
Implementation of Keccak hash function
in Tree hashing mode on Nvidia GPU

Guillaume Sevestre

guillaume.sevestre@gmail.com

Abstract. This paper presents a Graphics Processing Unit implementation of KEC-
CAK cryptographic hash function, in a parallel tree hash mode to exploit the parallel
compute capacity of the graphics cards. The Nvidia Cuda language has been used to
access precisely the specificity of the GPU hardware (memory hierarchy, host-device
memory transfers). After optimizations of the cooperation between GPU and CPU,
top speed of more than 1 GB/s (including data transfers) has been reach using an
entry level GTS 250 card, for a 256 bits security target and hash length. A Stream Ci-
pher mode has also been implemented, which can find applications in high speed
encryption or pseudo random number generation.

Keywords: Cryptographic hash function, KECCAK, GPU, Cuda, Tree hashing, Sponge
functions, SHA-3 proposal.

1 Introduction

GPU computing applied to cryptography has already been explored, by porting for exam-
ple the AES block cipher on this platform like in Manavski [5] and Osvik et al [4].

This paper presents a Graphics Processing Unit (GPU) implementation of the crypto-
graphic hash function KECCAK [1], a candidate to the SHA-3 competition. To use efficiently
the parallelism of the GPU architecture, a dedicated tree hashing mode is proposed for this
implementation. This mode is inspired by different tree mode proposals in the KECCAK

specification and in the MD6 hash function proposal [8].



2 Targeted hardware and language framework

The targeted hardware for this implementation is Nvidia GPUs in general, and a G92 chip
based card (GTS 250) is used by the author for benchmark. The choice of Nvidia Cuda API
has been done to access precisely the specificity of the hardware (memory hierarchy, host-
device memory transfers). The Cuda API is an extension to the C language, so programmers
familiar with C can easily use this framework.

The parallel programming model used is Single-instruction multiple-thread (SIMT),
which can be viewed as an extension of the Single-instruction multiple-data (SIMD) model
(used by SSE and Altivec vector instructions set). In this model each thread process the
same instructions on different data, by opposition to the standard Multiple-instruction
multiple-data (MIMD) model used on multi-processor architecture, on which each thread
can process different instructions on different data.

The G92 used 128 Cuda cores which are individually able to perform 32 bits integer
operations, with 1024 32 bits registers available by core. Cores are grouped by 8 to form a
Streaming MultiProcessor (SM), able to access some extra shared memory, 16 kB par SM.
Each Streaming Multiprocessor is able to run near thousands of concurrent threads, and it
is recommended to use at least hundreds threads by SM. Limitations comes by the size of
the data processed by each thread, which should fit into available registers for better per-
formance.

Fig. 1. Nvidia G92 hardware

Different memory areas are used by Cuda hardware, they are called device memory by
opposition to host memory which resides on the host computer. The device global memory
fits in VRAM, it is the largest memory available, but the slowest to access for cores. Shared
memory is accessible by each core in a SM, and is faster than global memory. Shared mem-
ory can be used to store cooperation data used between threads during the computation.



Registers are private memory for each thread, and are very fast.

The typical workflow of a Cuda program is as follow:

1. Allocate memory workplace in host and device,
2. Transfer data from host to device global memory,
3. Load working memory in shared memory or registers,
4. Perform the core computation on GPU,
5. Transfer results back to the host memory,
6. Perform CPU finalization of computation (if needed).

Details on the programing model, the Cuda API, hardware configurations and capabil-
ities, and performance recommendations can be found in the Cuda programming guide
provided by Nvidia [7]. Details on how to install the Cuda SDK and toolkits can be found
on the Cuda developer zone web site.



3 Choosing the hash mode

3.1 Tree hash mode proposed

Several hash functions proposed for the SHA-3 competition are designed to offer inner par-
allelism, in a sense that in the execution of one hash function call, different computation
steps can be done in parallel. For example, in the MD6 design [8], 16 steps of the round
function are independent and can be computed in parallel. One can try to exploit this in-
ner parallelism on ‘many threads’ Cuda hardware.

An other way to parallelize any hash function is to use a tree hash mode, also called
Merkle tree [6]. In this way the parallelism is done outside the hash function, by running
several instances of the hash function concurrently, and gathering the results of each hash
function by hashing them at an upper level in a tree.

The author chooses to implement a tree hash mode, with many leaves (reusing KECCAK

paper [1], §6.4 vocabulary) hashing input message parts in the GPU, and a top node hash-
ing results of leaves in a serial way on the Host CPU. A leaf interleaving mode have been
chosen, but a fixed input message size for each leaf is used. So the GPU hashes fixed size
input data ‘big blocks’ and return hash results to be processed by the sequential top hash
node on CPU.

Fig. 2. Basic TreeHash mode

Keccak Top Node on CPU

Thread Block 0 on GPU

W 0,0 W 0,1 W 0,2 W 0,192

W 1,0 W 1,1 W 1,2 W 1,192

W 2,0 W 2,1 W 2,2 W 2,192

… …

… …

… …

Keccak
Thread 0

Keccak
Thread 1

Keccak
Thread 2

Keccak
Thread 192

H 0,0 H 0,1 H 0,2 H 0,192

Final 
Hash

…
…

…
…

…
… Thread Block 1 on GPU

W 0,0 W 0,1

W 1,0 W 1,1

W 2,0

Keccak
Thread 0

Keccak
Thread 1

H 0,0



Each leaf is computed by a thread on the GPU, and threads are grouped in Threads-
Blocks. Output of threads are transfers to CPU to the top hash node. This choice allows to
define a streaming mode on big blocks of data, having the advantage to be stateless on the
graphic card. On the other hand, the size of the big blocks (several MB) restrains this tree
mode to big files only.

3.2 Memory ordering

To improve memory read/write speed, the Tree hash mode have been designed to ensure
coalesced memory access, which means that, when threads are reading 32 bits words from
global memory, in an array like W [], W [0] is read by Thread 0, W [1] is read by Thread 1,
W [i ] is read by Thread i , etc ... This memory ordering ensure best performance on old
Nvidia Hardware (depends on compute capability of the GPU).

3.3 KECCAK version used

As targeted hardware device is limited in register memory, the author chooses to imple-
ment KECCAK- f [800] permutation. Using a compact implementation, a working hash state
(hash state and extra working memory needed for computation) can fit into 41 32b regis-
ters, so as there are 1024 registers in a SM, up to 192 hash states can fit in a SM, and 192
threads can be launched in parallel.

To following parameters for the KECCAK sponge function have been chosen : KECCAK-
f [800][r=256,c=544], and 256 bits of output size. The capacity of 544 bits and the output
sizes enables to claim 256 bits security for the hash functions. The input rate of 256 bits,
equal to output size, facilitates the tree construction as output data blocks are input data
blocks of upper nodes.

It has to be noted that with bit rate divide by 4, and work factor divide by 2 (in ap-
proximation), KECCAK- f [800][r=256,c=544] is expected to be 2 times slower than KECCAK-
f [1600][r=1088,c=512] or KECCAK- f [1600][r=1024,c=576], which are respectively the KEC-
CAK proposal for SHA-3 256 and the default KECCAK function proposed by KECCAK authors.



4 Performance results

4.1 First performance results

In this section first performance results are presented, using a basic tree mode as described
before. In addition to the GTS 250 card, the author also use a laptop Cuda card (Quadro FX
370M), similar to the GTS 250 but with only 8 Cuda cores (16 times less than the desk-
top card). Comparing performance on this two cards allows to study scaling ability of the
software. A full CPU implementation is also used for benchmark, using 32 bit mode on
one core (no multithreading) and without SIMD (SSE) instructions. This implementation
is also used to improve confidence in the correctness of the GPU implementation.

Table 1. First performance results

System Core2 Duo 2.6 Ghz Core i5-750 2.6Ghz
Quadro FX 370M Nvidia GTS 250

CPU Hash speed in MB/s 25 15
CPU + GPU speed in MB/s 61 682

4.2 Improving performance

The first way to improve performance is to overlap GPU and CPU computation. As the
kernels (function executed on the GPU) launches are asynchronous in the Cuda API, the
CPU can compute the Keccak top node of the previous GPU computation results during
the current GPU work.

In basic Cuda execution model, memory transfers (between host and device) and com-
putation on GPU are done in sequence. Data transfers are slow and can be the bottleneck
of the program performance. One other way to improve performance, if the hardware sup-
ports it, is to overlap data transfers and computation on GPU. This can be done using page-
locked memory, and Cuda streams (succession of data transfers and computation that are
issued in order in each stream), as explained in the Cuda programming guide [7]. The com-
bination of overlapping GPU and CPU computation and overlapping data transfers and
GPU computation gives the best results.

It’s interesting to note that those improvements do not affect much the slower GPU
configuration, as GPU computation time is still the most consuming task. In order to op-
timize performance using overlapping, the data transfers and works of the GPU should
be divided in smaller independent (in terms of computation and data transfers) pieces, to
be overlapped. But to fully occupied the several GPU cores those pieces should not be to
small. Good trade off between smaller work size for overlapping and bigger work size to
occupy all the GPU cores must be found.



Fig. 3. Overlapping data transfers, GPU and CPU computations

No overlapping
GPU Work i

Memcpy
D 2 H

memcpy
Host to Device

CPU Work i

GPU Work i+1

Overlapping GPU & CPU
GPU Work i

CPU Work i-1

memcpy
Host to Device

memcpy
Host to Device

Memcpy
D 2 H

Overlapping GPU & Memcpy & CPU 

GPU 
W i

CPU Work i-1

mcpy
H2D

mcpy
D2H

GPU Work i+1

CPU Work i

memcpy
Host to Device

Memcpy
D 2 H

GPU 
W i

mcpy
H2D

mcpy
D2H

GPU 
W i

mcpy
H2D

mcpy
D2H

GPU 
W i+1

CPU Work i

mcpy
H2D

mcpy
D2H

GPU 
W i+1

mcpy
H2D

mcpy
D2H

GPU 
W i+1

mcpy
H2D

mcpy
D2H

GPU 
W i+2

CPU Work i+1

mcpy
H2D

mcpy
D2H

GPU 
W i+2

mcpy
H2D

mcpy
D2H

GPU 
W i+2

mcpy
H2D

mcpy
D2H

Table 2. Improved performance results

Systems Core2 Duo 2.6 Ghz Core i5-750 2.6 Ghz
Configuration Quadro FX 370M Nvidia GTS 250

CPU Hash speed in MB/s 25 15
CPU + GPU speed in MB/s 61 682

CPU + GPU overlapped (MB/s) 63 1032
CPU + GPU Overlapped + Streams (MB/s) 64 1219



5 Enhanced Tree hash mode

5.1 Second Tree hash mode proposed

The first Tree hash mode proposed uses only 256 bits of chaining value between tree nodes.
The aim of the second tree hash mode proposed is to use a double sized chaining value, as
required in [2] as a necessary condition for being a sound tree hash mode. As doubling the
chaining value size in first Tree hash mode proposed would double the load of the CPU top
node, a tree of height 2 is used in the second mode.

Output of first nodes are store in shared memory, which enable the fewer threads com-
puting the height 2 nodes to access to the heigth 1 nodes results. Shared memory visibility
is limited to the thread block, so each thread block implement a subtree, and results of each
subtrees are still hashed by the CPU top node.

Fig. 4. Second TreeHash mode

H 0,0

H 1,0

Thread Block 0 on GPU

W 0,0 W 0,1 W 0,2 W 0,192

W 1,0 W 1,1 W 1,2 W 1,192

W 2,0 W 2,1 W 2,2 W 2,192

… …

… …

… …

…
…

…
…

…
…

Keccak
Thread 0

Keccak
Thread 1

Keccak
Thread 2

Keccak
Thread 192

Keccak Top Node on CPU

H 0,0

H 1,0

H 0,1

H 1,1

H 0,2

H 1,2

Keccak 0

H 
0,192

H 
1,192

… …

… …

H 0,0

H 1,0

H 0,32

H 1,32

Keccak 32

Thread Block 1 on GPU

W 0,0 W 0,1

W 1,0 W 1,1

W 2,0 W 2,1

Keccak
Thread 0

Keccak
Thread 1

H 0,0

H 1,0

H 0,1

H 1,1

Keccak 0

Final 
Hash

5.2 Performance of the second Tree hash mode

Performance of the second tree hash mode is slightly under the performance of the first
mode proposed, but it’s a security/performance trade off. All the asynchronous improve-
ments of the first mode are also used in this mode.



Table 3. Performance results of the second Tree hash mode

Systems Core2 Duo 2.6 Ghz Core i5-750 2.6 Ghz
Configuration Quadro FX 370M Nvidia GTS 250

CPU Hash speed in MB/s 23 14

CPU + GPU Overlapped + Streams (MB/s) 59 1183

5.3 Future work

A proper streaming hashing API could be build over the functions implemented in this
project. this API should handle padding of input message, and should be designed to fulfill
the requirements of [2] to be a sound tree hash mode.



6 Stream Cipher and Pseudo Random Number Generator (PRNG)

6.1 Stream Cipher

The parallelism of the GPU can be fully used by implementing KECCAK in a Stream Cipher
mode with independent streams generated by each threads in the GPU. In this mode, a 256
bits Key and a 256 bits (or less) Nonce is transfered from the Host to the Device. Then each
thread hashes the Key and the Nonce, the thread id and the thread block number. Output
streams are generated by using the arbitrary output length mode of KECCAK, also called
squeezing mode. The whole computation is done on the GPU in this mode.

Fig. 5. Stream Cipher mode

Thread Block 0 on GPU

Keccak
Squeeze Mode

Thread 0

Stream 0,0

Stream 1,0

Thread id=0

Block id=0

Stream X,0

Keccak
Squeeze Mode

Thread 1

Stream 0,1

Stream 1,1

Thread id=1

Block id=0

Stream X,1

… …
Keccak

Squeeze Mode
Thread 192

Stream 0,192

Stream 1,192

Thread id=192

Block id=0

Stream X,192

…… …

… …

… …

… …

Key 256 bits

Nonce 256 bits Thr Block 1 on GPU

Keccak
Squeeze Mode

Thread 0

Stream 0,0

Stream 1,0

Thread id=0

Block id=1

Stream X,0

…

6.2 Performance of Stream Cipher mode

Table 4. Performance of StreamCipher mode

Systems Core2 Duo 2.6 Ghz Core i5-750 2.6 Ghz
Configuration Quadro FX 370M Nvidia GTS 250
GPU using Cuda Streams (MB/s) 62 1183



The performance of stream cipher mode is quite similar to the first tree hash mode,
since it involves the same number of operations to input X blocks of data in a KECCAK state
in hashing mode than output X blocks of output in arbitrary output length mode.

The performance figures are not taking into account the XOR of the key stream with the
clear text. It has to be tested if xoring clear text with key stream is more efficient on GPU
(need to transfer clear text to GPU and cipher text back to Host) or on CPU.

6.3 Encryption and Authentication

If authentication is needed, a combination of StreamCipher mode and tree hashing for
computing an HMAC over the data encrypted can be easily build. The sequence of opera-
tions could be

1. Transfer the Key and nonce to the GPU and start computing cipher key streams,
2. Asynchronously transfer clear text data to GPU,
3. XOR clear text with key streams in GPU,
4. Start computing HMAC in tree mode in GPU,
5. asynchronously transfer cipher text back to CPU,
6. when HMAC is computed, transfer result MAC to CPU.

This can be viewed as a parallel variant of the new duplex sponge mode proposed in [3].

6.4 High speed PRNG

The Stream Cipher mode can be used as a building block of an high speed PRNG. the Key
and the Nonce can be replaced by true random data or data from a random pool to form
a seed. The Stream Cipher function act as a random expander, returning ‘cryptographic’
random data from the seed.



7 Notes about overall performances and optimizations

7.1 Optimizations of KECCAK implementation and usage

Optimizations of KECCAK can be done on this project’s implementation. For example lane
complementing (described in [1]) §7.2) have not been used yet.

Overall performances figures in this paper can be greatly improved by using a better
bitrate of KECCAK- f [800] , and/or use KECCAK- f [1600]. For KECCAK- f [1600], as GPU are 32
bits platforms, optimizations for using 32 bits words should be studied (bit interleaving).

7.2 Optimizations using new GPU hardware

Optimizations described in this paper, explicit asynchronous data transfers, coalesced mem-
ory access, are bound to the hardware used. New GPU hardware, in addition of generally
having more Cuda cores embedded and more memory (registers, shared memory), can im-
prove performance by doing implicit optimizations (for example: implicit asynchronous
memory transfer between Host and GPU).

The author extrapolates that using new GTX 4XX Nvidia cards and KECCAK- f [1600],
speeds of more than 3GB/s should be within reach.

8 Disclaimer

This work is a proof of concept about using GPU for cryptographic hash, and it’s still in alpha
stage. Neither the correctness nor the cryptographic strength of this software is guaranteed.

9 Acknowledgments

The author thanks the KECCAK team for their comments and answers about this project.



References

1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak sponge function family main document. Submission to
NIST (updated), 2009.

2. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sufficient conditions for sound tree and sequential hashing
modes. 2009.

3. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the sponge: single-pass authenticated encryption
and other applications. 2010.

4. J.W. Bos, D.A. Osvik, and D. Stefan. Fast Implementations of AES on Various Platforms. Technical report, Cryptology
ePrint Archive, Report 2009/501, November 2009. http://eprint. iacr. org, 2009.

5. S.A. Manavski. CUDA compatible GPU as an efficient hardware accelerator for AES cryptography. In Signal Processing
and Communications, 2007. ICSPC 2007. IEEE International Conference on, pages 65–68. IEEE, 2008.

6. R. Merkle. A certified digital signature. In Advances in CryptologyŮCRYPTOŠ89 Proceedings, pages 218–238. Springer,
1990.

7. C. NVIDIA. programming guide version 3.0. NVIDIA Corporation, 2010.
8. R.L. Rivest, B. Agre, D.V. Bailey, C. Crutchfield, Y. Dodis, K.E. Fleming, A. Khan, J. Krishnamurthy, Y. Lin, L. Reyzin, et al.

The MD6 hash function A proposal to NIST for SHA-3. Submission to NIST, 2008.


	 Implementation of Keccak hash function in Tree hashing mode on Nvidia GPU 
	 Guillaume Sevestre 
	Introduction
	Targeted hardware and language framework
	Choosing the hash mode
	Tree hash mode proposed
	Memory ordering
	Keccak version used

	Performance results
	First performance results
	Improving performance

	Enhanced Tree hash mode 
	Second Tree hash mode proposed
	Performance of the second Tree hash mode
	Future work

	Stream Cipher and Pseudo Random Number Generator (PRNG)
	Stream Cipher
	Performance of Stream Cipher mode
	Encryption and Authentication
	High speed PRNG

	Notes about overall performances and optimizations
	Optimizations of Keccak implementation and usage
	Optimizations using new GPU hardware

	Disclaimer
	Acknowledgments



