KVM for ARM

Christoffer Dall and Jason Nieh
Columbia University
{cdall,nieh}@cs.columbia.edu

Abstract

As ARM CPUs grow in performance and ubiquity
across phones, netbooks, and embedded computers, pro-
viding virtualization support for ARM-based devices
is increasingly important. We present KVM/ARM, a
KVM-based virtualization solution for ARM-based de-
vices that can run virtual machines with nearly unmod-
ified operating systems. Because ARM is not virtualiz-
able, KVM/ARM uses lightweight paravirtualization, a
script-based method to automatically modify the source
code of an operating system kernel to allow it to run
in a virtual machine. Lightweight paravirtualization is
architecture specific, but operating system independent.
It is minimally intrusive, completely automated, and re-
quires no knowledge or understanding of the guest oper-
ating system kernel code. By leveraging KVM, which is
an intrinsic part of the Linux kernel, KVM/ARM'’s code
base can be always kept in line with new kernel releases
without additional maintenance costs, and can be easily
included in most Linux distributions. We have imple-
mented a KVM/ARM prototype based on the Linux ker-
nel used in Google Android, and demonstrated its ability
to successfully run nearly unmodified Linux guest oper-
ating systems.

1 Introduction

To provide the benefits of virtualization to Linux users,
Kernel Virtual Machine (KVM) has been included in
Linux starting with kernel version 2.6.20. Its tremen-
dous success is in large part due to its open-source distri-
bution and its relative simplicity compared to other ap-
proaches. This simplicity is achieved by leveraging the
functionality already provided by the Linux kernel, and
relying on some level of hardware virtualization sup-
port. KVM runs on a wide range of architectures, cur-
rently providing full support for x86 and PowerPC, and
experimental support for Itanium (ia64) and s390. The

x86 and ia64 implementations rely on hardware virtual-
ization extensions and the PowerPC and s390 architec-
tures are virtualizable.

Unfortunately, KVM does not support the ARM archi-
tecture, which is increasingly ubiquitous. While ARM is
known for excellent power consumption, small die size,
and compact code, recent CPUs based on the ARM ar-
chitecture are also quite powerful, and are being incor-
porated in growing numbers into a wide range of prod-
ucts. Mobile phones are almost exclusively based on
ARM, and ARM-based tablets and laptops with 3G con-
nections are increasing in popularity. Users increasingly
expect these devices to be able to perform a multitude
of tasks, including browse the Internet, play games, and
run thousands of other applications from an online ap-
plication store. ARM Linux is becoming more impor-
tant with the introduction of several Linux-based dis-
tributions targeting mobile and embedded ARM-based
devices, Google Android being one of them.

The key challenge in providing virtualization on ARM
is that the ARM architecture is not virtualizable. A vir-
tualizable architecture would allow a virtual machine to
directly execute on the real hardware while guaranteeing
that the virtual machine monitor (VMM) retains control
of the CPU. This is done by running the operating sys-
tem in the virtual machine, the guest operating system,
in non-privileged mode while the VMM runs in priv-
ileged mode. ARM is not virtualizable because there
are a number of sensitive instructions, used by operat-
ing systems, which do not generate a trap when executed
in non-privileged mode. Their behavior is either unpre-
dictable or they behave differently, causing an operating
system that uses these sensitive instructions to not run
correctly if run in a virtual machine directly executed
on the real hardware. There is also no hardware virtual-
ization support on ARM. The result is that ARM CPU
and memory virtualization are difficult.

We present KVM for ARM (KVM/ARM), a KVM-
based virtualization solution for ARM that runs nearly

unmodified operating system instances in virtual ma-
chines. KVM/ARM retains the simplicity of the KVM
architecture in the absence of ARM hardware virtual-
ization support by introducing lightweight paravirtual-
ization. Lightweight paravirtualization is a script-based
method to automatically modify the source code of the
guest operating system kernel to issue calls to KVM in-
stead of issuing sensitive instructions to enable a trap-
and-emulate virtualization solution. Lightweight par-
avirtualization is architecture specific, but operating sys-
tem independent. It is completely automated and re-
quires no knowledge or understanding of the guest op-
erating system kernel code. This is in stark contrast
to traditional paravirtualization, which is both archi-
tecture and operating system dependent, requires de-
tailed understanding of the guest operating system ker-
nel to know how to modify its source code, and then re-
quires ongoing maintenance and development to main-
tain heavily modified versions of operating systems that
can be run in virtual machines.

This paper presents the design and implementation of
KVM/ARM. Section 3 describes KVM/ARM CPU vir-
tualization using lightweight paravirtualization. Sec-
tion 4 describes KVM/ARM memory virtualization.
Section 5 describes the current implementation status
of KVM/ARM and ideas for improvement. Finally, we
present some concluding remarks.

2 Related work

Virtualization has been around since the of the
1970s [6], but re-emerged in the 1990s as commod-
ity x86 hardware became fast enough to run multiple
operating systems simultaneously. The x86 architec-
ture was previously not virtualizable since many sen-
sitive instructions did not trap when executed in non-
privileged mode [1]. Emulation could be used where
each guest instruction is interpreted in software, but this
is too slow for practical use. To overcome this problem,
VMware [13] introduced efficient dynamic binary trans-
lation mechanisms to translate sensitive instructions to
other instructions to enable x86 virtualization with low
performance overhead. However, the dynamic binary
translation mechanisms are not easy to implement, re-
sulting in a complex solution that is likely to be too
heavyweight to use for more resource-constrained mo-
bile devices such as smartphones. Xen [5] used paravir-
tualization [17] to provide x86 virtualization, in which
guest operating systems are extensively modified by

hand to use a rich set of hypercalls in lieu of sensitive
instructions. However, paravirtualization cannot run ex-
isting unmodified operating systems, and the modifica-
tions are extensive enough that supported guest operat-
ing systems lag significantly behind the latest available
unmodified operating system versions.

Intel and AMD have recently begun equipping x86
CPUs with native hardware virtualization support, In-
tel VT [9] and AMD-V [2], respectively. A new CPU
guest mode is provided for running virtual machines
such that sensitive instructions automatically trap so
they can be handled by a VMM, and nested page tables
provide hardware translation between physical memory
addresses perceived by the guest operating system and
host physical addresses on the real hardware through
a data structure managed by the VMM. KVM lever-
ages hardware virtualization support for x86 CPUs to-
gether with existing Linux kernel functionality to pro-
vide a relatively simple virtualization solution compared
to VMware and Xen. KVM implements a simple kernel
module, which provides full native virtualization sup-
porting completely unmodified guest operating systems.
Unfortunately, no such hardware virtualization support
exists for ARM. KVM/ARM is designed to preserve the
simplicity of KVM as much as possible while enabling
virtualization support on a non-virtualizable architec-
ture.

The growing ubiquity of ARM CPUs and continued ad-
vances in their performance have spurred various ef-
forts to provide virtualization on ARM. Several com-
mercial solutions are being developed, including VLX
for ARM by VirtualLogix [15], OKL4 Microvisor by
OK Labs [11], MVP by VMware [16], and INTEGRITY
secure virtualization by Green Hills [7]. None of these
solutions are open-source and all of them require par-
avirtualization.

Xen ARM [8] is the only other open-source ARM virtu-
alization approach available. Xen paravirtualization re-
quires access to guest operating system source code and
maintenance of changes to each version of the source
tree. The price of paravirtualization is increased main-
tenance cost and more limited availability in terms of
supported guest operating system versions. For exam-
ple, Xen ARM requires modifying by hand approxi-
mately 4500 lines of code in the guest operating sys-
tem [14]. The most recent kernel version it can sup-
port in a guest operating system is a modified Linux
2.6.11 kernel, a relatively old version of Linux. In con-

trast, KVM/ARM’s lightweight paravirtualization re-
quires minimal modifications to guest operating sys-
tems, and those modifications are simple enough that
they can be completely automated by a script. This
makes it relatively easy for KVM/ARM to support more
recent versions of guest operating systems.

3 CPU virtualization

Virtual machines must not be allowed to access the priv-
ileged state of the physical CPU and thereby gain un-
wanted control of hardware resources. Therefore, guest
operating systems must always run in a non-privileged
mode. The non-privileged mode on ARM is called user
mode.

Popek and Goldberg [12] define sensitive instructions
as the group of instructions where the effect of their ex-
ecution depends on the mode of the processor or the lo-
cation of the instruction in physical memory. A sensi-
tive instruction is also privileged if it always generates
a trap, when executed in user mode. The VMM can
only guarantee correct guest execution without the use
of dynamic translation if all sensitive instructions are
also privileged. In other words, an architecture is vir-
tualizable if and only if the set of sensitive instructions
is a subset of the set of privileged instructions. If that
is the case, the VMM can be implemented using a clas-
sic trap-and-emulate solution. Unfortunately, ARM is
not virtualizable as the architecture defines both sensi-
tive privileged instructions and sensitive non-privileged
instructions.

The sensitive privileged instructions defined by the
ARM architecture are the coprocessor access instruc-
tions which are used to access the coprocessor inter-
face. There is no such thing as a physical coprocessor,
but the semantics are used merely to extend the instruc-
tion set by transferring data between general purpose
registers and registers belonging to one of the sixteen
possible coprocessors. The architecture always defines
coprocessor number 15 which is called the system con-
trol coprocessor and controls the virtual memory sys-
tem. Specific implementations of the ARM architecture
can define other coprocessors to allow software to ac-
cess special hardware or otherwise leverage additional
hardware logic. For instance, coprocessor 14 is often
used to access floating point hardware. The coprocessor
access instructions are: CDP, LDC, MCR, MCRR, MRC,
MRRC, and STC. These instructions do not have to be

handled specially as they trap when they are executed in
user mode. When that happens, KVM/ARM catches the
trap and emulates the sensitive privileged instruction in
software.

The ARM architecture also defines sensitive non-
privileged instructions which cannot be handled using
just trap and emulate because they do not trap. These
instructions deal with processor modes, status registers,
and memory accesses that depend on CPU mode.

Processor mode instructions relate to ARM’s 7 proces-
sor modes: user mode and 6 privileged modes.! Each
mode has a number of banked registers, which means
that, for instance, register 13 points to a different physi-
cal register in supervisor mode than in user mode.? Spe-
cific versions of load/store multiple instructions access
user mode registers even when the processor is in a priv-
ileged mode. When executed in user mode, these in-
structions do not trap and are therefore sensitive and
non-privileged. These instructions are the LDM (2) and
STM (2) instructions.

Status register instructions relate to special ARM sta-
tus registers. ARM processors have a special regis-
ter called the Current Program Status Register (CPSR),
which specifies the current mode of the CPU and other
state information. Some of the bits in the CPSR are priv-
ileged, such as the mode bits, and some are accessible
in user mode. Five of the privileged modes also have a
banked Saved Program Status Register (SPSR), which
contains a copy of the user mode CPSR as it was when
the processor entered the privileged mode.>. The sta-
tus register access instructions CPS, MRS, MSR, RFE,
SRS read and write the CPSR and the SPSR. Writes
to privileged bits are ignored when the CPU is in user
mode and access to the SPSR is unpredictable in user
mode. Further, almost all data processing instructions
exist in a special mode, which replaces the content
of the CPSR with that of the SPSR. These instruc-
tions are denoted by appending an S to the instruc-
tion name: ADCS, ADDS, ANDS, BICS, EORS, MOVS,
MVNS, ORRS, RSBS, RSCS, SBCS, and SUBS. Like-
wise, the LDM (3) instruction replaces the content of

ISee pages A2-3 to A2-5 in the ARM Architecture Reference
Manual [3] for more information

2The differences between the privileged modes only concern the
banked registers and can be ignored throughout this paper.

3 Actually, the CPSR is only copied to the SPSR when entering
privileged mode through exceptions and not when manually switch-
ing modes

the CPSR with that of the SPSR in addition to loading
multiple registers. The behavior of these instructions is
unpredictable when executed in user mode and the in-
structions are therefore all sensitive and non-privileged.

Memory access instructions that depend on CPU mode
relate to access protection. The virtual memory system
on ARM processors uses access protection bits to limit
access to memory depending on the CPU mode. Regular
memory accesses are not sensitive according to Gold-
berg and Popek, as they will trap when executed in a less
privileged mode (reduced memory access rights). How-
ever, the architecture defines a number of instructions
that access memory using user mode access permissions
even though the CPU is in a privileged mode. These
instructions are called Load/Store with translation and
there are four of them: LDRBT, LDRT, STRBT, and
STRT. When executed in user mode, these instructions
behave as regular memory access instructions. Thus
the effect of executing these instructions depends on the
mode of the processor and the instructions do not trap
due to memory access violations. They are therefore
sensitive and non-privileged.

3.1 Lightweight paravirtualization

To avoid the problems with sensitive non-privileged
instructions, we modify the guest kernel source code
slightly. We do not have to worry about user space soft-
ware as user space applications will execute in the same
CPU mode as if they were executing directly on a physi-
cal machine. Sensitive instructions are not generated by
standard C-compilers and are therefore only present in
assembler files and inline assembly.

We modify the guest kernel source code using an auto-
mated scripting method. The script is based on regular
expressions and has been tested on a number of kernel
versions with success. The script supports inline assem-
bler syntax, assembler as part of preprocessor macros,
and, assembler macros.

It works by replacing sensitive non-privileged instruc-
tions with trap instructions and emulating the sensitive
instruction in software when handling the trap. How-
ever, KVM/ARM must be able to retrieve the original
sensitive instruction including its operands to be able
to emulate the sensitive instruction when handling a
trap. We experimented with inserting the trap instruc-
tion immediately before the sensitive instruction, but

this caused problems with PC-relative addressing and
fix-up tables* To avoid the need to manually fix the
patched code, we defined an encoding of all the sensi-
tive non-privileged instructions and their operands into
trap instructions.

The SWI instruction on ARM always traps and is nor-
mally used for making system calls. The instruction
contains a 24-bit immediate field (the payload), which
we can use to encode sensitive instructions. Unfortu-
nately, the 24 bits are not quite enough to encode all the
possible sensitive non-privileged instructions and their
operands. However, all coprocessor access instructions
trap if they access an undefined coprocessor. If we
specify coprocessors zero through seven, which are not
defined by the ARM architecture, all the coprocessor
access functions will trap regardless of their operands.
The coprocessor access instructions use 24 bits for their
operands, which we can also leverage to encode the sen-
sitive non-privileged instructions.

The VMM needs to be able to distinguish between guest
system calls and traps for sensitive instructions. We
make the assumption that the guest kernel does not make
system calls to itself. Under this assumption, we simply
interpret the payload if the virtual CPU is in privileged
mode and emulate the encoded instruction. If the virtual
CPU is in user mode, we consider the SWI instruction a
system call made by guest user space to the guest kernel.

The ARM architecture defines 24 sensitive non-
privileged instructions in total. We encode the instruc-
tions by grouping them in 15 groups; some groups con-
tain many instructions and some only contain a single
instruction. The upper 4 bits in the SWI payload in-
dexes which group the encoded instruction belongs to
(see Table 1). This leaves us 20 bits to encode each type
of instruction. Since there are 5 status register access
functions and they need at most 17 bits to encode their
operands, they can be indexed to the same type and be
sub-indexed using additional 3 bits. There are 12 sensi-
tive data processing instructions and they all use register
15 as the destination register and they all always have
the S bit set (otherwise they are not sensitive). We in-
dex them in two groups: one where the I bit is set and
one where it’s clear. In this way, the data processing
instructions need only 16 bits to encode their operands

4Fix-up tables is a method used by the kernel to verify access on
copy to and from user space operations. It uses offsets to the PC
linked at a special section and added to the PC on memory access
violations.

leaving us 4 bits to sub-index the specific instruction out
of the 12 possible. The sensitive load/store multiple and
load/store with translation instructions are using 12 of
the remaining 13 index values as can be seen in Table 1.

Index | Group / Instruction
0 | Status register access instructions
1 | LDM (2), P-bit clear
2 | LDM (2), P-bit set
3 | LDM (3), P-bit clear and W-bit clear
4 | LDM (3), P-bit set and W-bit clear
5 | LDM (3), P-bit clear and W-bit set
6 | LDM (3), P-bit set and W-bit set
7 | STM (2), P-bit set
8 | STM (2), P-bit clear
9 | LDRBT, I-bit clear
10 | LDRT, I-bit clear
11 | STRBT, I-bit clear
12 | STRT, I-bit clear
13
14 | Data processing instructions, I-bit clear
15 | Data processing instructions, I-bit set

Table 1: Sensitive instruction encoding types

In Table 1 only the versions of the load/store instruc-
tions with the I-bit clear are defined. This is due to a
lack of available bits in the SWI payload. We encode
the versions with the I-bit set using the coprocessor ac-
cess instruction. When the I-bit is set, the load/store
address is specified using an immediate value which re-
quires more bits than when the I-bit is clear. Since the
operands for coprocessor access instructions use 24 bits,
we can use 2 bits to distinguish between the 4 sensitive
load/store instructions. That gives us 22 bits to encode
the instructions with the I-bit set, which is exactly what
is needed.

We illustrate the implementation of our solution by an
example. Consider this code in arch/arm/boot/
compressed/head.S:

mrs r2, cCpsr @ get current mode
tst r2, #3 @ not user?
bne not_angel

The MRS instruction in line one is sensitive, since when
executed as part of booting a guest, it will simply return
the hardware CPSR. However, we must make sure that

it returns the virtual CPSR instead. Thus, we replace it
with a SWI instruction as follows:

swi 0x022000 @ get current mode
tst r2, #3 @ not user?
bne not_angel

When the SWI instruction in line one above generates
a trap, KVM/ARM loads the instruction from memory,
decodes it, emulates it, and finally returns to line two.

The approach differs from Xen’s paravirtualization solu-
tion in that it requires no knowledge of how the guest is
engineered and can be applied automatically on any OS
source tree compiled by GCC. For instance, Xen defines
a whole new file in arch/arm/mm/pgtbl-xen.c,
which contains functions based on other Xen macros to
issue hypercalls regarding memory management. Calls
to these functions are placed instead of existing kernel
code through the use of preprocessor conditionals many
places in the kernel code. The presented solution com-
pletely maintains the original kernel logic, which dras-
tically reduces the engineering cost and makes the solu-
tion more suitable for test and development of existing
kernel code.

3.2 Exceptions

An exception to an ARM processor is a common term
for traps and interrupts. Traps are caused by software
issuing an instruction that traps and interrupts are gen-
erated externally by hardware events. Common for all
of them are that when they occur, the processor changes
to a privileged mode and jumps to a predefined virtual
memory address. The ARM architecture defines the ex-
ceptions shown in Table 2. It is configurable at run-time
whether the low or high address shown in the table are
used.

The reset exception occurs when the physical reset pin
on the processor is asserted. Undefined exceptions
happen when an unknown op-code is used for an in-
struction or when software in user mode try to access
privileged coprocessor registers or when software ac-
cess non-existing coprocessors. Software interrupt ex-
ceptions happen when SWI instructions are executed.
Prefetch and data abort exceptions happen when the
processor cannot fetch the next instruction or complete
load/store instructions, respectively. These exceptions

Exception Low addr. High addr.
Reset 0x00000000 Oxffff0000
Undefined 0x00000004 Oxffff0004
Software interrupt 0x00000008 Oxffff0008
Prefetch abort 0x0000000c Oxffff000c
Data abort 0x00000010 Oxffff0010
Interrupt 0x00000018 Oxffff0018
Fast-interrupt 0x0000001c Oxffff001c

Table 2: ARM exceptions overview

are either caused by missing page table entries or by
memory protection violations. Interrupt and fast inter-
rupts are caused by external hardware asserting a pin on
the processor.

ARM operating systems must configure the exception
environment before any exceptions occur. ARM pro-
cessors have interrupts disabled at power on. During the
boot process, the operating system makes sure not to
generate any traps as these would cause unpredictable
behavior. After the OS sets up page tables and enables
virtual memory, it makes sure to map an exception vec-
tor page into 0xffff0000 (if high vectors are used). Only
then it enables interrupts and starts generating traps. The
instructions at the specific addresses in Table 2 are usu-
ally branch instructions to more or less complex handler
functions.

When the guest runs, it is likely going to use almost the
entire virtual address space. Especially if we are run-
ning the same guest and host OS, there is clearly going
to be a conflict. Therefore, VMs execute in their own
separate address space. The only host pages mapped in
the VM address space are the exception vector page and
the shared page. We explain the shared page in more
details in Section 4.2.

When the CPU is executing guest code, the only way for
KVM/ARM to regain control is through an exception.
Unfortunately, we cannot use the host kernel exception
handlers to handle exceptions when running the guest,
but we have to write our own handlers. The KVM/ARM
exception handlers are mapped at the exception vec-
tor page address in the VM’s address space and are
designed to re-enter the host kernel address space and
return to host kernel code when an exception occurs.
KVM/ARM then examines the guest exit reason and
performs required emulation before resuming guest ex-
ecution.

The above approach differs significantly from KVM on
x86, which is based on hardware virtualization support.
With hardware virtualization support, the exit path from
guest execution is not through normal exceptions. In-
stead, the hardware automatically changes segment reg-
isters and thereby changes the address space back to
the host kernel and resumes execution after the origi-
nal world switch instruction. Software can then simply
read a special register to determine the guest exit reason.

When KVM/ARM handles a hardware interrupt, it
needs to run the host kernel hardware interrupt han-
dler. If the host kernel handler is not run, the host ker-
nel may miss important hardware events such as timer
ticks or network packets. The host kernel interrupt han-
dler queries the interrupt controller to find out what hap-
pened and manages the device that caused the interrupt
as necessary. However, since we want to run the host
kernel handler after the actual hardware interrupt went
off, we are entering the host handler differently than
usual. Unfortunately, it’s not just a matter of a simple
function call as the host kernel handler expects a certain
state of the stack and CPU registers when the handler is
called. KVM/ARM sets up a state exactly as it would
have been if the host kernel interrupt handler had han-
dled the interrupt directly, and executes the host kernel
handler.

We note that in the typical use of KVM the guest ker-
nel never needs to handle interrupts as a result of hard-
ware interrupts. The guest kernel will only be exposed
to emulated devices. Interrupts from emulated devices
are generated by software and artificially injected into
the guest. When this happens, or when we need to in-
ject a trap to the guest (e.g. guest user space issues a
system call to the guest kernel) an address space con-
flict can occur.

Suppose the guest is using the high address for the
exception vector page and the host is also using the
high address to handle actual hardware exceptions. The
two physical frames can obviously not be mapped at
the same virtual address during guest execution, and
the KVM/ARM exception vector page must always be
mapped, since otherwise there is no way for the host
kernel to regain control of the system. When the guest
kernel is about to handle an exception, it will trap on the
instruction memory access permissions, since the guest
does not have access to the KVM/ARM exception vec-
tor page. In this case we simply tell the hardware to use
the low vector addresses and map the KVM/ARM ex-

ception page at that address instead. If later the guest
needs to access the low vector address for other pur-
poses, we simply tell the hardware to use the high vector
addresses again. Switching the vector location is a very
simple operation and involves only writing to a copro-
cessor register and invalidating a few TLB entries and
cache lines.

The exception handlers used by KVM/ARM are com-
piled as a part of KVM and get linked at an unknown ad-
dress. When a VM is created in KVM/ARM, the excep-
tion handlers are relocated from the address they were
linked at to a newly allocated exception vector page be-
longing to that VM. Due to limited width of the immedi-
ate fields in ARM instructions even assembler code can
generate binary code, which cannot simply be copied to
a new location as it may reference data at specific ad-
dresses. Therefore the exception handler code is writ-
ten in location-independent assembly. For instance, the
following instruction would generate a load from a PC-
relative address, which would not be easy to detect when
relocating the code:

code_start:
ldr lr, =0xff£f£1000
code_end:

Instead, we write the code like the following, which
loads the 32-bit immediate value from a local label rel-
ative to the PC. When we relocate the code segment we
copy the code until the code_end label, which will in-
clude the data value:

code_start:

1ldr lr, 1f
1l: .word Oxff£f£1000
code_end:

4 Memory virtualization

Virtual machines need access to any part of the virtual
address space they desire. But we cannot simply al-
low the guest OS to manage the physical memory or the
MMU, as the host OS must retain control over physi-
cal memory and be protected from the guest at all times.
Therefore, the memory must be virtualized.

The memory system on ARM exists in two flavors: one
without an MMU (replaced by a Memory Protection
Unit (MPU)) and one with an MMU. The latter trans-
lates virtual to physical addresses in hardware using a
rather flexible two-level page table layout. The pre-
sented solution is developed for systems with an MMU.
MMU-less cores are usually used in extremely simple
embedded systems where virtualization may be of less
importance anyway.

Memory virtualization introduces a new address space:
guest physical addresses. Guest physical addresses are
the addresses that the guest thinks represent physical
memory addresses. However, since the memory is virtu-
alized they are simply offsets into the memory region al-
located to the guest. Guest page tables, which are man-
aged by the guest kernel, translate from guest virtual ad-
dresses to guest physical addresses and can therefore not
be used for address translation by the MMU. The guest
physical addresses must first be translated to host physi-
cal addresses (also called machine addresses). See Fig-
ure 1 for an illustration of the address spaces.

Guest virtual

Guest physical

Host kernel

KVM process
Virtual Memory

Machine memory

Figure 1: KVM address spaces

4.1 Shadow page tables

Shadow page tables are data structures managed by
KVM/ARM, which are used by the hardware to trans-
late from guest virtual addresses to machine addresses
during guest execution.

SRecent hardware support for virtualization include technologies
called Nested Page Tables or Extended Page Tables. These technolo-
gies add an extra translation table, which translates guest physical
addresses to machine addresses in hardware.

When a new shadow page table is allocated, two spe-
cial entries are always created and the rest of the table
is left blank. The two special pages are the shared page
explained in Section 4.2 and the exception vector page
discussed in Section 3.2. If the guest tries to access any
page other than the two just mentioned, a page fault oc-
curs.

Guest pages are mapped into shadow page tables on de-
mand, when KVM/ARM handles page faults occurring
in VMs. The custom KVM/ARM exception handler will
determine the virtual address which caused the fault and
create an appropriate mapping in the shadow page table.
Such a mapping must translate from the fault address to
a machine address. KVM/ARM translates the fault ad-
dress into a guest physical address by walking the guest
page tables in software. The guest physical address is
then translated to a host virtual address through archi-
tecture independent KVM functionality and finally the
host virtual address is translated to a machine address by
using standard kernel virtual memory translation func-
tions.

ARM level-1 page table entries can be either section de-
scriptors, pointers to coarse page tables or pointers to
fine page tables. Coarse and fine page tables are com-
monly referred to as level-2 tables. Sections is a way
to map a 1MB virtual memory region to a correspond-
ing 1IMB of contiguous physical memory. Coarse page
table entries map pages of either 64KB (large pages),
4KB (small pages) or 1KB (tiny pages). Linux uses
almost exclusively coarse page tables with pointers to
4KB small pages.

The entries in the shadow page tables should generally
be of the same type as the entries in the guest page ta-
bles. However, this may not be possible when the guest
uses section descriptors. Since Linux operates with a
4KB page size and KVM/ARM requests physical mem-
ory pages from Linux user pages, we cannot guaran-
tee 1MB contiguous free physical memory on the host.
Therefore, all shadow page table entries use 4KB small
page mappings. This approach causes no loss in func-
tionality, but it may affect performance negatively. The
reason is that section descriptors only occupy a single
entry in an ARM TLB, where a similar mapping of a
1MB area based on 4KB small pages occupy 256 TLB
entries.

When the guest modifies page tables, KVM/ARM must
also update the shadow page table. For instance, if the

guest kernel uses copy-on-write, it will change the map-
ping on the first write to the COW section. Fortunately,
the guest must invalidate the TLB when changing page
tables. TLB invalidation is a privileged operation so
KVM/ARM will catch the operation. When it happens,
KVM/ARM simply re-initializes the shadow page table
to only contain the shared page and the exception page
and maps in the updated entries on demand.

4.2 Shared page and world switches

The shared page mentioned above is, as the name sug-
gests, a page which is shared between the host and the
guest. It is always mapped at the same address in the
host kernel as in the guest kernel and it is used to per-
form world switches. The reason why we need a shared
page is that guests execute in completely separate ad-
dress spaces from the host and the ARM architecture
requires that a change of address spaces is done from a
page mapped at the same virtual address in both the pre-
vious and new address space - otherwise the behavior is
unpredictable.

The shared page is mapped such that the guest can-
not access the page and any reads or writes from or
to the page will generate a page permission fault. If
that happens, KVM/ARM must map the shared page
at a different virtual address in both the host and the
guest and map a guest page at the fault address instead.
By doing so, the existence of the shared page is hid-
den from the guest OS. For Linux guests we take ad-
vantage of the reserved memory region in ARM Linux
(see Documentation/arm/memory.txt for more
info).

The shared page is structured as shown in Figure 2.
The code contains two entry points: __vcpu_run and
_ _exception_return. The first is used to switch
to the guest and the second is called from the custom
exception handlers to restore the host environment after
an exception occurs. The data in the top of the page is
needed to complete world switches. For instance, when
switching to the guest, the code in the shared page reads
the base physical address of the active level-1 page ta-
ble from a special register called the Translation Table
Base Register (TTBR) and stores the value at the top
of the shared page. The data section also contains the
physical base address of the shadow page tables and
the world switch code writes this value to the hardware
TTBR. After the page tables have been switched, the

stack pointer is no longer valid as the kernel stack loca-
tion is no longer mapped to the right physical memory.
Therefore we reserve 2K from the top of the shared page
for the stack.

0
data
code
stack T
4K <+ sp

Figure 2: Shared page layout

Because KVM is compiled and distributed as a mod-
ule, and because we want to be able to run multiple
guests simultaneously®, and because we may not know
the shared virtual address at compile time, the code on
the shared page can not be linked directly by the ker-
nel. Instead, a shared page is allocated per VM, and
the world switch code is relocated to the correspond-
ing shared page. Like the code for the exception vector
page, the code for the shared page is written in position-
independent assembly to make it relocatable.

4.3 Memory protection

Memory protection on ARM works through two con-
cepts: Domains and Access Permissions. These fea-
tures are used by traditional ARM operating systems to
protect for instance kernel memory from user space ap-
plications and to implement features such as copy-on-
write.

There are 16 domains on ARM - domain O to 15. Each
level-1 page table entry describes a 1MB virtual address
region. The level-1 entries contain a 4-bit value denot-
ing which domain the 1MB address region belongs to.
Each domain can be in one of the following three modes:

e No access
e Client

e Manager

6Since the data on the shared page belongs to the specific VM,
the shared page cannot be shared across VMs

If a page belongs to the no access domain, all accesses
to that page will generate faults. If a page belongs to
an administrator domain, all accesses will succeed. Fi-
nally, if a page belongs to a client domain, the access
permissions on page table entries are checked.

The access permissions define permissions depending
on the privilege level of the CPU. In Table 3 we show
the possible access permissions for normal memory on
ARMVS.

AP[1:0] Privileged User
0b00 No access No access
0b01 Read/write No access
0b10 Read/write Read only
Ob11 Read/write Read/write

Table 3: Access permission settings

Since the guest will always run in user mode,
KVM/ARM must translate the guest page access per-
missions to a value resulting in the same level of pro-
tection on the shadow page tables. For example, if the
guest page tables allow read/write access in privileged
mode but no access in user mode, and the VM is in
privileged mode, the shadow page table access permis-
sions must use read/write for user mode. When the VM
changes CPU mode, KVM/ARM updates access per-
missions on shadow page table entries correspondingly.
See Table 4 for the translation scheme used to translate
between guest access permissions and shadow access
permissions.

Domains are essentially easy to handle in shadow page
tables, since their settings can simply be copied from
the guest page tables and used on the shadow page ta-
bles. However, the shared page and the exception vector
page must always have read/write privileged access and
no user mode access, in order to protect the host from
the guest. Consequently these pages must be mapped
using a client domain. Since the domain is specified for
a 1MB virtual address space range, a single level-1 page
table entry can specify the domain for both pages be-
longing to the guest and for the exception vector page
or the shared page or both. In this case, KVM/ARM
changes the level-1 page table entry domain to a client
domain and modifies access permissions on the shadow
page table entries in the same 1MB address range to cor-
respond to the guest domain setting.

Guest page table permissions | Shadow page table permissions
Guest mode | Priv. \ User \ AP | Priv. \ User \ AP
AL, o o ,
P | KW N 0L RW | oy I
P | RV |RO 10| RW | by i
P | RW | RW 1R | oy i

Table 4: Access permission translation from guest to shadow page tables

5 Implementation status

The presented work is based on the 2.6.27 kernel run-
ning on the Google Android emulator, which emulates
the ARMvVS5 architecture (specifically an arm926E core)
on a custom “Goldfish” platform. The emulator pro-
vided us with a very convenient development environ-
ment as it supports GDB debugging of kernel code.

The solution successfully boots a Linux kernel with a
simple user space init environment. We can run small
programs although with poor performance. This was
not surprising, as the implementation has not been op-
timized for performance. Instead, the work has been
focused on correct functionality and full support for all
architecture features. As a consequence many features
have been implemented naively, which eased debugging
and code clarity and performance optimizations have
been postponed for future work.

The VM supports the devices on a standard ARM in-
tegrator development platform. Theoretically, since all
devices are memory-mapped on ARM and thereby com-
municate with QEMU using the same functionality, all
devices should work once a single device works. How-
ever, there may be timing constraints which requires
the use of paravirtualized drivers, coalesced MMIO or
something completely different.

The MMU emulation does not support tiny pages. The
reason is simply that we have not come across a guest
using them yet. Further, the use of tiny pages is depre-
cated from ARMv6 and forward.

We are currently working on ARMv6 and ARMv7
support. The ARMv6 work is done on the HTC

10

Dream G1 developer phone which is equipped with a
ARMI1136EJ-S core. The ARMv7 work is done on Bea-
gleBoards which feature Cortex-A8 cores. The majority
of this work consists of supporting the new page table
formats introduced in ARMv6, supporting processor-
specific cache and TLB manipulation functions, ensur-
ing cache coherency on shared data, and adding emula-
tion code to support a few instructions added in ARMv6
such as SRS and RFE.

Additionally we are also taking steps to improve the per-
formance of the system. Specifically, we are taking ad-
vantage of new ARMvG6 features to reduce the world
switch costs. ARMv6 and newer supports physically
tagged caches, which in part avoids the need to flush
caches on world switches. Further, ARMv6 supports
tagging of TLB entries with Application Space Identi-
fiers (ASIDs), which allows several TLB entries with
the same virtual address, but belonging to different ad-
dress spaces, to reside in the TLB at the same time. By
using ASIDs we can avoid TLB invalidations on world
switches. Finally, we are also experimenting with other
performance improvements such as removing unneces-
sary memcopies, caching shadow page tables and more.

ARM TrustZone[4] is a security technology available in
a number of recent processors from ARM and is the
closest thing to hardware support for virtualization on
ARM. In contrast to the latest versions of x86 hard-
ware virtualization extensions, TrustZone does not sup-
port memory virtualization and TrustZone does not pro-
vide functionality making it easier to decode sensitive
instructions for emulation. We plan to further investi-
gate the benefits and options for using TrustZone with
KVM/ARM. PikeOS by SYSGO is an ARM hypervi-
sor targeted towards security critical real-time systems.

PikeOS is based on TrustZone [7] and thereby limited to
processors with programmable TrustZone support. Un-
fortunately there are no technical details available on
how their solution is engineered in details.

We hope to get the solution included as part of the main-
line kernel and QEMU source trees. The solution hardly
modifies any code outside the KVM module and even
inside KVM there are very few changes to the architec-
ture independent code.

6 Conclusions

We have presented KVM/ARM, the first working open-
source ARM virtualization solution based on KVM.
Although ARM is not virtualizable, we show how
lightweight paravirtualization can be used to automat-
ically enable commodity operating systems to run in
a KVM/ARM virtual machine. The approach is min-
imally intrusive and requires no knowledge or under-
standing of commodity operating system code, mak-
ing it relatively easy for KVM/ARM to support more
recent versions of commodity operating systems. By
building on KVM, KVM/ARM can enjoy the same ben-
efits of KVM, including having its code base kept in
line with new kernel releases without additional main-
tenance costs and being easily included in most Linux
distributions. We have implemented a KVM/ARM pro-
totype based on the Linux kernel used in Google An-
droid and have demonstrated its ability to successfully
run nearly unmodified Linux guest operating systems.

Our KVM/ARM implementation work has benefited
from community support and improvements are ongo-
ing. Newer versions of the ARM architecture pro-
vide features to improve KVM/ARM and bring virtu-
alization to embedded devices, smartbooks, and mobile
phones in the future. For more information about the
project or to get involved, please refer to the project wiki
at: https://wiki.ncl.cs.columbia.edu/
wiki/index.php/AndroidvVirt:MainPage.

7 Acknowledgments

Hollis Blanchard, Alexander Graf, and Oren Laadan
provided many helpful suggestions in implementing and
debugging KVM/ARM. This work was supported in
part by NSF grants CNS-0914845 and CNS-0905246,
and AFOSR MURI grant FA9550-07-1-0527.

11

References

[1] Keith Adams and Ole Agesen. A Comparison of
Software and Hardware Techniques for x86
Virtualization. In ASPLOS-XII: Proceedings of
the Twelfth International Conference on
Architectural Support for Programming
Languages and Operating Systems, pages 2—13,
2006.

[2] AMD Virtualization (AMD-V™) Technology.
http://sites.amd.com/us/business/
it-solutions/virtualization/

Pages/amd-v.aspx.

ARM Ltd. ARM Architecture Reference Manual
(ARM DDI 0100I), 2005.

(3]

[4] ARM Ltd. TrustZone Security White Paper,
2010. http:
//infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone__

security_whitepaper.pdf.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, lan
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the
Nineteenth ACM Symposium on Operating

Systems Principles, pages 164-177, 2003.

[6] Robert P. Goldberg. A Survey of Virtual Machine

Research. IEEE Computer, 7(6):34—45, 1974.

[7]1 Green Hills Software Inc. White paper: Integrity
Secure Virtualization for ARM, 2010.
http://www.ghs.com/ds/index.php?

ds=integrity_virt_ARM.

[8] J-Y. Hwang, S-B. Suh, S-K. Heo, C-J. Park, J-M.
Ryu, S-Y. Park, and C-R. Kim. Xen on ARM:
System Virtualization using Xen hypervisor for
ARM-based Secure Mobile Phones. In Fifth IEEE
Consumer Communications and Networking

Conference, pages 257-261, 2008.

[9] Intel® Virtualization Technology (Intel®VT).
http://www.intel.com/technology/

virtualization/technology.htm.

[10] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin,

and Anthony Liguori. kvm: The Linux Virtual

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Machine Monitor. In OLS 2007: Proceedings of
the Linux Symposium, pages 225-230, 2007.

Open Kernel Labs. OKL4 Microvisor.
http://www.ok-labs.com/products/
okl4-microvisor.

Gerald J. Popek and Robert P. Goldberg. Formal
Requirements for Virtualizable Third Generation
Architectures. Communications of the ACM,
17(7):412-421, 1974.

Mendel Rosenblum and Tal Garfinkel. Virtual
Machine Monitors: Current Technology and
Future Trends. IEEE Computer, pages 39-47,
2005.

Sang-bum Suh. Presentation: Secure Architecture
and Implementation of Xen on ARM for Mobile
Devices, 2007. http://www.xen.org/
files/xensummit_4/Secure_Xen_ ARM
xen—-summit—-04_07_Suh.pdf.

VirtualLogix. Real-time Virtualization for
Conencted Devices.
http://www.virtuallogix.com/
solutions/product/arm.html.

VMware. VMware Mobile Virtualization
Platform, Virtual Appliances for Mobile phones.
http:
//www.vmware.com/products/mobile/.

Andrew Whitaker, Marianne Shaw, and Steven D.
Gribble. Denali: Lightweight Virtual Machines
for Distributed and Networked Applications.
Technical Report 02-02-01, University of
Washington, 2002.

12

