
Noname manuscript No.
(will be inserted by the editor)

GPU Parallel Statistical and Cube Test Analysis of the
SHA-3 Finalist Candidate Hash Functions

Alan Kaminsky

the date of receipt and acceptance should be inserted later

Abstract The 256-bit versions of the SHA-3 finalist
candidate hash functions—BLAKE, Grøstl, JH, Kec-
cak, and Skein—were subjected to statistical tests to

attempt to disprove the hypothesis that the output bits
are uniformly distributed, independent, binary random
variables. The hash functions were also subjected to

cube tests to attempt to disprove the hypothesis that
the superpoly bits are uniformly distributed, indepen-
dent, binary random variables. The hash functions and

test programs were implemented to run in parallel on a
448-core GPU supercomputer; the cube tests in partic-
ular require massive amounts of computation and are

ideally suited for parallel implementation. Nonrandom
behavior was observed at the 0.01 significance level in
the BLAKE, JH, Keccak, and Skein hash functions.
Nonrandom behavior was not observed at the 0.01 sig-

nificance level in the Grøstl hash function.

Keywords Hash functions · SHA-3 · BLAKE ·
Grøstl · JH · Keccak · Skein · statistical tests · cube
tests · parallel computing · GPU computing

1 Introduction

In 2007 the U.S. National Institute of Standards

and Technology (NIST) inaugurated a competition to
choose a new cryptographic hash algorithm [17]. Af-
ter two rounds of the competition, in December 2010

NIST selected five candidate hash functions—BLAKE,
Grøstl, JH, Keccak, and Skein—to advance to the third
and final round. The cryptographic community has

been and is analyzing the candidate hash functions’ se-

Department of Computer Science, Rochester Institute of
Technology, 102 Lomb Memorial Drive, Rochester, NY 14623,
USA, E-mail: ark@cs.rit.edu, Tel./Fax: +1 585–568–8705

curity. In 2012 NIST will select the winning algorithm
and designate it as SHA-3.

NIST stated that “Hash algorithms will be evalu-

ated against attacks or observations that may threaten
existing or proposed applications, or demonstrate some
fundamental flaw in the design, such as exhibiting

nonrandom behavior and failing statistical tests” [17].
While extensive cryptanalysis of the SHA-3 candidates
has been published (see [21] for a bibliography), little

statistical analysis of the SHA-3 candidates has been
published (see [11,14,23]). This paper’s first contribu-
tion is a statistical analysis of all five SHA-3 finalist

candidates.

The de facto standard for statistical analysis of

cryptographic functions is the NIST test suite [20]. It
consists of 15 statistical tests performed on binary se-
quences of length one million bits or more. While the

NIST test suite document describes how to apply the
statistical tests to such a long binary sequence and how
to interpret the results, it does not describe how to eval-

uate a cryptographic function to generate a long binary
sequence in the first place. The method for generat-
ing a long binary sequence is particularly unclear for

block ciphers, hash functions, and MACs, which pro-
duce short, fixed-length outputs (in contrast to stream
ciphers, which produce arbitrary-length outputs). This

paper’s second contribution is a complete methodology
for statistical analysis of a cryptographic function, espe-
cially one with a fixed-length output, based on testing
the hypothesis that the function’s output bits are uni-

formly distributed, independent, binary random vari-
ables. The methodology prescribes both how to evalu-
ate the function and how to test the function’s output

bit sequences.

Besides testing the cryptographic function itself, the

statistical behavior of the function’s internal polyno-

2 Alan Kaminsky

mial structure can also be probed using the cube test

[2]. This provides additional insight into the function’s
statistical behavior beyond just its external black-box
outputs. The cube test computes so-called superpolys of

the function; computing a superpoly requires 2c evalua-
tions of the function for some c. This paper’s statistical
analysis methodology includes testing the hypothesis

that the function’s superpoly bits are uniformly dis-
tributed, independent, binary random variables.

Evaluating the cryptographic function to produce
binary sequences for the function’s output bits and su-

perpoly bits, and executing the statistical tests on these
numerous binary sequences, requires extensive compu-
tation. However, the computations can be carried out

in a massively parallel fashion and are ideally suited
to run on a graphics processing unit (GPU) supercom-
puter. This paper’s third contribution is a GPU parallel

implementation of each of the SHA-3 finalist candidate
hash functions, of the function and superpoly evalua-
tions to produce binary sequences, and of the statistical

tests on the binary sequences. The test programs were
run on an NVIDIA Tesla C2050 448-core GPU super-
computer.

The paper is organized as follows. Section 2 de-
scribes the statistical test methodology. Section 3 de-
scribes the GPU parallel implementation. Section 4

presents and interprets the statistical test results on
the SHA-3 finalist candidates. Section 5 offers conclud-
ing remarks.

2 Statistical Test Methodology

2.1 Hypotheses

The statistical test methodology treats the crypto-
graphic function F () being tested as a black box with

w input bits and m output bits (Fig. 1). x desig-
nates the vector of input bits treated as a w-bit bi-
nary number. Fi(x) designates the function that com-

putes the i-th output bit, 1 ≤ i ≤ m. F (x) =
(F1(x), F2(x), . . . , Fm(x)) designates the vector of out-
put bits.

The statistical test methodology begins with two
hypotheses:

– Output Randomness Hypothesis. Fi(x) is a
uniformly distributed binary random variable, 1 ≤
i ≤ m.

– Output Independence Hypothesis. Fi(x) and
Fj(x) are independent random variables, 1 ≤ i <

j ≤ m.

Fig. 1 Generation of binary sequences for cryptographic
function output bits for one trial

These hypotheses capture the notion that when a cryp-
tographic function’s input changes, the output bits

should change randomly.

2.2 Generation of Binary Sequences

Testing the hypotheses begins by generating a num-
ber of binary sequences, as follows. A certain number n

of trials are performed. For each trial t, 1 ≤ t ≤ n,
an initial input value xt is chosen at random (us-
ing a pseudorandom number generator). The crypto-
graphic function is applied to ` successive input values

starting from xt (wrapping around to 0 if necessary):
F (xt), F (xt + 1), . . . , F (xt + `− 1).

Separating the output bits, we now have a binary
sequence of length ` for each trial t, 1 ≤ t ≤ n, and

each output bit i, 1 ≤ i ≤ m (Fig. 1):

St
i = (Fi(xt), Fi(xt + 1), . . . , Fi(xt + `− 1)) . (1)

This study used n = 2000 trials and ` = 10240 sam-
ples per trial. This relatively short sequence length was
used so that generating the sequences would not take

an excessive amount of time, especially when testing
the cryptographic function’s superpolys (Sect. 2.6).

2.3 Tests on Binary Sequences

A suite of statistical tests is applied to each binary se-
quence St

i to attempt to disprove the hypotheses. The

NIST test suite is not used in its entirety because some

GPU Parallel Statistical and Cube Test Analysis of the SHA-3 Finalist Candidate Hash Functions 3

of the statistical tests in that suite require long binary

sequences of one million bits or more [20]. Instead, sev-
eral statistical tests taken from the NIST test suite,
from Knuth [15], and from L’Ecuyer and Simard [16]

are used.

Some tests in the suite are chi-square tests. A chi-
square test proceeds as follows. The data in the binary

sequence is categorized, and each time an item falls in
a certain category, the count in the corresponding bin
is incremented. The chi-square statistic is calculated:

χ2 =
b∑

i=1

(Ni −Npi)
2

Npi
, (2)

where b is the number of bins, N is the total number
of items, Ni is the number of items in bin i, and pi
is the probability that an item will fall in bin i if the

hypothesis is true. In the limit, χ2 obeys a chi-square
distribution with b − 1 degrees of freedom (d.o.f.). For
finite N , χ2 only approximately obeys a chi-square dis-

tribution; but if the expected count in each bin (Npi)
is 5 or greater, the approximation is acceptable. The p-
value is calculated; this is the probability that a statistic

value greater than or equal to the observed value would
occur by chance if the hypothesis is true. The formula
for the chi-square p-value is

p-value = 1− gammp

(
d.o.f.

2
,
χ2

2

)
, (3)

where gammp is the incomplete gamma function,

gammp(a, x) =

∫ x

0
ta−1e−tdt∫∞

0
ta−1e−tdt

. (4)

Procedures for calculating gammp are well-known; see

[19], for example. If the p-value falls below a cer-
tain small significance threshold, meaning the observed
value of the statistic is very unlikely to occur by chance,

the hypothesis is considered disproven.

Seven statistical tests are applied to each binary se-
quence St

i to attempt to disprove the Output Random-

ness Hypothesis:

Frequency test [20]. This checks whether 0 and 1
bits occur in equal proportions in the binary sequence.

It is a chi-square test with two bins and equal bin prob-
abilities of 1/2.

Serial-2 test [15]. This checks whether all possible
values of two-bit blocks—00, 01, 10, and 11—occur in
equal proportions. The blocks overlap: the first block

consists of the first and second bits of the sequence, the
second block consists of the second and third bits of the
sequence, and so on. The test computes this statistic:

Y =
4

`

3∑
i=0

N2(i)−
2

`

1∑
j=0

N1(j) , (5)

where N2(i) is the number of two-bit blocks with the

value i and N1(j) is the number of one-bit blocks with
the value j. If the hypothesis is true, Y obeys a chi-
square distribution with 2 d.o.f.; (3) gives the p-value.

Serial-3 test [15]. This checks whether all possible

values of overlapping three-bit blocks occur in equal
proportions. The test computes this statistic:

Y =
8

`

7∑
i=0

N3(i)−
4

`

3∑
j=0

N2(j) , (6)

where N3(i) is the number of three-bit blocks with the
value i. If the hypothesis is true, Y obeys a chi-square
distribution with 4 d.o.f.; (3) gives the p-value.

Serial-4 test [15]. This checks whether all possi-
ble values of overlapping four-bit blocks occur in equal
proportions. The test computes this statistic:

Y =
16

`

15∑
i=0

N4(i)−
8

`

7∑
j=0

N3(j) , (7)

where N4(i) is the number of four-bit blocks with the
value i. If the hypothesis is true, Y obeys a chi-square

distribution with 8 d.o.f.; (3) gives the p-value.

Gap test [15]. A gap in a binary sequence is de-
fined to be a series of zero or more 0 bits between two
consecutive 1 bits. The gap test checks whether gaps of

different lengths appear in the expected proportions. It
is a chi-square test with ten bins and the following bin
probabilities:

Gap Bin Gap Bin
length prob. length prob.

0 1/2 5 1/64
1 1/4 6 1/128
2 1/8 7 1/256

3 1/16 8 1/512
4 1/32 ≥ 9 1/512

The expected count in each bin is the number of gaps in
the sequence times the bin probability. If the expected

count in the last bin is less than 5, the last category is
coalesced into the next-to-last category; this is repeated
until the expected count in the last bin is 5 or greater.

Autocorrelation test [16]. This checks whether
the binary sequence is uncorrelated with lagged versions
of itself at lags of 1 through 9. If they are uncorrelated,

the bitwise exclusive-or of the original sequence with
the lagged sequence should be half 0s and half 1s. The
test computes this statistic:

Y =
2

`

9∑
j=1

(
H(St

i ⊕ rot(St
i , j))−

`

2

)2

, (8)

where rot(St
i , j) is the sequence circularly shifted j po-

sitions and H() is the Hamming weight (number of 1s).

4 Alan Kaminsky

If the hypothesis is true, Y obeys a chi-square distribu-

tion with 9 d.o.f.; (3) gives the p-value.
Hamming-weight test [16,20]. This partitions the

binary sequence into M subsequences of length N =

`/M and compares the Hamming weight of each subse-
quence to the expected value, N/2. The test computes
this statistic:

Y =
2

N

M−1∑
j=0

(
H(St

i [jN .. jN +N − 1])− N

2

)2

, (9)

where St
i [a .. b] is the subsequence of S

t
i from bit indexes

a through b inclusive. If the hypothesis is true, Y obeys
a chi-square distribution with M d.o.f.; (3) gives the

p-value. This study used M = 100.
One statistical test is applied to each pair of binary

sequences St
i and St

j , 1 ≤ i < j ≤ m, to attempt to

disprove the Output Independence Hypothesis:
Independence test. This checks whether all pos-

sible pairs of corresponding bits from the two binary

sequences—(0, 0), (0, 1), (1, 0), and (1, 1)—occur in
equal proportions. It is a chi-square test with four bins
and equal bin probabilities of 1/4.

2.4 Tests on Output Bits

The statistical tests of the Output Randomness Hy-
pothesis in Sect. 2.3 yield a p-value for each of the
seven tests, each of the m output bits, and each of

the n trials (Fig. 2). The next step in the statistical
test methodology is to attempt to disprove the Output
Randomness Hypothesis for each output bit based on

all the trials’ p-values. If the hypothesis is true, the tri-
als’ p-values for a given test and output bit should obey
a uniform(0, 1) distribution. This is checked by apply-

ing a uniformity test: the (0, 1) interval is partitioned
into 20 equal subintervals (bins), the trials’ p-values are
sorted into the bins, and a chi-square test is performed

on the bin counts.
In the case of the frequency test, the above pro-

cedure does not work. Because the binary sequences

are relatively short and there are only two bins, only a
certain discrete set of statistic values and p-values was
observed, and the p-values were not spread uniformly

over the (0, 1) interval. Instead, the following procedure
is used for the frequency test: If the hypothesis is true,
the trials’ 0 counts for a given output bit should obey

a binomial(`, 0.5) distribution. This is checked by par-
titioning the (0, `) interval into 20 subintervals (bins)
of approximately equal bin probability (Fig. 3), sort-

ing the trials’ 0 counts into the bins, and performing a
chi-square test on the bin counts.

The statistical tests of the Output Independence

Hypothesis in Sect. 2.3 also yield a p-value for each

Fig. 2 Methodology for testing the Output Randomness Hy-
pothesis. A certain statistical test (oval labeled “Test”) is ap-
plied to the length-` binary sequence for each output bit and
each trial, yielding a p-value. A uniformity test (oval labeled
“Unif”) is applied to the n trials’ p-values for each output bit,
yielding another p-value. One final uniformity test is applied
to the m output bits’ p-values, yielding an overall p-value.
This is repeated for each of the seven statistical tests

of the m(m − 1)/2 output bit pairs and each of the

n trials. The statistical test methodology attempts to
disprove the Output Independence Hypothesis for each
output bit pair based on all the trials’ p-values. If the

hypothesis is true, the trials’ independence test p-values
for a given output bit pair should obey a uniform(0, 1)
distribution. This is checked by applying the 20-bin uni-

formity test to the trials’ p-values.

GPU Parallel Statistical and Cube Test Analysis of the SHA-3 Finalist Candidate Hash Functions 5

Fig. 3 Bins for a chi-square test of the frequency test 0
counts. The dark line plots the cumulative distribution func-
tion of the binomial(10240, 0.5) distribution. The vertical
lines show the boundaries of the 20 bins. The horizontal lines
show that the bin probabilities are all approximately the same
(because the distribution is discrete, they are not all exactly
1/20)

2.5 Tests on the Entire Function

The statistical tests of the Output Randomness Hy-
pothesis in Sect. 2.4 yield a p-value for each of the seven
tests and each of the m output bits (Fig. 2). The final

step in the statistical test methodology is to attempt
to disprove the Output Randomness Hypothesis for the
entire cryptographic function based on all the output

bits’ p-values. If the hypothesis is true, the output bits’
p-values for a given test should obey a uniform(0, 1) dis-
tribution. This is checked by applying the 20-bin uni-

formity test to the output bits’ p-values.

The statistical tests of the Output Independence

Hypothesis in Sect. 2.4 also yield a p-value for each
of the m(m− 1)/2 output bit pairs. The statistical test
methodology attempts to disprove the Output Indepen-

dence Hypothesis for the entire cryptographic function
based on all the output bit pairs’ p-values. If the hy-
pothesis is true, the output bit pairs’ independence test

p-values should obey a uniform(0, 1) distribution. This
is checked by applying the 20-bin uniformity test to the
output bit pairs’ p-values.

Applying the statistical test methodology to a cryp-
tographic function yields, finally, eight overall p-values,

one for each of the frequency, serial-2, serial-3, serial-
4, gap, autocorrelation, Hamming-weight, and indepen-
dence tests. If any p-value falls below a significance

threshold chosen by the experimenter, the correspond-
ing hypothesis is disproven, and the function exhibits
nonrandom behavior. Sect. 4 gives the p-values ob-

served when the statistical test methodology was ap-

plied to the BLAKE, Grøstl, JH, Keccak, and Skein

hash functions.

2.6 Superpoly Tests

Dinur and Shamir introduced the notion of a super-
poly in conjunction with the cube attack on a cryp-
tographic function [9]. Aumasson, Dinur, Meier, and

Shamir showed how superpolys can be used in statisti-
cal tests of cryptographic functions, which they dubbed
cube tests [2].

A superpoly is defined as follows: Consider the func-
tion Fi(x) that computes one output bit of a crypto-
graphic primitive. Designate a number c of the input

bits to be cube inputs, and let y = (y1, y2, . . . , yc) be
the vector of cube input bits. Designate a number s of
the input bits to be superpoly inputs (different from the

cube inputs), and let z = (z1, z2, . . . , zs) be the vector of
superpoly input bits. Evaluating Fi(x) for given values
of y and z, with the remaining input bits set to 0, re-

sults in another function F ′
i (y, z), which can be viewed

as some GF(2) polynomial in the input bits. This poly-
nomial is expressed as

F ′
i (y, z) = y1y2 · · · ycQi(z) +Ri(y, z) . (10)

The first part of (10) consists of the terms in F ′
i that

include all the cube inputs. The cube inputs are fac-
tored out, leaving some GF(2) polynomial Qi in just

the superpoly inputs. Qi is called the “superpoly of Fi”
with respect to the chosen cube and superpoly input
bits. The second part of (10) consists of the remaining

terms in F ′
i , which is some other GF(2) polynomial Ri

in the cube and superpoly inputs.
The value of the superpoly Qi can be calculated,

without even knowing its formula, due to: [9]

Theorem 1

Qi(z) =
11...11∑

y=00...00

F ′
i (y, z) . (11)

Proof In the summation over the 2c values of y, each

term in Ri is added whenever the term’s cube inputs are
all 1. This happens an even number of times, because
no term in Ri contains all the cube inputs. Therefore,

in GF(2) arithmetic, the terms in Ri sum up to 0. The
terms in Qi, however, are added in only once, when all
the cube inputs are 1. Therefore, the summation yields

just Qi. ut

Thus, for a certain set of cube input bits and super-
poly input bits, the superpolys of Fi, 1 ≤ i ≤ m, can be

computed by evaluating the cryptographic function 2c

6 Alan Kaminsky

times, with the same superpoly input values each time

and different cube input values from 00 . . . 00 through
11 . . . 11 each time, then bitwise exclusive-oring (i.e.,
adding modulo 2) the outputs together.

Viewed as polynomials, a cryptographic function’s
output bits Fi ought to be random polynomials [2].
Accordingly, the superpolys of Fi ought to be random

polynomials also, and a sequence of values of a super-
poly Qi ought to be a random binary sequence just like
a sequence of values of Fi itself. The following hypothe-

ses capture this notion:

– Superpoly Randomness Hypothesis. Qi(z) is a
uniformly distributed binary random variable, 1 ≤
i ≤ m.

– Superpoly Independence Hypothesis. Qi(z)
and Qj(z) are independent random variables, 1 ≤
i < j ≤ m.

The statistical test methodology tests these hy-

potheses exactly as described in Sects. 2.2–2.5, except
the binary sequences are generated by calculating su-
perpolys of the cryptographic function (Qi(zt), Qi(zt +

1), . . . , Qi(zt + ` − 1)) using (11). For each trial, the
specific cube and superpoly input bits are chosen at
random (using a pseudorandom number generator), as

is the starting superpoly input value zt. This study ex-
amined n = 2000 superpolys (trials) and ` = 10240
samples per trial. The number of cube bits c varied

from 1 to 20 and the number of superpoly bits s var-
ied from 15 to 34, with 5 trials per (c, s) combination.
Sect. 4 gives the p-values observed when the statistical

test methodology was applied to the superpolys of the
BLAKE, Grøstl, JH, Keccak, and Skein hash functions.

2.7 Related Work

The NIST test suite [20] includes 15 statistical tests

that are applied to a number of binary sequences gen-
erated by the cryptographic function under test. The
NIST test suite document recommends a minimum se-

quence length for each test to yield meaningful results;
some tests can be performed on sequences as short as
100 bits, while other tests require sequences of one mil-

lion bits or more. The NIST test suite document does
not describe how to evaluate the cryptographic function
to generate the binary sequences. NIST also provides a

C program that implements the test suite. Given a num-
ber of binary sequences, the program calculates the p-
value for each test and sequence. For each test, the pro-

gram reports the number of sequences that passed the
test at an experimenter-chosen significance level (where
“pass” means the p-value was greater than the signifi-

cance); the default significance is 0.01. In addition, for

each test, the program applies a 10-bin chi-square uni-

formity test to the sequences’ p-values and reports the
uniformity test’s p-value.

Sulak, Doğanaksoy, Ege, and Koçak [22], noting that
the output length of a typical block cipher or hash func-
tion (128 to 256 bits) is too short to apply the NIST test

suite, proposed an alternative statistical test methodol-
ogy. Their methodology includes seven of the 15 NIST
statistical tests. For each test, they calculated the ex-

act probability that the test’s p-value would fall into
each of ten equal-sized bins in the (0, 1) interval, given
a sequence length of 128, 160, or 256 bits. These (typi-

cally unequal) bin probabilities are used in a chi-square
uniformity test that is specific to each statistical test
and sequence length. To apply one of the seven statis-
tical tests to a block cipher, one million integers from

0 to 999999 are encrypted using an all-zero key; each
plaintext is exclusive-ored with its ciphertext to form
a binary sequence whose length is the cipher’s block

size; the statistical test’s p-value is calculated for each
sequence; and the 10-bin uniformity test is applied to
the sequences’ p-values using the appropriate bin prob-

abilities. To apply one of the seven statistical tests to
a hash function, a similar procedure is followed, except
one million integers are hashed.

Unlike the methodology of [22], this paper’s statisti-
cal test methodology focuses on the cryptographic func-

tion’s output bits separately, hypothesizing that each
individual output bit is a uniform, independent, binary
random variable. Statistical tests and uniformity tests

are applied to each output bit and each output bit pair
separately; only at the last step are the output bit and
pair results combined in one final uniformity test. This

lets the experimenter diagnose nonrandomness of in-
dividual output bit positions and nonindependence of
individual output bit pairs, which is not done in the

methodology of [22].

This paper’s statistical test methodology uses bi-

nary sequences that are much longer than the method-
ology of [22]—10240 bits versus 128 to 256 bits. With
these longer sequences, the statistical tests’ p-values

fit much better into a simple uniform(0, 1) distribution
(except for the frequency test), obviating the multiplic-
ity of uniformity tests with differing bin probabilities in

the methodology of [22] and simplifying the implemen-
tation.

On the other hand, this paper’s statistical test
methodology uses binary sequences that are much
shorter than the one-million-bit sequences required by

some tests in the NIST test suite. This makes it pos-
sible to calculate binary sequences for a cryptographic
function’s superpolys for larger numbers of cube bits,

and thus to probe more of the cryptographic function’s

GPU Parallel Statistical and Cube Test Analysis of the SHA-3 Finalist Candidate Hash Functions 7

internal polynomial structure, within a reasonable run-

ning time.

More recently, Doğanaksoy, Ege, Koçak, and Sulak

[10] proposed another statistical test methodology for
block ciphers and hash functions whose tests focus on
desirable cryptographic properties of those primitives,

rather than general tests that could apply to any bi-
nary sequence. The methodology includes the strong
avalanche criterion test, linear span test, collision test,

and coverage test. The authors applied the methodol-
ogy to reduced-round versions of each of the five AES
finalist candidate block cipher algorithms to determine

the smallest number of rounds needed for the algorithm
to pass every test, and compared that with the actual
number of rounds for the algorithm to determine a secu-

rity margin. Depending on the particular block cipher,
only 12 to 40 percent of the full number of rounds was
sufficient.

Unlike the methodology of [10], this paper’s
methodology uses general tests that could apply to any

binary sequence. Furthermore, it is not concerned with
finding the minimum number of rounds needed to pass
all the tests; it treats the cryptographic primitive as a

black box and always tests the full number of rounds.
(The authors of [10] do not state whether the full-round
block cipher algorithms passed the tests.)

Finally, while the other reported methodologies ex-

amine only the function samples, this paper’s method-
ology examines both the function samples and the su-
perpoly samples. This provides a stronger assessment

of the cryptographic primitive’s statistical behavior; a
primitive that passes the statistical tests on the func-
tion samples might not pass the statistical tests on the

superpoly samples or vice versa.

3 GPU Parallel Implementation

The statistical test methodology’s computations can be
executed in a massively parallel fashion. For example,

generating the binary sequences to test the Output
Randomness and Independence Hypotheses for 2000
trials and 10240 samples per trial requires evaluating

the cryptographic function more than twenty million
times; however, each evaluation is completely indepen-
dent of all the others and can be done in parallel with all

the others. Likewise, generating the binary sequences
to test the Superpoly Randomness and Independence
Hypotheses for c = 1 to 20 cube bits, s = 15 to 34 su-

perpoly bits, 5 trials per (c, s) combination, and 10240
samples per trial requires evaluating the cryptographic
function more than two trillion times (about 241 times);

these evaluations also can be done in parallel.

Graphics processing units (GPUs), typically offer-

ing many more computational cores at a much lower
cost per core than conventional multicore CPUs, are
ideally suited for these kinds of massively parallel cal-

culations. Accordingly, the statistical tests on the SHA-
3 finalist candidate hash functions were carried out
on an NVIDIA Tesla C2050 448-core GPU supercom-

puter. However, the GPU’s architecture differs consid-
erably from a conventional CPU’s architecture. The
GPU’s unique characteristics must be taken into ac-

count when implementing GPU parallel programs in
order to achieve the highest performance.

Section 3.1 describes the GPU’s architecture at a

high level, emphasizing the characteristics that affect
GPU parallel programs. Section 3.2 describes the soft-
ware architecture of the statistical test suite. Section

3.3 describes the GPU implementations of the SHA-3
finalist candidate hash functions.

3.1 GPU Architecture

Fig. 4 shows the architecture of the NVIDIA Tesla

C2050 GPU supercomputer. It has 14 multiprocessor
chips. Each multiprocessor chip has 32 processor cores,
a high-speed register file with 32768 registers, and a

slower shared memory with 49152 bytes of storage.
There is also an off-chip global memory with 3 GiB
of DRAM storage accessible by all the multiproces-

sors. A bus connects the GPU’s global memory with
the host CPU’s main memory, allowing data to be
transferred between the GPU and the CPU. Other

GPUs have a similar architecture, with differing num-
bers of multiprocessors, cores, and registers, and dif-
fering amounts of memory. NVIDIA refers to this ar-

chitecture as the Compute Unified Device Architecture
(CUDA). NVIDIA provides an API and compiler for
writing CUDA programs in Fortran, C, and C++.

While the GPU’s memory hierarchy—fast regis-
ters, slower shared memory, very slow global memory—
superficially resembles that of a conventional CPU,

the GPU’s storage is not cached in hardware. Instead,
the software executing on the GPU must explicitly
move data between the memory areas. A GPU pro-

gram typically moves input data from global memory
into shared memory; performs calculations on the data
read from shared memory, using the registers for inter-

mediate storage; writes the results back to shared mem-
ory, possibly combining results from separate calcula-
tions together in shared memory (parallel reduction);

and moves the output data from shared memory back
into global memory. The chip area that would normally
be occupied by cache hardware is instead devoted to

increasing the number of processor cores.

8 Alan Kaminsky

Fig. 4 NVIDIA Tesla C2050 GPU supercomputer architecture

Because neither the shared memory nor the global
memory is cached, every memory access incurs the full
memory latency. Thus, a GPU program achieves its

highest performance when most of the instructions in-
volve only the registers and the number of memory ac-
cesses is minimized. (When programming a GPU in

a high level language, the compiler typically places a
function’s “local” or “automatic” variables in registers.)
Consequently, on a GPU, it can take less time to recal-

culate a quantity whenever it is needed than to look it
up in a table.

The kernel of a GPU program—the portion that ex-
ecutes in parallel on the cores of the GPU—consists of

a number of thread blocks, each thread block contain-
ing a number of threads. Each thread block executes
on a separate multiprocessor; typically, there are more

thread blocks than multiprocessors, and the hardware
schedules thread blocks to execute on the multiproces-
sors automatically. Each thread within a thread block

executes on a separate core within a multiprocessor;
typically, there are more threads than cores, and the
hardware schedules threads to execute on the cores au-

tomatically. Only threads within the same thread block
can access shared memory locations. All threads in all
thread blocks can access global memory locations. The

threads hide memory latency; if a thread stalls waiting
for a memory access to finish, another ready-to-execute
thread can be scheduled.

A GPU program achieves its highest performance
when all the threads execute the identical instruction

sequence on possibly different data sequences, known as

single instruction stream multiple data stream (SIMD)
parallelism. Different threads are allowed to execute dif-
ferent instruction sequences, but the hardware cannot

execute such threads in parallel; they must be executed
sequentially, diminishing the program’s performance.

3.2 Statistical Test Suite Architecture

Fig. 5 shows the software architecture of the statistical
test suite. There are four principal source files written
in C for CUDA: EvalFunction, EvalSuperpoly, Crypto-

Function, and StatTest.

The EvalFunction program generates data to test
the Output Randomness and Independence Hypothe-

ses for a certain cryptographic function. The program
performs a specified number n of trials, one at a time.
For each trial, the program does a specified number

` of cryptographic function evaluations F (xt), F (xt +
1), . . . , F (xt + ` − 1) (see Fig. 1) in parallel on the
GPU. Each evaluation is performed in a single, sepa-

rate thread. For each evaluation, the thread generates
the input value, stores it in a shared memory table,
executes the cryptographic function which stores the

output value back into the shared memory table, and
copies the output value into a global memory table.
(The code for the cryptographic function itself is in a

separate source file as described later.) When all the
threads have finished, the program copies the trial’s
results from the GPU’s global memory to the CPU’s

memory, then writes the results to a file. The program

GPU Parallel Statistical and Cube Test Analysis of the SHA-3 Finalist Candidate Hash Functions 9

Fig. 5 Statistical test suite software architecture

flushes the file to disk after each trial in order to check-
point the computation. If the program aborts for some

reason, upon restarting it can read the file to see how
far it got and resume the trials from that point.

The EvalSuperpoly program generates data to test

the Superpoly Randomness and Independence Hy-
potheses for a certain cryptographic function. The pro-
gram examines numbers of cube bits c within a specified

range, numbers of superpoly bits s within a specified
range, and a specified number of trials per (c, s) combi-
nation, one trial at a time. For each trial, the program

does a specified number ` of superpoly evaluations—
requiring 2c · ` cryptographic function evaluations, see
(11)—in parallel on the GPU. Each evaluation is per-

formed in a single, separate thread. For each evalua-
tion, the thread generates the input value, stores it in a
shared memory table, and executes the cryptographic

function which stores the output value back into the
shared memory table. The threads in the thread block
that are working on the same superpoly computation

then synchronize with each other and do a shared mem-
ory exclusive-or parallel reduction to sum their results
together. One thread adds this partially-reduced result

into a global memory table using an atomic exclusive-
or operation. When all the threads have finished, the
global memory table holds the fully-reduced superpoly

results. The rest of the EvalSuperpoly program is the
same as the EvalFunction program (they both use the
same output file format).

The code for the cryptographic function being eval-
uated resides in a separate CryptoFunction source file
that is included into the EvalFunction and EvalSu-

perpoly programs. For this study, five CryptoFunction
source files implemented the BLAKE, Grøstl, JH, Kec-
cak, and Skein hash functions.

Each CryptoFunction source file evaluates the hash
function in a single thread, with the algorithm’s state
preferentially stored in multiprocessor registers (local

variables). Although each of the five hash algorithms
studied exhibits some degree of internal parallelism,
running time measurements demonstrated that using

multiple threads to compute one evaluation invariably

took longer than using a single thread. There are sev-
eral reasons for this. With multiple threads computing

one evaluation, the algorithm’s state cannot be stored
in the fast registers; instead, it must be stored in the
slower shared memory so all the threads can access it.

Also, the multiple threads computing one evaluation
typically must synchronize with each other at several
points in the algorithm, further increasing the running

time. Finally, the different threads computing one eval-
uation typically must execute different instruction se-
quences at various points in the algorithm, eliminating

SIMD parallelism at those points and increasing the
running time. When there is only one thread per eval-
uation and different threads compute different evalu-

ations, each thread’s state does not need to be shared
and so can be stored in fast registers, the threads do not
need to synchronize with each other, and every thread

executes the identical instruction sequence.

Each CryptoFunction source file also specifies the

number of threads per thread block, NT, to use when
computing the particular hash function’s evaluations in
parallel on the GPU. Choosing the proper NT is crucial

for achieving the best performance. If NT is too small,
there are not enough threads in the thread block to
hide the memory access latency, and the running time

increases. If NT is too large, the multiprocessor does
not have enough on-chip resources to accommodate all
the threads—in particular, if all the threads’ local vari-

ables do not fit in the fast register file, some of the
threads’ local variables are placed in the slow global
memory instead—and the running time increases.

The final program, StatTest, reads the EvalFunction
or EvalSuperpoly program’s output file, performs the

statistical tests on all the samples for all the trials as
shown in Fig. 2, and prints the test results. For each
trial, the StatTest program reads the trial’s samples

from the file, copies them from the CPU’s main memory
to the GPU’s global memory, and executes a series of
parallel kernels on the GPU:

– For each output bit, each statistical test (frequency

test through Hamming-weight test), and each sam-

10 Alan Kaminsky

ple, the appropriate statistical test bin stored in a

global memory table is incremented in parallel.
– For each output bit and each statistical test (fre-

quency test through Hamming-weight test), the

statistic and p-value are computed in parallel and
stored in global memory tables.

– For each output bit pair and each sample, the ap-

propriate independence test bin stored in a global
memory table is incremented in parallel.

– For each output bit pair, the independence test

statistic and p-value are computed in parallel and
stored in global memory tables.

After executing the above kernels, the StatTest pro-
gram copies the bins, statistics, and p-values from the

GPU’s global memory to the CPU’s main memory, then
prints some or all of the results (as specified by com-
mand line arguments). After processing all the trials,

the StatTest program executes another series of paral-
lel kernels on the GPU:

– For each output bit and each statistical test (fre-

quency test through Hamming-weight test), the uni-
formity test statistic and p-value are computed in
parallel and stored in global memory tables.

– For each output bit pair, the independence test’s
uniformity test statistic and p-value are computed
in parallel and stored in global memory tables.

After executing the above kernels, the StatTest pro-

gram copies the uniformity test statistics and p-values
from the GPU’s global memory to the CPU’s main
memory, then prints some or all of the results (as speci-

fied by command line arguments). Finally, for each sta-
tistical test, the StatTest program computes (on the
CPU) and prints the overall uniformity test statistic

and p-value.

3.3 Hash Algorithm Implementations

For this study, the SHA-3 finalist candidate hash algo-
rithms were implemented with a fixed input message

size of 256 bits and a fixed output digest size of 256
bits. The variants recommended by the developers for
256-bit SHA-3 were implemented.

For each hash algorithm, the number of threads per
thread block, NT, to use when computing the evalua-

tions in parallel on the GPU was determined by run-
ning time measurements. Table 1 gives the running time
in microseconds per evaluation for each hash function,

along with the value of NT that minimized the run-
ning time. The running time per evaluation is the time
required to compute a large number of evaluations in

parallel on the GPU, multiplied by the number of cores

Table 1 Running times for GPU parallel hash algorithm
implementations

Running time
Algorithm (µsec/eval) NT

BLAKE 1.94 64
Grøstl 424 512
JH 21.2 128
Keccak 39.0 64
Skein 6.63 64

on the GPU (448), divided by the number of evalua-
tions. This estimates the time it would take to compute

the 256-bit digest of one 256-bit message on one GPU
core at the NVIDIA Tesla C2050 GPU’s processor clock
frequency of 1.15 GHz.

The following hash algorithm variants were imple-
mented:

BLAKE [3]. Developed by Aumasson, Henzen,
Meier, and Phan, BLAKE uses the HAIFA hash func-

tion construction [8] with a local wide-pipe compression
function derived from the ChaCha stream cipher [4].
This study tested the BLAKE-256 variant, which uses

a 512-bit message block, a 256-bit chaining value, and
a 512-bit state inside the local wide-pipe compression
function. BLAKE also provides for a 128-bit salt input,

but the salt was not used in this study.

Since BLAKE’s compression function requires no

table lookups, the BLAKE hash algorithm can be com-
puted entirely in registers on the GPU and runs very
quickly on the GPU.

Grøstl [12]. Developed by Gauravaram, Knud-
sen, Matusiewicz, Mendel, Rechberger, Schläffer, and

Thomsen, Grøstl is a wide-pipe hash function with
a compression function built from two permutations
dubbed P and Q, followed by an output transforma-

tion built from permutation P . The design of the per-
mutations P and Q is based on the design of the AES
block cipher [1]. This study tested the Grøstl-256 vari-

ant, which uses a 512-bit message block and a 512-bit
chaining value.

The Grøstl hash algorithm proved difficult to im-
plement so as to obtain high performance on the
GPU. Like AES, Grøstl generally achieves its best per-

formance in software when implemented using table
lookups. Several implementations of Grøstl were tested,
and a table-lookup-based implementation similar to the

Grøstl designers’ optimized 32-bit implementation did
indeed yield the smallest running time. Replacing some
of the table lookups with calculations caused the run-

ning time to increase. However, because table lookups
from global memory are slow on the GPU, Grøstl’s run-
ning time on the GPU is much larger than the other

hash functions’ running times.

GPU Parallel Statistical and Cube Test Analysis of the SHA-3 Finalist Candidate Hash Functions 11

JH [24]. Developed by Wu, JH uses a variation of

the sponge construction [5,6]. JH’s compression func-
tion uses a permutation, dubbed E8, whose round func-
tion is built from a substitution layer, a maximum dis-

tance separable code mixing layer, and a bit transposi-
tion layer. This study tested the JH-256 variant, which
uses a 512-bit message block and a 1024-bit chaining

value.

JH’s compression function can be computed mostly

in registers on the GPU, with round constants looked
up from a global memory table indexed by the round
number. Unlike Grøstl, which accesses its tables in a

data-dependent (i.e., random) pattern, JH accesses its
tables in a data-independent, regular pattern. This ac-
cess pattern proves to be more efficient in the GPU

hardware, resulting in a smaller running time for JH
than for Grøstl. However, because table lookups from
global memory are slow on the GPU, JH’s running time
on the GPU is larger than BLAKE’s and Skein’s run-

ning times.

Keccak [7]. Developed by Bertoni, Daemen,

Peeters, and Van Assche, Keccak uses the sponge con-
struction [5,6]. All the variants of Keccak recommended
for SHA-3 use the same permutation, dubbed Keccak-

f , whose round function is built from five layers that
perform various linear and nonlinear mappings. This
study used the bKeccak[1088, 512]c256 variant, which

uses a 1088-bit message block and a 1600-bit chaining
value, and which generates a 256-bit hash digest.

Keccak’s compression function has the largest state
size (twenty-five 64-bit variables; 1600 bits) of all the
SHA-3 finalist hash algorithms. Consequently, due to

limitations on the number of local variables in GPU
kernel functions, the state variables had to be allocated
in shared memory rather than registers. This causes

Keccak’s running time on the GPU to be longer than
that of BLAKE, JH, and Skein. However, Keccak’s run-
ning time is much smaller than that of Grøstl because

the shared memory, where Keccak’s state was stored,
is much faster than the global memory, where Grøstl’s
lookup tables were stored.

Skein [13]. Developed by Ferguson, Lucks, Schneier,
Whiting, Bellare, Kohno, Callas, and Walker, Skein is a

flexible cryptographic primitive that can be configured
to operate as a hash function, MAC, stream cipher,
pseudorandom number generator, and others. At its

core is a new block cipher, Threefish [13], offering large
block and key sizes of 256, 512, and 1024 bits. When op-
erated as recommended for SHA-3, Skein is a wide-pipe

hash function whose compression function uses Three-
fish in Matyas-Meyer-Oseas mode [18], followed by an
output transformation that also uses Threefish. This

study tested the Skein-512-256 variant, which uses a

512-bit message block and a 512-bit chaining value with

512-bit Threefish.

Since Skein’s compression function requires no ta-
ble lookups, the Skein hash algorithm can be computed

entirely in registers on the GPU and runs very quickly
on the GPU. Skein is slower than BLAKE on the short
messages this study tested because Skein requires two

applications of the compression function (one to absorb
the input message, one to generate the hash digest)
while BLAKE requires only one; and because Skein’s

compression function has more rounds than BLAKE’s
(72 versus 14 rounds), although each Skein round is
simpler.

4 Statistical Test Results

4.1 Overall P -Values

The statistical test methodology described in Sect. 2

was applied to the 256-bit versions of the five SHA-3 fi-
nalist candidate hash algorithms described in Sect. 3. In
the Output Randomness Hypothesis and Output Inde-

pendence Hypothesis tests, the same starting input val-
ues xt were used in each trial for every hash algorithm.
In the Superpoly Randomness Hypothesis and Super-

poly Independence Hypothesis tests, the same cube in-
put bits y, the same superpoly input bits z, and the
same starting superpoly input values zt were used in

each trial for every hash algorithm. Fig. 6(a) lists the
overall p-value (refer to Fig. 2) for each statistical test,
computed from the function samples for each hash al-

gorithm. Fig. 6(b) lists the overall p-value for each sta-
tistical test, computed from the superpoly samples for
each hash algorithm.

Nonrandom behavior was observed in the BLAKE,
JH, Keccak, and Skein hash algorithms, as evinced by
the following statistical test failures. Failure is defined

to be an overall p-value at or below a significance of 0.01
(the default significance in the NIST test suite [20]).

– BLAKE, function samples, serial-2 test,

p-value = 0.00876
– JH, function samples, independence test,

p-value = 0.00053

– Keccak, superpoly samples, serial-2 test,
p-value = 0.00557

– Skein, superpoly samples, independence test,

p-value = 0.00067

Nonrandom behavior was not observed in the Grøstl
hash algorithm; every statistical test’s overall p-value

was above a significance of 0.01.

12 Alan Kaminsky

(a) (b)

Fig. 6 Results of statistical tests on the SHA-3 finalist candidate hash algorithms. The overall p-value is listed for each hash
algorithm and statistical test (see Fig. 2). P -values less than or equal to a significance of 0.01, indicating nonrandom behavior,
are shown in bold. (a) Results for function samples. (b) Results for superpoly samples

4.2 Statistical Test Failures

Fig. 7 focuses more closely on the aforementioned sta-
tistical test failures.

Consider the serial-2 test on the BLAKE func-
tion samples. 2000 trials were performed from different

starting points, each trial yielding a 10240-sample bi-
nary sequence for each of the 256 hash output bits. In
the first step of the statistical analysis, for each out-

put bit and each trial, the serial-2 test was applied to

the binary sequence, yielding a p-value. In the second
step, for each output bit, a 20-bin chi-square uniformity

test was applied to the 2000 trials’ p-values, yielding
another p-value. In the third step, a 20-bin chi-square
uniformity test was applied to the 256 output bits’ p-

values, yielding the final overall p-value listed in Fig.
6(a). Fig. 7(a) shows the bins for this final uniformity

GPU Parallel Statistical and Cube Test Analysis of the SHA-3 Finalist Candidate Hash Functions 13

(a)

(b)

(c)

(d)

Fig. 7 Histograms of χ2 values for overall uniformity test
bins for: (a) BLAKE, function samples, serial-2 test; (b) JH,
function samples, independence test; (c) Keccak, superpoly
samples, serial-2 test; (d) Skein, superpoly samples, indepen-
dence test

Fig. 8 Histogram of χ2 values for overall uniformity test
bins for BLAKE, function samples, frequency test

test. The horizontal axis plots the 20 bins. The vertical
axis plots the quantity

(Ni −Npi)
2

Npi
(12)

for each bin, which is the bin’s contribution to the χ2

statistic (2). If the Output Randomness Hypothesis—
that the output bits are uniformly distributed binary

random variables—is true for the BLAKE hash algo-
rithm, then the output bits’ p-values should be uni-
formly distributed in the (0, 1) interval, and the quan-

tity (12) should be close to zero for each bin. Instead,
Fig. 7(a) shows that the output bits’ p-values are far
from being uniformly distributed, leading to a large χ2

value and a p-value below the significance threshold of
0.01. This disproves the Output Randomness Hypothe-
sis for the BLAKE hash algorithm (at a significance of

0.01).

Likewise, Fig. 7(b) shows how the independence test
disproves the Output Independence Hypothesis for the
JH hash algorithm. Fig. 7(c) shows how the serial-2

test disproves the Superpoly Randomness Hypothesis
for the Keccak hash algorithm. Fig. 7(d) shows how
the independence test disproves the Superpoly Inde-

pendence Hypothesis for the Skein hash algorithm.

For comparison, Fig. 8 shows the bins for the fre-

quency test on the BLAKE hash algorithm’s function
samples, a test that did not fail at a significance of 0.01
(p-value = 0.91737). The bins’ χ2 values are all near

zero, showing that the trials’ p-values fall close to a
uniform distribution.

4.3 Related Work

Doğanaksoy, Ege, Koçak, and Sulak [11] applied their

statistical test methodologies of [10] and [22] to the 14
SHA-3 second-round candidate hash algorithms. They
examined only the compression functions, not the com-

plete hash algorithms, and they examined only reduced-

14 Alan Kaminsky

round versions of the compression functions to deter-

mine the minimum number of rounds needed to pass
all the tests. They found that the Fugue, Hamsi, and
Shabal hash algorithms’ compression functions failed

to pass some of the tests even with the full number of
rounds. However, those algorithms were eliminated dur-
ing the second round of the SHA-3 competition. They

found that every SHA-3 finalist candidate hash algo-
rithm’s compression function passed all the tests with a
reduced number of rounds. As in their previous papers,

they did not report results for the full-round compres-
sion functions. In contrast, this paper reports results
for the full hash algorithms, not just the compression

functions; this paper reports results for hash algorithms
with the full-round compression functions; and this pa-
per applies a different methodology with different sta-

tistical tests from [11].

In a precursor to the work reported in this paper,
Kaminsky [14] applied three statistical tests—balance

test, off-by-one test, and independence test—to binary
sequences computed from superpolys of the SHA-3
second-round candidate hash algorithms CubeHash and

Skein. The balance test is the same as this paper’s fre-
quency test; the independence test is the same as this
paper’s; the off-by-one test was not used in this paper.

The balance test and off-by-one test did not reveal non-
random behavior at a significance of 0.001 in CubeHash
or Skein. The independence test did reveal nonrandom

behavior at a significance of 0.001 in both CubeHash
and Skein. Those results agree with this paper’s results
for Skein’s superpoly samples.

Wang and Wang [23] used the NIST statistical
test suite [20] to test the randomness of BLAKE-32

(the 256-bit version submitted to the second round of
the SHA-3 competition), operating as a pseudorandom
number generator in the following manner. Given a seed

value S, the hash of a message consisting of the message
blocks (S, S+1, S+2, . . .) is computed, and the concate-
nation of all the intermediate chaining values (outputs

of the BLAKE compression function) is taken as the
output pseudorandom sequence. They used this process
to generate one billion pseudorandom bits, partitioned

them into 1000 one-million-bit sequences, and applied
the NIST test suite to these sequences. The smallest
overall uniformity test p-value observed for any statis-

tical test was 0.007584; all the others were greater than
0.01. In contrast, this paper studies the SHA-3 final-
ist candidate algorithm, BLAKE-256; this paper ana-

lyzes binary sequences derived from the external hash
digests, not the internal chaining values; and this paper
applies a different methodology with different statistical

tests from [23]. Still, both [23] and this paper observed

one statistical test failure at a significance of 0.01 in the

respective BLAKE variants studied.

5 Conclusion

Applying statistical tests of the hypotheses that the
output bits and superpoly bits of the cryptographic
functions are uniformly distributed, independent, bi-

nary random variables, nonrandom behavior was ob-
served at a significance of 0.01 in the 256-bit ver-
sions of the SHA-3 finalist candidate hash functions

BLAKE, JH, Keccak, and Skein. Nonrandom behav-
ior was not observed at a significance of 0.01 in the
256-bit version of the SHA-3 finalist candidate hash
function Grøstl. The statistical tests were performed

on a 448-core NVIDIA Tesla C2050 GPU supercom-
puter; without the high degree of parallel processing
afforded by the GPU, the statistical tests—especially

the cube tests—could not have been completed in a
practical amount of time.

This paper’s results show the importance of per-
forming statistical tests on both the function samples
and the superpoly samples of a cryptographic function.

Two of the hash functions, BLAKE and JH, exhibited
nonrandom behavior in the function samples but not in
the superpoly samples. Two other hash functions, Kec-

cak and Skein, exhibited no nonrandom behavior in the
function samples but did exhibit nonrandom behavior
in the superpoly samples. If the superpoly samples had

not been tested, the nonrandom behavior in the latter
two functions would not have been observed.

This paper makes no claims about the SHA-3 fi-
nalist candidate hash functions’ security based on the
statistical test results. No one knows at this time how

to translate, say, a failure of the independence test on a
hash function into, say, a breach of a digital signature
scheme using that hash function. However, this paper’s

results might suggest caution when using certain hash
functions as high-quality cryptographic pseudorandom
number generators.

Future work includes adding more statistical tests
to the methodology; generating binary sequences by ap-
plying the cryptographic function to other sequences of

input values, such as off-by-one sequences; investigat-
ing the statistical behavior of additional SHA-3 finalist
candidate hash function variants, such as the 224-, 384-,

and 512-bit versions, and other cryptographic functions
using the methodology; and determining whether cer-
tain aspects of a hash algorithm’s design correlate with

the hash algorithm’s statistical behavior.

The program source files and analysis output

files described in this paper are available on the

GPU Parallel Statistical and Cube Test Analysis of the SHA-3 Finalist Candidate Hash Functions 15

author’s web site at http://www.cs.rit.edu/~ark/

parallelcrypto/sha3test01/.

Acknowledgements I would like to thank Michael Kurdziel,
Marcin Lukowiak, and Stanis law Radziszowski for their help-
ful comments on earlier drafts of this paper.

References

1. Advanced Encryption Standard (AES). FIPS Publ. 197
(2001)

2. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube
testers and key recovery attacks on reduced-round MD6
and Trivium. In: Dunkelman, O. (ed.) Fast Software
Encryption—FSE 2009. LNCS 5665, 1–22. Springer, Hei-
delberg (2009)

3. Aumasson, J., Henzen, L., Meier, W., Phan, R.: SHA-3
Proposal BLAKE, Version 1.3. http://131002.net/blake/
blake.pdf (2010). Accessed 13 July 2011

4. Bernstein, D.: ChaCha, a Variant of Salsa20. http://cr.
yp.to/chacha/chacha-20080128.pdf (2008). Accessed 13
July 2011

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.:
On the indifferentiability of the sponge construction. In:
Smart, N. (ed.) Advances in Cryptology—EUROCRYPT
2008. LNCS 4965, 181–197. Springer, Heidelberg (2008)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.:
Cryptographic Sponge Functions, Version 0.1. http:

//sponge.noekeon.org/CSF-0.1.pdf (2011). Accessed 13
July 2011

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche,
G.: The Keccak Reference, Version 3.0. http://keccak.

noekeon.org/Keccak-reference-3.0.pdf (2011). Accessed
13 July 2011

8. Biham, E., Dunkelman, O.: A framework for iterative
hash functions—HAIFA. Cryptology ePrint Archive, Re-
port 2007/278 (2007)

9. Dinur, I., Shamir, A.: Cube attacks on tweakable
black box polynomials. In: Joux, A. (ed.) Advances in
Cryptology—EUROCRYPT 2009. LNCS 5479, 278–299.
Springer, Heidelberg (2009)

10. Doğanaksoy, A., Ege, B., Koçak, O., Sulak, F.: Cryp-
tographic randomness testing of block ciphers and hash
functions. Cryptology ePrint Archive, Report 2010/564
(2010)

11. Doğanaksoy, A., Ege, B., Koçak, O., Sulak, F.: Statistical
analysis of reduced round compression functions of SHA-
3 second round candidates. Cryptology ePrint Archive,
Report 2010/611 (2010)

12. Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel,
F., Rechberger, C., Schläffer, M., Thomsen, S.: Grøstl—
a SHA-3 Candidate, Version 2.0.1. http://www.groestl.

info/Groestl.pdf (2011). Accessed 13 July 2011
13. Ferguson, N., Lucks, S., Schneier, B., Whiting, D.,

Bellare, M., Kohno, T., Callas, J., Walker, J.: The
Skein Hash Function Family, Version 1.3. http://www.

skein-hash.info/sites/default/files/skein1.3.pdf

(2010) Accessed 13 July 2011
14. Kaminsky, A.: Cube test analysis of the statistical behav-

ior of CubeHash and Skein. Cryptology ePrint Archive,
Report 2010/262 (2010)

15. Knuth, D.: The Art of Computer Programming, Volume
2: Seminumerical Algorithms, 3rd ed. Addison-Wesley,
Boston (1998)

16. L’Ecuyer, P., Simard, R.: TestU01: a C library for empir-
ical testing of random number generators. ACM Trans.
Math. Softw. 33, 22 (2007)

17. National Institute of Standards and Technology. An-
nouncing request for candidate algorithm nominations for
a new cryptographic hash algorithm (SHA-3) family. Fed.
Regist. 72, 62212–62220 (2007)

18. Matyas, S., Meyer, C., Oseas, J.: Generating strong one-
way functions with cryptographic algorithms. IBM Tech.
Discl. Bull. 27, 5658–5659 (1985)

19. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.:
Numerical Recipes: The Art of Scientific Computing, 3rd
ed. Cambridge University Press, Cambridge (2007)

20. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.,
Leigh, S., Levenson, M., Vangel, M., Banks, D., Heck-
ert, A., Dray, J., Vo, S., Bassham, L.: A statistical test
suite for random and pseudorandom number generators
for cryptographic applications. NIST Special Publication
800–22 (2010)

21. The SHA-3 Zoo. http://ehash.iaik.tugraz.at/wiki/The_
SHA-3_Zoo (2011). Accessed 13 July 2011

22. Sulak, F., Doğanaksoy, A., Ege, B., Koçak, O.:
Evaluation of randomness test results for short se-
quences. In: Carlet, C., Pott, A. (eds.) Sequences and
Their Applications—SETA 2010. LNCS 6338, 309–319.
Springer, Heidelberg (2010)

23. Wang, H., Wang, H.: A fast pseudorandom number gen-
erator with BLAKE hash function. Wuhan Univ. J. Nat.
Sci. 15, 393–397 (2010)

24. Wu, H.: The Hash Function JH. http://www3.ntu.edu.sg/
home/wuhj/research/jh/jh_round3.pdf (2011). Accessed
13 July 2011

