
Opportunities and Limits of Remote Timing
Attacks

Scott A Crosby and Rudolf H. Riedi and Dan S. Wallach
Rice University

May 26, 2007

Abstract

Many algorithms can take a variable amount of time to complete depending on
the data being processed. These timing differences can sometimes disclose con-
fidential information. Indeed, researchers have been able to reconstruct an RSA
private key purely by querying an SSL web server and timing the results. Our
work analyzes the limits of attacks based on accurately measuring network re-
sponse times and jitter over a local network and across the Internet. We present the
design of filters to significantly reduce the effects of jitter, allowing an attacker to
measure events with 15-100µs accuracy across the Internet, and as good as 100ns
over a local network. Notably, security-related algorithms on web servers and other
network servers need to be carefully engineered to avoid timing channel leaks at
the accuracy demonstrated in this paper.

1 Introduction

Security researchers have studied a number of remote timingattacks, principally against
cryptographic algorithms. If an attacker can precisely time cryptographic operations,
the attacker may be able to solve for the cryptographic key. There has been signifigant
interest in these attacks. Brumley and Boneh [8] showed thatsuch attacks were practi-
cal, i.e., an attacker could measure the response-time variances of a secure web server
with carefully chosen input and, after collecting enough samples, could derive that
server’s RSA private key. Likewise, it has been shown that anIMAP password could
be extracted from a TLS/SSL channel across a network consisting of two switches and
a firewall by measuring a 2ms difference in response time [9].

Brumley and Boneh based their attack on roughly 1.4 million queries which they
found to be effective on a local area network yet ineffectiveacross the Internet to derive
the server’s private 1024-bit RSA key. Clearly, additionalnetwork hops will increase
the latency for packets to travel from one host to another. Toan attacker trying to mount
a timing attack, latency differences are irrelevant because the attacker is only interested
in measuring thedifferencesin latency across measured events. However, additional
network hops may also addjitter (i.e., random noise) to the measured latency. An

1

attacker’s goal is to make multiple timing measurements andhopefully smooth out the
jitter to recover the actual time difference.

Timing attacks have broad relevance beyond protecting cryptographic keys. Con-
sider algorithmic complexity attacks [14], where an attacker tries to induce algorithmic
worst-case behavior in a program by sending carefully-chosen inputs that might, for ex-
ample, cause every insert into a hash table to collide, causing expectedO(1) operations
to consume their worst-caseO(N) running-time. One proposed solution to such attacks
is to hide important details about the parameters used by internal algorithms. For ex-
ample, several systems have replaced a deterministic hash function with a keyed but
non-cryptographic hash function (e.g., universal hashing[10] or Jenkin’s hash [17]). If
an attacker can measure a server’s response time with enoughaccuracy to determine if
a collision occurred, then the attacker might be able to derive the key.

Timing attacks against some algorithms will require more precision than others.
This paper aims to quantify the precision that an attacker might hope to achieve in
discriminating between two events, on a remote computer, that take slightly different
amounts of time to run. This paper will present the results ofextensive measurements
both on our local network and across the Internet.

Section 2 presents related work. Section 3 describes our model of the attackers
goals. Section 4 describes our experimental program and howwe collected measure-
ments. Section 5 summarize our results. Section 6 describesout network model. Sec-
tion 7 provides a statistical analysis of network jitter from the viewpoint of an attacker
trying to perform a timing attack and identifies factors thatimpact jitter including CPU
and network card dependencies, and correlation of network distance to jitter. Sec-
tion 8 consists of our simulation-driven study of how well anattacker might be able
to perform a remote timing attack using statistical hypothesis testing. We present our
conclusions in Section 9.

2 Related work

Side channel attacks The timing attacks discussed in this paper are an example of
side channel attacks, where a system leaks information due to its physical implemen-
tation. An early example of such an attack is the password authentication weakness
discovered in the Tenex operating system [24]. Kocher was the first to observe that
side-channels attacks could generally be applied against common cryptographic algo-
rithms. His analyses using device response times [19] and power consumption [20] to
derive cryptographic secrets were the basis for much of the recent work in this field. In
the recent Advanced Encryption Standard (AES) competition, the ciphers were exam-
ined for the potential of side-channel attacks [15].

Side channels exist where a computer may leak its internal state through RF emis-
sions [23]. Strikingly, methods as effortless as watching the diffuse reflections of
CRT display against nearby walls, at a distance, may allow anobserver to see the
screen [22]. Side channels have been used to detect passwords over SSH, through the
use of keystroke timing [38].

Timing attacks have been applied to cryptosystems. Kelsey et. al. [18] conjectured
that cache miss behavior may also be used as a side channel. Page [30] later presented

2

an analysis of caching behavior and described an attack against DES. Bernstein [5]
showed that AES’s CPU cache-miss behavior leaks key bits. A more powerful attack
on AES exploiting shared cache state has been done by Osvik et. al. [29]. Silverman
and Whyte [37] summarize a timing attack on the NTRU cryptosystem that exploits
a timing difference on the number of SHA-1 computations. Schindler described an
attack against the chinese remainder theorem in RSA and Schindler [36] modeled and
optimized attacks against RSA. More recently, Acıiçmez et. al [2] show a local attack
on RSA that exploit branch mispredictions delays in order todetermine the secret key.
Acıiçmez et. al. [3] present an interprocess timing attackover the loopback interface
on AES that exploits CPU cache timing differences using about 1011 encryptions and
were able to distinguish the correct AES key among 212 alternatives.

Timing attacks have been applied to the Internet. Kohno et. al. [21] showed that it
is possible to fingerprint a host on the Internet by using TCP or ICMP timestamps to
measure differences between machine clock skews as tiny as 1µs per second. Fel-
ton and Schneider [16] shows how servers can fingerprint anonymous web clients
through detecting the timing difference between a client cache hits and misses. And,
Bortz et. al. [7] showed that timing difference may leak secrets such as the existance of
an account or shopping cart size in web applications.

Network measurement There have been many attempts to characterize the end-to-
end behavior of the Internet. The most comprehensive work isPaxson’s measurements
and analysis of Internet end-to-end dynamics [32, 33]. Paxson characterized such is-
sues as routing pathologies (e.g., routing loops), outages, flutter, and the stability and
lifetime of routing information. He also examined Internetpacket dynamics, including
the effects of packet loss, corruption, and reordering on TCP.

The earliest studies of network latency and jitter focused on these attributes because
of their effect on important parameters in the TCP protocol.An accurate value for the
round trip time is needed to estimate the correct values for TCP retransmit timers and
window size [13]. If jitter causes the round trip time to be incorrectly measured, the
TCP protocol may incorrectly initialize its timers.

Internet path delay time was characterized as a shifted gamma distribution by
Mukherjee [28]. His measurements used standard ICMP echo requests, and achieved
millisecond precision. Many other researchers have performed end-to-end assessments
of Internet packet behavior [1, 6, 35, 40]. Barford and Crovella [4] characterized causes
of delay and jitter in a web server scenario. Casner et. al. [11] measured internet jitter
to 20µs resolution on a wide area backbone network to study the feasibility of using
backbone IP networks as virtual circuits.

Generally, these studies were concerned with millisecond-scale events, and did not
consider the notion of an attacker willing to make thousandsor even millions of re-
peated queries in order to gain increased timing accuracy ofa remote machine’s pro-
cessing time.

Clock synchronization Clock synchronization and remote timing attacks must both
handle Internet jitter and delay. Unlike clock synchronization algorithms, an attacker
only needs to worry about the stability of one clock — their own, and over a timescale

3

of minutes. The attacker can also afford to collect many measurements.
The Network Time Protocol [25, 26] is designed to synchronize the system clocks

of computers over the network. NTP must, by necessity, measure and compensate for
network latency and jitter, but its goals are to achieve millisecond, not sub-microsecond
accuracy.

Many types of network measurement depend more upon low clockskew variation
across the measurements hosts than offsets from real time [34]. Protocols other than
NTP have been designed to minimize clock skew [31, 39].

3 Attack model

We consider a simplified situation where the attacker can transmit two different re-
quests to the target server that either take the same or different time to complete as a
function of the server’s secret. We assume that knowing whether or not they take the
same time will divulge something about the secret. (We assume the attacker knows
everything else about the target machine, including its hardware and software config-
uration. The attacker only lacks knowledge of the internal secret.) The attack then
reduces to inferring such a difference in computing time with high reliability. Our
model is powerful enough to represent the Brumely and Boneh OpenSSL attack [8].

To be more precise, a query is transmitted to the target machine, upon which the
target performs some task which requires aprocessing timewhich the attacker would
like to infer. However, the attacker can only measure theresponse time, i.e., the time
from when the query is transmitted to when the reply is received.

Our goal is toidentify the smallest difference between two processing timesthat
can be reliably detected by an attacker given a reasonable number of measurements.
Of course, the resolution with which an attacker can observethese differences will be
a function of how many samples the attacker takes, how much random perturbation,
called jitter, is introduced in the response time by the network and how effective the
attacker can be at filtering that jitter.

4 Experimental setup

We ran tens of millions of timing experiments, both in our laband over the Internet. Our
system implemented a simple UDP ping-pong protocol where, for each measurement,
a client sends a message to the server containing the specificamount of time the server
should pause before replying. The server waits for the requested amount of time and
then responds.

Upon receiving the response, the client logs the processingtime requested of the
server and the observed response time, then waits a random delay before sending the
next request. This delay, averaging 20ms, avoids synchronization artifacts between the
client and server. Furthermore, each client performed its trials in a random order. If no
response is received within one second, the client assumes that a packet was dropped
and repeats the measurement.

4

Dataset #hosts #hosts total # samples Start Date End Date
starting surviving #trials

L 8 8 9.0M 27k Sat 28 Feb 2004 Sun 29 Feb 2004
A 75 51 112.5M 40k Tue 9 Mar 2004 Wed 17 Mar 2004
B 103 37 85.6M 30k Fri 28 Jan 2005 Thu 3 Feb 2005
C 136 91 68.4M 13.5k Wed 2 Mar 2005 Tue 8 Mar 2005
D 124 3 179.6M 68k Wed 9 Mar 2005 Wed 23 Mar 2005

Table 1: Dataset statistics.

In all of our datasets the server machine was dedicated to thetask, while we ran
clients as background tasks on other machines. Clients would only make one request at
a time, allowing them to run without disturbing the machines’ users. In effect, we have
busy and idle clients querying an idle server instead of mostly-idle clients querying a
busy server, as we would expect when a server is under attack.We show measurements
of loaded servers and discuss this issue further in Section 8.9.

4.1 Clock calibration

We accomplished nanosecond-precise timing by reading the CPU’s cycle counter, avail-
able on all modern microprocessors. However, cycle counters count in cycles, which
we must convert to nanoseconds, requiring our experimentalharness to estimate the
clock frequency of each machine. Rather than trying to tightly synchronize the clocks
of these machines, perhaps with NTP [25, 26], we perform a one-second calibration
of the cycle counter against the system clock to give an approximate solution, within
1% accuracy. Our network model includes a correction for clock skew. Each machine
measures time independently, in nanoseconds, and we reconcile the differences in post-
processing. We determine the clock skew by the slope of a least-squares linear fit of
the delays requested with the delays measured. This processis described further in
Section 7.4.

4.2 Collected datasets

We collected five primary datasets. One dataset was collected over a LAN and the other
four datasets were collected over the Internet. In each dataset, we measured the same
M = 46 distinct processing times on the server ranging from 100ns to 8ms. Table 1
summarizes these measurements, including the number of hosts that were involved
at the start of the experiment, the number of hosts that were left when we finished
the experiment, the total number of measurements in the dataset, and the maximum
number of samples per host per processing time we collected.

Dataset L consists of 8 clients on our LAN. For each processing time, we collected
27,000 samples. Datasets A, B, C, and D were collected over the Internet, ranging from
13,000 to 68,000 measures per host per processing time.

To achieve a broad sampling of Internet hosts, we used PlanetLab, an open, globally
distributed platform for developing, deploying and accessing planetary-scale network
services [12]. Unfortunately, PlanetLab hosts are not veryreliable and many hosts

5

failed during the experiment. We are unable to restart a failed host because the clock
calibration would not match. These host failures were particularly apparent in Datasets
B-D.

We would have preferred to use Dataset A because PlanetLab hosts were much
more reliable and less overloaded when it was collected. Unfortunately, a concurrency
bug in our earlier data collection system corrupted about 2100 measurements in Dataset
A and about 30 in Dataset L. We fixed this problem for subsequent measurements, and
we believe that our post-processing filters out these errors. Nonetheless, we will present
results for each dataset.

5 Results

We are interested in theresolutionthat events on a remote node can be timed.Unfiltered
jitter is a measure of resolution based on statistical techniques and is suggestive of
the timing difference that is measurable. We also measure resolution empirically by
simulating an attack and identifying the minimum distinguishable timing difference.
Most of our results, previewed here, concern how unfiltered jitter varies with CPU
architecture, network distance, and other causes.

Does network latency follow a Gaussian distribution? No. The distribution of
response time is a highly skewed distribution. (See Section7.1.)

How is unfiltered jitter measured? Unfiltered jitter estimates the amount of residual
noise which limits the resolution of a remote timing attack.Measurements arefiltered
to a single value that is supposed to be correlated with the remote processing time. As
we know the actual processing time, we can check the strengthof the correlation. Good
filters should have high correlation.Unfiltered jittermeasures the lack of correlation.
(See equation 10 in Section 7.4.)

Isn’t mean (or median) the best way to filter measurements? If the response times
were distributed in a Gaussian fashion, then mean or median would be excellent filters.
With the non-Gaussian distributions we see in practice, low-percentile filters tend to
significantly outperform the mean or median. (See Sections 7.1 and 7.5 for details.)

Then surely the minimum response time should an excellent choice. Contrary
to expectations, the minimum response time isnot the least noisy signal. Low per-
centile filters exhibit significantly less noise than the minimum response times. (See
Section 7.5.)

Is there a correlation between unfiltered jitter and network latency or hopcount?
We observed no significant correlation between unfiltered jitter and either latency or
the number of network hops. (See Section 7.6.)

Does the CPU of a machine affect unfiltered jitter? Yes, we found that our Pentium
4 measurement host introduced artifacts. For processing times between 100ns and
80µs, 40% of the measurements had a constant 180µs response time. (See Section 7.7.)

6

Does the network card affect unfiltered jitter? Yes, we found that our Intel Gigabit
Ethernet card had 10 to 30 times more unfiltered jitter than our generic onboard Ether-
net adapter, depending on whether interrupt coalescing wasenabled. (See Section 7.8.)

At what empirical resolution can an attacker time a remote host? The resolu-
tion an attacker can time a remote host depends on how many measurements they can
collect. Our simulated attacker using statistical hypothesis testing was able to reliably
distinguish a processing time differences as low as 200ns and 30µs with 1000 measure-
ments on the LAN and WAN respectively with. (See Section 8.)

How much extra noise is introduced by application load? With 1000 samples, the
addition of application load from Apache introduces only 1µs of jitter, much less than
the 20µs WAN jitter. (See Section 8.8.)

6 Network Model

It would be impossible to isolate and measure every possiblecontribution to network
latency and jitter. Between an attacker’s machine and the target machine, there may be
any number of network bridges, hubs, switches, firewalls, and routers. Each of these
may delay packets, drop packets, or suffer internal contention. Furthermore, if packets
are arriving faster than they can be forwarded, a router willattempt to queue the packets
and send them out later. As the load varies, so will the latency and jitter accumulated
by packets as they pass through the network device.

In addition, the end-hosts will introduce their own jitter as a result of application
load, virtual memory pressure, and network packet processing. Whereas the attacker
may be able to dedicate a computer to the sole purpose of time measurement, and thus
reduce the attacker’s contribution to jitter, the target machine is likely to be running a
general-purpose operating system and supporting a non-trivial workload.

We use an abstract model of the server and the network. The server is assumed to
run at least two differenttaskswhich have different processing times and all requests
for the same task have the same processing time. We model the latency of a round-trip
communication channel between one pair of hosts as

responseTime= a·processingTime+propagationTime+ jitter (1)

with the following five assumptions:

1. responseTimeis the measured round trip time on the network.

2. a accommodates clock skew and is constant over all requests for all tasks. This
is estimated in our analysis independently for each host.

3. processingTimeis constantfor all requests for thesametask. In our dataset,
this corresponds to the time the remote hosts delays before sending a reply to a
ping-pong.

4. propagationTimeis constant over all requests, forall tasks. This is the ‘average
latency’ and is estimated in our analysis independently foreach host.

7

5. jitter is the jitter term and is identically and independentlydistributed for all
requests and tasks.

Thus, the jitter term absorbs all randomness introduced by network conditions, load on
the target machine and any other source.

More formally, theM differentknownprocessing times are denoted byt[1], . . . ,t[M].
The true, but unknown statistical distribution of responsetimes to a querymwith a pro-
cessing time oft[m] is denoted byR[m]. Thus, for each host pair and for each querym,
r1[m] . . . rN[m] denote theN collected measurements which may also be thought of as
samples taken fromR[m]. Our channel model (1) can be restated more formally as:

∀m∈{1...M} rn[m] =a · t[m]+b+ εn[m] (2)

whereb is the propagation time,a is the correction for clock skew andεn[m] is the jitter
in the measurementrn[m].

By our channel model, the random variablesεn[m] are all of the same distribution
and are statistically independent (for alln andm). In other words, the distributions of
R[m] for differentmare identical up to a shift term and thern[m] constitute independent
samples of these distributions.

Our model setup implicitly assumes that the application load is stationary and that
the network will introduce the same random perturbations for all requests. This is rea-
sonable if all response messages have the same payload and ifrouting is stable over the
time of the measurements. Route changes would be easily detected by the displace-
ment they would cause in the response time distribution or bytraceroutes operating
in parallel to an ongoing timing attack. An attacker may be limited to the number of
measurements they can collect due to route changes. Combining measurements across
route changes would require detecting when those changes occur and determining the
propagation time difference between each set of samples. (Our own work assumes that
the network routes are constant across the duration of our experiments.)

We repeat our analysis for each host pair in each dataset, treating each of them as
a separate channel with unique jitter, propagation time, clock skew, and response time
distribution.

The definition of jitter The splitting of the response latency into the sum of prop-
agation and jitter is for convenience and does not affect methodology or performance
of the attack. Indeed, since onlydifferencesin response times need to be inferred, and
not actual estimates of the response times themselves, introducing the constant shift
term b = propagationTimeis irrelevant. In particular, we do not require an accurate
estimate of the propagation time as long as we use the same constant value throughout
the attack. Although strictly speaking, jitter is always anadditional positive latency,
we considerpropagationTimeas an estimate of the propagation time plus theaverage
jitter, allowing jitter to represent positiveand negativedeviations from that average.

The use of clock skew An attacker need not be concerned with clock skew on a
remote host. They only need to reduce their own clock skew enough to avoid gross
errors in their measurements. Ignoring this skew creates a relative error of(a−1)≈ 1%
for an attacker, such as the one we simulate in Section 8, which is of no importance.

8

 1

 4

 16

 64

 256

 1024

 4096

 16384

 50 100 150 200 250 300 350 400

C
ou

nt

Latency (microseconds)

Figure 1: Histogram of response times for 66k measurements of a 1ms processing time
from a host from Dataset D.

In contrast, an accurate assessment of clock skew between our client hosts and
our server host is critical in our meta-analysis of Internetjitter. When comparing the
jitter distribution for processing times betweent[1] = 100ns and t[46] = 8ms, a 1%
inaccuracy in clock skew would cause us to misestimate the shift betweenR[1] and
R[46] by 80µs which would completely dominate our results.

7 Statistics of the response time distribution

We first examine the response time distribution, examine techniques to filter it and we
estimate the unfilterable jitter.

7.1 Response time distribution

The distribution of jitter is not Gaussian. It is highly skewed distribution with two
modes. In Figures 1 we plot a histogram of the probability density function (PDF) of
the response times for one Dataset D host. The response time is clearly asymmetric and
non-Gaussian and includes two obvious modes and an exponentially distributed tail. In
Figure 2 we plot the CDF corresponding to this host. The steepslope at about 52ms is
the least varying part of the distribution and occurs in the 5th-15th percentile response
time.

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160

P
ro

ba
bi

lit
y

m
ea

su
re

m
en

t u
nd

er

Latency (microseconds)

Figure 2: CDF of response times for 66k measurements of a 1ms processing time from
a host from Dataset D.

7.2 Measurement quantiles

We define thei-th percentile (or quantile)qi of a distributionR to be the smallest real
numberqi [m] such thatP[R≤ qi] = i/100. The 50-th percentile is the familiarmedian
and the 0-th percentile is the minimum response time.

The true quantileqi is unknown because it depends on the true distributionR. We
can compute anestimatorq̂i, which is an empirical estimate ofqi derived from our
measurements by first ranking a set of measurements into

r(1) ≤ r(2) ≤ ... ≤ r(N) (3)

and setting ˆqi = r(⌊iN/100⌋). The empirical quantiles ˆqi are well known to be weakly
consistent under mild conditions, meaning that they converge to the true quantileqi as
the sample size increases.

We use quantiles as a graphically powerful alternative to displaying a histogram for
each processing time. We summarizing those histograms withpercentile contours. The
empirical percentiles ˆqi[m] are plotted as a function of the sampled server processing
times,t[1], ...,t[M], which are indicated with dots on thex-axis. These percentile con-
tour summaries of the response time distribution are easierto compare than their full
histograms.

Figures 3 and 4 summarizes the estimated percentiles of the response time distribu-
tions we observed for a host in Dataset L and D respectively. Figure 3 shows that that

10

despite intuition to the contrary, the minimum response time seems to be poorly cor-
related to the processing time. We can present allM = 46 response times on one plot
on a log-scale if we first estimate and subtract off the linearfit. (This process is further
described in Section 7.4.) Figures 5 and 6 show the response time distribution for a
host in Dataset L and D respectively. The variation of the median and minimum re-
sponse times across different processing times is visuallymore than the variation seen
in measurements at small quantiles. The mean (not plotted) is similarly noisy. Because
the median and mean of our measurements are extremely noisy,parametric inference
techniques based on these very classical statistics are unlikely to work well.

Variability of the Empirical Percentile To study the error of this percentile esti-
mation we need to consider the distribution of the estimatoritself, i.e., the variability in
q̂i when the estimation is repeated. Fixing a percentilei and settingk= k(i)= ⌊iN/100⌋
we may write

q̂i [m] = r(k) = a · t[m]+b+ ε(k)[m]. (4)

Here, we introduced the random variableε(k)[m] which is thek-th ranking sample out of
N independent and identically distributed samples fromε[m]. Since under our channel
model allε[m] are identically distributed for differentm, ε(k)[m] are identical in distri-
bution as well and we conclude that the distribution of ˆqi [m] andq̂i [m′] are identical up
to the shift terma(t[m]− t[m′]):

q̂i [m]
distr.
= q̂i [m

′]+a(t[m]− t[m′]). (5)

Precision of Percentile EstimationIt follows immediately from (4) that the es-
timation errors ˆqi [m]−qi [m] themselves have identical distributions, independently of
m:

q̂i [m]−qi[m] = (a · t[m]+b+ ε(k)[m])− (a · t[m]+c) (6)

= ε(k)[m] +b−c
distr.
= ε(k)[m

′] +b−c. (7)

Two remarks are in order.
First, to study the variability of a percentile estimator ˆqi and the estimation error

(6), we need a set of empirically obtained values. Typically, this is done by repeating
the same estimation procedure several times. Here, we may exploit that the errors
q̂i[m]−qi [m] obtained for thesamepercentile but for different values of the response
time, i.e., form= 1. . .M are all of the same distribution (see (7)). In other words, we
may consider these error values as samples of the same distribution ε(k) + b− c+ a ·
(t[m]). In this context we recall thatb is the (unknown) propagation time,a is the clock
skew, and thatc depends only oni and some arbitrary baseline response timet[m∗], but
notm.

Second, since we are interested indifferencesof processing times, and thus in (ad-
ditive) differences of the response times we observed, the additive constant(b− c) in
(7) will cancel out in our inference schemes and be of no importance.

11

 94

 96

 98

 100

 102

 104

 106

 108

 110

 112

 114

 0 2 4 6 8 10 12

R
es

po
ns

e
tim

e
(m

ic
ro

se
co

nd
s)

Server processing time (microseconds)

40%
20%
10%
1%

0%

Figure 3: Response time percentiles as a function of processing time for a local host in
Dataset L.

7.2.1 Filtering our data

Because of the noise in the jitter distribution, particularly at and above the median,
we apply a “filter”Γ which reduces the set of measurementsr1[m] . . . rN[m] to a single
number that is hopefully closely correlated with the processing timet[m] A filter, fore-
most, is a function of the measured response times. Filter design choices are driven
mainly by the objective to minimize the variance as a measureof error which in turn
impacts the reliability of a decision procedure based on thefilter. In general, we may
think of this procedure as some sort of de-noising.

While such a filter can not remove all noise, it will in help us understand the unfil-
terable jitter in our measurements and estimate the resolution an attacker may be able
to measure. There are many filters we may choose. In Section 7.4 we describe how we
evaluate filters and identify the ‘best’ such filter.

A first simple example of a filter would be thei-th empirical percentile:

Γqi (r1[m], ...rN[m]) = q̂i[m] (8)

Recall that the filtersΓq50,Γq0,Γq100 pick themedian, minimumandmaximumresponse
times, respectively.

We tried three types of filtering strategies beyond simple percentile filtering but
they performed no better than the best percentile filter. Thebest filter of each type was
identified through brute force: We ran several hundred and recorded the best instance
of each type. The four types of filtering we applied are:

12

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 10 20 30 40 50 60 70

R
es

po
ns

e
tim

e
(m

ill
is

ec
on

ds
)

Server processing time (milliseconds)

40%
30%
25%
5%
0%

Figure 4: Response time percentiles as a function of processing time for a remote host
in Dataset D.

1. PercentileThis filter returns thexth quantile or percentile. We tried a hundred
different percentile values, varying from 0% to 70%, with most of the percentile
values less than 10%.

2. PeakThis filter identifies modes in our measurements. Samples arefirst sorted,
and then a window of a fixed width is moved across the sorted list. When the
difference between the maximum and minimum sample within the window is
minimized, that position of the window contains the highestdensity of samples.
The median measurement within the window is reported as the result of the filter.
We considered 25 different window widths, ranging from 1% to70% of the
collected samples. Even in the best case, our percentile filter outperformed the
peak filter.

3. Average RangeInspired by the filter used in Brumley and Boneh’s SSL attack,
we computed a histogram over the samples and computed the average of the
samples between thei-th and j-th percentiles. We tested this filter over 96 differ-
ent percentile ranges. We used percentiles ranging from 0% to 40%; we mostly
examined ranges below the 5th percentile. In general, the best instances of this
filter performed within a few percent of the best percentile filter.

4. Percentile SmoothingThis is an attempt to improve our estimate ˆqi of the real
percentileqi. Instead of computing the estimate from our measurements directly,
we divide the measurements intok disjoint subsets, compute a separate estimate

13

for each subset, and then average those estimates. We testedthis filter for k ∈
{4,10,20} and for 21 different percentiles. This filter performed slightly worse
than our best percentile filter.

7.3 Filtered measurements

Figures 3 and 4 show several percentile filters. For Dataset L, virtually all of the per-
centiles we plot show a smooth relationship to processing time, except forΓ = q0, the
minimum response time. For Dataset D, it is visually clear that the 25th percentile is
much noisier than the 5th percentile. We note, for the particular client of Figure 3, and
for plotted processing times ranging from 100ns and 8ms, 39 percent of the 27,000
samples for each processing time occurred within a 2µs window, while the minimum
response time was about 4µs faster. The minimum response time is clearly much nois-
ier than the other percentiles.

In Figure 3 we also observe that indeed the first and tenth empirical percentiles
follow a linear dependence on processing time with high accuracy. This is suggestive
that the first and tenth percentile are better filters than higher percentiles.

In Figure 4, we show a similar plot for a typical host from Dataset D. First, note
that the scale for this plot is in milliseconds and note that the 25th percentile looks
noisier than the 40th percentile of Dataset L. This indicates more variability in the
jitter in PlanetLab measurements than in the LAN measurements. For fine-grained
measurements of response time, up to 75% or more of Internet measurements may be
unacceptably noisy. This plot also appears to show non-parallel percentile contours.
This is only an artifact caused by the non-uniform spacing ofprocessing times where
the 25ms and 65ms measurements are connected with a straightline.

7.4 Verifying channel model

We summarize the jitter distribution as a single filtered value and verify our channel
model by how close the filtered measurements match the expected linear relationship.
Let Γ(r1[m] . . . rN[m]) be a filter on the measurementsr1[m] . . . rN[m] for all m∈ 1. . .M,
reducing them to a single value for each of the processing timest[1] . . .t[M]. We verify
our channel model by using a least squares linear fit between theM different process-
ing times and theM different filtered response times. Under the network model,the
following relation should hold form= 1. . .M:

Γ[m] = Γ(r1[m] . . . rN[m]) = a · t[m]+b (9)

The least square fit will provide estimations of the clock skew a, the propagation
time b and the varianceσ2 of the estimator, giving us ameasure of confidencethat the
data follows a linear relationship. To this end, we compute the unique values ˆa andb̂
which minimize the average square deviations2

i of Γ(r1[m] . . . rN[m]) from the linear
relation. In other words:

s2 = s2
i =

1
m∑

m
(δ[m])2 where δ[m] = Γ(r1[m] . . . rN[m])− â· t[m]− b̂. (10)

14

Dataset A B C D L L ′

Mean unfiltered jitter (µs) 11.7 14.1 19.0 20.9 2.1 .218
Median unfiltered jitter (µs) 6.5 7.2 6.7 7.4 .050 .046

Table 2: Mean and median, among all hosts within each dataset, of the unfiltered jitter.

Explicit formulas forâ andb̂ are quickly derived using standard calculus.1

For our best filters,s2 is very small compared to the processing time differences
which leads us to accept the linear relation between processing times and percentiles
up to a small random error andvalidatesour channel model. Furthermore,

√
s2 which

we callunfiltered jittermeasures the effectiveness of a filter. The filter with the smallest
unfiltered jitter is the most effective filter — the one with the best linear fit to the
channel model.

Unfiltered jitter is also suggestive of the the resolution that an attacker can distin-
guish. Using the rule of thumb that a measurement has less than a 5% probability of
being more than 1.7 standard deviations from its mean, a timing difference must be at
least 3.4·s to be distinguishable with a 5% false positive and 5% false negative rate. In
Section 8 we empirically measure an attacker’s resolving power based on our network
trace data.

In addition to this validation of our channel model, the least square fit (10) pro-
videssimultaneousestimates of the clock skew via ˆa, and propagation time viâb. An
estimated value ˆa≈ 1 provides further confirmation of the channel model (1).

Some care has to taken in the interpretation ofb̂. The least squares fit minimizes
the sum of the squares ofδ[m], some of which will be positive and some negative.
Therefore, we definedefine bto be theaverage propagation, rather than the minimal
propagation; jitter may be negative and then the average ofε(k) is zero by definition

andb̂≈ b.
We summarize the unfiltered jitter across each dataset in Table 2 by giving the

average and median unfiltered jitter. Across all of the datasets, the mean unfiltered
jitter is noticeably larger than the median unfiltered jitter, indicating that although many
hosts have low unfiltered jitter, some are much worse. For example, we created Dataset
L′ based on DatasetL, with one outlier removed. The outlier is a host on the other side
of a “traffic shaper” which introduced a significant amount ofjitter.

In summary, we accept a small value ofs2 as a validation of the channel model
and accept the estimated clock skew ˆa to be the true skewa. In statistical terms, this
procedure is called a model fitting. We do not overfit as we estimate at most two
parameters fromM = 46 different response times.

We also determine if the estimator error remains the same across all processing
times. In Figure 5, we plot the difference from the best-matching percentile filter and
the actual measurement percentiles for various processingtimes on a logarithmic scale.
We refer to these plots asdeviation contoursas they emphasize the residual noise in

1Settingt = (1/M)∑mt[m], q = (1/M)∑mΓ[m], tq = (1/M)∑mt[m] ·Γ[m] andt2 = (1/M)∑mt2[m] we
have

â =
tq− t ·q
t2− (t)2

and b̂ = q− ât

15

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.1 1 10 100 1000 10000 100000

D
ev

ia
tio

n
fr

om
 m

od
el

 (
m

ic
ro

se
co

nd
s)

Server processing time (microseconds)

5%

1%
.5%
.1%

0%

Figure 5: Difference from ideal estimator as a function of processing time for a host in
Dataset D. Dots on the X-axis denote measured processing times.

that could not be filtered. Observe the lack of a trend for small percentile values, where
the absolute estimator error remains about the same across all processing times. In
contrast, Figure 6 presents larger quantiles from the same host showing several times
the random variation butlessvariation in the measurements for the longer processing
times. The jitter distribution isnot the same across all processing times for this host.

Some hosts follow the channel model and have the same jitter distribution across
all processing times, as we would expect. Other hosts violate the channel model, in-
cluding those using an Intel Gigabit Ethernet NIC or an IntelPentium 4 CPU (See
Sections 7.7 and7.8). For those, our analysis still finds thebest filter, although the
resolution of the filtering process may be limited.

7.5 Effectiveness of filtering among quantiles

Intuition says that minimum response time should be the ideal filter because network
devices can only introduce additional variable latency. Therefore, the minimum re-
sponse time should have the least noise introduced. In our experiments to identify the
filter with the lowest unfiltered jitter we found filters significantly more effective than
using the minimum response time, contradicting this intuition.

To better understand this, we examined the relationship between percentiles and
the resultant unfiltered jitter. In Figure 7 we plot the unfiltered jitter for 150 different
percentile filters ranging from .001th percentile to 70th percentile, averaged across all

16

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0.1 1 10 100 1000 10000 100000

D
ev

ia
tio

n
fr

om
 m

od
el

 (
m

ic
ro

se
co

nd
s)

Server processing time (microseconds)

40%

30%

20%

15%
10%

 5%
 0%

Figure 6: Difference from ideal estimator as a function of processing time for the same
Dataset D host as Figure 5 but using larger-quantile filters.Dots on the X-axis denote
measured processing times.

17

 0

 50

 100

 150

 200

 250

 300

 350

 0.001 0.01 0.1 1

U
nf

ilt
er

ed
 ji

tte
r

(m
ic

ro
se

co
nd

s)

Percentile

Dataset A
Dataset B
Dataset C
Dataset D

Figure 7: Unfiltered jitter as a function of filter percentileover PlanetLab.

hosts in their respective datasets. As expected, percentiles over 10% were very noisy.
Everydataset shows a trend indicating a higher noise as the percentile declines from the
1st percentile toward the 0th percentile or minimum response time. These curves show
several local minima and demonstrate that using the minimumresponse time leads to
several times the error of using the empirically best filter.

To examine this further, we performed separate experimentsusing a an laptop and
desktop computer connected with either a crossover cable ora network switch. All
hosts and the switch were idle during the experiment. Figure8 plots the unfiltered
jitter as the percentile changes for Dataset L as well as the dataset using the switch and
crossover cable. We note all three curves have at least two local minima that are not at
the 0th percentile. For a switch and a crossover cable, the lowest unfiltered jitter is the
0.9th percentile and 12th percentile, respectively. Theseresults confirm that minimum
response time is not an accurate filter and that the ideal percentile filter can be difficult
to predict a priori.

7.6 Unfiltered jitter versus network distance

In Figures 9 and 10, we show scatter plots of network distance, as measured in the
propagation delay of the best linear fit, versus the lowest unfiltered jitter for that host.
Each dot on these plots corresponds to the results of doing a least-squares linear fit on
the filtered measurements for one host.

These plots show how well network round trip time correlateswith measurement

18

 0

 2

 4

 6

 8

 10

 12

 0.001 0.01 0.1 1 10

U
nf

ilt
er

ed
 ji

tte
r

(m
ic

ro
se

co
nd

s)

Percentile

Dataset L
Crossover cable
Etherfast Switch

Figure 8: Unfiltered jitter as a function of filter percentileover the LAN.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400 450 500 550 600

U
nf

ilt
er

ed
 ji

tte
r

(m
ic

ro
se

co
nd

s)

Distance from server (microseconds)

Figure 9: Scatter plot of unfiltered jitter versus network distance for each host in
Dataset L.

19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

U
nf

ilt
er

ed
 ji

tte
r

(m
ic

ro
se

co
nd

s)

Distance from server (milliseconds)

Dataset A
Dataset B
Dataset C
Dataset D

Figure 10: Scatter plot of unfiltered jitter versus network distance for each host in
Datasets A,B,C and D.

accuracy. For Dataset L, our LAN measurements, Figure 9 shows most hosts clustered
in the bottom left. These hosts were only connected by switches with no router hops
and have low jitter. The outlier in the upper right is still oncampus, but is behind a
traffic shaping box. Figure 10 shows our measurements of the PlanetLab hosts. The
x-axis scale is now much wider, reflecting the greater distance of these hosts. The
largest cluster of hosts in the bottom left reflects the largenumber of PlanetLab hosts
within the United States. Interestingly, the international hosts, with significantly longer
network latencies, do not have noticeably higher unfilteredjitter. The host with the
least unfiltered jitter in Dataset A, 2µs, was physically located on another continent.
As such, physical distance does not necessarily imply much about unfiltered jitter. The
hosts with higher unfiltered jitter, notably the outliers inthe upper left, may reflect the
lack of data we were able to collect from some PlanetLab hostsbefore they failed (see
Section 4.2).

For Dataset D, we additionally measured the number of hops from the local system
to each PlanetLab host used in the experiment. This allows usto determine whether
the number of hops, rather than the latency, influences the unfiltered jitter. Figure 11
plots the unfiltered jitter versus the network hop count for hosts that had at least 10k
measurements and a successful traceroute. One PlanetLab host located 2 hops away on
the LAN had twice the unfiltered jitter of the best host, located 24 hops away. This plot
also shows no correlation between hopcount and unfiltered jitter.

20

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

U
nf

ilt
er

ed
 ji

tte
r

(m
ic

ro
se

co
nd

s)

Distance from server (hops)

Figure 11: Scatter plot of unfiltered jitter versus network hop count for 80 hosts in
Dataset D that were replied to at least 10k measurements.

7.7 CPU dependencies

During the course of our experiments we observed unusual behavior when the delay
being measured was less than 100µs. In that configuration, we happened to use a Intel
Pentium 4 laptop as the measuring host. Figure 12 demonstrates this problem. 35%
of the samples with a processing time between 100ns and 80µs take a constant time
to return, regardless of the actual processing time. We initially suspected this was an
artifact of a router or switch. In fact, the culprit was the CPU itself.

To confirm that, indeed, the Intel Pentium 4 CPU was the sourceof the problem,
we performed 12 timing measurements between four differentcomputers (two models
of Intel Pentium 3, a Intel Pentium 4 desktop CPU and an AMD Athlon 1GHz). In
these measurements, the artifact occurred only when the Pentium 4 desktop CPU was
used in the client host and occurred nowhere else.

Our original Intel Pentium 4 laptop (a 1.8GHz Pentium 4-M) and the new Intel Pen-
tium 4 desktop (a 3.06GHz Pentium 4) have entirely differentmotherboards, Ethernet
devices, and so forth. We conjecture that the artifact may bea consequence of the Pen-
tium 4’s power management, putting the computer to sleep at inopportune moments.
While a more detailed study of this effect is beyond the scopeof this paper, prospective
attackers will certainly select and profile their timing host to ensure these artifacts do
not occur.

21

 100

 150

 200

 250

 300

 350

 0 50 100 150 200

R
es

po
ns

e
tim

e
(m

ic
ro

se
co

nd
s)

Server processing time (microseconds)

40%
5%
1%
.1%
0%

Figure 12: Response time percentiles as a function of processing time for a Intel Pen-
tium 4 laptop measurement host and AMD Athlon target on a crossover cable.

7.8 Network card dependencies

We performed a further experiment to characterize how the choice of networking card
(orNIC) might impact unfiltered jitter. We ran a new experiment between two machines
that each had two networking cards. Both machines had a 2.1GHz AMD Athlon CPU
and an Intel 82540EM gigabit ethernet controller. Machine Aacted as the sender and
has an onboard Via VT6102 100baseT ethernet controller. Machine B acted as the
receiver and has an onboard 3c905C-TX/TX-M 100baseT ethernet controller. We con-
nected these machines with either a crossover cable or a generic SpeedStream SS2108
10/100 baseT switch.

Table 3 summarizes our results on four new datasets where we collected up to
150k measurements for 60 processing times ranging from 1ns to 6.5ms on a 100baseT
ethernet network. We found that the higher performance gigabit card, with interrupt
coalescing enabled, had 30 times the unfiltered jitter than the generic onboard ethernet
card.

There is a caveat to these results. Datasets A’ and B’ violateour network model
because their jitter distribution is very different acrossdifferent processing times. Fig-
ure 13 shows the deviation contours for the host in DatasetA′ and demonstrates the
variability in the jitter distribution. These results indicate that some modern high per-
formance servers, with high performance NICs, may be safer from remote timing at-
tacks as a direct consequence of their performance features.

22

-140

-120

-100

-80

-60

-40

-20

 0

 20

 40

 1 10 100 1000 10000 100000 1e+06 1e+07

D
ev

ia
tio

n
(m

ic
ro

se
co

nd
s)

Server processing time (nanoseconds)

40%

30%
25%
20%
15%

10%
 5%

 1%
.5%
.1%
 0%

Figure 13: Deviation contours from ideal straight line for Dataset A’, using an Intel
gigabit NIC.

Experiment Sender Receiver IRQ ConnectionMeasurements Unfiltered
NIC NIC coalescing jitter

A’ Intel Intel default switch 150k 1419ns
B’ Intel Intel disabled switch 100k 676ns
C’ Onboard Onboard n/a crossover 100k 56ns
D’ Onboard Onboard n/a switch 100k 49ns

Table 3: Unfiltered jitter differences between networking cards.

23

8 Simulating Attacks

A statistical analysis of unfiltered jitter is useful in thatit identifies the lower bound
of noise in the system and indicates what resolution is theoretically distinguishable.
In this section, we simulate an attacker performing a timingattack and evaluate the
empirical resolution that a real attacker could identify. In statistical terminology this
amounts to performing ahypothesis test.

In hypothesis testing, the statistician tries to show that their observations are statisti-
cally significant enough to exclude the default ornull hypothesis. As our measurement
dataset contains millions of measurements of ‘ground truth’, where we know the actual
processing time, we may evaluate the empirical effectiveness of different hypothesis
testing approaches an attacker may attempt. Our choices of which approaches we try
are guided by the results in the last section, where we determined that the mean, me-
dian, and measurements above the 10-20th percentile are extremely noisy.

We show and test a framework of statistical hypothesis testing to determine how
fine a time difference∆ might be detectable within a reasonable number of measure-
ments, both for LAN and Internet attackers. We find that, withas few as 2000 measure-
ments, it is possible for an attacker to distinguish a 100ns processing-time difference
on a LAN with false negative and false positive rates under 5%.

8.1 Classic hypothesis testing

Many hypothesis testing approaches that distinguish whether two measurements sets
U ,V are from the same distribution or different distribution, such as the Student’st-test,
use atest statisticφ, computed from the summary statistics ofU,V such as the mean,
standard deviation ofU ,V and the sample count. Ifφ exceeds a statistically significant
threshold, then the null hypothesis, thatU andV are from the same distribution, is
rejected.

Of course, any such analysis of hypothesis testing with a single threshold incurs
a chance of two types of errors: false positives, when we improperly reject the null
hypothesis, and false negatives, when we fail to reject the null hypothesis when we
should.

8.2 Empirical hypothesis testing

In our scenario, we are not limited to computing the theoretical effectiveness of a hy-
pothesis test because our datasets contain ground truth. Wemay simulate an attacker
performing empirical hypothesis tests and we rate the attacker’s effectiveness assum-
ing it has an oracle that helps it choose optimal parameters.Rather than collect a new
dataset for hypothesis testing, we reuse our previously-collected raw measurements, as
analyzed in the previous section.

Our simulated attacks follow this procedure: the hypothesis testH is given two sets
of N samples of response timesX = r1[i], ...rN[i] andY = r1[j], ...rN[j] corresponding
to processing timest[i] andt[j] which may or may not differ by∆. For any given host
pair and∆ we wish to discriminate, we can randomly choose data from ournetwork
measurementsrn[m] to populateX,Y. We let the null hypothesis be that∆ = 0, i.e., that

24

X,Y are from the same distribution. We then perform the hypothesis testH(X,Y). To
accept the nullmeans thatH believes thatX,Y are from the same distribution and to
reject the nullmeans thatH believes it has sufficient evidence that theX,Y are in fact
different distributions.

We use the same testing procedure for each hypothesis test tocompute the empiri-
cal false positive (FP) and false negative (FN) rate for eachhost pair and∆. To compute
the false negative rate, we perform 200 trials where we populate the queriesX,Y from
different distributions (t[j] = t[i] + ∆) and count how many times the hypothesis test
mistakenly accepts the null. To compute the false positive rate, we perform 200 tri-
als populating the queriesX,Y from the same distribution (t[i] = t[j]) and count how
many times the test mistakenly rejects the null. We summarize these measurements by
computing, for each host in question, the smallest∆ with a FN and FP rate below 5%
and denote this asempirical resolution. If the hypothesis testHp includes parameters
p, we find the ideal parameters by brute force. We tryH with all choices and keep the
best-performing instance. This simulates a “best-case” attacker.

8.3 Hypothesis testing approaches

We considered four different statistical hypothesis testing approaches:

1. Studentst-test or other parametric approachesWe considered attempting the
t-test on our raw measurements. We rejected it and other parametric approaches
because our sample mean, sample variance and upper percentiles have high es-
timation error. We describe our reasons for rejecting theseapproaches in Sec-
tion 8.4.

2. The Wilcoxian Rank-sum The Wilcoxian rank sum test is a standard test for
identifying if two sets are from different distributions. It performed poorly; see
Section 8.5 for details.

3. Modified Students t-test We model an attacker that instead of running thet-
test on the raw measurements, runs thet-test upon filtered measurements. The
empirical quantile is distributed about the true quantile in a Gaussian distribution.
By measuring the variance of the empirical quantile, we can run thet-test. Our
results are described in Section 8.6.

4. The ‘Box’ Test This is our best-performing test. This test exploits our observa-
tion that smaller quantiles in our measurements have less noise. Given a mea-
surement setU and two quantilesi, j, we define an interval[q̂i(U), q̂ j(U)]. The
test rejects the null if the intervals induced by those quantiles are non-overlapping
and in the proper order. Our results are described in Section8.7.

8.4 Parametric approaches

A parametric statistical approach assume the distributionof the jitter follows a pa-
rameterized distribution (e.g. Gaussian, exponential, etc.) and we need only compute
parameters of the fit such as the mean and variance. Doing so allows us to design

25

stronger estimation procedures which exploit the assumed structure. However, it also
requires us to perform a goodness-of-fit test, to see whetherthe model is appropriate.

Our data clearly shows the medium and upper quantile estimates, including the
sample mean and median, suffer from extremely large variability, precluding most
parametric models as they would be rejected in a goodness-of-fit test. An inference
made on the basis of a poor model would be unlikely to be accurate.

8.5 Wilcoxon rank-sum test

The Wilcoxian rank-sum test (also called the Mann-Whitney rank sum test) is a non-
parametric test to determine if two sets of observation comefrom the same distribution.
We start with two sets of samples of response timesX,Y. The two sample sets are
combined and ranked (i.e., sorted together). The rank of an element is its index in the
sorted joined list. The rank sum statistic is then computed as the sum of the ranks of
oneof the sets:

φrank(r1[m], ...rN[m], r1[m
′], ...rL[m′]) =

N

∑
j=1

rank(r j [m]) (11)

If the sample sets represent the same distribution, one would find the mean and variance
of φrank to be

E[φrank] =
N(N+L+1)

2

var(φrank) =
NL(N +L+1)

12
(12)

If the obtained rank sumφrank is close to this mean, then we conclude that the process-
ing times were identical. If instead the distributions weredifferent, i.e.,t[m′] > t[m],
then the responsesrn[m] will tend to be smaller and earn smaller ranks, thus reducing
the sum of their ranks. This process works well, even if the distributions are non-
Gaussian, so long as they represented shifted copies of eachother.

Following our hypothesis test procedure to determine the false positive and false
negative rates, we found this methodology significantly under-performed the “box test”
described in Section 8.7.

8.6 Modified t-test

The t-test is a well-known test for distinguishing if two sets of measurements come
from the same or different Gaussian distributions. Given the mean, sample count, and
variance of two sets of samples, thet-test computes the probability that the two sets are
drawn from the same distribution. Unfortunately, our raw measurements have a very
skewed, non-Gaussian distribution. Instead, we apply thet-test to our percentiles and
other filtered measurements which can be expected to be distributed with a Gaussian
distribution.

The modifiedt-test we apply is parameterized by a filterΓ and a thresholdT. We
test each of 19 well-performing filters and 12 thresholds. Asbefore, we start with two

26

sets ofN samples of response timesX,Y. For each of 200 random subsets of sizeN/10
from theN measurements inX,Y, we apply the filterΓ. We estimate the variance and
means ofΓ(X),Γ(Y) from these 200 sampled random subsets and apply the standard
t-test with a threshold ofT on thet-statistic.

Following our testing procedure for hypothesis tests to determine the false positive
and false negative rates, we found that this test had half of the resolution of the ‘box
test’, described next.

8.7 The box test

The final test we tried is a custom test designed to exploit ourobservation that small
percentiles have the least noise. We also argue for this filter design based on its sim-
plicity2. The ‘box test’ is parameterized by two quantilesi, j and, as before, we start
with two random subsetsX,Y of N measurements.

To perform this test,X,Y, are sorted and two intervals are formed:[q̂i(X), q̂ j(X)]
and[q̂i(Y), q̂ j(Y)]. The test accepts if the intervals[q̂i(X), q̂ j(X)] [q̂i(Y), q̂ j(Y)] do not
overlap and[q̂i(X), q̂ j(X)] is before[q̂i(Y), q̂ j(Y)]. We calculated the false positive and
false negative rates by following our testing procedure forhypothesis tests.

Since we cannot a priori know which values for the parametersi, j create the
most effective statistical test, we perform this experiment for 12,000i, j pairs, keep-
ing whichever pairi, j has the lowest FN rate while also having a FP rate below 5%.
From our measurements, the lower quantiles are the statistically most reliable part of
the distribution. Our exhaustive search for optimum parameters chosei, j < 6% for
over half of the hosts. Although a real attacker would not have such an oracle against
an unknown target, an attacker could always perform measurements similar to ours
against a known machine, hopefully near the target. Also, weprefer to state an upper
bound on the capabilities of an attacker.

Figures 14 and 15 show our ability to measure∆ for two hosts chosen from datasets
L and five hosts chosen from D, respectively. Data for other hosts and other datasets
reflects a similar pattern. These plots modeled an attacker with 500 measurements and
plot the FN rate with the FP rate held to at most 5%. The FN rate remains until the time
difference increases past a critical threshold, at which time the FN rate drops quickly
to zero and the discriminator is exceptionally accurate.

Rather than showing similar scatter plots for every host that we measured, we sum-
marize our measurements in Figure 16 by computing, for each host in question, the
smallest∆ which we can discriminate with a FN rate below 5%. We call thistheempir-
ical resolution. We see that many LAN hosts can accurately resolve a∆ in the hundreds
of nanoseconds, and that PlanetLab hosts can resolve∆’s around 100µs, with the best
hosts resolving∆ ≈ 30µs.

So far, we have modeled the empirical resolution of an attacker performing 500
measurements. To see how additional measurements would increase the attacker’s
abilities, we varied the number of simulated measurements from 10 to 10,000. We
summarize the histogram over each of the 124 hosts in DatasetD by its 5 quartiles

2“Complicated computations do not guarantee a valid statistical analysis. Always start ... with a careful
examination of the data.” [27]

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

F
al

se
 n

eg
at

iv
e

ra
te

Time difference (microseconds)

Figure 14: Scatter plot of∆ versus the FN rate for two Dataset L hosts. Each dot
represents the average success rate over 200 trials, each ofwhich simulates 500 network
measurements.

(0th, 25th, 50th, 75th and 100th percentile), and plot thosewith respect to the simu-
lated measurement count in Figure 17.

As expected, increasing the number of queries radically improves the empirical
resolution. Where the best Dataset D host, with 500 measurements, could resolve
∆ = 50µs with < 5% FP and FN rate, with 10,000 queries 31 hosts could resolve
∆ < 35µs with a< 5% FP and FN rate. Empirical resolution improves for all other
hosts as well. We can also see that the network location of an attacker can make a
significant difference. The top 25% hosts can resolve a difference 3 times smaller than
the bottom 25% hosts, regardless of the number of samples. This implies that an In-
ternet attacker will do much better if many machines are available, allowing the best
positioned machine to be used for attack measurements.

Figure 18 shows the same simulation performed over our 8 LAN hosts. Unfortu-
nately, we did not sample enough discrete processing times below 100ns to directly
compute the empirical resolution for these small time steps. However, we can observe
a similar improvement in the empirical resolution of LAN hosts as they measure more
timing samples. It is reasonable to expect that a LAN attacker making 10,000 queries
might accurately resolve∆ < 50ns.

28

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

F
al

se
 n

eg
at

iv
e

ra
te

Time difference (microseconds)

Figure 15: Scatter plot of∆ versus the FN rate for five Dataset D hosts. Each dot
represents the average success rate over 200 trials, each ofwhich simulates 500 network
measurements.

 0

 2

 4

 6

 8

 10

 12

 14

 100 1000 10000 100000 1e+06 1e+07

C
ou

nt
 o

f h
os

ts

Empirical resolution (nanoseconds)

Figure 16: Empirical resolution histogram for Dataset D.

29

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000

E
m

pi
ric

al
 r

es
ol

ut
io

n
(n

an
os

ec
on

ds
)

Number of Samples

Worst
Third Quartile

Median
First Quartile

Best

Figure 17: Empirical resolution on Dataset D as a function ofthe sample count.

8.8 Attack applications

While most of this paper has focused abstractly on the empirical resolution of an at-
tacker to discriminate remote processing times, it is important to consider the process-
ing times of common operations that an attacker might wish toattack.

Brumley and Boneh’s attack on SSL exploits a timing difference that is a function
of the RSA private key and the message being exponentiated [8]. Their attack creates
two sets of inputs thaton averagehave a difference. Depending on the particular input
taken from those sets, the actual difference will vary. Manysamples may need to be
averaged together. As a result, our techniques do not directly apply to their attack.

We tested their attack and found that on an 1.8GHz Athlon, it depends on timing
differences of about 30,000 clock cycles (16µs). From Figure 18, we can estimate that
the attack should succeed on any host within our LAN with a fewhundred measure-
ments. From a histogram similar to Figure 16, we estimate that 4 hosts in Dataset D
could perform the attack with fewer than 10,000 measurements for each bit of RSA
key, while others would require significantly more. Brumleyand Boneh found their at-
tack did not work over the Internet, but our results suggest that an attacker with access
to enough machines, across the Internet, might well have onethat works.

8.9 Application jitter

Our analysis of network jitter used a custom application on an unloaded server. A re-
alistic application load might introduce its own jitter into the response time because of

30

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000

E
m

pi
ric

al
 r

es
ol

ut
io

n
(n

an
os

ec
on

ds
)

Number of Samples

Worst
Third Quartile

Median
First Quartile

Best

Figure 18: Empirical resolution on the local network (Dataset L) as a function of the
sample count.

cache misses, page faults, TLB faults, lock contention and other sources. To character-
ize such jitter, we analyzed the Apache web server, version 1.3.33, both under no load
and under two trace-driven loads with a 1.1GB working set (larger than system RAM,
guaranteeing pressure on the disk system). For simplicity,the load generation clients
ran on the same computer as the HTTP server. One run was performed with sequential
requests and another run was performed with 30 concurrent requests. The CPU was
saturated during both runs.

Measurements were taken by a custom HTTP client, on a separate system, request-
ing a small file over an unloaded network. We collected 100,000 measurements over
the three different workloads. As an attacker would do, our client avoids connection
startup jitter by first sending only part of the HTTP request,then deliberately delaying
to ensure that it is received and processed by the server before it sends the remaining
part of the request.

In Figure 19, we graph the unfiltered application jitter as a function of the number
of request samples. We estimate the application jitter as the standard deviation of the
lowest variance quantile filter. We choose 10,000 random subsets ofn measurements,
filter them using a quantile filterqi , and compute the variance of the empirical quantile
q̂i across all 10k subsets.

We also plot quartiles of empirical resolution from Figures17 and 18 from Dataset
L and D trials for comparison. We can see that a realistic application like Apache
introduces only a microsecond of jitter at 1000 samples evenwhen highly loaded, and

31

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000

Ji
tte

r
(n

an
os

ec
on

ds
)

Number of samples

First quartile Dataset D discriminator accuracy
Best Dataset D discriminator accuracy

Best Dataset L discrimination accuracy
Apache 30-client trace
Apache 1-client trace

Apache idle

Figure 19: Unfiltered application jitter induced by a loadedApache web server com-
pared to empirical resolution from our local (L) and PlanetLab (D) measurements.

32

less jitter than the local network when unloaded.

9 Conclusion

This paper studied the scope and potential of performing a remote timing attack, both
on a LAN and across the Internet. Any such attack will requiremaking multiple timing
measurements of an an event on a remote server and filtering those measurements to
eliminate noise that might be induced by the network or by theend hosts. We have
shown that, even though the Internet induces significant timing jitter, we can reliably
distinguish remote timing differences as low as 20µs. A LAN environment has lower
timing jitter, allowing us to reliably distinguish remote timing differences as small as
100ns (possibly even smaller). These precise timing differences can be distinguished
with only hundreds or possibly thousands of measurements.

Good filtering of those measurements is fundamental to mounting a successful at-
tack. Contrary to conventional wisdom, using either the median response time or the
minimum response time observed as a filter significantly under-performs filters that
sort the data and look at values early in the range (e.g., 1% into the sorted list). Based
on filters that use these low percentiles, we can construct a “box test” that reliably dis-
tinguish small timing differences, when they are present, with low false positive and
low false negative rates.

We also observed, generally, that the round trip time or network hop count did not
significantly contribute to the network jitter, and thus network distance may not confer
immunity to remote timing attacks. We found that the choice CPU or networking card
may introduce more jitter than a local area networking. Prospective attackers can work
around this by benchmarking their measurement machines, inadvance.

If an attacker can accurately perform timing measurements,then a number of cryp-
tographic or algorithmic weaknesses in a server might leak critical information to the
attacker. As a consequence, we recommend that the algorithms used inside web and
other Internet servers that process important secrets be carefully audited and, where
necessary, be modified to limit observable differences in execution times to at most a
few microseconds.

References

[1] A. Acharya and J. Saltz. A study of Internet round-trip delay. Technical Report
CS-TR-3736, Department of Computer Science, University ofMaryland, Dec.
1996.

[2] O. Acıiçmez, Çetin Kaya Koç, and J.-P. Seifert. Predicting secret keys via branch
prediction. InThe Cryptographers’ Track at the RSA Conf. (CT-RSA), pages 225–
242, San Francisco, Feb. 2007.

[3] O. Acıiçmez, W. Schindler, and Çetin Kaya Koç. Cache based remote timing
attack on the AES. InThe Cryptographers’ Track at the RSA Conf. (CT-RSA),
pages 271–286, San Francisco, Feb. 2007.

33

[4] P. Barford and M. Crovella. Critical path analysis of TCPtransactions.
IEEE/ACM Trans. Netw., 9(3):238–248, 2001.

[5] D. J. Bernstein. Cache-timing attacks on AES, Apr. 2005.http://cr.yp.
to/papers.html#cachetiming.

[6] J.-C. Bolot. End-to-end packet delay and loss behavior in the Internet. InACM
SIGCOMM: Conf. on Applications, Technologies, Architectures, and Protocols
for Computer Communication, pages 289 – 298, San Francisco, CA, 1993.

[7] A. Bortz, D. Boneh, and P. Nandy. Exposing private information by timing web
applications. In16th Int. World Wide Web Conf., Banff, Alberta, Canada, May
2007.

[8] D. Brumley and D. Boneh. Remote timing attacks are practical. In Proc. of the
12th USENIX Security Symposium, Washington, DC, Aug. 2004.

[9] B. Canvel, A. Hiltgen, M. Vuagnoux, and S. Vaudenay. Password interception in
a TLS/SSL channel. InAdvances in Cryptology — Crypto Proc., volume 2729 of
LNCS, pages 583–599. Springer-Verlag, Aug. 2003.

[10] J. L. Carter and M. N. Wegman. Universal classes of hash functions.J. Comput.
Syst. Sci., 18(2):143–154, Apr. 1979.

[11] S. Casner, C. Alaettinoglu, and C.-C. Kuan. A fine-grained view of high-
performance networking. NANOG22 meeting, May 2001.http://www.
nanog.org/mtg-0105/casner.html.

[12] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.Wawrzoniak, and
M. Bowman. PlanetLab: An overlay testbed for broad-coverage services.ACM
Computer Communications Review, 33(3), July 2003.

[13] K. C. Claffy, G. C. Polyzos, and H.-W. Braun. Measurement considerations for
assessing unidirectional latencies.Internetworking: Research and Experience,
4(3):121–132, Sept. 1993.

[14] S. Crosby and D. S. Wallach. Denial of service via algorithmic complexity at-
tacks. InProc. of the 12th USENIX Security Symposium, Aug. 2003.

[15] J. Daemen and V. Rijmen. Resistance against implementation attacks: A compar-
ative study of the AES proposals. In2nd AES Candidate Conf., Rome, Italy, Mar.
1999.

[16] E. W. Felten and M. A. Schneider. Timing attacks on web privacy. InProc. of 7th
ACM Conf. on Computer and Communications Security, Athens, Greece, Nov.
2000.

[17] R. J. Jenkins. Hash functions for hash table lookup, 1995. http://
burtleburtle.net/bob/hash/evahash.html.

34

[18] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis of
product ciphers.Journal of Computer Security, 8(2-3):141–158, 2000.

[19] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In N. Koblitz, editor,Advances in Cryptology — Crypto Proc.,
volume 1109 ofLNCS, Santa Barbara, california, Aug. 1996. Springer-Verlag.

[20] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor,
Advances in Cryptology — Crypto Proc., volume 1666 ofLNCS, Santa Barbara,
CA, Aug. 1999. Springer-Verlag.

[21] T. Kohno, A. Broido, and K. Claffy. Remote physical device fingerprinting. In
Proc. of the IEEE Symposium on Security and Privacy, Oakland, CA, May 2005.

[22] M. G. Kuhn. Optical time-domain eavesdropping risks ofCRT displays. InProc.
of the IEEE Symp. on Security and Privacy, Oakland, CA, May 2002.

[23] M. G. Kuhn and R. J. Anderson. Soft Tempest: Hidden data transmission using
electromagnetic emanations. In2nd Workshop on Information Hiding, Portland,
OR, Apr. 1998.

[24] B. W. Lampson. Hints for computer system design.ACM Operating Systems
Review, 15(5):33–48, Oct. 1983. Reprinted inIEEE Software1(1):11-28 (Jan.
1984).

[25] D. L. Mills. Internet time synchronization: The Network Time Protocol. IEEE
Transactions on Communications, 39(10):1482–1493, Oct. 1991.

[26] D. L. Mills. Network time protocol (version 3). Technical Report RFC-1305, In-
ternet Engineering Task Force, Mar. 1992.ftp://ftp.rfc-editor.org/
in-notes/rfc1305.txt.

[27] D. Moore and G. McCabe.Introduction to the Practice of Statistics. Freeman,
New York, 5th edition, 2004.

[28] A. Mukherjee. On the dynamics and significance of low frequency components of
Internet load.Internetworking: Research and Experience, 5(4):163–205, 1994.

[29] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The
case of AES. InThe Cryptographers’ Track at the RSA Conf. (CT-RSA), volume
3860 ofLNCS, pages 1–20, San Jose, CA, Feb. 2006. Springer.

[30] D. Page. Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical Report CSTR-02-003, Department of Computer Science,University of Bris-
tol, June 2002.

[31] A. Pasztor and D. Veitch. PC based precision timing without GPS. InProc. of
the ACM SIGMETRICS Int. Conf. on Measurement and Modeling ofComputer
Systems, pages 1–10, Marina Del Rey, CA, June 2002.

35

[32] V. Paxson. End-to-end Internet packet dynamics. InACM SIGCOMM: Applica-
tions, Technologies, Architectures and Protocols for Computer Communication,
Cannes, France, Sept. 1997.

[33] V. Paxson.Measurements and Analysis of End-to-End Internet Dynamics. PhD
thesis, University of CA at Berkeley, Berkeley, CA, Apr. 1997.

[34] V. Paxson. On calibrating measurements of packet transit times. In SIGMET-
RICS/PERFORMANCE: Joint Int. Conf. on Measurement and Modeling of Com-
puter Systems, pages 11–21, Madison, WI, June 1998.

[35] D. Sanghi, A. K. Agrawala, O. Gudmundsson, and B. N. Jain. Experimental as-
sessment of end-to-end behavior on Internet. InTwelfth Annual Joint Conf. of the
IEEE Computer and Communications Societies, pages 867–874, San Francisco,
CA, Mar. 1993.

[36] W. Schindler. Optimized timing attacks against publickey cryptosystems.Statis-
tics and Decisions, 20:191–210, 2002.

[37] J. H. Silverman and W. Whyte. Timing attacks on NTRUEncrypt based on vari-
ation in number of hash calls. InThe Cryptographers’ Track at the RSA Conf.
(CT-RSA), San Francisco, Feb. 2007.

[38] D. X. Song, D. Wagner, and X. Tian. Timing analysis of keystrokes and timing
attacks on SSH. InProc. of the Tenth USENIX Security Symposium, Washington,
DC, Aug. 2001.

[39] D. Veitch, S. Babu, and A. Pasztor. Robust synchronization of software clocks
across the Internet. InProc. of the 4th ACM SIGCOMM Conf. on Internet Mea-
surement, pages 219–232, Taormina, Sicily, Italy, Oct. 2004.

[40] Z. Wang, A. Zeitoun, and S. Jamin. Challenges and lessons learned in measuring
path RTT for proximity-based applications. InPassive and Active Measurement
Workshop, San Diego, CA, Apr. 2003.

36

