
Higher-order Representation of Substructural Logics

Karl Crary

Carnegie Mellon University

Abstract

We present a technique for higher-order representation of
substructural logics such as linear or modal logic. We show
that such logics can be encoded in the (ordinary) Logical
Framework, without any linear or modal extensions. Using
this encoding, metatheoretic proofs about such logics can
easily be developed in the Twelf proof assistant.

1 Introduction

The Logical Framework (or LF) [8] provides a powerful and
flexible framework for encoding deductive systems such as
programming languages and logics. LF employs an elegant
account of binding structure by identifying object-language
variables with LF variables, object-language contexts with
(fragments of) the LF context, and object-language binding
occurrences with LF lambda abstraction. This account of
binding, often called higher-order abstract syntax [15], au-
tomatically handles most operations that pertain to bind-
ing, including alpha-equivalence, substitution, and variable-
freshness conventions [4].

Since the object-language context is maintained implic-
itly, as part of the built-in LF context, the structural proper-
ties of LF contexts (such as weakening and contraction) au-
tomatically apply to the object language as well. Ordinarily
this is desirable, but it poses a problem for encoding sub-
structural logics that do not possess those properties.1 For
example, linear logics [7] (by design) satisfy neither weak-
ening nor contraction, so it would seem that they cannot be
encoded in LF.

One solution to this problem is to extend LF with linear
features. Linear LF [5] extends LF with linear assumptions
and connectives. This provides the ability to encode lin-
ear logics. However, linearity has yet to be implemented
in Twelf [16], the proof assistant that implements LF, in
part due to unresolved complications that linearity creates
in its metalogical apparatus. Consequently, Linear LF is
not currently an option for those engaged in formalizing
metatheory. Moreover, Linear LF does not give us any assis-
tance with other substructural logics, such as affine, strict,
or modal logic.

Another option is to break with standard LF practice
and model object-language contexts explicitly [6]. Explicit

1Substructural logics may be defined in various different ways. For
our purposes, we define substructural logic to mean any logic in which
it is not the case that every bound variable can be freely used, or not,
throughout its scope.

contexts can be reconciled with higher-order abstract syn-
tax, thereby retaining many of the benefits of LF. Once
contexts are explicit, it is easy to state inference rules that
handle the context in an appropriate way for a substructural
logic. However, the explicit context method is clumsy to
work with and sacrifices some of the advantages of LF. For
example, although substitution is still free (since the syntax
of terms is unchanged), the substitution lemma is not. The
explicit context method is typically used internally within a
proof, rather than in the “official” formalization of a logic.

In this paper we advocate a more general and workable
approach in which we look at substructural logic from a
slightly different perspective. Rather than viewing a sub-
structural logic from the perspective of its contexts (that
is, collections of assumptions), we suggest it is profitable to
look at it from the perspective of its individual assumptions.

The essence of linear logic is not that type-checking splits
the context when it checks a (multiplicative) term with mul-
tiple subterms. The essence of linear logic is that an assump-
tion is used exactly once. The latter property can be stated
on an assumption-by-assumption basis, without reference to
contexts. Thus, wherever an assumption is introduced, as
part of the typing rule that introduced it, we can check that
that assumption is used linearly.

Pfenning [13] proposed enforcing linearity using a meta-
judgement that traced the use of an assumption throughout
a typing derivation. Avron, et al. [3] later used a similar ap-
proach for modal logic. Unfortunately, the meta-judgement
approach is very awkward to use in practice. Also both
were able to prove adequacy for their encodings, neither (so
far as we are aware) proved any further results using their
encodings.

Fortunately, we need not use a meta-judgement. We ob-
serve that the proof terms alone are enough to track the use
of restricted assumptions. There is no need to examine typ-
ing derivations, and therefore no need for a meta-judgement.

The idea of linearity as a judgement over proof terms
dates to the early days of LF. Avron et al. [2, 1] suggested
that linearity can be expressed by imposing a lattice struc-
ture on proof terms and defining linear proof terms as those
that are strict and distributive, when viewed as a function
of their linear variables.

In this paper, we suggest a simpler formulation of linear-
ity, based on tracking variables through the proof terms of
linear logic. This allows for a clean, practical definition of
linearity.

We express linear logic using two judgements, the usual
typing judgement:

of : term -> tp -> type.

and a linearity judgement:

linear : (term -> term) -> type.

The judgement linear(λx.Mx) should be read as “the vari-
able x is used linearly (i.e., is used exactly once) in Mx.”

In this paper, we illustrate the use of a substructural
judgement (such as linear) in three settings: linear logic,
dependently typed linear logic, and judgemental modal
logic [14]. Many other substructural logics including affine
logic and strict logic can be handled analogously. Some oth-
ers, such as ordered logic [18, 17], cannot, because the rules
of the logic make it impossible to handle assumptions inde-
pendently. We briefly discuss the latter in Section 5.

The full Twelf development can be found on-line at:2

www.cs.cmu.edu/~crary/papers/2009/substruct.tar

In our discussion, we assume familiarity with the Logical
Framework, and with linear and modal logic. Some famil-
iarity with Twelf may also be helpful. The sections on ade-
quacy are technical, but the remainder of the paper should
be accessible to the casual practitioner.

Throughout the paper, we will consider alpha-equivalent
expressions to be identical. We will do so in both the object
language and the meta-language.

2 Linear Logic

We begin by representing the syntax of linear logic in the
usual fashion. The LF encoding, with the standard on-paper
notation written alongside it for reference, is shown in Fig-
ure 1. The type atom ranges over a fixed set of atomic
propositions.

On paper, we represent linear logic with the typing judg-
ment Γ; ∆ ` M : A. In this, the first context, Γ, represents
the unrestricted context (i.e., truth), and the second con-
text, ∆, represents the linear context (i.e., resources). To
simplify the notation, we adopt the convention that the lin-
ear context is unordered. Thus (∆,∆′) refers to a context
that can be split into two pieces ∆ and ∆′ that may possibly
be interleaved. We also adopt the convention that all the
variables appearing in either context must be distinct.

The encoding of the static semantics, as discussed previ-
ously, is given by two judgements:

of : term -> tp -> type.
linear : (term -> term) -> type.

We read “of M A” as “M is of type A,” and we read
“linear ([x:term] M x)” as “x is used linearly in (M x).”
Note that [x:term] is Twelf’s concrete syntax for LF
lambda abstraction3 (λx:term.). Twelf can usually infer the
domain type, leaving just [x].

We proceed rule-by-rule to show the encoding of the
static semantics.

2The development checks under the latest Twelf build, available
at twelf.plparty.org/wiki/Download. Some earlier versions contain a
bug that prevent the development from checking.

3Keep in mind the distinction between lambda abstraction in LF,
which represents binding, and lambda abstraction in the object lan-
guage (llam).

tp : type. A ::=

atomic : atom -> tp. a
lolli : tp -> tp -> tp. | A(A
tensor : tp -> tp -> tp. | A⊗A
with : tp -> tp -> tp. | A&A
plus : tp -> tp -> tp. | A+A
one : tp. | 1
zero : tp. | 0
top : tp. | >
! : tp -> tp. | !A

term : type. M ::=
x

llam : (term -> term) -> term. | λx.M
lapp : term -> term -> term. | MM
tpair : term -> term -> term. | M ⊗M
lett : term

-> (term -> term -> term)
-> term | letx⊗ x = M inM

pair : term -> term -> term. | 〈M,M〉
pi1 : term -> term. | π1M
pi2 : term -> term. | π2M
in1 : term -> term. | in1M
in2 : term -> term. | in2M
case : term

-> (term -> term)
-> (term -> term)
-> term. | case(M,x.M.x.M)

star : term. | ∗
leto : term -> term -> term.

| let ∗ = M inM
any : term -> term. | any M
unit : term. | 〈〉
bang : term -> term. | !M
letb : term -> (term -> term) -> term.

| let !x = M inM

Figure 1: Linear logic syntax

Variables The rule for linear variables states that a lin-
ear variable may be used provided there are no other linear
variables in scope:

Γ;x:A ` x : A

There is no typing rule for variables in the encoding; that
is handled automatically by higher-order representations.
However, there is a linearity rule that states that x is linear
in x:

linear/var : linear ([x] x).

The rule for unrestricted variables states that an unre-
stricted variable may be used provided there are no linear
variables in scope:

Γ(x) = A

Γ; ε ` x : A

As with linear variables, there is no typing rule for unre-
stricted variables in the encoding. There is also no linearity
rule for unrestricted variables.

2

Linear implication The introduction rule for linear impli-
cation is:

Γ; (∆, x:A) `M : B

Γ; ∆ ` λx.M : A(B

This is encoded using two rules:

of/llam
: of (llam ([x] M x)) (lolli A B)

<- ({x:term} of x A -> of (M x) B)
<- linear ([x] M x).

linear/llam
: linear ([y] llam ([x] M y x))

<- ({x:term} linear ([y] M y x)).

Note that {x:term} is Twelf’s concrete syntax for the depen-
dent function space (Πx:term.). Again, Twelf can usually
infer the domain type, leaving just {x}.

The typing rule has the usual typing premise, plus a sec-
ond premise that requires that the argument be used linearly
in the body. The linearity rule says that a variable y is linear
in a function (llam ([x] M y x)) if it is linear in its body
(M y x) for any choice of x.

The elimination rule splits the linear context between the
function and argument:

Γ; ∆ `M : A(B Γ; ∆′ ` N : A

Γ; (∆,∆′) `MN : B

This is encoded using three rules:

of/lapp
: of (lapp M N) B

<- of M (lolli A B)
<- of N A.

linear/lapp1
: linear ([x] lapp (M x) N)

<- linear ([x] M x).

linear/lapp2
: linear ([x] lapp M (N x))

<- linear ([x] N x).

The typing rule is standard. There are two linearity rules,
one for each way a linear variable might be used. The first
linearity rule says that x is linear in (lapp (M x) N) if it is
linear in (M x) and does not appear in N. (Since implicitly
bound meta-variables such as M and N are quantified on the
outside, stating N without a dependency on x means that x
cannot appear free in N.) The second linearity rule provides
the symmetric case.

Multiplicative conjunction The introduction rule for ten-
sor is:

Γ; ∆ `M : A Γ; ∆′ ` N : B

Γ; (∆,∆′) `M ⊗N : A⊗B

This is encoded using three rules, in a similar fashion to
function application:

of/tpair
: of (tpair M N) (tensor A B)

<- of M A
<- of N B.

linear/tpair1
: linear ([x] tpair (M x) N)

<- linear ([x] M x).

linear/tpair2
: linear ([x] tpair M (N x))

<- linear ([x] N x).

The elimination rule is:

Γ; ∆ `M : A⊗B Γ; (∆′, x:A, y:B) ` N : C

Γ; (∆,∆′) ` letx⊗ y = M inN : C

In the encoding, the typing rule requires that x and y are
linear in N. As in previous cases where the linear context is
split, there are two linearity rules depending on whether a
linear variable is used in the let-bound term or the body:

of/lett
: of (lett M ([x] [y] N x y)) C

<- of M (tensor A B)
<- ({x} of x A

-> {y} of y B -> of (N x y) C)
<- ({y} linear ([x] N x y))
<- ({x} linear ([y] N x y)).

linear/lett1
: linear ([z] lett (M z) ([x] [y] N x y))

<- linear ([z] M z).

linear/lett2
: linear ([z] lett M ([x] [y] N z x y))

<- ({x} {y} linear ([z] N z x y)).

Additive conjunction The introduction rule for “with”
does not split the context:

Γ; ∆ `M : A Γ; ∆ ` N : B

Γ; ∆ ` 〈M,N〉 : A&B

In the encoding, there is one linearity rule, requiring that
linear variables be linear in both constituents of the pair:

of/pair
: of (pair M N) (with A B)

<- of M A
<- of N B.

linear/pair
: linear ([x] pair (M x) (N x))

<- linear ([x] M x)
<- linear ([x] N x).

The elimination rules are straightforward:

Γ; ∆ `M : A&B

Γ; ∆ ` π1M : A

Γ; ∆ `M : A&B

Γ; ∆ ` π2M : B

3

of/pi1 : of (pi1 M) A
<- of M (with A B).

of/pi2 : of (pi2 M) B
<- of M (with A B).

linear/pi1 : linear ([x] pi1 (M x))
<- linear ([x] M x).

linear/pi2 : linear ([x] pi2 (M x))
<- linear ([x] M x).

Disjunction The introduction rules for plus are straightfor-
ward:

Γ; ∆ `M : A

Γ; ∆ ` in1M : A+B

Γ; ∆ `M : B

Γ; ∆ ` in2M : A+B

of/in1 : of (in1 M) (plus A B)
<- of M A.

of/in2 : of (in2 M) (plus A B)
<- of M B.

linear/in1 : linear ([x] in1 (M x))
<- linear ([x] M x).

linear/in2 : linear ([x] in2 (M x))
<- linear ([x] M x).

The elimination rule splits the context into two pieces, one
for the discriminant and one used by both arms:

Γ; ∆ `M : A+B
Γ; (∆′, x:A) ` N1 : C Γ; (∆′, x:B) ` N2 : C

Γ; (∆,∆′) ` case(M,x.N1, x.N2) : C

In the encoding, the typing rule requires that each arm’s
bound variable be used linearly. The linearity rules provide
the two cases, one when the variable is used linearly in the
discriminant, and one in which is it used linearly in both
arms:

of/case
: of (case M ([x] N1 x) ([x] N2 x)) C

<- of M (plus A B)
<- ({x} of x A -> of (N1 x) C)
<- ({x} of x B -> of (N2 x) C)
<- linear ([x] N1 x)
<- linear ([x] N2 x).

linear/case1
: linear ([y] case (M y) ([x] N1 x) ([x] N2 x))

<- linear ([y] M y).

linear/case2
: linear ([y] case M ([x] N1 y x) ([x] N2 y x))

<- ({x} linear ([y] N1 y x))
<- ({x} linear ([y] N2 y x)).

Exponentiation The introduction rule for exponentiation
requires that the linear context be empty:

Γ; ε `M : A

Γ; ε ` !M : !A

In the encoding, this means there is no linearity rule, since
variables cannot be linear in exponents:

of/bang : of (bang M) (! A)
<- of M A.

The elimination rule splits the context and adds the newly
bound variable to the unrestricted context:

Γ; ∆ `M : !A (Γ, x:A); ∆′ ` N : C

Γ; (∆,∆′) ` let !x = M inN : C

In the encoding, the unrestricted nature of x is handled by
not checking that x is linear in (N x). The linearity rules
work in the usual fashion:

of/letb
: of (letb M ([x] N x)) B

<- of M (! A)
<- ({x} of x A -> of (N x) B).

linear/letb1
: linear ([y] letb (M y) N)

<- linear M.

linear/letb2
: linear ([y] letb M ([x] N y x))

<- ({x} linear ([y] N y x)).

Units The unit for tensor is 1:

Γ; ε ` ∗ : 1

Γ; ∆ `M : 1 Γ; ∆′ ` N : C

Γ; (∆,∆′) ` let ∗ = M inN : C

The encoding is straightforward, with no linearity rule for
introduction since variables cannot be linear in ∗:

of/star : of star one.

of/leto : of (leto M N) C
<- of M one
<- of N C.

linear/leto1 : linear ([x] leto (M x) N)
<- linear ([x] M x).

linear/leto2 : linear ([x] leto M (N x))
<- linear ([x] N x).

The unit for “with”, >, is more interesting. It stands for an
unknown collection of resources, and consequently has an
introduction form but no elimination form:

Γ; ∆ ` 〈〉 : >

The encoding provides that any variable is linear in unit:

of/unit : of unit top.

linear/unit : linear ([x] unit).

The unit for plus, 0, represents falsehood. Accordingly, it
has an elimination form but no introduction form. The elim-
ination form behaves a little bit like 〈〉; any resources not
used to prove 0 may be discarded:

4

Γ; ∆ `M : 0

Γ; (∆,∆′) ` anyM : C

In the encoding there are two linearity rules. A variable
is linear in (anyM) if it is linear in M or if it does not appear
in M at all:

of/any : of (any M) T
<- of M zero.

linear/any1 : linear ([x] any (M x))
<- linear M.

linear/any2 : linear ([x] any M).

Note that it is tempting but incorrect to simplify this to the
single rule:

linear/any-wrong : linear ([x] any (M x)).

That rule would allow x to be used multiple times in (M x),
which is not permitted. It would be tantamount to moving
the entire linear context into the unrestricted context, rather
than merely discarding any unused resources.

2.1 Adequacy

It seems intuitively clear that the preceding is a faithful
representation of linear logic. We wish to go further and
make the correspondence rigorous, following the adequacy
argument of Harper et al. [8]. Adequacy establishes a iso-
morphism between the object language (linear logic in this
case) and its encoding in LF. As usual, an isomorphism is
a bijection that respects the relevant operations.

For syntax, the only primitively meaningful operation
is substitution. (Other operations are given by defined se-
mantics.) Thus, an isomorphism for syntax is a bijective
translation that respects substitution. Our translation for
syntax (written p−q) is standard, so we will omit the ob-
vious details of its definition and simply state its adequacy
theorem for reference:

Definition 2.1 Translation of variable sets is defined:

p{x1, . . . , xn}q = x1:term, . . . , xn:term

Theorem 2.2 (Syntactic adequacy)

1. Let Type be the set of linear logic types. Then there
exists a bijection p−q between Type and LF canonical
forms P such that `LF P : tp. (Variables cannot appear
within types, so there is no substitution to respect.)

2. Let S be a set of variables and let TermS be the
set of linear logic terms whose free variables are con-
tained in S. Then there exists a bijection p−q be-
tween TermS and LF canonical forms P such that
pSq `LF P : term. Moreover, p−q respects substitu-
tion: p[M/x]Nq = [pMq/x]pNq.

For semantic adequacy, we wish to establish a bijective
translation between typing derivations and LF canonical

forms.4 The usual statement of adequacy for typing is some-
thing to the effect of:

Definition 2.3 Translation of contexts is defined:

px1:A1, . . . , xn:Anq = x1 :term, dx1 :of x1 pA1q, . . . ,
xn:term, dxn:of xnpAnq

Non-Theorem 2.4 There exists a bijection between
derivations of the judgement Γ ` M : A and LF canonical
forms P such that pΓq `LF P : of pMq pAq.

Unfortunately, this simple statement of adequacy does
not work in the presence of linearity. Consider the judge-
ment ε;x:a ` 〈〉⊗〈〉 : >⊗>. It has two derivations, depend-
ing on which conjunct is chosen to consume the assumption:

ε;x:a ` 〈〉 : > ε; ε ` 〈〉 : >
ε;x:a ` 〈〉 ⊗ 〈〉 : >⊗>

ε; ε ` 〈〉 : > ε;x:a ` 〈〉 : >
ε;x:a ` 〈〉 ⊗ 〈〉 : >⊗>

However, the LF type corresponding to that judgement,

{x:term} of x (atomic a)
-> of (tpair unit unit) (tensor top top)

contains only one canonical form, namely:

[x:term] [dx:of x (atomic a)]
of/tpair of/unit of/unit

So linear-logic typing derivations are not in bijection with
the LF encoding of typing in general. Our isomorphism must
take linearity into account, and not only where linearity is
a premise of a typing rule.

Consequently, we establish a correspondence between
each linear-logic typing derivation on the one hand, and an
LF proof of typing paired with a collection of LF proofs of
linearity on the other. Alas, this is notationally awkward
when compared with the usual adequacy theorem.

Definition 2.5 An encoding structure for Γ; ∆ ` M : A is
a pair (P, H) of an LF canonical form P and a finite mapping
H from variables to LF canonical forms, such that:

• pΓ,∆q `LF P : of pMq pAq, and

• Domain(H) = Domain(∆), and

• For each variable y in Domain(∆),
pSyq `LF H(y) : linear ([y:term] pM q),
where Sy = Domain(Γ,∆) \ {y}.

Theorem 2.6 (Semantic adequacy) There exists a bi-
jection p−q between derivations of the judgement Γ; ∆ `M :
A and encoding structures for Γ; ∆ `M : A.

Proving adequacy is typically straightforward but te-
dious once it is stated correctly. The same is true here, but
the tedium is a bit more pronounced because of the need to
manipulate encoding structures, rather than just canonical
forms. We give a few cases by way of example:

4That is, we view typing derivations as having no operations to
respect. Harper et al. suggest that substitution of derivations for as-
sumptions is a meaningful operation on typing derivations, and prove
that their translation respects such substitutions. This could be done
in our setting as well. However, we take the view that when substi-
tuting derivations for assumptions, we care only that the resulting
derivation exists (this being the standard substitution lemma), and
not about the identity of that resulting derivation.

5

Proof Sketch

First, by induction on derivations, we construct the
translation and show it is type correct.

• Suppose ∇ is the derivation:

Γ;x:A ` x : A

Then p∇q def
= (dx, {x 7→ linear/var}).

• Suppose ∇ is the derivation:

Γ(x) = A

Γ; ε ` x : A

Then p∇q def
= (dx, ∅).

• Suppose ∇ is the derivation:

∇1....
Γ; (∆, x:A) `M : B

Γ; ∆ ` λx.M : A(B

Let p∇1q = (P1, H1). By induction, (P1, H1) is an
encoding structure for Γ; (∆, x:A) `M : B, so:

pΓ,∆q, x:term, dx:of x pAq `LF P1 : of pMq pBq

and

pDomain(Γ,∆)q `LF H1(x) : linear ([x] pMq)

Therefore:

pΓ; ∆q `LF of/llam
(H1(x))
([x] [dx] P1)

: of (llam ([x] pMq))
(lolli pAq pBq)

So let

p∇q = (of/llam (H1(x))
([x] [dx] P1), H)

where for each y in Domain(∆), H(y)
def
=

linear/llam ([x]H1(y)).

• Suppose ∇ is the derivation:

∇1....
Γ; ∆1 `M : A(B

∇2....
Γ; ∆2 ` N : A

Γ; (∆1,∆2) `MN : B

Let p∇1q = (P1, H1) and let p∇2q = (P2, H2).
By induction (P1, H1) is an encoding structure for
Γ; ∆1 ` M : A (B and (P2, H2) is an encoding
structure for Γ; ∆2 ` N : A.

Let y ∈ Domain(∆1,∆2) be arbitrary. Let S =
Domain(Γ) and Si = Domain(∆i). Then either
y ∈ S1 and y 6∈ S2 or vice versa. Suppose the
former. Then:

pS ∪ S1 \ {y}q `LF H1(y) : linear ([y] pMq)

Also, since y 6∈ Domain(∆2), y is not free in N or
(consequently) in pNq. Therefore:

pS∪S1∪S2\{y}q `LF linear/lapp1 (H1(y))
: linear ([y] lapp pMq pNq)

The other case is symmetric.

So let p∇q = (of/lapp P2 P1, H), where for each y
in Domain(∆1,∆2),

H(y)
def
=

{
linear/lapp1 (H1(y)) (if y ∈ S1)
linear/lapp2 (H2(y)) (if y ∈ S2)

• Et cetera.

It remains to show that p−q is a bijection. To do so, we
exhibit an inverse x−y. The interesting cases are those
that split the context. We give the application case as
an example.

Suppose (of/lapp P′
2 P′

1, H
′) is an encoding structure

for Γ; ∆ ` O : B′. Then O has the form M ′N ′, and
pΓ; ∆q `LF P′

1 : of pM ′q pA′ (B′q, and pΓ; ∆q `LF

P′
2 : of pN ′q pA′q.

We must sort ∆ into two pieces. Define:

∆1 = {(y:C) ∈ ∆ | ∃R.H ′(y) = linear/lapp1 R}
∆2 = {(y:C) ∈ ∆ | ∃R.H ′(y) = linear/lapp2 R}
H ′

1 = {y 7→ R | H ′(y) = linear/lapp1 R}
H ′

2 = {y 7→ R | H ′(y) = linear/lapp2 R}

Note that ∆ = ∆1,∆2. Also note that, by the definition
of ∆1 and ∆2, no variable in ∆1 appears free in N ′ or
vice versa. Therefore it is easy to show that no assump-
tion in p∆1q appears free in P′

2 and vice versa. Hence5

pΓ; ∆1q `LF P′
1 : of pM ′q pA′ (B′q and pΓ; ∆2q `LF

P′
2 : of pN ′q pA′q. Also, Domain(H ′

i) = Domain(∆i).

Therefore (P′
1, H

′
1) is an encoding structure for Γ; ∆1 `

M ′ : A′ (B′ and (P′
2, H

′
2) is an encoding structure for

Γ; ∆2 ` N ′ : A′. Let ∇i = x(P′
i, H

′
i)y. Then ∇1 is a

derivation of Γ; ∆1 ` M ′ : A′ (B′ and ∇2 is a deriva-
tion of Γ; ∆2 ` N ′ : A′. So let x(of/lapp P′

2 P′
1, H

′)y be
the derivation:

∇1....
Γ; ∆1 `M ′ : A′ (B′

∇2....
Γ; ∆2 ` N ′ : A′

Γ; (∆1,∆2) `M ′N ′ : B′

We can show, by induction over LF canonical forms, that
x−y is fully defined over encoding structures. It is easy
to verify that p−q and x−y are inverses. Therefore p−q
is bijective. �

When the linear context is empty, the H portion of an
encoding structure is empty, and we recover the usual notion
of adequacy:

Corollary 2.7 There exists a bijection between derivations
of the judgement Γ; ε ` M : A and LF canonical forms P
such that pΓq ` P : of pMq pAq.

5This fact, that non-appearing variables may be omitted from the
context, requires a strengthening lemma for LF that is proved by
Harper and Pfenning [9, Theorem 6.6].

6

2.2 Metatheory

To demonstrate the practicality of our encoding, we proved
the subject reduction theorem in Twelf. We give the defi-
nition of reduction in Figure 2. Reduction is encoded with
the judgement:

reduce : term -> term -> type.

We will not discuss the encoding of reduction and its ade-
quacy, as they are standard.

We prove subject reduction by a series of four metatheo-
rems. To make the development more accessible to readers
not familiar with Twelf’s logic programming notation for
proofs, we give those metatheorems in English.

Lemma 2.8 (Composition of linearity) Suppose the
ambient context is made up of bindings of the form x:term
(and other bindings not subordinate6 to linear). If linear
([x] M1 x) and linear ([x] M2 x) are derivable, then
linear ([x] M1 (M2 x)) is derivable.

The next lemma is usually glossed over in proofs on pa-
per:

Lemma 2.9 (Reduction of closed terms) Suppose the
ambient context is made up of bindings of the form
x:term (and other bindings not subordinate to reduce). If
({x:term} reduce M1 (M2 x)) is derivable, then there ex-
ists M2’:term such that M2 = ([_] M2’).

Lemma 2.10 (Subject reduction for linear) Suppose
the ambient context is made up of bindings of the form
x:term,dx:of x A (and other bindings not subordinate
to reduce or of). If ({x} reduce (M x) (M’ x)) and
({x} of x A -> of (M x) B) and linear ([x] M x) are
derivable, then linear ([x] M’ x) is derivable.

Proof Sketch

By induction on the first derivation. Cases involv-
ing substitution (most of the beta-reduction cases) use
Lemma 2.8. Multiple-subterm compatibility cases use
Lemma 2.9 to show that reduction of subterms not men-
tioning a linear variable will not create such a reference.

Theorem 2.11 (Subject reduction for of) Suppose the
ambient context is made up of bindings of the form
x:term,dx:of x A (and other bindings not subordinate to
reduce or of). If reduce M M’ and of M T are derivable,
then of M’ T is derivable.

Proof Sketch

By induction on the first derivation. Cases with
linearity premises (reduce/llam, reduce/lett, and
reduce/case) use Lemma 2.10 to show that the linearity
premises are preserved by reduction.

Corollary 2.12 If Γ; ∆ ` M : A and M −→ M ′ then
Γ; ∆ `M ′ : A.

Proof

Immediate from Subject Reduction and Adequacy.

6“Subordinate” is a term of art in Twelf. Informally, s is subordi-
nate to t if s can contribute to t. More precisely, a type family s is
subordinate to an type family t if there exist types S and T belonging
to s and t such that objects of type S can appear within objects of
type T [20]. If s is not subordinate to t, then assumptions whose
types belong to s can be ignored while considering t.

tp : type. A ::=
... · · ·
atomic : atom -> tp. | a
const : constant -> term -> tp. | c(M)
pi : tp -> (term -> tp) -> tp. | Πx:A.B

term : type. M ::=
... · · ·
ulam : (term -> term) -> term. | λ!x.M
uapp : term -> term -> term. | M @M

Figure 3: Linear logic syntax (dependently typed)

3 Dependently Typed Linear Logic

Adding dependent types to linear logic is straightforward
syntactically. The revised syntax is shown in Figure 3. We
delete atomic propositions, and replace them with constants
that take a single term parameter. (That parameter may be
a unit or tuple, which provides implicit support for zero or
multiple parameters.)

In the static semantics, a new wrinkle arises. Now that
terms can appear within types, the typing rules must ensure
that linear variables are not used within types. However, a
variable might appear within a term’s type without appear-
ing in the term itself. This is obvious because our lambda
abstractions are unlabelled, but it would still be the case
even if all bindings were labeled with types. This is because
of the equivalence rule:

Γ; ∆ `M : A Γ ` A′ type A ≡β A′

Γ; ∆ `M : A′

Using the equivalence rule, a term’s type can mention any
variable in scope. Therefore, we must enforce the rule’s re-
quirement that no linear variables appear in ∆′. A linearity
judgement on terms alone will not suffice.

One solution to this problem is to make linearity a judge-
ment over typing derivations, rather than over proof terms.
However, that would make linearity a dependently typed
meta-judgement, which would be too cumbersome to work
with in practice. It is better to maintain linear as a judge-
ment over proof terms.

Instead, we change our view of unrestricted variables. In
non-dependently typed linear logic, we viewed unrestricted-
ness as merely the absence of a linearity restriction. Now we
will view unrestrictedness as conferring an affirmative capa-
bility; specifically, the capability to appear within types.

We add a new judgement unrest that applies to unre-
stricted variables. We extend that judgement to terms by
saying that a term is unrestricted if all its free variables are
unrestricted:

unrest : term -> type.

unrest/llam : unrest (llam ([x] M x))
<- ({x} unrest x

-> unrest (M x)).

unrest/lapp : unrest (lapp M N)
<- unrest M
<- unrest N.

...

7

(λx.M)N −→ [N/x]M letx⊗ y = M ⊗N inO −→ [M,N/x, y]O π1〈M,N〉 −→M π2〈M,N〉 −→ N

case(in1M,x.N1, x.N2) −→ [M/x]N1 case(in2M,x.N1, x.N2) −→ [M/x]N2 let ∗ = ∗ inM −→M

let !x = !M inN −→ [M/x]N

M −→M ′

λx.M −→ λx.M ′
M −→M ′ N −→ N ′

MN −→M ′N ′
M −→M ′ N −→ N ′

M ⊗N −→M ′ ⊗N ′

M −→M ′ N −→ N ′

letx⊗ y = M inN −→ letx⊗ y = M ′ inN ′
M −→M ′ N −→ N ′

〈M,N〉 −→ 〈M ′, N ′〉
M −→M ′

π1M −→ π1M
′

M −→M ′

π2M −→ π2M
′

M −→M ′

in1M −→ in1M
′

M −→M ′

in2M −→ in2M
′

M −→M ′ N1 −→ N ′
1 N2 −→ N ′

2

case(M,x.N1, x.N2) −→ case(M ′, x.N ′
1, x.N

′
2)

M −→M ′ N −→ N ′

let ∗ = M inN −→ let ∗ = M ′ inN ′

M −→M ′

anyM −→ anyM ′
M −→M ′

!M −→ !M ′
M −→M ′ N −→ N ′

let !x = M inN −→ let !x = M ′ inN ′ M −→M

Figure 2: Linear logic reduction

Note that, within the unrest judgement, all bound variables
are taken to be unrestricted, even linear ones.

Only unrestricted terms are permitted to serve as the
parameter to a constant. On paper, this is written

c : A→ type Γ; ε `M : A

Γ ` c(M) type

where we assume some pre-specified collection of axioms of
the form c : A→ type. In our encoding, the well-formedness
judgement for types is wf : tp -> type. The constant rule
is written:

wf/const : wf (const C M)
<- cparam C A
<- of M A
<- unrest M.

We assume there exists a unique cparam rule for each axiom
c : A→ type. The remaining wf rules are uninteresting (but
note that the rule for pi introduces an unrestricted variable).

Our existing typing rules must be altered in two ways.
First, now that types can be ill-formed, several rules must
add a wf premise. This is straightforward. Second, the rules
for the exponential must be rewritten to use the unrest
judgement:

of/bang : of (bang M) (! A)
<- of M A
<- unrest M.

of/letb : of (letb M ([x] N x)) B
<- of M (! A)
<- ({x} of x A

-> unrest x -> of (N x) B)
<- wf B.

We also have the new rules for unrestricted functions and
application:

Γ ` A type (Γ, x:A); ∆ `M : B

Γ; ∆ ` (λ!x.M) : Πx:A.B

Γ; ∆ `M : Πx:A.B Γ; ε ` N : A

Γ; ∆ `M @N : [N/x]B

of/ulam : of (ulam ([x] M x)) (pi A ([x] B x))
<- wf A
<- ({x} of x A

-> unrest x -> of (M x) (B x)).

of/uapp : of (uapp M N) (B N)
<- of M (pi A ([x] B x))
<- of N A
<- unrest N.

linear/ulam : linear ([y] ulam ([x] M y x))
<- ({x} linear ([y] M y x)).

linear/uapp : linear ([x] uapp (M x) N)
<- linear ([x] M x).

And finally equivalence:

of/equiv : of M A’
<- of M A
<- wf A’
<- equiv A A’.

The addition of dependent types complicates the proof of
subject reduction in a number of ways, but nearly all are or-
thogonal to linearity. One issue that does relate to linearity
is we require one additional lemma to show that unrestrict-
edness is preserved by reduction:

Lemma 3.1 (Subject reduction for unrest) Suppose
the ambient context is made up of bindings of the form
x:term,ex:unrest x and bindings of the form x:term (and
other bindings not subordinate to reduce or unrest). If
reduce M M’ and unrest M are derivable, then unrest M’
is derivable.

3.1 Adequacy

Adequacy for dependently typed linear logic proceeds in
much the same fashion as before. We must make four
changes. First, we revise syntactic adequacy of types, now
that types are not closed:

8

Theorem 3.2 (Syntactic adequacy)

1. Let S be a set of variables and let TypeS be the set of
linear logic types whose free variables are contained in
S. Then there exists a bijection p−q between TypeS
and LF canonical forms P such that pSq `LF P :
tp. Moreover, p−q respects substitution: p[M/x]Aq =
[pMq/x]pAq.

2. Let S be a set of variables and let TermS be the
set of linear logic terms whose free variables are con-
tained in S. Then there exists a bijection p−q be-
tween TermS and LF canonical forms P such that
pSq `LF P : term. Moreover, p−q respects substitu-
tion: p[M/x]Nq = [pMq/x]pNq.

Second, we define a translation for unrestricted contexts:

ppx1:A1, . . . , xn:Anqq
= x1 :term, dx1 :of x1 pA1q,ex1 :unrest x1 . . . ,

xn:term, dxn:of xnpAnq,exn:unrest xn

and we alter the first clause of the definition of encoding
structures to read:

ppΓqq, p∆q `LF P : of pMq pAq

Third, we state adequacy for typing and for well-formedness
of types simultaneously:

Theorem 3.3 (Semantic adequacy)

1. There exists a bijection p−q between derivations of the
judgement Γ; ∆ ` M : A and encoding structures for
Γ; ∆ `M : A.

2. There exists a bijection p−q between derivations of the
judgement Γ ` A type and LF canonical forms P such
that ppΓqq `LF P : wf pAq.

Fourth, we state a new lemma to deal with unrest
derivations:

Lemma 3.4

1. Suppose Γ; ∆ ` M : A. Then there exists a unique
LF canonical form P such that ppΓ,∆qq `LF P :
unrest pMq.

2. Suppose there exists an LF canonical form P such that
ppΓqq, p∆q `LF P : unrest pMq. Then no variable in
Domain(∆) appears free in M .

3. Suppose there exists an LF canonical form P such
that ppΓqq, p∆q `LF P : wf pAq. Then no variable in
Domain(∆) appears free in A.

We give the adequacy case for unrestricted application
to illustrate how Lemma 3.4 is used.

Proof Sketch of Theorem 3.3

Suppose ∇ is the derivation:

∇1....
Γ; ∆ `M : Πx:A.B

∇2....
Γ; ε ` N : A

Γ; ∆ `M @N : [N/x]B

Let p∇1q = (P1, H1) and let p∇2q = (P2, H2). By in-
duction (P1, H1) is an encoding structure for Γ; ∆ `
M : Πx:A.B and (P2, H2) is an encoding structure for
Γ; ε ` N : A.

By Lemma 3.4, there exists a unique Q such

that ppΓqq `LF unrest pNq. So let p∇q def
=

(of/uapp Q P2 P1, H), where for each y in Domain(∆),
H(y) = linear/uapp (H1(y)).

As an example of the definition of the inverse, suppose
(of/uapp Q′ P′

2 P
′
1, H

′) is an encoding structure for Γ; ∆ `
O : C. Then O has the form M ′

@N ′ and C has the form
[N ′/x]B′. Also, ppΓqq, p∆q `LF P′

1 : of pM ′q pΠx:A′.B′q,
and ppΓqq, p∆q `LF P′

2 : of pN ′q pA′q, and ppΓqq, p∆q `LF

Q′ : unrest pN ′q.

Let H ′
1 = {y 7→ R | H ′(y) = linear/uapp R}. Then

(P′
1, H

′
1) is an encoding structure for Γ; ∆ ` M ′ :

Πx:A′.B′. Let ∇′
1 = x(P′

1, H
′
1)y.

By Lemma 3.4, no variable in Domain(∆) appears free
in N ′. (In this case—but not in some others—this
fact could also be ascertained by inspection of H ′.)
Therefore, ppΓqq `LF P′

2 : of pN ′q pA′q. Consequently,
(P′

2, ∅) is an encoding structure for Γ; ε ` N ′ : A′. Let
∇′

2 = x(P′
2, ∅)y.

Then let x(of/uapp Q′ P′
2 P

′
1, H

′)y be the derivation:

∇′
1....

Γ; ∆ `M ′ : Πx:A′.B′

∇′
2....

Γ; ε ` N ′ : A′

Γ; ∆ `M ′
@N ′ : [N ′/x]B′

Since Q′ is uniquely determined by Lemma 3.4, it is easy
to verify that p−q and x−y are inverses. �

4 Modal Logic

There are (at least) two ways to specify modal logic. One
is using an explicit notion of Kripke worlds and accessibil-
ity [19]. Such a formulation does not behave as a substruc-
tural logic (in that all assumptions are available through-
out their scope) and can be encoded in LF without diffi-
culty [3, 10]. A second, which we consider here, is judge-
mental modal logic [14].

Judgemental modal logic distinguishes between two sorts
of assumption, truth and validity. Although judgemental
modal logic has no explicit notion of Kripke worlds, one
can think of truth as applying to only the current world,
and validity as applying to all worlds. Consequently, the
introduction rule for �A, which internalizes validity, must
require that no truth assumptions are used.

This is accomplished with the rule:

Γ; ε `M : A

Γ; ∆ ` boxM : �A

Here, Γ is the validity context and ∆ is the truth context.
Whatever truth assumptions exist are discarded while type
checking M . Since assumptions in ∆ are unavailable in M
despite being in scope, judgemental modal logic behaves as
a substructural logic.

We express this restriction using a judgement reminis-
cent of linear, indicating that an assumption is used locally
to the current world:

9

tp : type. A ::=

atomic : atom -> tp. a
arrow : tp -> tp -> tp. | A→A
box : tp -> tp. | �A

term : type. M ::=
x

lam : (term -> term) -> term. | λx.M
app : term -> term -> term. | MM
bx : term -> term. | boxM
letbx : term -> (term -> term) -> term.

| let boxx = M inM

Figure 4: Modal logic syntax

local : (term -> term) -> type.

The judgement local([x]Mx) should be read as “the
variable x is used locally (i.e., not within boxes) in Mx.”

The syntax of modal logic is given in Figure 4. In the in-
terest of brevity, we omit discussion of the possibility modal-
ity here. A treatment of possibility appears in the full Twelf
development.

Variables The rules for variables allow the use of any vari-
able in the context:

∆(x) = A

Γ; ∆ ` x : A

Γ(x) = A

Γ; ∆ ` x : A

As usual, there is no typing rule for variables in the encoding,
but there are two locality rules. First, x is local in x:

local/var : local ([x] x).

Second, we wish to say that x is local in every variable (truth
or validity) other than x. The easiest way to express this is
to generalize to all terms M that do not contain x:

local/closed : local ([x] M).

Implication The introduction rule for implication is:

Γ; (∆, x:A) `M : B

Γ; ∆ ` λx.M : A→B

This is encoded using two rules, reminiscent of the ones for
linear implication:

of/lam : of (lam ([x] M x)) (arrow A B)
<- ({x} of x A -> of (M x) B)
<- local ([x] M x).

local/lam : local ([y] lam ([x] M y x))
<- ({x} local ([y] M y x)).

The function’s argument is a truth assumption, so it must
be used locally in the body.

The elimination rule for implication is straightforward:

Γ; ∆ `M : A→B Γ; ∆ ` N : A

Γ; ∆ `MN : B

of/app : of (app M N) B
<- of M (arrow A B)
<- of N A.

local/app : local ([x] app (M x) (N x))
<- local ([x] M x)
<- local ([x] N x).

Necessity Recall the introduction rule for necessity:

Γ; ε `M : A

Γ; ∆ ` boxM : �A

This is encoded with the single rule:

of/bx : of (bx M) (box A)
<- of M A.

The important thing here is the absence of any locality rule
for bx. The only way to show that a variable is local in (bx
M) is using the local/closed rule, which requires that the
variable not appear in M, as desired.

The elimination rule for necessity is:

Γ; ∆ `M : �A (Γ, x:A); ∆ ` N : C

Γ; ∆ ` let boxx = M inN : C

This is encoded using two rules:

of/letbx
: of (letbx M ([x] N x)) B

<- of M (box A)
<- ({x} of x A -> of (N x) B).

local/letbx
: local ([x] letbx (M x) ([y] N x y))

<- local ([x] M x)
<- ({y} local ([x] N x y)).

Since the variable introduced by letbx is a validity assump-
tion, we do not check that it is local in the body.

Metatheory Subject reduction for modal logic follows the
same development as for linear logic in Section 2.2, with
local standing in for linear. One lemma must be gener-
alized: since local variables can appear multiple times in
modal logic, composition of locality must allow the local
variable to appear (locally) in the scope of substitution (M1
below), as well as in the substitutend (M2 below):

Lemma 4.1 (Composition of locality) Suppose the
ambient context is made up of bindings of the form
x:term (and other bindings not subordinate to local). If
({y} local ([x] M1 x y)) and ({x} local ([y] M1 x
y) and local ([x] M2 x) are derivable, then local ([x]
M1 x (M2 x)) is derivable.

4.1 Adequacy

Syntactic adequacy for modal logic is again standard:

Definition 4.2 Translation of variable sets is defined:

p{x1, . . . , xn}q = x1:term, . . . , xn:term

10

Theorem 4.3 (Syntactic adequacy)

1. Let Type be the set of modal logic types. Then there
exists a bijection p−q between Type and LF canonical
forms P such that `LF P : tp. (Variables cannot appear
within types, so there is no substitution to respect.)

2. Let S be a set of variables and let TermS be the
set of modal logic terms whose free variables are con-
tained in S. Then there exists a bijection p−q be-
tween TermS and LF canonical forms P such that
pSq `LF P : term. Moreover, p−q respects substitu-
tion: p[M/x]Nq = [pMq/x]pNq.

Semantic adequacy again encounters a challenge; this
time the opposite problem from the one we saw with lin-
ear logic. In the encoding of linear logic there were too few
typing derivations; here there are too many.

The problem lies in the local judgement. Unlike linear,
which expressed a property that could be satisfied in many
ways, local expresses a fact that essentially can be satisfied
in only one way, by the variable not appearing in any boxes.
In this regard, local is more like unrest than linear. How-
ever, unlike unrest, derivations of local are not unique.

The problem stems from the fact that the local/closed
rule can apply to terms that also have another rule. For
example, suppose M and N are closed terms. Then local
([x] app M N) has at least two derivations: local/closed
and (local/app local/closed local/closed).

One solution to the problem would be to restrict
local/closed to variables (and add another rule for closed
boxes). This would ensure that local derivations are unique
(like unrest derivations). We could impose the restriction
by creating a judgement (say, var) to identify variables, and
then rewrite the local/closed rule as:

local/closed-varonly : local ([y] X)
<- var X.

However, this solution has a significant shortcoming;
the substitution lemma would no longer be a free con-
sequence of higher-order representation. Under such
a regime, variable assumptions would take the form
({x:term} of x A -> var x -> ...whatever...). Con-
sequently, we would only obtain substitution for free when
the substitutend possesses a var derivation; that is, when
the substitutend is another variable. The general substitu-
tion lemma would have to be proved and used explicitly.

A better solution is to rephrase adequacy to quotient out
the excess derivations:

Definition 4.4 Translation of contexts is defined:

px1:A1, . . . , xn:Anq = x1 :term, dx1 :of x1 pA1q, . . . ,
xn:term, dxn:of xnpAnq

Definition 4.5 Let ∼= be the least congruence over LF
canonical forms such that P ∼= P′ for any P, P′ : local F
(where F : term -> term).

An encoding structure for Γ; ∆ ` M : A is a nonempty
equivalence class (under ∼=) of LF canonical forms P such
that:

• pΓ,∆q `LF P : of pPq pAq, and

• For every y in Domain(∆), there exists an LF
canonical form Qy such that pSyq `LF Qy :
local ([y:term] pM q), where Sy = Domain(Γ,∆) \
{y}.

Observe that since the issue in modal logic is too many
locality derivations (in contrast to linear logic where it was
too few), we have no need to make a mapping from variables
to locality derivations an explicit component of the encoding
structure. Instead, it is convenient simply to quantify them
existentially, as above.

Theorem 4.6 (Semantic adequacy) There exists a bi-
jection between derivations of the judgement Γ; ∆ ` M : A
and encoding structures for Γ; ∆ `M : A.

Proof Sketch

We give one case in each direction, by way of example.
Suppose ∇ is the derivation:

∇1....
Γ; (∆, x:A) `M : B

Γ; ∆ ` λx.M : A→B

Let p∇1q = P1. By induction, P1 is an encoding structure
for Γ; (∆, x:A) `M : B, so:

pΓ,∆q, x:term, dx:of x pAq `LF P1 : of pMq pBq

and, for every y ∈ Domain(∆, x:A), there exists a Qy such
that:

pDomain(Γ,∆, x:A) \ {y}q
`LF Qy : local ([y:term] pM q)

In particular, x ∈ Domain(∆, x:A), so:

pDomain(Γ,∆)q `LF Qx : local ([x:term] pM q)

Therefore:

pΓ,∆q `LF of/lam Qx P1 : of pλx.Mq pA→Bq

Also, for every y ∈ Domain(∆),

pDomain(Γ,∆) \ {y}q
`LF local/lam ([x:term] Qy)

: local ([y:term] pλx.Mq)

So let p∇q be the equivalence class containing
of/lam Qx P1, which is an encoding structure for Γ; ∆ `
λx.M : A→B.

As an example of the definition of the inverse, suppose
(of/bx P′) belongs to an encoding structure for Γ; ∆ `
O : C. Then O has the form boxM ′, and C has the form
�A′. Also, pΓ,∆q `LF P′ : of pM ′q pA′q.

Further, for every y in Domain(∆), there exists Qy
such that pSyq `LF Qy : local ([y:term] bx pM ′q),
where Sy = Domain(Γ,∆) \ {y}. Each Qy must be
local/closed, so no y in Domain(∆) appears in M ′.
Therefore pΓq `LF P′ : of pM ′q pA′q.

The second criterion of encoding structures is vacuously
satisfied for an empty truth context, so P′ belongs to an
encoding structure for Γ; ε `M ′ : A′. Let ∇′ = xP′y.

Then let xof/bx P′y be the derivation:

∇′
....

Γ; ε `M ′ : A′

Γ; ∆ ` boxM ′ : �A′

11

Suppose of/bx P′ ∼= of/bx P′′. Then P′ ∼= P′′. By induc-
tion, xP′y = xP′′y, so xof/bx P′y = xof/bx P′′y.

It is easy to verify that, for appropriate ∇ and P,
xp∇qy = ∇ and pxPyq ∼= P. Therefore p−q and x−y
are inverses. �

5 Conclusion

The Logical Framework is not only (nor even primarily) a
type theory. More importantly, it is a methodology for rep-
resenting deductive systems using higher-order representa-
tion of syntax and semantics, and a rigorous account of ad-
equacy. Where applicable, the LF methodology provides a
powerful and elegant tool for formalizing programming lan-
guages and logics.

There are two reasons it might not apply. First, limita-
tions of existing tools for LF, such as Twelf, might prevent
one from carrying out the desired proofs once a system were
encoded in LF. Second, there might be an inherent problem
representing the desired deductive system adequately using
a higher-order representation. When a language cannot be
cleanly represented in a higher-order fashion, it often indi-
cates that something about the language is suspect, such
as an incorrect (or at least nonstandard) notion of binding
and/or scope.

In some cases, however, languages with unconventional
notions of binding or scope are nevertheless sensible. Sub-
structural logics are probably the most important example.
In this paper, we show that many substructural logics can
be given a clean higher-order representation by isolating its
“substructuralness” (e.g., linearity or locality) and express-
ing that as a judgement over proof terms.

Our strategy applies to other substructural logics as well.
For example, affine logic and strict logic can each be encoded
along very similar lines as linear logic. We conjecture that
contextual modal logic [11] is encodable along similar lines
as judgemental modal logic. This is a good avenue for future
work. The logic of bunched implications [12] is another.

On the other hand, since our method relies on enforcing
“substructuralness” on an assumption-by-assumption basis,
there are some substructural logics it does not support, such
as ordered logic [18, 17]. In ordered logic, the context is
taken to be ordered and assumptions must be processed in
order. It appears that we cannot enforce this restriction
on assumptions independently, as the very nature of the
restriction is that assumptions are not independent. The
usability of one assumption can depend on the disposition
of every other assumption in scope.

References

[1] Arnon Avron, Furio Honsell, and Ian A. Mason. Using
typed lambda calculus to implement formal systems on
a machine. Technical Report ECS-LFCS-87-31, Depart-
ment of Computer Science, University of Edinburgh,
July 1987.

[2] Arnon Avron, Furio Honsell, and Ian A. Mason. An
overview of the Edinburgh Logical Framework. In Gra-
ham Birtwistle and P. A. Subrahmanyam, editors, Cur-
rent Trends in Hardware Verification and Automated
Theorem Proving. Springer, 1989.

[3] Arnon Avron, Furio Honsell, Marino Miculan, and Cris-
tian Paravano. Encoding modal logics in logical frame-
works. Studia Logica, 60(1), January 1998.

[4] Brian Aydemir, Arthur Charguéraud, Benjamin C.
Pierce, Randy Pollack, and Stephanie Weirich. Engi-
neering formal metatheory. In Thirty-Fifth ACM Sym-
posium on Principles of Programming Languages, San
Francisco, California, January 2008.

[5] Iliano Cervesato and Frank Pfenning. A linear logi-
cal framework. In Eleventh IEEE Symposium on Logic
in Computer Science, pages 264–275, New Brunswick,
New Jersey, July 1996.

[6] Karl Crary. Explicit contexts in LF. In Workshop
on Logical Frameworks and Meta-Languages: The-
ory and Practice, Pittsburgh, Pennsylvania, 2008.
Revised version at www.cs.cmu.edu/~crary/papers/
2009/excon-rev.pdf.

[7] Jean-Yves Girard. Linear logic. Theoretical Computer
Science, 50:1–102, 1987.

[8] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM,
40(1):143–184, January 1993.

[9] Robert Harper and Frank Pfenning. On equivalence
and canonical forms in the LF type theory. ACM Trans-
actions on Computational Logic, 6(1), 2005.

[10] Tom Murphy, VII. Modal Types for Mobile Code. PhD
thesis, Carnegie Mellon University, School of Computer
Science, Pittsburgh, Pennsylvania, May 2008.

[11] Aleksandar Nanevski, Frank Pfenning, and Brigitte
Pientka. A contextual modal type theory. ACM Trans-
actions on Computational Logic, 9(3), 2008.

[12] Peter W. O’Hearn and David J. Pym. The logic of
bunched implications. Bulletin of Symbolic Logic, 5(2),
1999.

[13] Frank Pfenning. Structural cut elimination in lin-
ear logic. Technical Report CMU-CS-94-222, Carnegie
Mellon University, School of Computer Science, Decem-
ber 1994.

[14] Frank Pfenning and Rowan Davies. A judgmental re-
construction of modal logic. Mathematical Structures
in Computer Science, 11(4):511–540, 2001.

[15] Frank Pfenning and Conal Elliott. Higher-order ab-
stract syntax. In 1988 SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
199–208, Atlanta, Georgia, June 1988.

[16] Frank Pfenning and Carsten Schürmann. Twelf User’s
Guide, Version 1.4, 2002. Available electronically at
http://www.cs.cmu.edu/~twelf.

[17] Jeff Polakow. Ordered Linear Logic and Applications.
PhD thesis, Carnegie Mellon University, School of Com-
puter Science, Pittsburgh, Pennsylvania, August 2001.

[18] Jeff Polakow and Frank Pfenning. Natural deduction
for intuitionistic non-commutative linear logic. In 1999
International Conference on Typed Lambda Calculi and
Applications, volume 1581 of Lecture Notes in Com-
puter Science, L’Aquila, Italy, April 1999. Springer.

12

[19] Alex Simpson. The Proof Theory and Semantics of In-
tuitionistic Modal Logic. PhD thesis, University of Ed-
inburgh, 1994.

[20] Roberto Virga. Higher-Order Rewriting with Dependent
Types. PhD thesis, Carnegie Mellon University, School
of Computer Science, Pittsburgh, Pennsylvania, 1999.

Higher-order Representation of Substructural Logics, ver-
sion 3, July 2010.

13

