of this last difficulty by having
the lawyers play, on the side and for high stakes, a gener-
alization of the rock-paper-scissors game of Figure 1, one
that forces them to balance the probability mass allocated
to the nodes of the graph. This completes the reduction
from graphical games to three-player games, and the proof.

5. RELATED TECHNICAL CONTRIBUTIONS
Our paper [7] was preceded by a number of important

papers that developed the ideas applied in [7]. Scarf’s algo-
rithm [22] was proposed as a general method for finding ap-
proximate fixed points, which should be more efficient than
brute force. It essentially works by following the line in the
associated end of the line graph described in Section 3.1.
In the context of games, the Lemke-Howson algorithm [18]
computes a Nash equilibrium for 2-player games by follow-
ing a similar end of the line path. The similarity of these
algorithms and the type of parity argument used in showing
that they work inspired the definition of PPAD in [21].

Three decades ago, Bubelis [1] considered reductions among
games and showed how to transform any k-player game to a
3-player game (for k > 3) in such a way that given any solu-
tion of the 3-player game, a solution of the k-player game can
be reconstructed with simple algebraic operations. While
his main interest was in the algebraic properties of solu-
tions, his reduction is computationally efficient. Our work
implies this result, but our reduction is done via the use
of graphical games, which are critical in establishing our
PPAD-completeness result.

Only a few months after we announced our result, Chen
and Deng [3] made the following clever, and surprising, ob-
servation: The graphical games resulting from our construc-
tion are not using the multiplication operation (except for
multiplication by a constant), and therefore can even be sim-
ulated by a two-player game, leading to an improvement of
our hardness result from three- to two-player games. This
result was unexpected, one reason being that the proba-
bilities that arise in a 2-player Nash equilibrium are always
rational numbers, which is not the case for games with three
or more players.

Our results imply that finding an ε-Nash equilibrium is
PPAD-complete, if ε is inversely proportional to an ex-
ponential function of the game size. Chen et al. [4] ex-
tended this result to the case where ε is inversely propor-
tional to a polynomial in the game size. This rules out a
fully polynomial-time approximation scheme for computing
approximate equilibria.

Finally, in this paper we have focused on the complexity of
computing an approximate Nash equilibrium. Etessami and
Yannakakis [10] develop a very interesting complexity theory
of the problem of computing the exact equilibrium (or other
fixed points), a problem that is important in applications
outside Game Theory, such as Program Verification.

6. CONCLUSIONS AND FUTURE WORK
Our hardness result for computing a Nash equilibrium

raises concerns about the credibility of the mixed Nash equi-
librium as a general-purpose framework for behavior pre-
diction. In view of these concerns, the main question that
emerges is whether there exists a polynomial-time approx-

imation scheme (PTAS) for computing approximate Nash
equilibria. That is, is there an algorithm for ε-Nash equi-
libria which runs in time polynomial in the game size, if we
allow arbitrary dependence of its running time on 1/ε? Such
an algorithm would go a long way towards alleviating the
negative implications of our complexity result. While this
question remains open, one may find hope (at least for games
with a few players) in the existence of a sub-exponential al-

gorithm [19] running in time O(nlogn/ε2), where n is the size
of the game.

How about classes of concisely-represented games with
many players? For a class of “tree-like” graphical games, a
PTAS has been given in [6], but the complexity of the prob-
lem is unknown for more general low-degree graphs. Finally,
another positive recent development [6] has been a PTAS for
a broad and important class of games, called anonymous.
These are games in which the players are oblivious to each
other’s identities; that is, each player is affected not by who
plays each strategy, but by how many play each strategy.
Anonymous games arise in many settings, including network
congestion, markets, and social interactions, and so it is re-
assuring that in these games approximate Nash equilibria
can be computed efficiently.

An alternative form of computational hardness, exempli-
fied in [15], arises where instead of identifying problems
that are resistant to any efficient algorithm, one identifies
problems that are resistant to specific “natural” algorithms.
In [15], lower bounds are shown for “decoupled” dynamics,
a model of strategic interaction in which there is no central
controller to find an equilibrium. Instead, the players need
to obtain one in a decentralized manner. The study and
comparison of these models will continue to be an interest-
ing research theme.

Finally, an overarching research question for the Com-
puter Science research community investigating game-theoretic
issues, already raised in [11] but made a little more urgent
by the present work, is to identify novel concepts of ratio-
nality and equilibrium, especially applicable in the context
of the Internet and its computational platforms.

7. REFERENCES
[1] V. Bubelis. “On Equilibria in Finite Games,”

International Journal on Game Theory, 8(2):65–79
(1979).

[2] X. Chen and X. Deng. “3-NASH is PPAD-Complete,”
Electronic Colloquium in Computational Complexity,
TR05-134, 2005.

[3] X. Chen and X. Deng. “Settling the Complexity of
2-Player Nash-Equilibrium,” Proceedings of FOCS,
2006.

[4] X. Chen, X. Deng and S. Teng. “Computing Nash
Equilibria: Approximation and Smoothed Complexity,”
Proceedings of FOCS, 2006.

[5] V. Conitzer and T. Sandholm. “Complexity Results
about Nash Equilibria,” Proceedings of IJCAI, 2003.

[6] C. Daskalakis and C. H. Papadimitriou. “Discretized
Multinomial Distributions and Nash Equilibria in
Anonymous Games,” Proceedings of FOCS, 2008.

[7] C. Daskalakis, P. W. Goldberg and C. H.
Papadimitriou. “The Complexity of Computing a Nash
Equilibrium,” Proceedings of STOC, 2006.

[8] C. Daskalakis, P. W. Goldberg and C. H.

Papadimitriou. “The Complexity of Computing a Nash
Equilibrium,” SICOMP, to appear.

[9] C. Daskalakis and C. H. Papadimitriou. “Three-Player
Games Are Hard,” Electronic Colloquium in
Computational Complexity, TR05-139, 2005.

[10] K. Etessami and M. Yannakakis. “On the Complexity
of Nash Equilibria and Other Fixed Points (Extended
Abstract),” Proceedings of FOCS, 113-123, 2007.

[11] E. Friedman and S. Shenker. “Learning and
Implementation on the Internet,” Rutgers University,
Department of Economics, 1997.

[12] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the theory of
NP-Completeness. Freeman, 1979.

[13] I. Gilboa and E. Zemel. “Nash and Correlated
Equilibria: Some Complexity Considerations,” Games
and Economic Behavior, 1989.

[14] P. W. Goldberg and C. H. Papadimitriou.
“Reducibility Among Equilibrium Problems,”
Proceedings of STOC, 2006.

[15] S. Hart and Y. Mansour. “How Long to Equilibrium?
The Communication Complexity of Uncoupled
Equilibrium Procedures” Proceedings of STOC, 2007.

[16] M. Kearns, M. Littman and S. Singh. “Graphical
Models for Game Theory,” Proceedings of UAI, 2001.

[17] B. Knaster, C. Kuratowski and S. Mazurkiewicz, “Ein
Beweis des Fixpunktsatzes für n-dimensionale
Simplexe,” Fundamenta Mathematicae, 14: 132–137,
1929.

[18] C. E. Lemke and J. T. Howson, Jr. “Equilibrium
Points of Bimatrix Games,” SIAM Journal of Applied
Mathematics, 12: 413–423, 1964.

[19] R. Lipton, E. Markakis and A. Mehta. “Playing Large
Games Using Simple Strategies,” Proceedings of the
ACM Conference on Electronic Commerce, 2003.

[20] J. Nash. “Noncooperative Games,” Annals of
Mathematics, 54: 289-295, 1951.

[21] C. H. Papadimitriou. “On the Complexity of the
Parity Argument and Other Inefficient Proofs of
Existence,” Journal of Computer and System
Sciences, 48(3): 498–532, 1994.

[22] H. E. Scarf. “The Approximation of Fixed Points of a
Continuous Mapping,” SIAM Journal of Applied
Mathematics, 15: 1328–1343, 1967.

[23] Y. Shoham. “Computer Science and Game Theory,”
Communications of the ACM, 51(8): 75–79.

