Opportunities and Limits of Remote Timing
Attacks

Scott A Crosby and Rudolf H. Riedi and Dan S. Wallach
Rice University

May 26, 2007

Abstract

Many algorithms can take a variable amount of time to coreleipending on
the data being processed. These timing differences cantisoesedisclose con-
fidential information. Indeed, researchers have been abledonstruct an RSA
private key purely by querying an SSL web server and timirgg réssults. Our
work analyzes the limits of attacks based on accurately unas network re-
sponse times and jitter over a local network and across teenet. We present the
design of filters to significantly reduce the effects of jit@lowing an attacker to
measure events with 15-1@accuracy across the Internet, and as good as 100ns
over alocal network. Notably, security-related algorithom web servers and other
network servers need to be carefully engineered to avoimhgirohannel leaks at
the accuracy demonstrated in this paper.

1 Introduction

Security researchers have studied a number of remote tittiacks, principally against
cryptographic algorithms. If an attacker can preciselyeticnyptographic operations,
the attacker may be able to solve for the cryptographic kbgré& has been signifigant
interest in these attacks. Brumley and Boneh [8] showedsiinztt attacks were practi-
cal, i.e., an attacker could measure the response-timenaas of a secure web server
with carefully chosen input and, after collecting enoughmgkes, could derive that
server's RSA private key. Likewise, it has been shown thatviP password could
be extracted from a TLS/SSL channel across a network congsist two switches and
a firewall by measuring a 2ms difference in response time [9].

Brumley and Boneh based their attack on rough¥ rhillion queries which they
found to be effective on a local area network yet ineffecéioross the Internet to derive
the server’s private 1024-bit RSA key. Clearly, additionatwork hops will increase
the latency for packets to travel from one host to anothearattacker trying to mount
a timing attack, latency differences are irrelevant beealus attacker is only interested
in measuring thalifferencedn latency across measured events. However, additional
network hops may also aditer (i.e., random noise) to the measured latency. An

attacker’s goal is to make multiple timing measurementstenmfully smooth out the
jitter to recover the actual time difference.

Timing attacks have broad relevance beyond protectingtogypphic keys. Con-
sider algorithmic complexity attacks [14], where an atexdkies to induce algorithmic
worst-case behavior in a program by sending carefully-ehasputs that might, for ex-
ample, cause every insert into a hash table to collide, ngsipecte®(1) operations
to consume their worst-cag€¥N) running-time. One proposed solution to such attacks
is to hide important details about the parameters used bynat algorithms. For ex-
ample, several systems have replaced a deterministic nastidn with a keyed but
non-cryptographic hash function (e.g., universal hasfigyor Jenkin’s hash [17]). If
an attacker can measure a server’s response time with emagaghacy to determine if
a collision occurred, then the attacker might be able tovédhe key.

Timing attacks against some algorithms will require morecggion than others.
This paper aims to quantify the precision that an attackehtrihope to achieve in
discriminating between two events, on a remote computat,téke slightly different
amounts of time to run. This paper will present the resulsxénsive measurements
both on our local network and across the Internet.

Section 2 presents related work. Section 3 describes ouehwodédhe attackers
goals. Section 4 describes our experimental program anda®weollected measure-
ments. Section 5 summarize our results. Section 6 desailiesetwork model. Sec-
tion 7 provides a statistical analysis of network jitterrfrthe viewpoint of an attacker
trying to perform a timing attack and identifies factors tingpact jitter including CPU
and network card dependencies, and correlation of netwistirtte to jitter. Sec-
tion 8 consists of our simulation-driven study of how well @tacker might be able
to perform a remote timing attack using statistical hypsthesting. We present our
conclusions in Section 9.

2 Related work

Side channel attacks The timing attacks discussed in this paper are an example of
side channel attacks, where a system leaks informationdlite physical implemen-
tation. An early example of such an attack is the passwordestication weakness
discovered in the Tenex operating system [24]. Kocher waditkt to observe that
side-channels attacks could generally be applied agasnston cryptographic algo-
rithms. His analyses using device response times [19] angipoonsumption [20] to
derive cryptographic secrets were the basis for much ofgbent work in this field. In
the recent Advanced Encryption Standard (AES) competitlemciphers were exam-
ined for the potential of side-channel attacks [15].

Side channels exist where a computer may leak its interagd gtrough RF emis-
sions [23]. Strikingly, methods as effortless as watchimg diffuse reflections of
CRT display against nearby walls, at a distance, may allowolaserver to see the
screen [22]. Side channels have been used to detect passswadSSH, through the
use of keystroke timing [38].

Timing attacks have been applied to cryptosystems. Kelseyt.¢18] conjectured
that cache miss behavior may also be used as a side changel[3®4later presented

an analysis of caching behavior and described an attackstgakES. Bernstein [5]
showed that AES’s CPU cache-miss behavior leaks key bits.oferpowerful attack
on AES exploiting shared cache state has been done by Oswk f29]. Silverman
and Whyte [37] summarize a timing attack on the NTRU crypstesm that exploits
a timing difference on the number of SHA-1 computations. igdler described an
attack against the chinese remainder theorem in RSA ana@eh{36] modeled and
optimized attacks against RSA. More recently, AclicmeaE[2] show a local attack
on RSA that exploit branch mispredictions delays in ordetdtermine the secret key.
Aciicmez et. al. [3] present an interprocess timing attaeér the loopback interface
on AES that exploits CPU cache timing differences using a6t encryptions and
were able to distinguish the correct AES key amothgatternatives.

Timing attacks have been applied to the Internet. Kohnol g2 showed that it
is possible to fingerprint a host on the Internet by using TERCMP timestamps to
measure differences between machine clock skews as tinpsaper second. Fel-
ton and Schneider [16] shows how servers can fingerprintyanons web clients
through detecting the timing difference between a cliecheahits and misses. And,
Bortz et. al. [7] showed that timing difference may leak s¢xsuch as the existance of
an account or shopping cart size in web applications.

Network measurement There have been many attempts to characterize the end-to-
end behavior of the Internet. The most comprehensive wdPkison’s measurements
and analysis of Internet end-to-end dynamics [32, 33]. ®axbharacterized such is-
sues as routing pathologies (e.g., routing loops), outdlygter, and the stability and
lifetime of routing information. He also examined Interpatket dynamics, including
the effects of packet loss, corruption, and reordering oR.TC

The earliest studies of network latency and jitter focusethese attributes because
of their effect on important parameters in the TCP protoédmol.accurate value for the
round trip time is needed to estimate the correct values &R Tetransmit timers and
window size [13]. If jitter causes the round trip time to bednrectly measured, the
TCP protocol may incorrectly initialize its timers.

Internet path delay time was characterized as a shifted gadistribution by
Mukherjee [28]. His measurements used standard ICMP echests, and achieved
millisecond precision. Many other researchers have paddrend-to-end assessments
of Internet packet behavior [1, 6, 35, 40]. Barford and Chiajé] characterized causes
of delay and jitter in a web server scenario. Casner et. a).rfleasured internet jitter
to 2Qus resolution on a wide area backbone network to study thebiysof using
backbone IP networks as virtual circuits.

Generally, these studies were concerned with millisecsmade events, and did not
consider the notion of an attacker willing to make thousamdsven millions of re-
peated queries in order to gain increased timing accuraeyrefmote machine’s pro-
cessing time.

Clock synchronization Clock synchronization and remote timing attacks must both
handle Internet jitter and delay. Unlike clock synchroti@maalgorithms, an attacker
only needs to worry about the stability of one clock — theimpand over a timescale

of minutes. The attacker can also afford to collect many nn&ssents.

The Network Time Protocol [25, 26] is designed to synchrettie system clocks
of computers over the network. NTP must, by necessity, measud compensate for
network latency and jitter, but its goals are to achieveisgittond, not sub-microsecond
accuracy.

Many types of network measurement depend more upon low ckek variation
across the measurements hosts than offsets from real tithe P8otocols other than
NTP have been designed to minimize clock skew [31, 39].

3 Attack model

We consider a simplified situation where the attacker camstrét two different re-
guests to the target server that either take the same oratifféme to complete as a
function of the server’s secret. We assume that knowing éredr not they take the
same time will divulge something about the secret. (We asstima attacker knows
everything else about the target machine, including itshlvare and software config-
uration. The attacker only lacks knowledge of the interralret.) The attack then
reduces to inferring such a difference in computing timenhvtiigh reliability. Our
model is powerful enough to represent the Brumely and BonsnSSL attack [8].

To be more precise, a query is transmitted to the target machpon which the
target performs some task which requirgsracessing timevhich the attacker would
like to infer. However, the attacker can only measurerdsponse timei.e., the time
from when the query is transmitted to when the reply is reszkiv

Our goal is toidentify the smallest difference between two processingdthat
can be reliably detected by an attacker given a reasonabideof measurements.
Of course, the resolution with which an attacker can obstrese differences will be
a function of how many samples the attacker takes, how muuthora perturbation,
calledjitter, is introduced in the response time by the network and hoectife the
attacker can be at filtering that jitter.

4 Experimental setup

We ran tens of millions of timing experiments, both in our#atal over the Internet. Our
system implemented a simple UDP ping-pong protocol wheregdich measurement,
a client sends a message to the server containing the spoidient of time the server
should pause before replying. The server waits for the reggdeamount of time and
then responds.

Upon receiving the response, the client logs the procedsitgrequested of the
server and the observed response time, then waits a randaynladore sending the
next request. This delay, averaging 20ms, avoids synchatian artifacts between the
client and server. Furthermore, each client performediatstin a random order. If no
response is received within one second, the client assumea packet was dropped
and repeats the measurement.

Dataset| #hosts #hosts total # sampleg Start Date End Date
starting surviving| #trials

L 8 8 9.0M 27k | Sat28 Feb 2004 Sun 29 Feb 2004

A 75 51| 112.5M 40k | Tue 9 Mar 2004| Wed 17 Mar 2004

B 103 37| 85.6M 30k | Fri28Jan 2005 Thu 3 Feb 2005

C 136 91| 68.4M 13.5k| Wed 2 Mar 2005 Tue 8 Mar 2005

D 124 3| 179.6M 68k | Wed 9 Mar 2005 Wed 23 Mar 2005

Table 1: Dataset statistics.

In all of our datasets the server machine was dedicated ttagthe while we ran
clients as background tasks on other machines. Clientsdiomly make one request at
a time, allowing them to run without disturbing the machineers. In effect, we have
busy and idle clients querying an idle server instead of ipadle clients querying a
busy server, as we would expect when a server is under aifégekhow measurements
of loaded servers and discuss this issue further in Sectfhn 8

4.1 Clock calibration

We accomplished nanosecond-precise timing by reading@tégycle counter, avail-
able on all modern microprocessors. However, cycle coameunt in cycles, which
we must convert to nanoseconds, requiring our experiméataless to estimate the
clock frequency of each machine. Rather than trying to lyghtnchronize the clocks
of these machines, perhaps with NTP [25, 26], we perform aseeend calibration
of the cycle counter against the system clock to give an aqupiatie solution, within
1% accuracy. Our network model includes a correction fockckkew. Each machine
measures time independently, in nanoseconds, and we iikcthrecdifferences in post-
processing. We determine the clock skew by the slope of &$epgres linear fit of
the delays requested with the delays measured. This pricesscribed further in
Section 7.4.

4.2 Collected datasets

We collected five primary datasets. One dataset was calevter a LAN and the other
four datasets were collected over the Internet. In eaclsdatere measured the same
M = 46 distinct processing times on the server ranging from $Q0r8ms. Table 1
summarizes these measurements, including the number tf theg were involved
at the start of the experiment, the number of hosts that wefterhen we finished
the experiment, the total number of measurements in theselatand the maximum
number of samples per host per processing time we collected.

Dataset L consists of 8 clients on our LAN. For each procgstaine, we collected
27,000 samples. Datasets A, B, C, and D were collected ogéntlrnet, ranging from
13,000 to 68,000 measures per host per processing time.

To achieve a broad sampling of Internet hosts, we used Rlabgan open, globally
distributed platform for developing, deploying and acaggplanetary-scale network
services [12]. Unfortunately, PlanetLab hosts are not velgble and many hosts

failed during the experiment. We are unable to restart addilost because the clock
calibration would not match. These host failures were paldrly apparent in Datasets
B-D.

We would have preferred to use Dataset A because Planetlsib tivere much
more reliable and less overloaded when it was collectedottiniiately, a concurrency
bug in our earlier data collection system corrupted abo002fieasurements in Dataset
A and about 30 in Dataset L. We fixed this problem for subsegueasurements, and
we believe that our post-processing filters out these erimaetheless, we will present
results for each dataset.

5 Results

We are interested in thesolutionthat events on a remote node can be timéxfiltered

jitter is a measure of resolution based on statistical technigungssasuggestive of
the timing difference that is measurable. We also measwauton empirically by
simulating an attack and identifying the minimum distirghable timing difference.
Most of our results, previewed here, concern how unfiltereer jvaries with CPU
architecture, network distance, and other causes.

Does network latency follow a Gaussian distribution? No. The distribution of
response time is a highly skewed distribution. (See Segtibr)

How is unfiltered jitter measured? Unfiltered jitter estimates the amount of residual
noise which limits the resolution of a remote timing attableasurements arfdtered

to a single value that is supposed to be correlated with thete processing time. As
we know the actual processing time, we can check the strerfigitle correlation. Good
filters should have high correlatiotunfiltered jitter measures the lack of correlation.
(See equation 10 in Section 7.4.)

Isn’'t mean (or median) the best way to filter measurements? If the response times
were distributed in a Gaussian fashion, then mean or medaridvibe excellent filters.
With the non-Gaussian distributions we see in practice;pencentile filters tend to
significantly outperform the mean or median. (See Sectiohafd 7.5 for details.)

Then surely the minimum response time should an excellent dice. Contrary
to expectations, the minimum response timads the least noisy signal. Low per-
centile filters exhibit significantly less noise than the imam response times. (See
Section 7.5.)

Is there a correlation between unfiltered jitter and network latency or hopcount?
We observed no significant correlation between unfiltergerjand either latency or
the number of network hops. (See Section 7.6.)

Does the CPU of a machine affect unfiltered jitter? Yes, we found that our Pentium
4 measurement host introduced artifacts. For processingstibetween 100ns and
80us, 40% of the measurements had a constanid BSsponse time. (See Section 7.7.)

Does the network card affect unfiltered jitter? Yes, we found that our Intel Gigabit
Ethernet card had 10 to 30 times more unfiltered jitter thargeneric onboard Ether-
net adapter, depending on whether interrupt coalescingnaisled. (See Section 7.8.)

At what empirical resolution can an attacker time a remote hest? The resolu-
tion an attacker can time a remote host depends on how margunesaents they can
collect. Our simulated attacker using statistical hypsi$htesting was able to reliably
distinguish a processing time differences as low as 200th8@us with 1000 measure-
ments on the LAN and WAN respectively with. (See Section 8.)

How much extra noise is introduced by application load? With 1000 samples, the
addition of application load from Apache introduces onli df jitter, much less than
the 2Qus WAN jitter. (See Section 8.8.)

6 Network Model

It would be impossible to isolate and measure every possitri¢ribution to network
latency and jitter. Between an attacker’'s machine and tigetanachine, there may be
any number of network bridges, hubs, switches, firewalld, raniters. Each of these
may delay packets, drop packets, or suffer internal coimenfurthermore, if packets
are arriving faster than they can be forwarded, a routerattdimpt to queue the packets
and send them out later. As the load varies, so will the Iatamnd jitter accumulated
by packets as they pass through the network device.

In addition, the end-hosts will introduce their own jittex @ result of application
load, virtual memory pressure, and network packet prosgssdiVhereas the attacker
may be able to dedicate a computer to the sole purpose of tieasumement, and thus
reduce the attacker’s contribution to jitter, the targethiae is likely to be running a
general-purpose operating system and supporting a ndattsiorkload.

We use an abstract model of the server and the network. Therssrassumed to
run at least two differertaskswhich have different processing times and all requests
for the same task have the same processing time. We modeltémey of a round-trip
communication channel between one pair of hosts as

responseTime: a- processingTime- propagationTimet jitter Q)
with the following five assumptions:
1. responseTim& the measured round trip time on the network.

2. aaccommodates clock skew and is constant over all requastdl tasks. This
is estimated in our analysis independently for each host.

3. processingTimés constantfor all requests for thesametask. In our dataset,
this corresponds to the time the remote hosts delays befodirgy a reply to a

ping-pong.

4. propagationTimes constant over all requests, falt tasks. This is the ‘average
latency’ and is estimated in our analysis independentlg&mh host.

5. jitter is the jitter term and is identically and independentigtributedfor all
requests and tasks.

Thus, the jitter term absorbs all randomness introducecdebyark conditions, load on
the target machine and any other source.

More formally, theM differentknownprocessing times are denotedtfdy, . .. ,t[M].
The true, but unknown statistical distribution of respatirees to a querynwith a pro-
cessing time of[m] is denoted byRm|. Thus, for each host pair and for each query
r1[m]...rn[m] denote theN collected measurements which may also be thought of as
samples taken frorR[m|. Our channel model (1) can be restated more formally as:

Vme(r..my Tn[M =a-t[m| + b+ &nm 2)

whereb is the propagation time is the correction for clock skew argd[m] is the jitter
in the measuremeng[m].

By our channel model, the random variabdghn| are all of the same distribution
and are statistically independent (for alandm). In other words, the distributions of
R[m] for differentmare identical up to a shift term and thgm]| constitute independent
samples of these distributions.

Our model setup implicitly assumes that the applicatioul lissstationary and that
the network will introduce the same random perturbationsficcequests. This is rea-
sonable if all response messages have the same payloadrantirif is stable over the
time of the measurements. Route changes would be easilgtéétby the displace-
ment they would cause in the response time distribution otrégeroutes operating
in parallel to an ongoing timing attack. An attacker may lpeited to the number of
measurements they can collect due to route changes. Camglmmeéasurements across
route changes would require detecting when those changes aed determining the
propagation time difference between each set of samples.d@n work assumes that
the network routes are constant across the duration of guargwents.)

We repeat our analysis for each host pair in each datasatingeeach of them as
a separate channel with unique jitter, propagation tingkcskew, and response time
distribution.

The definition of jitter The splitting of the response latency into the sum of prop-
agation and jitter is for convenience and does not affechotiilogy or performance
of the attack. Indeed, since ordyjfferencesn response times need to be inferred, and
not actual estimates of the response times themselvesditing the constant shift
termb = propagationTimas irrelevant. In particular, we do not require an accurate
estimate of the propagation time as long as we use the samstaobmalue throughout
the attack. Although strictly speaking, jitter is alwaysaditional positive latency,
we considepropagationTimes an estimate of the propagation time plusétierage
jitter, allowingjitter to represent positivand negativeleviations from that average.

The use of clock skew An attacker need not be concerned with clock skew on a
remote host. They only need to reduce their own clock skewgmdo avoid gross
errors in their measurements. Ignoring this skew createtve error ofa— 1) ~ 1%

for an attacker, such as the one we simulate in Section 8 hwhiaf no importance.

16384

4096

1024

256

Count

64

16

50 100 150 200 250 300 350 400
Latency (microseconds)

Figure 1: Histogram of response times for 66k measureméatdms processing time
from a host from Dataset D.

In contrast, an accurate assessment of clock skew betweetlient hosts and
our server host is critical in our meta-analysis of Intejjitegr. When comparing the
jitter distribution for processing times betwefl] = 100ns andt[46] = 8ms a 1%
inaccuracy in clock skew would cause us to misestimate tife lsftweenR[1] and
R[46] by 80us which would completely dominate our results.

7 Statistics of the response time distribution

We first examine the response time distribution, examinertieies to filter it and we
estimate the unfilterable jitter.

7.1 Response time distribution

The distribution of jitter is not Gaussian. It is highly skesvdistribution with two
modes. In Figures 1 we plot a histogram of the probabilitysitgrfunction (PDF) of
the response times for one Dataset D host. The responsestotearly asymmetric and
non-Gaussian and includes two obvious modes and an expalhedistributed tail. In
Figure 2 we plot the CDF corresponding to this host. The ssémpe at about 52ms is
the least varying part of the distribution and occurs in ttie B5th percentile response
time.

1 T T T T T T T
09
0.8
0.7
0.6 |
05
04
03

Probability measurement under

0.2 1

0.1

0 e 1 1 1 1 1 1
20 40 60 80 100 120 140 160

Latency (microseconds)

Figure 2: CDF of response times for 66k measurements of a tmesgsing time from
a host from Dataset D.

7.2 Measurement quantiles

We define tha-th percentile (or quantile); of a distributionR to be the smallest real
numbergi[m| such thaP[R < g;] =i/100. The 50-th percentile is the familiaredian
and the 0-th percentile is the minimum response time.

The true quantilej; is unknown because it depends on the true distribuRowWe
can compute amstimator@;, which is an empirical estimate of derived from our
measurements by first ranking a set of measurements into

ra <rp <..<r 3)

and settinggi"= r(;in/100)- The empirical quantileg; ‘are well known to be weakly
consistent under mild conditions, meaning that they cayeén the true quantilg; as
the sample size increases.

We use quantiles as a graphically powerful alternativedpldying a histogram for
each processing time. We summarizing those histogramgeitientile contoursThe
empirical percentiles;[m| are plotted as a function of the sampled server processing
times,t[1],...,t[M], which are indicated with dots on theaxis. These percentile con-
tour summaries of the response time distribution are essieompare than their full
histograms.

Figures 3 and 4 summarizes the estimated percentiles oéspense time distribu-
tions we observed for a host in Dataset L and D respectivédyire 3 shows that that

10

despite intuition to the contrary, the minimum responsetsaems to be poorly cor-
related to the processing time. We can presentlai 46 response times on one plot
on alog-scale if we first estimate and subtract off the lidi¢ga€This process is further
described in Section 7.4.) Figures 5 and 6 show the respansedistribution for a
host in Dataset L and D respectively. The variation of the iam@@nd minimum re-
sponse times across different processing times is visgadhe than the variation seen
in measurements at small quantiles. The mean (not plotesitnilarly noisy. Because
the median and mean of our measurements are extremely parsynetric inference
techniques based on these very classical statistics akelyrtb work well.

Variability of the Empirical Percentile To study the error of this percentile esti-
mation we need to consider the distribution of the estimitdelf, i.e., the variability in
G when the estimation is repeated. Fixing a percenéiled settink = k(i) = [iN /100
we may write

Gm = rgg=a-tim+b+gqym. (4)

Here, we introduced the random variagjg[m] which is thek-th ranking sample out of
N independent and identically distributed samples fepmj. Since under our channel
model alle[m] are identically distributed for differem, €. [m] are identical in distri-
bution as well and we conclude that the distributioméf anddj [n'] are identical up
to the shift terma(t[m] — t[m]):

Gim ="]+ atm] —t[m]). 5)

Precision of Percentile Estimationlt follows immediately from (4) that the es-
timation errorgym| — gi[m] themselves have identical distributions, independeritly o
m:

Gi[m| — a[m] = (a-t[m] + b+ (o [m)) — (a-t[m| +c) (6)
= S(k) [m] +b-c dgr' 8(k) [IT{] +b-c. (7)
Two remarks are in order.

First, to study the variability of a percentile estimatprand the estimation error
(6), we need a set of empirically obtained values. Typicé#lis is done by repeating
the same estimation procedure several times. Here, we nygitethat the errors
Gi[m] — gi[m] obtained for thesamepercentile but for different values of the response
time, i.e., form=1...M are all of the same distribution (see (7)). In other words, we
may consider these error values as samples of the saméuligtnie) +b—c+a-
(t[m]). In this context we recall thdtis the (unknown) propagation timajs the clock
skew, and that depends only ohand some arbitrary baseline response tifrmé], but
notm.

Second, since we are interestedlifference®of processing times, and thus in (ad-
ditive) differences of the response times we observed, ddéiee constantb — c) in
(7) will cancel out in our inference schemes and be of no ingme.

11

114

40%

112 20%
- 10%
2 110 1%
c
3 108
3
o 0%
5 106 2
§, 104
0}
£ __—
=102
[}
2
o 100
o
(%]
g 98 N

96 [

94 ‘wm-e0-0-o oo ® ®

0

2 4 6 8 10 12
Server processing time (microseconds)

Figure 3: Response time percentiles as a function of prowetme for a local host in
Dataset L.

7.2.1 Filtering our data

Because of the noise in the jitter distribution, particiyyat and above the median,
we apply a “filter"” which reduces the set of measuremenfs ...ry[m] to a single
number that is hopefully closely correlated with the preasgtimet[m] A filter, fore-
most, is a function of the measured response times. Filteigdehoices are driven
mainly by the objective to minimize the variance as a meastisgror which in turn
impacts the reliability of a decision procedure based orfittez. In general, we may
think of this procedure as some sort of de-noising.

While such a filter can not remove all noise, it will in help usderstand the unfil-
terable jitter in our measurements and estimate the résolah attacker may be able
to measure. There are many filters we may choose. In Seclomerdescribe how we
evaluate filters and identify the ‘best’ such filter.

A first simple example of a filter would be tli¢h empirical percentile:

Foi (ra[ml,...rn[ml) = Gi[m) ®)

Recall that the filter§ o, gy, I g, PICKk themedian minimumandmaximunresponse
times, respectively.

We tried three types of filtering strategies beyond simplegmtile filtering but
they performed no better than the best percentile filter. Ges filter of each type was
identified through brute force: We ran several hundred aodrded the best instance
of each type. The four types of filtering we applied are:

12

120 09

- 25%
5%

I e //"'/ 0%
100 e

(=)

w

o
°

S

110

©
o
N

70 pi e

60

Response time (milliseconds)
[}
o

50 e

40 cmmesoe *—e
0 10 20 30 40 50 60 70

Server processing time (milliseconds)

Figure 4: Response time percentiles as a function of prowetime for a remote host
in Dataset D.

1. Percentile This filter returns thexth quantile or percentile. We tried a hundred
different percentile values, varying from 0% to 70%, withsthof the percentile
values less than 10%.

2. PeakThis filter identifies modes in our measurements. SampleSratsorted,
and then a window of a fixed width is moved across the sortéd When the
difference between the maximum and minimum sample withinviindow is
minimized, that position of the window contains the highaestsity of samples.
The median measurement within the window is reported asthdtrof the filter.
We considered 25 different window widths, ranging from 1%7@% of the
collected samples. Even in the best case, our percentéde dilitperformed the
peak filter.

3. Average Rangelnspired by the filter used in Brumley and Boneh’s SSL attack,
we computed a histogram over the samples and computed thagavef the
samples between thi¢h andj-th percentiles. We tested this filter over 96 differ-
ent percentile ranges. We used percentiles ranging fromo020%; we mostly
examined ranges below the 5th percentile. In general, theibgtances of this
filter performed within a few percent of the best percentiteffi

4. Percentile SmoothingThis is an attempt to improve our estimageof the real
percentileg;. Instead of computing the estimate from our measuremeistty,
we divide the measurements irkalisjoint subsets, compute a separate estimate

13

for each subset, and then average those estimates. We tigistéitter for k €
{4,10,20} and for 21 different percentiles. This filter performed ktlg worse
than our best percentile filter.

7.3 Filtered measurements

Figures 3 and 4 show several percentile filters. For Dataseirtfually all of the per-
centiles we plot show a smooth relationship to processimg,texcept fof = qo, the
minimum response time. For Dataset D, it is visually cleat the 25th percentile is
much noisier than the 5th percentile. We note, for the palgrcclient of Figure 3, and
for plotted processing times ranging from 100ns and 8ms,&88emt of the 2,000
samples for each processing time occurred withius\@indow, while the minimum
response time was aboyigifaster. The minimum response time is clearly much nois-
ier than the other percentiles.

In Figure 3 we also observe that indeed the first and tenth rezappercentiles
follow a linear dependence on processing time with high ey This is suggestive
that the first and tenth percentile are better filters thahdrnigercentiles.

In Figure 4, we show a similar plot for a typical host from DsgaD. First, note
that the scale for this plot is in milliseconds and note that 25th percentile looks
noisier than the 40th percentile of Dataset L. This indisatere variability in the
jitter in PlanetLab measurements than in the LAN measurésnelRor fine-grained
measurements of response time, up to 75% or more of Intere@sumements may be
unacceptably noisy. This plot also appears to show norlipbparcentile contours.
This is only an artifact caused by the non-uniform spacingrotessing times where
the 25ms and 65ms measurements are connected with a stirméght

7.4 \Verifying channel model

We summarize the jitter distribution as a single filteredueaand verify our channel
model by how close the filtered measurements match the eegobisear relationship.
Letl (r1[m]...rn[m]) be afilter on the measurementfm|...ry[m| forallme 1... M,
reducing them to a single value for each of the processinestift] . ..t[M]. We verify
our channel model by using a least squares linear fit betwes different process-
ing times and théV different filtered response times. Under the network moithe,
following relation should hold fom=1...M:

Fm =r(rym...ry[m)=a-t[m+b 9)

The least square fit will provide estimations of the clockvslee the propagation
time b and the variance? of the estimator, giving us measure of confidenckeat the
data follows a linear relationship. To this end, we comphgeunique valuea andb
which minimize the average square deviat@rof I (r1[m]...ry[m]) from the linear
relation. In other words:

L= = %Z(é[m})z where &m| =T (ra[m]...rn[m) —a&-t[m —b. (10)

14

Dataset | A B C D| L L’
Mean unfiltered jitter|fs) 11.7 141 190 209 21 .218
Median unfiltered jitter|gs) | 6.5 7.2 6.7 7.4) .050 .046

Table 2: Mean and median, among all hosts within each datatstbe unfiltered jitter.

Explicit formulas fora’andb are quickly derived using standard calcutus.

For our best filterss? is very small compared to the processing time differences
which leads us to accept the linear relation between prowesisnes and percentiles
up to a small random error avélidatesour channel model. Furthermorgs? which
we callunfiltered jittermeasures the effectiveness of a filter. The filter with thellersia
unfiltered jitter is the most effective filter — the one withethest linear fit to the
channel model.

Unfiltered jitter is also suggestive of the the resolutioattan attacker can distin-
guish. Using the rule of thumb that a measurement has leasath&b probability of
being more than 1.7 standard deviations from its mean, agmifference must be at
least 34- sto be distinguishable with a 5% false positive and 5% falggtiee rate. In
Section 8 we empirically measure an attacker’s resolvinggrdased on our network
trace data.

In addition to this validation of our channel model, the tesguare fit (10) pro-
videssimultaneougstimates of the clock skew véa and propagation time via. An
estimated valua % 1 provides further confirmation of the channel model (1).

Some care has to taken in the interpretatioﬁ).oﬂ'he least squares fit minimizes
the sum of the squares &fm|, some of which will be positive and some negative.
Therefore, we defindefine bto be theaverage propagatiorrather than the minimal
propagation; jitter may be negative and then the averagg.pfs zero by definition
andb~ b.

We summarize the unfiltered jitter across each dataset ite Talby giving the
average and median unfiltered jitter. Across all of the ddataghe mean unfiltered
jitter is noticeably larger than the median unfiltered fittedicating that although many
hosts have low unfiltered jitter, some are much worse. Fangia, we created Dataset
L' based on Datasét with one outlier removed. The outlier is a host on the otid s
of a “traffic shaper” which introduced a significant amouniitbér.

In summary, we accept a small value$fas a validation of the channel model
and accept the estimated clock skawo be the true skewa. In statistical terms, this
procedure is called a model fitting. We do not overfit as werest at most two
parameters fronvl = 46 different response times.

We also determine if the estimator error remains the samasaall processing
times. In Figure 5, we plot the difference from the best-rig percentile filter and
the actual measurement percentiles for various processieg on a logarithmic scale.
We refer to these plots ateviation contourss they emphasize the residual noise in

1Settingt = (1/M) T mt[m], @ = (1/M) Y[[M], TG = (1/M) 3 mt[m] - [[m] andtZ = (1/M) 3 nt2[m] we
have
a-9a-td

Z_ (02 and B:G—ﬁ

15

1400

1200

wb b N A MG

Deviation from model (microseconds)

600
400
200 . 2%

- S 1%

) y L L T N 1%

-200 A ’/ ; o 0%
-400 o-e00 WWWWLQQ *—e

0.1 1 10 100 1000 10000 100000

Server processing time (microseconds)

Figure 5: Difference from ideal estimator as a function afqassing time for a host in
Dataset D. Dots on the X-axis denote measured processieg.tim

that could not be filtered. Observe the lack of a trend for bpeaktentile values, where
the absolute estimator error remains about the same adiqge®@essing times. In
contrast, Figure 6 presents larger quantiles from the sarseshowing several times
the random variation buéssvariation in the measurements for the longer processing
times. The jitter distribution imotthe same across all processing times for this host.
Some hosts follow the channel model and have the same jitgibaition across
all processing times, as we would expect. Other hosts @dtet channel model, in-
cluding those using an Intel Gigabit Ethernet NIC or an Iiehtium 4 CPU (See
Sections 7.7 and7.8). For those, our analysis still findsbést filter, although the
resolution of the filtering process may be limited.

7.5 Effectiveness of filtering among quantiles

Intuition says that minimum response time should be thel iiiléer because network
devices can only introduce additional variable latencyer€fore, the minimum re-
sponse time should have the least noise introduced. In argments to identify the
filter with the lowest unfiltered jitter we found filters sidisantly more effective than
using the minimum response time, contradicting this ifgunit

To better understand this, we examined the relationshiywdmt percentiles and
the resultant unfiltered jitter. In Figure 7 we plot the uefitd jitter for 150 different
percentile filters ranging from .001th percentile to 70thceatile, averaged across all

16

45000 ——r————— /\ ———
40000 409 %

)

2

S 35000 \
(3]

(2]

S 30000 - \

£ 30% "/ e SN AT \
< 25000 .
GJ \\\
E A
S 20000
S 15000 Foqyp e et e
S 10000

g 15% -

& 5000 (10%

0 0% T TTTT T e e T

0.1 1 10 100 1000 10000 100000
Server processing time (microseconds)

Figure 6: Difference from ideal estimator as a function afqassing time for the same
Dataset D host as Figure 5 but using larger-quantile filtlBts on the X-axis denote
measured processing times.

17

350

Dataset A ——
Dataset B -
%0 DatasetC
g Dataset D - L
©
c
g 250
(]
(%]
o
L 200
E
£ 150
©
o
£ 100
= S
S
50
0
0.001 0.01 0.1 1

Percentile

Figure 7: Unfiltered jitter as a function of filter percentileer PlanetLab.

hosts in their respective datasets. As expected, peresiatiler 10% were very noisy.
Everydataset shows a trend indicating a higher noise as the pieaaclines from the
1st percentile toward the Oth percentile or minimum respainse. These curves show
several local minima and demonstrate that using the minimagponse time leads to
several times the error of using the empirically best filter.

To examine this further, we performed separate experimesitg a an laptop and
desktop computer connected with either a crossover cabdenmtwork switch. All
hosts and the switch were idle during the experiment. Figupdots the unfiltered
jitter as the percentile changes for Dataset L as well asdtasdt using the switch and
crossover cable. We note all three curves have at least wabhoinima that are not at
the Oth percentile. For a switch and a crossover cable, thedpunfiltered jitter is the
0.9th percentile and 12th percentile, respectively. Theselts confirm that minimum
response time is not an accurate filter and that the ideaépglefilter can be difficult
to predict a priori.

7.6 Unfiltered jitter versus network distance

In Figures 9 and 10, we show scatter plots of network distaasemeasured in the
propagation delay of the best linear fit, versus the lowetltered jitter for that host.
Each dot on these plots corresponds to the results of doiegs&$quares linear fit on
the filtered measurements for one host.

These plots show how well network round trip time correlatith measurement

18

12

DatasetL ——
Crossover cable -

10 Etherfast Switch -~

Unfiltered jitter (microseconds)
IS o

0.001 0.01 0.1 1 10
Percentile

Figure 8: Unfiltered jitter as a function of filter percentiieer the LAN.

35

2.5

15

Unfiltered jitter (microseconds)
N

0.5

0 o
50 100 150 200 250 300 350 400 450 500 550 600
Distance from server (microseconds)

Figure 9: Scatter plot of unfiltered jitter versus networktdhce for each host in
Dataset L.

19

100 T

DatasetA +
90 Dataset B X i

DatasetC X

w 80 DatasetD O i

2 +

3 70

(O]

8

5 0 0

E %

~ 50

}J} O]

= ¥

@ O X

]

=

)

0 50 100
Distance from server (milliseconds)

300

Figure 10: Scatter plot of unfiltered jitter versus networktahce for each host in
Datasets A,B,C and D.

accuracy. For Dataset L, our LAN measurements, Figure 9 showst hosts clustered
in the bottom left. These hosts were only connected by sedtehith no router hops
and have low jitter. The outlier in the upper right is still oampus, but is behind a
traffic shaping box. Figure 10 shows our measurements of ldreeftab hosts. The
x-axis scale is now much wider, reflecting the greater digasfcthese hosts. The
largest cluster of hosts in the bottom left reflects the lamgeber of PlanetLab hosts
within the United States. Interestingly, the internatidvasts, with significantly longer
network latencies, do not have noticeably higher unfiltgitser. The host with the
least unfiltered jitter in Dataset Ap&, was physically located on another continent.
As such, physical distance does not necessarily imply mbobtaunfiltered jitter. The
hosts with higher unfiltered jitter, notably the outliersti®e upper left, may reflect the
lack of data we were able to collect from some PlanetLab Huefisre they failed (see
Section 4.2).

For Dataset D, we additionally measured the number of haps fhe local system
to each PlanetLab host used in the experiment. This allovie determine whether
the number of hops, rather than the latency, influences tfikkewed jitter. Figure 11
plots the unfiltered jitter versus the network hop count fostk that had at least 10k
measurements and a successful traceroute. One Planetsidbdated 2 hops away on
the LAN had twice the unfiltered jitter of the best host, l@h24 hops away. This plot
also shows no correlation between hopcount and unfiltetted ji

20

35

30 X

25

20

X
15
X
10
”.
5% AN X
XERRER
0 1
0 5 10 15 20 25
Distance from server (hops)

Unfiltered jitter (microseconds)

XX

XX
¢
X;éx

XXX XX
KKK

KKK X KX

Figure 11: Scatter plot of unfiltered jitter versus netwodptcount for 80 hosts in
Dataset D that were replied to at least 10k measurements.

7.7 CPU dependencies

During the course of our experiments we observed unusuavi@hwhen the delay
being measured was less than i€0In that configuration, we happened to use a Intel
Pentium 4 laptop as the measuring host. Figure 12 demoestifsis problem. 35%
of the samples with a processing time between 100ns apsl @e a constant time
to return, regardless of the actual processing time. Wallyitsuspected this was an
artifact of a router or switch. In fact, the culprit was thelCigself.

To confirm that, indeed, the Intel Pentium 4 CPU was the sooftke problem,
we performed 12 timing measurements between four differemiputers (two models
of Intel Pentium 3, a Intel Pentium 4 desktop CPU and an AMDIéiHLGHz). In
these measurements, the artifact occurred only when theuRe# desktop CPU was
used in the client host and occurred nowhere else.

Our original Intel Pentium 4 laptop (a 1.8 GHz Pentium 4-Mjl &ime new Intel Pen-
tium 4 desktop (a 3.06GHz Pentium 4) have entirely differeatherboards, Ethernet
devices, and so forth. We conjecture that the artifact magy d@nsequence of the Pen-
tium 4's power management, putting the computer to sleepaggortune moments.
While a more detailed study of this effect is beyond the saxffikis paper, prospective
attackers will certainly select and profile their timing htisensure these artifacts do
not occur.

21

400%
350 %g
5 S 1%
g 0%
§ 300
(&]
@
(%]
o
Q
£ 250
©
o 200 i
»n 7
c
o
ol
$ 150 -
o L i
100 b/one: ° *—o . °
0 50 100 150 200

Server processing time (microseconds)

Figure 12: Response time percentiles as a function of psaagsime for a Intel Pen-
tium 4 laptop measurement host and AMD Athlon target on astreer cable.

7.8 Network card dependencies

We performed a further experiment to characterize how tloécetof networking card
(or NIC) mightimpact unfiltered jitter. We ran a new experiment bsgwtwo machines
that each had two networking cards. Both machines had a Z2XB#D Athlon CPU
and an Intel 82540EM gigabit ethernet controller. Machinacted as the sender and
has an onboard Via VT6102 100baseT ethernet controller. hMacB acted as the
receiver and has an onboard 3c905C-TX/TX-M 100baseT etheomtroller. We con-
nected these machines with either a crossover cable or aig&peedStream SS2108
10/100 baseT switch.

Table 3 summarizes our results on four new datasets whereollexted up to
150k measurements for 60 processing times ranging fromol&$ms on a 100baseT
ethernet network. We found that the higher performancehifigard, with interrupt
coalescing enabled, had 30 times the unfiltered jitter thargeneric onboard ethernet
card.

There is a caveat to these results. Datasets A’ and B’ viaatenetwork model
because their jitter distribution is very different acrdderent processing times. Fig-
ure 13 shows the deviation contours for the host in DatAsand demonstrates the
variability in the jitter distribution. These results icdie that some modern high per-
formance servers, with high performance NICs, may be saben femote timing at-
tacks as a direct consequence of their performance features

22

Deviation (microseconds)

-100 r

A

-120 f

40%
30%
25%]
20%
15% 1
10% |
5%

1%
5% |
1%

0%

-140 I I I I I I
1 10 100 1000

Server processing time (hanoseconds)

10000 100000 1e+06 1e+07

Figure 13: Deviation contours from ideal straight line foatBset A, using an Intel

gigabit NIC.

Experiment Sender Receiver IRQ ConnectiptMeasurementg Unfiltered
NIC NIC coalescing F j jitter

A Intel Intel default switch 150k 1419ns

B’ Intel Intel disabled switch 100k 676ns

C Onboard Onboard n/a crossover| 100k 56ns

D’ Onboard Onboard n/a switch 100k 49ns

Table 3: Unfiltered jitter differences between networkiagds.

23

8 Simulating Attacks

A statistical analysis of unfiltered jitter is useful in thatdentifies the lower bound
of noise in the system and indicates what resolution is #temlly distinguishable.
In this section, we simulate an attacker performing a timattgck and evaluate the
empirical resolution that a real attacker could identify.statistical terminology this
amounts to performing ypothesis test

In hypothesis testing, the statistician tries to show theirtobservations are statisti-
cally significant enough to exclude the defaulhorl hypothesisAs our measurement
dataset contains millions of measurements of ‘ground truttiere we know the actual
processing time, we may evaluate the empirical effectigsrd different hypothesis
testing approaches an attacker may attempt. Our choicehiohwapproaches we try
are guided by the results in the last section, where we detecththat the mean, me-
dian, and measurements above the 10-20th percentile aegresty noisy.

We show and test a framework of statistical hypothesisrigdth determine how
fine a time differencé might be detectable within a reasonable number of measure-
ments, both for LAN and Internet attackers. We find that, \wiHew as 2000 measure-
ments, it is possible for an attacker to distinguish a 100pnsgssing-time difference
on a LAN with false negative and false positive rates under 5%

8.1 Classic hypothesis testing

Many hypothesis testing approaches that distinguish venétho measurements sets
U,V are from the same distribution or different distributionck as the Studentstest,
use atest statistiap, computed from the summary statisticslbfV such as the mean,
standard deviation df V and the sample count. ¢fexceeds a statistically significant
threshold, then the null hypothesis, thatandV are from the same distribution, is
rejected.

Of course, any such analysis of hypothesis testing with gleithreshold incurs
a chance of two types of errors: false positives, when we apgnly reject the null
hypothesis, and false negatives, when we fail to reject tiehypothesis when we
should.

8.2 Empirical hypothesis testing

In our scenario, we are not limited to computing the theoetffectiveness of a hy-
pothesis test because our datasets contain ground truttmajeimulate an attacker
performing empirical hypothesis tests and we rate the kdtaceffectiveness assum-
ing it has an oracle that helps it choose optimal parameRather than collect a new
dataset for hypothesis testing, we reuse our previoudlgated raw measurements, as
analyzed in the previous section.

Our simulated attacks follow this procedure: the hypothtesitH is given two sets
of N samples of response tim¥s=r1[i],...rn[i] andY =r4[j],...rn[j] corresponding
to processing timesi] andt[j] which may or may not differ byA. For any given host
pair andA we wish to discriminate, we can randomly choose data fromnetwork
measurements[m| to populateX,Y. We let the null hypothesis be that=0, i.e., that

24

X,Y are from the same distribution. We then perform the hypagttestH (X,Y). To
accept the nulmeans thaH believes thaiX,Y are from the same distribution and to
reject the nullmeans thaH believes it has sufficient evidence that gy are in fact
different distributions.

We use the same testing procedure for each hypothesis estnjoute the empiri-
cal false positive (FP) and false negative (FN) rate for et pair and\. To compute
the false negative rate, we perform 200 trials where we @ipuhe querieX,Y from
different distributionst(j] = t[i] + A) and count how many times the hypothesis test
mistakenly accepts the null. To compute the false positite, rwe perform 200 tri-
als populating the queries,Y from the same distributiort[{] = t[j]) and count how
many times the test mistakenly rejects the null. We sumradhizse measurements by
computing, for each host in question, the smallestith a FN and FP rate below 5%
and denote this asmpirical resolution If the hypothesis tedtl, includes parameters
p, we find the ideal parameters by brute force. WeHrwith all choices and keep the
best-performing instance. This simulates a “best-cadatltr.

8.3 Hypothesis testing approaches

We considered four different statistical hypothesis testipproaches:

1. Studentst-test or other parametric approacheswWe considered attempting the
t-test on our raw measurements. We rejected it and other géiarapproaches
because our sample mean, sample variance and upper peséatie high es-
timation error. We describe our reasons for rejecting ttegg@oaches in Sec-
tion 8.4.

2. The Wilcoxian Rank-sum The Wilcoxian rank sum test is a standard test for
identifying if two sets are from different distributiong. derformed poorly; see
Section 8.5 for details.

3. Modified Studentst-test We model an attacker that instead of running the
test on the raw measurements, runstttest upon filtered measurements. The
empirical quantile is distributed about the true quantila Gaussian distribution.
By measuring the variance of the empirical quantile, we camthet-test. Our
results are described in Section 8.6.

4. The ‘Box’ Test This is our best-performing test. This test exploits ouresia-
tion that smaller quantiles in our measurements have leise.nGiven a mea-
surement sdt) and two quantileg, j, we define an intervdtj(U),q;(U)]. The
test rejects the null if the intervals induced by those djlesare non-overlapping
and in the proper order. Our results are described in Se8titin

8.4 Parametric approaches

A parametric statistical approach assume the distributiothe jitter follows a pa-
rameterized distribution (e.g. Gaussian, exponentiel) @nd we need only compute
parameters of the fit such as the mean and variance. Doindaesalis to design

25

stronger estimation procedures which exploit the assunmadtsre. However, it also
requires us to perform a goodness-of-fit test, to see whéikenodel is appropriate.

Our data clearly shows the medium and upper quantile eggnatcluding the
sample mean and median, suffer from extremely large vditighprecluding most
parametric models as they would be rejected in a goodnefiste$t. An inference
made on the basis of a poor model would be unlikely to be ateura

8.5 Wilcoxon rank-sum test

The Wilcoxian rank-sum test (also called the Mann-Whitresykrsum test) is a non-
parametric test to determine if two sets of observation cfsorma the same distribution.

We start with two sets of samples of response tileg. The two sample sets are
combined and ranked (i.e., sorted together). The rank ofeanemt is its index in the

sorted joined list. The rank sum statistic is then compugetha sum of the ranks of
oneof the sets:

N
@ank(ra[m],...en[ml, ra (], ..r [mf]) = > rank(rj[m)) (11)
=1

If the sample sets represent the same distribution, oneddimal the mean and variance
of @rank to be

N(N+L+1
E[@rand = %
NL(IN+L+1
varn@rank) = % (12)

If the obtained rank sumpyank is close to this mean, then we conclude that the process-
ing times were identical. If instead the distributions wdikerent, i.e..t[m] > t[m],
then the responseg[m| will tend to be smaller and earn smaller ranks, thus reducing
the sum of their ranks. This process works well, even if thatritiutions are non-
Gaussian, so long as they represented shifted copies obéaeh

Following our hypothesis test procedure to determine thsefpositive and false
negative rates, we found this methodology significantlyarrmerformed the “box test”
described in Section 8.7.

8.6 Modified t-test

Thet-test is a well-known test for distinguishing if two sets oéasurements come
from the same or different Gaussian distributions. Givenrttean, sample count, and
variance of two sets of samples, thiest computes the probability that the two sets are
drawn from the same distribution. Unfortunately, our ranasw@wements have a very
skewed, non-Gaussian distribution. Instead, we apply-test to our percentiles and
other filtered measurements which can be expected to bébdistl with a Gaussian
distribution.

The modifiedt-test we apply is parameterized by a filieand a threshold. We
test each of 19 well-performing filters and 12 thresholdsbéfore, we start with two

26

sets ofN samples of response tim¥sY. For each of 200 random subsets of Siz€.0
from theN measurements iK,Y, we apply the filtei". We estimate the variance and
means of (X),[(Y) from these 200 sampled random subsets and apply the standard
t-test with a threshold of on thet-statistic.

Following our testing procedure for hypothesis tests teeine the false positive
and false negative rates, we found that this test had halfeofésolution of the ‘box
test’, described next.

8.7 The box test

The final test we tried is a custom test designed to exploitotnservation that small
percentiles have the least noise. We also argue for this diisign based on its sim-
plicity2. The ‘box test’ is parameterized by two quantilesand, as before, we start
with two random subsef$,Y of N measurements.

To perform this testX,Y, are sorted and two intervals are formég(X), §;(X)]
and[Gi(Y),§;(Y)]. The test accepts if the intervd (X), §;(X)] [Gi(Y),§;(Y)] do not
overlap andg (X),q;(X)] is before[Gi(Y),§;(Y)]. We calculated the false positive and
false negative rates by following our testing procedurénfgrothesis tests.

Since we cannot a priori know which values for the parametgrreate the
most effective statistical test, we perform this experitrfen 12,000i, j pairs, keep-
ing whichever paii, j has the lowest FN rate while also having a FP rate below 5%.
From our measurements, the lower quantiles are the statigtmost reliable part of
the distribution. Our exhaustive search for optimum patansechose, j < 6% for
over half of the hosts. Although a real attacker would notehswch an oracle against
an unknown target, an attacker could always perform measmts similar to ours
against a known machine, hopefully near the target. Alsopreéer to state an upper
bound on the capabilities of an attacker.

Figures 14 and 15 show our ability to measfifer two hosts chosen from datasets
L and five hosts chosen from D, respectively. Data for othat$and other datasets
reflects a similar pattern. These plots modeled an attacite’500 measurements and
plot the FN rate with the FP rate held to at most 5%. The FN eteins until the time
difference increases past a critical threshold, at whictetihe FN rate drops quickly
to zero and the discriminator is exceptionally accurate.

Rather than showing similar scatter plots for every hodtwleameasured, we sum-
marize our measurements in Figure 16 by computing, for eashih question, the
smallestA which we can discriminate with a FN rate below 5%. We call thesempir-
ical resolution We see that many LAN hosts can accurately resolvéethe hundreds
of nanoseconds, and that PlanetLab hosts can reAsharound 100s, with the best
hosts resolving\ ~ 30ps.

So far, we have modeled the empirical resolution of an attapkrforming 500
measurements. To see how additional measurements woulkhse the attacker’s
abilities, we varied the number of simulated measurements fLO to 10,000. We
summarize the histogram over each of the 124 hosts in Dafabstits 5 quartiles

2“«Complicated computations do not guarantee a valid siggisanalysis. Always start ... with a careful
examination of the data.” [27]

27

¢ 0e°" Rop
+ %9 °
0.8 ®e
[®e
©
o 06 e
5
S H
o []
g 04
©
- +
0.2 + L
®
°
+ [
0 e ENENIIONOINDIDNEING -
0.1 1 10 100 1000 10000

Time difference (microseconds)

Figure 14: Scatter plot oA versus the FN rate for two Dataset L hosts. Each dot
represents the average success rate over 200 trials, eabitbfsimulates 500 network
measurements.

(Oth, 25th, 50th, 75th and 100th percentile), and plot theisle respect to the simu-
lated measurement count in Figure 17.

As expected, increasing the number of queries radicallyravgs the empirical
resolution. Where the best Dataset D host, with 500 measmesncould resolve
A = 50us with < 5% FP and FN rate, with 10,000 queries 31 hosts could resolve
A < 35ps with a< 5% FP and FN rate. Empirical resolution improves for all othe
hosts as well. We can also see that the network location ottankar can make a
significant difference. The top 25% hosts can resolve ardiffee 3 times smaller than
the bottom 25% hosts, regardless of the number of samplas.implies that an In-
ternet attacker will do much better if many machines arelabkd, allowing the best
positioned machine to be used for attack measurements.

Figure 18 shows the same simulation performed over our 8 LAdth Unfortu-
nately, we did not sample enough discrete processing tiraksvbl00ns to directly
compute the empirical resolution for these small time stéfusvever, we can observe
a similar improvement in the empirical resolution of LAN ke®as they measure more
timing samples. It is reasonable to expect that a LAN attacikeking 10,000 queries
might accurately resolv& < 50ns.

28

1
e g e i - /i
I RN VR R ! + |
0.8 WO E e A v
: 4+t A
A
g ’ A ™
g
g 0.6 O F Y
= o o o
T ’ DDDDD B L "o ” o o” A
8 O oo o A
c + o
g 04 LS v
[o]
L = C
oD v dA
0.2 B] \ 4
a]
£ v
g a0 | | v
0 L “aaciil—
0.1 1 10 100 1000 10000

Time difference (microseconds)

Figure 15: Scatter plot oA versus the FN rate for five Dataset D hosts. Each dot
represents the average success rate over 200 trials, eabitbfsimulates 500 network

measurements.

Count of hosts

14

12

10

100

1000

10000

100000

1le+06

Empirical resolution (nanoseconds)

Figure 16: Empirical resolution histogram for Dataset D.

29

le+07

1le+07

m
2 1e+06
o —
(&]
]
o oo
o
S B L A ——
& 100000
c Tl
5 T
% 10000
0 b
© h
ks’ y
= Worst '
(e \
£ 1000 Third Quartile - 4
w Median !
First Quatrtile - : L
Best -———-- !
100 .
10 100 1000 10000

Number of Samples

Figure 17: Empirical resolution on Dataset D as a functiothefsample count.

8.8 Attack applications

While most of this paper has focused abstractly on the eogpiresolution of an at-
tacker to discriminate remote processing times, it is irtgotrto consider the process-
ing times of common operations that an attacker might wisdtteck.

Brumley and Boneh's attack on SSL exploits a timing diffeethat is a function
of the RSA private key and the message being exponentialed@lji@ir attack creates
two sets of inputs thain averagénave a difference. Depending on the particular input
taken from those sets, the actual difference will vary. Maagnples may need to be
averaged together. As a result, our techniques do not Hirgaply to their attack.

We tested their attack and found that on an 1.8GHz Athlongjitethds on timing
differences of about 30,000 clock cycles (&% From Figure 18, we can estimate that
the attack should succeed on any host within our LAN with a fesmdred measure-
ments. From a histogram similar to Figure 16, we estimate4hwsts in Dataset D
could perform the attack with fewer than 10,000 measureskemteach bit of RSA
key, while others would require significantly more. Brumésd Boneh found their at-
tack did not work over the Internet, but our results sugdestan attacker with access
to enough machines, across the Internet, might well havétmievorks.

8.9 Application jitter

Our analysis of network jitter used a custom application wmialoaded server. A re-
alistic application load might introduce its own jitter anhe response time because of

30

1le+07 T

Worst

Third Quatrtile -
@ Median -
g 1e+06 | First Quartile -
8 R Best -~
(8]
]
(2]
O V‘\
£ 100000 ¢
c ‘ i
o
5 o]
@ 10000
e \\\\\\
a T e R
= 1000 B
L \’\,,,,__,,_,;;,j,\,,,,,,,,,ffff,’ff

100 - ;
10 100 1000 10000

Number of Samples

Figure 18: Empirical resolution on the local network (Datds) as a function of the
sample count.

cache misses, page faults, TLB faults, lock contention dhérsources. To character-
ize such jitter, we analyzed the Apache web server, versi®i33, both under no load
and under two trace-driven loads with a 1.1GB working segflathan system RAM,
guaranteeing pressure on the disk system). For simpliti¢yload generation clients
ran on the same computer as the HTTP server. One run wasmpedavith sequential
requests and another run was performed with 30 concurrqnests. The CPU was
saturated during both runs.

Measurements were taken by a custom HTTP client, on a separstem, request-
ing a small file over an unloaded network. We collected 10D /®@asurements over
the three different workloads. As an attacker would do, dient avoids connection
startup jitter by first sending only part of the HTTP requéstn deliberately delaying
to ensure that it is received and processed by the servereiiefends the remaining
part of the request.

In Figure 19, we graph the unfiltered application jitter asiaction of the number
of request samples. We estimate the application jitter astidindard deviation of the
lowest variance quantile filter. We choose 10,000 randomsetstnfn measurements,
filter them using a quantile filtay;, and compute the variance of the empirical quantile
Gi across all 10k subsets.

We also plot quartiles of empirical resolution from Figut&sand 18 from Dataset
L and D trials for comparison. We can see that a realisticiepipbn like Apache
introduces only a microsecond of jitter at 1000 samples gwgn highly loaded, and

31

First quartile Dataset D discriminator accuracy —+—
le+07 Best Dataset D discriminator accuracy - 7
T Best Dataset L discrimination accuracy -
. Apache 30-client trace -—-a--
le+06 S Apache 1-client trace -—=--
. N Apache idle --o--
n ~
2 e
S 100000 g ot
o [SV M
% TR i
KX
8 . . X
@ 10000 | Bugy
£ TRem g Eeg X%
o ~\\->\“ Bg . \
Q m g B \
E 1000 g S o X
i n'&":ﬁ%:%;,,ﬁ“% ii\lE;E\E'Bn Bg \\\
ﬁ’éﬁ‘gr%&é .*ii;ED-\\]
RB g% X 'j\
100 R g;‘;;
10
10 100 1000 10000

Number of samples

Figure 19: Unfiltered application jitter induced by a loadgshche web server com-
pared to empirical resolution from our local (L) and Plaredil{D) measurements.

32

less jitter than the local network when unloaded.

9 Conclusion

This paper studied the scope and potential of performingrete timing attack, both
on a LAN and across the Internet. Any such attack will reqoieking multiple timing
measurements of an an event on a remote server and filtesg theasurements to
eliminate noise that might be induced by the network or byeheé hosts. We have
shown that, even though the Internet induces significaringrjitter, we can reliably
distinguish remote timing differences as low as120A LAN environment has lower
timing jitter, allowing us to reliably distinguish remotiening differences as small as
100ns (possibly even smaller). These precise timing @iffees can be distinguished
with only hundreds or possibly thousands of measurements.

Good filtering of those measurements is fundamental to niogiatsuccessful at-
tack. Contrary to conventional wisdom, using either the iam@desponse time or the
minimum response time observed as a filter significantly tpeeforms filters that
sort the data and look at values early in the range (e.g., 184lie sorted list). Based
on filters that use these low percentiles, we can construoba test” that reliably dis-
tinguish small timing differences, when they are preseiitt) Vow false positive and
low false negative rates.

We also observed, generally, that the round trip time or agtwop count did not
significantly contribute to the network jitter, and thuswetk distance may not confer
immunity to remote timing attacks. We found that the choi®U®r networking card
may introduce more jitter than a local area networking. pective attackers can work
around this by benchmarking their measurement machineshance.

If an attacker can accurately perform timing measureméms, a number of cryp-
tographic or algorithmic weaknesses in a server might legica information to the
attacker. As a consequence, we recommend that the algsrited inside web and
other Internet servers that process important secrets reéuttg audited and, where
necessary, be modified to limit observable differences @ctetion times to at most a
few microseconds.

References

[1] A. Acharya and J. Saltz. A study of Internet round-trigaje Technical Report
CS-TR-3736, Department of Computer Science, UniversitiMafyland, Dec.
1996.

[2] O. Aciigmez, Cetin Kaya Kog, and J.-P. Seifert. Potidig secret keys via branch
prediction. InThe Cryptographers’ Track at the RSA Conf. (CT-RpAYyes 225—
242, San Francisco, Feb. 2007.

[3] O. Aciicmez, W. Schindler, and Cetin Kaya Ko¢. Caclaséd remote timing
attack on the AES. Iihe Cryptographers’ Track at the RSA Conf. (CT-RSA)
pages 271-286, San Francisco, Feb. 2007.

33

[4] P. Barford and M. Crovella. Critical path analysis of TQRinsactions.
IEEE/ACM Trans. Netw9(3):238-248, 2001.

[5] D. J. Bernstein. Cache-timing attacks on AES, Apr. 2005t p: //cr. yp.
t o/ papers. ht m #cacheti ni ng.

[6] J.-C. Bolot. End-to-end packet delay and loss behavighé Internet. IPACM
SIGCOMM: Conf. on Applications, Technologies, Architee$i and Protocols
for Computer Communicatiopages 289 — 298, San Francisco, CA, 1993.

[7] A. Bortz, D. Boneh, and P. Nandy. Exposing private infatian by timing web
applications. Inl6th Int. World Wide Web ConfBanff, Alberta, Canada, May
2007.

[8] D. Brumley and D. Boneh. Remote timing attacks are pcadtiIn Proc. of the
12th USENIX Security Symposiuwiashington, DC, Aug. 2004.

[9] B. Canvel, A. Hiltgen, M. Vuagnoux, and S. Vaudenay. Rassl interception in
a TLS/SSL channel. IAdvances in Cryptology — Crypto Progolume 2729 of
LNCS pages 583-599. Springer-Verlag, Aug. 2003.

[10] J. L. Carter and M. N. Wegman. Universal classes of hasbtfons.J. Comput.
Syst. Scj.18(2):143-154, Apr. 1979.

[11] S. Casner, C. Alaettinoglu, and C.-C. Kuan. A fine-gegirview of high-
performance networking. NANOG22 meeting, May 200bt t p: / / www.
nanog. or g/ nt g- 0105/ casner. ht i .

[12] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, Wlawrzoniak, and
M. Bowman. PlanetLab: An overlay testbed for broad-coversayvices ACM
Computer Communications Revie®3(3), July 2003.

[13] K. C. Claffy, G. C. Polyzos, and H.-W. Braun. Measuretnamsiderations for
assessing unidirectional latenciemternetworking: Research and Experience
4(3):121-132, Sept. 1993.

[14] S. Crosby and D. S. Wallach. Denial of service via altionic complexity at-
tacks. InProc. of the 12th USENIX Security Symposidémg. 2003.

[15] J. Daemen and V. Rijmen. Resistance against implertientattacks: A compar-
ative study of the AES proposals. 2md AES Candidate ConRome, Italy, Mar.
1999.

[16] E. W. Felten and M. A. Schneider. Timing attacks on wetsgmy. InProc. of 7th
ACM Conf. on Computer and Communications SecufAtyhens, Greece, Nov.
2000.

[17] R. J. Jenkins. Hash functions for hash table lookup,5199htt p://
burtl eburtle. net/bob/ hash/ evahash. htm .

34

[18] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side deheryptanalysis of
product ciphersJournal of Computer Securit®(2-3):141-158, 2000.

[19] P. Kocher. Timing attacks on implementations of Diffiellman, RSA, DSS, and
other systems. In N. Koblitz, editoAdvances in Cryptology — Crypto Proc.
volume 1109 oL NCS Santa Barbara, california, Aug. 1996. Springer-Verlag.

[20] P. Kocher, J. Jaffe, and B. Jun. Differential power sl In M. Wiener, editor,
Advances in Cryptology — Crypto Progolume 1666 o NCS Santa Barbara,
CA, Aug. 1999. Springer-Verlag.

[21] T. Kohno, A. Broido, and K. Claffy. Remote physical desifingerprinting. In
Proc. of the IEEE Symposium on Security and Priv&gkland, CA, May 2005.

[22] M. G. Kuhn. Optical time-domain eavesdropping risk€&&T displays. IrProc.
of the IEEE Symp. on Security and Priva®akland, CA, May 2002.

[23] M. G. Kuhn and R. J. Anderson. Soft Tempest: Hidden datasmission using
electromagnetic emanations. 2nd Workshop on Information Hidinéortland,
OR, Apr. 1998.

[24] B. W. Lampson. Hints for computer system desighCM Operating Systems
Review 15(5):33-48, Oct. 1983. Reprinted IBEE Softwarel(1):11-28 (Jan.
1984).

[25] D. L. Mills. Internet time synchronization: The NetwoTime Protocol. [EEE
Transactions on Communicatiqrg9(10):1482—-1493, Oct. 1991.

[26] D. L. Mills. Network time protocol (version 3). TechratReport RFC-1305, In-
ternet Engineering Task Force, Mar. 1992.p: / /ftp.rfc-edi tor. org/
i n-notes/rfcl305.txt.

[27] D. Moore and G. McCabelntroduction to the Practice of Statistics-reeman,
New York, 5th edition, 2004.

[28] A.Mukherjee. On the dynamics and significance of lovgtrency components of
Internet loadInternetworking: Research and Experiensé):163—205, 1994,

[29] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks amghtermeasures: The
case of AES. InThe Cryptographers’ Track at the RSA Conf. (CT-R$8ume
3860 ofLNCS pages 1-20, San Jose, CA, Feb. 2006. Springer.

[30] D. Page. Theoretical use of cache memory as a cryptanalgie-channel. Tech-
nical Report CSTR-02-003, Department of Computer Sciddn#ersity of Bris-
tol, June 2002.

[31] A. Pasztor and D. Veitch. PC based precision timing aithGPS. InProc. of
the ACM SIGMETRICS Int. Conf. on Measurement and Modelingoofiputer
Systemspages 1-10, Marina Del Rey, CA, June 2002.

35

[32] V. Paxson. End-to-end Internet packet dynamicsAGM SIGCOMM: Applica-
tions, Technologies, Architectures and Protocols for CatapCommunication
Cannes, France, Sept. 1997.

[33] V. Paxson.Measurements and Analysis of End-to-End Internet Dynanit®
thesis, University of CA at Berkeley, Berkeley, CA, Apr. 1099

[34] V. Paxson. On calibrating measurements of packet itréinses. In SIGMET-
RICS/PERFORMANCE: Joint Int. Conf. on Measurement and htoglef Com-
puter Systemgages 11-21, Madison, WI, June 1998.

[35] D. Sanghi, A. K. Agrawala, O. Gudmundsson, and B. N. J&rperimental as-
sessment of end-to-end behavior on Internefivirelfth Annual Joint Conf. of the
IEEE Computer and Communications Societgages 867-874, San Francisco,
CA, Mar. 1993.

[36] W. Schindler. Optimized timing attacks against puliky cryptosystemsStatis-
tics and Decisions20:191-210, 2002.

[37] J. H. Silverman and W. Whyte. Timing attacks on NTRUBmttbased on vari-
ation in number of hash calls. [hhe Cryptographers’ Track at the RSA Conf.
(CT-RSA)San Francisco, Feb. 2007.

[38] D. X. Song, D. Wagner, and X. Tian. Timing analysis of &@pkes and timing
attacks on SSH. IRroc. of the Tenth USENIX Security SymposiWashington,
DC, Aug. 2001.

[39] D. Veitch, S. Babu, and A. Pasztor. Robust synchroioradf software clocks
across the Internet. IRroc. of the 4th ACM SIGCOMM Conf. on Internet Mea-
surementpages 219-232, Taormina, Sicily, Italy, Oct. 2004.

[40] Z. Wang, A. Zeitoun, and S. Jamin. Challenges and leskarned in measuring
path RTT for proximity-based applications. Rassive and Active Measurement
WorkshopSan Diego, CA, Apr. 2003.

36

