
GDP Festschrift ENTCS, to appear

Syntactic Logical Relations for Polymorphic
and Recursive Types

Karl Crary1 Robert Harper2

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The method of logical relations assigns a relational interpretation to types that expresses operational in-
variants satisfied by all terms of a type. The method is widely used in the study of typed languages, for
example to establish contextual equivalences of terms. The chief difficulty in using logical relations is to
establish the existence of a suitable relational interpretation. We extend work of Pitts and Birkedal and
Harper on constructing relational interpretations of types to polymorphism and recursive types, and apply
it to establish parametricity and representation independence properties in a purely operational setting.
We argue that, once the existence of a relational interpretation has been established, it is straightforward
to use it to establish properties of interest.

Keywords: Operational semantics, type structure, logics of programs, lambda calculus and related
systems, data abstraction, polymorphism.

1 Introduction

It is a pleasure to contribute this paper in honor of Gordon D. Plotkin on the occa-
sion of his sixtieth birthday. Plotkin’s research on the mathematical foundations of
programming languages is singularly influential, providing the foundations for much
subsequent work and establishing new approaches to neglected or ill-understood
problems. Several themes have direct bearing on the work described herein.

One important theme is the use of operational semantics for defining and ana-
lyzing programming languages. Plotkin’s structural operational semantics [25,24] is
particularly influential. Execution is modelled as a transition system whose states
are programs. The transition relation is inductively defined by a collection of in-
ference rules that mirror the structure of the program. The transition rules specify

1 Email: crary@cs.cmu.edu
2 Email: rwh@cs.cmu.edu

mailto:crary@cs.cmu.edu
mailto:rwh@cs.cmu.edu

both the individual steps of execution and the order in which these steps are exe-
cuted. Properties of the execution behavior of programs, such as type safety, may
be proved by induction over the transition rules.

Another theme in Plotkin’s work is the analysis of observational equivalence be-
tween program fragments. Applying Leibniz’s Principle of Identity of Indiscernibles,
two program fragments are observationally equivalent iff they engender the same
observable outcomes however they may be used in a complete program. Being the
coarsest consistent congruence, one may use coinduction to prove that two frag-
ments are observationally equivalent. But in practice such a direct proof is rarely
effective; a more tractable characterization is needed. Plotkin, in his seminal study
of PCF [22], considered denotational methods that turned out to provide sufficient,
but not necessary, conditions for observational equivalence. This requires proving
computational adequacy of the denotational semantics relative to the operational
semantics of PCF, which Plotkin proved using the method of logical relations [32].

Pitts showed that logical relations may also be used to obtain a useful characteri-
zation of observational equivalence [18]. Associated with each type is an equivalence
relation, called logical equivalence, that is defined by assigning an action on relations
to each type constructor. The relational action is defined so that logical equivalence
is a consistent congruence, so that it is a sufficient (and, in many cases, necessary)
condition for observational equivalence. For simple type systems logical equiva-
lence is defined by induction on the structure of types, leading to an elegant proof
method for establishing observational equivalences. But in richer type systems more
complex methods are required.

One complicating factor is impredicative polymorphism, as introduced by Girard
and Reynolds [7,8,28]. The concept of relational parametricity [29] generalizes log-
ical equivalence to polymorphic types. As in simpler cases, parametricity may be
used to characterize observational equivalence for polymorphic languages. Through
Mitchell and Plotkin’s account of abstract types as existential types [16] (which
may be encoded using only polymorphic types), relational parametricity may be
used to prove representation independence for abstract types [15]. This may be
seen as a generalization of Hoare’s method [10] of proving correctness of abstract
type implementations.

Recursive types present further complications for the method of logical relations.
Here again we encounter central themes in Plotkin’s research, namely solving re-
cursive type equations, and developing the theory of parametricity in the presence
of recursive types. Building on Scott’s lattice models for the untyped λ-calculus,
Plotkin developed the denotational semantics of recursive types [23]. In particular,
his work with Smyth [31] initiated the category-theoretic study of recursive types,
leading to Freyd’s universal characterization of a recursively defined type as a min-
imal invariant. Abadi and Plotkin studied relational parametricity in the presence
of recursive types in a denotational setting, proposing a partial equivalence relation
interpretation [1] and developing a logic for parametricity in this setting [26].

All of these themes of Plotkin’s research figure into the present work. We con-
sider a call-by-value operational interpretation of the Girard-Reynolds polymorphic

typed λ-calculus [7,28] extended with general recursive types. Our main result is a
complete characterization of observational equivalence—in which we observe termi-
nation at unit type—in terms of logical equivalence. We then use logical equivalence
to state and prove parametricity properties of the language. In particular, we re-
produce an example from Sumii and Pierce [33] to provide a comparison with their
bisimulation technique.

The main technical challenge is to define logical equivalence for such a rich type
system. We wish to provide a definition that is sound and complete with respect to
observational equivalence, and that permits us to derive parametricity properties of
polymorphic types. To account for recursive types we work over a complete lattice
of admissible relations over terms that are pointed, respect observational equiv-
alence, and support reasoning by fixed point induction (see Section 2 for precise
definitions). We assign to each type constructor an admissible action on this space
of relations that ensures that logical equivalence is a congruence, and hence con-
tained in observational equivalence. Since admissible relations respect observational
equivalence, the desired complete characterization follows.

The crucial problem is to define an admissible relational action to each type
constructor of the language. The relational action for the function type construc-
tor relates functions that map related arguments to related results. To assign a
relational action to polymorphic types we use a variant of Girard’s method, with
admissible relations as candidates. The action relates two polymorphic expressions
if corresponding instances are related for each choice of admissible relation between
those instance types. Following Pitts [19], the relational action associated with a
general recursive type relies on an operational version of Freyd’s minimal invariant
characterization of the solution of a type equation. This property, called syntactic
minimal invariance, was proved by Birkedal and Harper [4] for a simply typed lan-
guage with a single recursive type using ciu equivalence [14]. Here we give a new,
streamlined proof based on applicative equivalence [12]. Logical equivalence is then
constructed by exploiting syntactic minimal invariance to handle recursive types,
and Girard’s method for polymorphic types.

Logical equivalence is particularly convenient for proving parametricity and
representation independence properties of the language. Arguing that logical
relations-based methods for deriving these properties are overly complex, Sumii
and Pierce [33] have developed a new method based on a novel form of bisimula-
tion. We argue, on the contrary, that the main complication is in justifying the
definition of logical equivalence, which can be done once and for all. We show in
Section 6 that deriving representation independence properties using logical equiv-
alence is straightforward. For example, we show how to obtain the results of Sumii
and Pierce by exploiting relational parametricity. The proof reduces to choosing
a suitable admissible relation, and proving that this relation is preserved by the
operations of the abstract type.

Types τ ::= α | 1 | τ1 → τ2 | ∀α.τ | µα.τ

Terms e ::= x | ∗ | λx:τ.e | e1e2 | Λα.e | e[τ] | inµα.τe | out e

Values v ::= x | ∗ | λx:τ.e | Λα.e | inµα.τv |

Typings Γ ::= ε | Γ, α | Γ, x:τ

Fig. 1. Syntax

2 Preliminaries

2.1 The Language

The syntax of the language is given in Figure 1. The static semantics is given
in Figure 2 and the operational semantics is given in Figure 3. The operational
semantics consists of a small-step, call-by-value transition relation between closed
terms, written e 7→ e′.

We define the set of types and the type-indexed family of sets of expressions as
follows:

Type def= {τ | ` τ type}

Expτ
def= {e | ` e : τ}

We write capture-avoiding substitution of E for X in E′ as E′[E/X]. As usual, we
identify expressions that differ only in the names of bound variables.

The language enjoys the usual type safety properties, as expressed by the fol-
lowing lemmas, which we use throughout without explicit reference.

Lemma 2.1 (Type preservation) If ` e : τ and e 7→ e′ then ` e′ : τ .

Lemma 2.2 (Progress) If ` e : τ and e is not a value, then (for some e′) e 7→ e′.

Lemma 2.3 (Unique types) If Γ ` e : τ and Γ ` e : τ ′ then τ = τ ′.

We will employ the abbreviations in Figure 4. Justified by unicity of types, we
will sometimes omit the type subscripts from these abbreviations when they are
clear from context. These elementary properties of the dynamic semantics will be
of use in the sequel:

⊥τ 7→2 ⊥τ

fix τ1→τ2 F 7→3 λy:τ1. F (fix F) y (for values F)

fix i+1
τ1→τ2 F 7→ λy:τ1. F (fix i F)y (for values F)

` ε context

` Γ context Γ ` τ type x 6∈ Dom(Γ)
` Γ, x:τ context

` Γ context α 6∈ Dom(Γ)
` Γ, α context

` Γ context FV(τ) ⊆ Dom(Γ)
Γ ` τ type

` Γ context Γ(x) = τ

Γ ` x : τ
` Γ context

Γ ` ∗ : 1

Γ, x:τ1 ` e : τ2

Γ ` λx:τ1.e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

Γ, α ` e : τ

Γ ` Λα.e : ∀α.τ

Γ ` e : ∀α.τ ′ Γ ` τ type
Γ ` e[τ] : τ ′[τ/α]

Γ ` e : τ [µα.τ/α]
Γ ` inµα.τe : µα.τ

Γ ` e : µα.τ

Γ ` out e : τ [µα.τ/α]

Fig. 2. Static Semantics

e1 7→ e′1
e1e2 7→ e′1e2

e 7→ e′

v e 7→ v e′ (λx:τ.e)v 7→ e[v/x]

e 7→ e′

e[τ] 7→ e′[τ] (Λα.e)[τ] 7→ e[τ/α]

e 7→ e′

inµα.τe 7→ inµα.τe
′

e 7→ e′

out e 7→ out e′ out(inµα.τv) 7→ v

Fig. 3. Structured Operational Semantics

2.2 Applicative Equivalence

The relational interpretation of types will be defined over equivalence classes of
terms taken modulo applicative equivalence [11], a convenient form of operational

idτ
def= λx:τ.x

⊥τ
def= (λx:T. (outx) x) (inT (λx:T. (outx) x))

(where T = µα. α→ τ)

fix τ1→τ2
def= (out(inT ′v))(inT ′v)

(where v = λx:T ′. λf :T → T. λy:τ1. f ((outx) x f) y

and T = τ1 → τ2

and T ′ = µα. α→ (T → T)→ T)

fix 0
τ1→τ2

def= λf :((τ1 → τ2)→ τ1 → τ2). λy:τ1.⊥τ2

fix i+1
τ1→τ2

def= λf :((τ1 → τ2)→ τ1 → τ2). λy:τ1. f (fix i
τ1→τ2 f) y

fixω
τ1→τ2

def= fix τ1→τ2

Fig. 4. Abbreviations

equivalence. (In Section 5 we show that applicative equivalence coincides with
contextual equivalence, the coarsest consistent equivalence relation on expressions.)

Applicative equivalence of open terms is defined by considering its closed substi-
tution instances. For this and other purposes we need the notion of a substitution
for the variables in a typing context.

Definition 2.4 We define a substitution to be a mapping from type variables to
types and from term variables to terms. A substitution σ satisfies a context Γ (writ-
ten ` σ : Γ) if:

• ` Γ context, and
• Dom(σ) = Dom(Γ), and
• for all α ∈ Γ, ` σ(α) type, and
• for all x : τ ∈ Γ, ` σ(x) : σ(τ).

Applicative approximation is coinductively defined to be the largest pre-order
satisfying conditions determined by the elimination rules for each type. We dis-
tinguish between approximation of computations, which may not terminate, from
values, which are fully evaluated.

Definition 2.5

(i) Applicative approximation is defined to be the greatest relation ` e1 � e2 : τ

over closed terms such that:
• ` e1 � e2 : τ only if ` e1, e2 : τ , and e1 7→∗ v1 implies that e2 7→∗ v2 for some

v2 such that ` v1 �val v2 : τ , where
• ` v1 �val v2 : τ if and only if ` v1, v2 : τ , and

· τ = 1, or
· τ = τ1 → τ2 and (for all v such that ` v : τ1) ` v1v � v2v : τ2, or
· τ = ∀α.τ ′ and (for all τ ′′ such that ` τ ′′ type) ` v1[τ ′′] � v2[τ ′′] : τ ′[τ ′′/α],

or
· τ = µα.τ ′ and ` out v1 � out v2 : τ ′[τ/α].

(ii) We extend applicative approximation to open terms as follows: Γ ` e1 � e2 : τ

if Γ ` e1, e2 : τ , and (for all σ such that ` σ : Γ) ` σ(e1) � σ(e2) : σ(τ).

(iii) Two terms e1 and e2 are applicatively equivalent at type τ in context Γ (written
Γ ` e1 ≈ e2 : τ) if Γ ` e1 � e2 : τ and Γ ` e2 � e1 : τ .

(iv) If ` e1, e2 : τ then we write e1 � e2 to mean ` e1 � e2 : τ . If Γ ` e1, e2 : τ then
we write Γ ` e1 � e2 to mean Γ ` e1 � e2 : τ .

(v) Similarly, if ` e1, e2 : τ then we write e1 ≈ e2 to mean ` e1 ≈ e2 : τ . If
Γ ` e1, e2 : τ then we write Γ ` e1 ≈ e2 to mean Γ ` e1 ≈ e2 : τ .

Note that the “only if” conditions on applicative approximation become “if and only
if” for applicative equivalence defined as the greatest fixed point of these conditions.

The following elementary properties follow readily from the definitions.

Proposition 2.6

• Applicative approximation and equivalence are reflexive (over appropriately typed
terms) and transitive.

• Applicative equivalence is symmetric.
• If e1 is well-typed and e1 7→ e2 then e1 ≈ e2.

Lemma 2.7 (Substitutivity and Congruence) Applicative approximation is
substitutive and a congruence, in the following sense:

• If Γ, x:τ,Γ′ ` e1 � e′1 and Γ ` e2 � e′2 : τ then Γ,Γ′ ` e1[e2/x] � e′1[e
′
2/x].

• Applicative approximation is closed under the following rules:

Γ, x:τ ` e � e′

Γ ` λx:τ.e � λx:τ.e′
Γ ` e1 � e′1 Γ ` e2 � e′2

Γ ` e1e2 � e′1e
′
2

Γ, α ` e � e′

Γ ` Λα.e � Λα.e′
Γ ` e � e′

Γ ` e[τ] � e′[τ]

Γ ` e � e′

Γ ` inµα.τe � inµα.τe
′

Γ ` e � e′

Γ ` out e � out e′

Proof. By a straightforward application of Howe’s method [11]. 2

Corollary 2.8 For all well-formed types τ1 and τ2, if i ≤ j then fix i
τ1→τ2 �

fix j
τ1→τ2 � fix τ1→τ2.

Applicative equivalence is established by exhibiting a relation satisfying the re-
quirements of Definition 2.5.

Lemma 2.9 (Coinduction for Applicative Approximation) Suppose R is a
type-indexed relation such that for all τ ∈ Type, Rτ is a binary relation over Expτ .
Suppose further that:

(i) if e Rτ e′ and e halts then e′ halts, and

(ii) if e Rτ1→τ2 e′ and v ∈ Expτ1 then e v Rτ2 e′ v, and

(iii) if e R∀α.τ e′ and τ ′ ∈ Type then e[τ ′] Rτ [τ ′/α] e′[τ ′], and

(iv) if e Rµα.τ e′ then out e Rτ [µα.τ/α] out e′.

Then e Rτ e′ implies e � e′.

Proof. Let R′ and R′
val be the relations defined as follows:

• ` e1 R′ e2 : τ if and only if ` e1, e2 : τ and there exists e′1, e′2 such that
e1 ≈ e′1 R e′2 ≈ e2.

• ` v1 R′
val v2 : τ if and only if ` v1, v2 : τ , and

· τ = 1, or
· τ = τ1 → τ2 and (for all v such that ` v : τ1) ` v1v R′ v2v : τ2, or
· τ = ∀α.τ ′ and (for all τ ′′ such that ` τ ′′ type) ` v1[τ ′′] R′ v2[τ ′′] : τ ′[τ ′′/α], or
· τ = µα.τ ′ and ` out v1 R′ out v2 : τ ′[τ/α].

We claim that if e1 R′ e2 and e1 7→∗ v1 then e2 7→∗ v2 for some v2 such that
v1 R′

val v2. It follows by coinduction that e1 R′ e2 implies e1 � e2, since R′ fits the
specification of �, and � is the greatest relation fitting its specification. The result
then follows by the reflexivity of ≈.

Suppose e1 ≈ e′1 R e′2 ≈ e2 and e1 7→∗ v1. Then e′1↓, and by condition 1, e′2↓, so
e2↓. Thus, let e2 7→∗ v2. Note that v1 ≈ e′1 and v2 ≈ e′2.

It remains to show that ` v1 R′
val v2 : τ , where τ is the type of v1 and v2.

We proceed by cases on τ . Suppose τ = τ1 → τ2. Let ` v : τ1 be arbitrary. By
condition 2, e′1v R e′2v. Thus, using congruence, v1v ≈ e′1v R e′2v ≈ v2v. Hence
v1v R′ v2v, and consequently v1 R′

val v2. The other cases are similar or trivial. 2

2.3 Compactness

The operational analogue of fixed point induction relies on compactness, which states
that in a terminating computation only finitely many “unrollings” of a recursive
function are necessary for the result. However, in the presence of higher types, the
precise statement must account for residual occurrences of recursive functions in the
result. We can elegantly manage such residual occurrences by expressing unrollings
up to applicative approximation, rather than equality. This device helps because
we may observe that a term with residual occurrences dominates a similar term
without them, and thereby neglect those residual occurrences.

This focus on applicative approximation leads us to prove a stronger, least upper
bound theorem (Theorem 2.11 below). From that theorem we can obtain compact-

ness as a simple corollary. However, we will find that many later results are more
conveniently obtained by using the least upper bound theorem directly.

Notation Let w be a distinguished variable. Then ef [i] is defined to mean
e[fix i f/w]. Note that by Corollary 2.8 and congruence, if i ≤ j then ef [i] � ef [j] �
ef [ω] (provided the three terms are closed and well-typed).

Lemma 2.10 (Simulation) Suppose f is a value, and suppose ef [ω] 7→∗ v (where
ef [ω] is closed and well-typed). Then there exist j, v′ such that v = v′f [ω] and for all
k ≥ j, ef [k] � v′f [k−j].

Proof. Let ef [ω] 7→l v. The proof is by induction on l, with an inner induction on
the structure of e. If e is a value, the result follows trivially by letting v′ = e. We
proceed by cases on the non-value forms of e.

Case 1: Suppose e = w. Then ef [ω] = fix f . Since ef [ω] is well-typed, f must have
function type, so let ` f : τ1→ τ2. Then v = λy:τ1. f (fix f) y. Let v′ = λy:τ1. f w y,
and let j = 1. Then v = v′f [ω]. Suppose k ≥ 1. Then:

ef [k] = fixk f

7→+ λy:τ1. f(fixk−1 f)y (since k > 0)

= v′f [k−1]

Hence ef [k] � v′f [k−j].

Case 2: Suppose e = e1e2. Then:

ef [ω] = e
f [ω]
1 e

f [ω]
2

7→m v1e
f [ω]
2 (for some m < l)

7→n v1v2 (for some n < l)

7→+ v

By induction, there exist i1, v′1, i2, v′2 such that (for p = 1, 2) vp = v
′f [ω]
p and for

all k ≥ ip, e
f [k]
p � v

′f [k−ip]
p . Observe that v′1 must be of the form λx:τ.e′1. Let

e′ = e′1[v
′
2/x]. Then:

ef [ω] 7→∗ v1v2

= (λx:τ. e′f [ω]
1) v

′f [ω]
2

7→ e
′f [ω]
1 [v′f [ω]

2 /x]

= e′f [ω]

7→o v (for some o < l)

By induction, there exist i, v′ such that v = v′f [ω] and for all k ≥ i, e′f [k] � v′f [k−i].
Let j = i + i1 + i2 and suppose k ≥ j. Then:

ef [k] = e
f [k]
1 e

f [k]
2

� v
′f [k−i1]
1 v

′f [k−i2]
2 (by congruence)

� v
′f [k−i1−i2]
1 v

′f [k−i1−i2]
2 (by congruence)

= (λx:τ.e′f [k−i1−i2]
1)v′f [k−i1−i2]

2

7→ e
′f [k−i1−i2]
1 [v′f [k−i1−i2]

2 /x]

= (e′1[v
′
2/x])f [k−i1−i2]

= e′f [k−i1−i2]

� v′f [(k−i1−i2)−i] (since k − i1 − i2 ≥ i)

= v′f [k−j]

Hence ef [k] � v′f [k−j].

Case 3: Suppose e = inµα.τe1. Then v is of the form inµα.τv1, where e
f [ω]
1 7→∗ v1.

By the inner induction, there exist j, v′1 such that v1 = v
′f [ω]
1 and for all k ≥ j,

e
f [k]
1 � v

′f [k−j]
1 . Let v′ = inµα.τv

′
1. Then v = v′f [ω], and for all k ≥ j, ef [k] =

inµα.τe
f [k]
1 � inµα.τv

′f [k−j]
1 = v′f [k−j], by congruence.

The other two cases are similar. 2

Lemma 2.11 (Least Upper Bound) Suppose f halts. 3 If ∀j. ef [j] � e′ then
ef [ω] � e′.

Proof. Since f halts, by congruence we may assume, without loss of generality,
that f is a value. Let R and Rval be the relations defined as follows:

• ` e1 R e2 : τ if and only if ` e1, e2 : τ , and e1 has the form e
′f [ω]
1 where ∀j. e′f [j]

1 �
e2.

• ` v1 Rval v2 : τ if and only if ` v1, v2 : τ , and
· τ = 1, or
· τ = τ1 → τ2 and (for all v such that ` v : τ1) ` v1v R v2v : τ2, or
· τ = ∀α.τ ′ and (for all τ ′′ such that ` τ ′′ type) ` v1[τ ′′] R v2[τ ′′] : τ ′[τ ′′/α], or
· τ = µα.τ ′ and ` out v1 R out v2 : τ ′[τ/α].

We claim that if e1 R e2 and e1 7→∗ v1 then e2 7→∗ v2 for some v2 such that
v1 Rval v2. The result follows from this claim by coinduction, since R therefore fits
the specification of �, and � is the greatest relation fitting its specification.

Therefore, suppose e1 R e2 and e1 7→∗ v1. Then e
′f [ω]
1 7→∗ v1. By Lemma 2.10,

there exist j, v′1 such that v1 = v
′f [ω]
1 and ∀k ≥ j. v

′f [k−j]
1 � e

′f [k]
1 . By assumption,

3 The lemma can also easily be seen to hold if f does not halt, since (for all k) fix ⊥ ≈ fixk ⊥.

transitivity, and a change of variables (letting i = k − j), ∀i. v′f [i]
1 � e2. Therefore

e2 7→∗ v2 and (since evaluation is deterministic) ∀i. v′f [i]
1 �val v2. It remains to show

that v1 Rval v2. We proceed by cases on the type of v1:

Case 1: Suppose ` v1 : 1. Then v1 Rval v2.

Case 2: Suppose ` v1 : τ1 → τ2 and suppose ` v : τ1. Then v1v = (v′1v)f [ω].
But for any i, (v′1v)f [i] = (v′f [i]

1)v � v2v by congruence. Thus v1v R v2v and hence
v1 Rval v2.

Case 3: Suppose ` v1 : ∀α.τ and suppose ` τ ′ type. Then v1[τ ′] = (v′1[τ
′])f [ω].

But for any i, (v′1[τ
′])f [i] = (v′f [i]

1)[τ ′] � v2[τ ′] by congruence. Thus v1[τ ′] R v2[τ ′]
and hence v1 Rval v2.

Case 4: Suppose ` v1 : µα.τ . Then out v1 = (out v′1)
f [ω]. But for any i,

(out v′1)
f [i] = out(v′f [i]

1) � out v2. Thus out v1 R out v2 and hence v1 Rval v2. 2

Corollary 2.12 (Compactness) Suppose f halts. If ef [ω] halts (and is closed and
well-typed) then there exists j such that ef [j] halts.

Proof. Suppose, for contradiction, 4 that ef [ω]↓ and for all j, ef [j]↑. Then for all j,
ef [j] � ⊥τ . By Lemma 2.11, ef [ω] � ⊥τ and hence ef [ω]↑, but this contradicts the
assumption. 2

2.4 Admissibility and Strictness

We will restrict attention to the class of admissible relations, defined by operational
analogues of the chain completeness conditions arising in denotational semantics.

The type-tuple-indexed sets of expression class vectors and relations are defined
as follows:

ECV τ1,...,τn

def= (Expτ1/≈τ1)× · · · × (Expτn
/≈τn)

Relτ1,...,τn

def= P(ECV τ1,...,τn)

Definition 2.13 A relation R ∈ Relτ1,...,τn is admissible if it satisfies the following
two conditions: 5

• (Pointedness) (⊥τ1 , . . . ,⊥τn) ∈ R

• (Completeness) Suppose (for k = 1, . . . , n) τ ′k, τ
′′
k ∈ Type and w:τ ′k → τ ′′k ` ek :

τk and ` fk : (τ ′k → τ ′′k) → τ ′k → τ ′′k . If for all i there exists j ≥ i such that
(ef1[j]

1 , . . . , e
fn[j]
n) ∈ R, then (ef1[ω]

1 , . . . , e
fn[ω]
n) ∈ R.

Definition 2.14 A relation R ∈ Relτ1,...,τn is strict if whenever (e1, . . . , en) ∈ R

and for some i, ei↓, then for all i, ei↓.

4 If one prefers, a constructive proof can also be derived directly from Lemma 2.10.
5 The pointedness condition is stated in this manner for simplicity, without regard for constructivity. The
theorems in this paper may be carried out constructively if it is replaced by the (constructively stronger)
proposition ((∃i. ei↓) ⇒ (e1, . . . , en) ∈ R) ⇒ (e1, . . . , en) ∈ R. These conditions are equivalent in a classical
setting.

The lattice properties of the class of relations are necessary for the interpretation
of recursive types.

Lemma 2.15 For any τ1, . . . , τn ∈ Type, the set of strict, admissible relations in
Relτ1,...,τn forms a complete lattice, with bottom element {(e1, . . . , en) ∈ ECV τ1,...,τn |
e1↑∧ · · · ∧ en↑ }, top element {(e1, . . . , en) ∈ ECV τ1,...,τn | (∃i. ei↓) ⇒ (∀i. ei↓)},
meets computed by intersections, and joins computed by intersection of all upper
bounds.

Lemma 2.16 (Fixed Point Induction) Suppose R ∈ Relτ1→τ ′1,...,τn→τ ′n
is ad-

missible, F1, . . . , Fn halt, and (for 1 ≤ i ≤ n) ` Fi : (τi → τ ′i) →
τi → τ ′i . If (λx:τ1.⊥τ ′1

, . . . , λx:τn.⊥τ ′n) ∈ R and, for all (f1, . . . , fn) ∈ R,
(λx:τ1. F1f1x, . . . , λx:τn. Fnfnx) ∈ R, then (fix F1, . . . ,fix Fn) ∈ R.

Proof. Observe that w:τk → τ ′k ` w : τk → τ ′k. We show by induction that
for all i, (wF1[i], . . . , wFn[i]) ∈ R. By the first assumption, (wF1[0], . . . , wFn[0]) =
(fix 0 F1, . . . ,fix 0 Fn) ≈ (λx:τ1.⊥τ ′1

, . . . , λx:τn.⊥τ ′n) ∈ R. Suppose, for induction,
that (wF1[i], . . . , wFn[i]) = (fix i F1, . . . ,fix i Fn) ∈ R. Then (wF1[i+1], . . . , wFn[i+1]) =
(fix i+1 F1, . . . ,fix i+1 Fn) ≈ (λx:τ1.F1(fix i F1)x, . . . , λx:τn.Fn(fix i Fn)x) ∈ R by
the second assumption. Hence, for all i there exists j ≥ i (namely i itself)
such that (wF1[j], . . . , wFn[j]) ∈ R. By completeness of R, (fix F1, . . . ,fix Fn) =
(wF1[ω], . . . , wFn[ω]) ∈ R. 2

Notation We write fix g(x:τ1):τ2.e to mean fix (λg:τ1 → τ2. λx:τ1.e). Also, when f

is of the form fix g(x:τ1):τ2.e, we write f i to mean fix i(λg:τ1 → τ2. λx:τ1.e).

Corollary 2.17 (Fixed Point Induction) Suppose R ∈ Relτ1→τ ′1,τ2→τ ′2
is admis-

sible and (for i = 1, 2) g:(τi → τ ′i), x:τi ` ei : τ ′i . If (λx:τ1.⊥τ ′1
, λx:τ2.⊥τ ′2

) ∈
R and, for all (f1, f2) ∈ R, (λx:τ1.e1[f1/g], λx:τ2.e2[f2/g]) ∈ R, then
(fix g(x:τ1):τ ′1.e1,fix g(x:τ2):τ ′2.e2) ∈ R.

3 Syntactic Minimal Invariance

In a domain setting the solution to a mixed-variance recursive domain equation
may be universally characterized as a minimal invariant i : F (D,D) ∼= D of a
bifunctor F over a category of domains and its opposite [6]. The minimality of i

ensures that every element of D is the limit of its finite projections; this amounts
to the requirement that a certain recursively defined function associated with the
equation is the identity. Pitts [19] showed that the existence of the minimal invariant
is sufficient for the construction of relations over a recursive domain, and uses this
to prove adequacy of a denotational semantics using a logical relations argument.

Following Birkedal and Harper [4], we prove an operational analogue of the min-
imal invariance condition, called syntactic minimal invariance. The key observation
is that the finite projections alluded to above are definable in the language, as is
their limit, which is a recursively defined function. We then show that this limit
is applicatively equivalent to the identity. The argument we give here is an exten-
sion to and an improvement on the proof of syntactic minimal invariance given by

πα
def= pα

πτ1→τ2
def= λf :(τ1 → τ2). λx:τ1. πτ2(f(πτ1x))

π∀α.τ
def= λf :(∀α.τ).Λα. (πτ [idα/pα])(f [α])

πµα.τ
def= fix f(x:µα.τ):µα.τ .inµα.τ ((πτ [µα.τ, f/α, pα])(outx)))

π1
def= λx:1.∗

Fig. 5. Syntactic Projection Functions

Birkedal and Harper. The extension consists of considering general recursive, as
well as polymorphic, types, rather than a single, fixed recursive type. This requires
a bit more machinery, but proceeds along substantially the same lines as before.
The technical improvement is that the argument is streamlined by considering a
range of possible “decorations” of terms with syntactic projections, which affords a
stronger induction hypothesis (see the proof of Lemma 3.13).

To begin with, we define the syntactic projection function πτ : τ → τ for each
type τ as shown in Figure 5. Note that for type variables the syntactic projection
functions defer to identified term variables of the form pα. An appropriate projec-
tion function is later substituted for pα—the identity in the case of polymorphic
variables, and the projection itself in the case of recursive type variables.

Lemma 3.1 If β1, . . . , βn ` τ type then β1, . . . , βn, pβ1 :β1 → β1, . . . , pβn :βn → βn `
πτ : τ → τ .

Lemma 3.2 The terms πτ [τ ′, πτ ′/α, pα] and πτ [τ ′/α] are syntactically identical.

3.1 Projections Approximate the Identity

It is relatively straightforward to show that the projection πτ applicatively approxi-
mates the identity function on type τ . The argument proceeds by an outer induction
on the structure of τ , with an inner fixed point induction in the case of recursive
types.

Lemma 3.3 Suppose β1, . . . , βn ` τ type, and for all 1 ≤ i ≤ n, ` vi � idτi : τi.
Then πτ [~τ ,~v/~β, p~β

] � id
τ [~τ/~β]

: τ [~τ/~β]→ τ [~τ/~β].

Proof. By induction on τ . Let σ = [~τ ,~v/~β, p~β
].

Case 1: Suppose τ = βi. Then πτσ = pβi
σ = vi. By assumption, vi � idτi .

Case 2: Suppose τ = 1. Then πτσ = λx:1.∗ ≈ id1.

Case 3: Suppose τ = τ1 → τ2, and let τ ′1 → τ ′2 = (τ1 → τ2)[~τ/~β]. Then πτσ =
λf :(τ ′1 → τ ′2). λx:τ ′1. (πτ2σ)(f((πτ1σ)x)). Suppose ` v : τ ′1 → τ ′2. We wish to show
that λx:τ ′1. (πτ2σ)(v((πτ1σ)x)) �val v. Suppose ` v′ : τ ′1. Then it suffices to show

that (πτ2σ)(v((πτ1σ)v′)) � v v′. By induction, πτ1σ � idτ ′1
, so (πτ1σ)v′ � v′. By

congruence, v((πτ1σ)v′) � v v′. By induction, πτ2σ � idτ ′2
, so (πτ2σ)(v((πτ1σ)v′)) �

v((πτ1σ)v′) � v v′.

Case 4: Suppose τ = ∀α.τ1 and let τ ′1 = τ1[~τ/~β]. Then πτσ =
λf :(∀α.τ ′1).Λα. (πτ1σ[idα/pα])(f [α]). Suppose ` v : ∀α.τ ′1. We wish to show
that Λα. (πτ1σ[idα/pα])(v[α]) � v. Suppose ` τ ′ type. Then it suffices to show
that (πτ1σ[τ ′, idτ ′/α, pα])(v[τ ′]) � v[τ ′]. Certainly idτ ′ � idτ ′ , so by induction,
πτ1σ[τ ′, idτ ′/α, pα] � idτ ′1[τ ′/α], and the result follows.

Case 5: Suppose τ = µα.τ1 and let τ ′1 = τ1[~τ/~β]. Define π = πτσ and note that π

is a fix value. We show by induction that for all i, πi � idµα.τ ′1
. The result follows

by the Least Upper Bound lemma.
The base case is trivial. For the inductive case, assume that πi � idµα.τ ′1

. Sup-
pose ` v : µα.τ ′1. We wish to show that inµα.τ ′1

((πτ1σ[µα.τ ′1, π
i/α, pα])(out v)) �

v. Since πi � idµα.τ ′1
, by the outer induction, πτ1σ[µα.τ ′1, π

i/α, pα] �
idτ ′1[µα.τ ′1/α]. Thus (πτ1σ[µα.τ ′1, π

i/α, pα])(out v) � out v. By congruence,
inµα.τ ′1

((πτ1σ[µα.τ ′1, π
i/α, pα])(out v)) � inµα.τ ′1

(out v). But, v must be of the form
inµα.τ ′1

v′ so inµα.τ ′1
(out v) 7→ inµα.τ ′v

′ = v. Thus inµα.τ ′1
(out v) � v. 2

3.2 Projections Dominate the Identity

To prove that projections applicatively dominate the identity requires a slightly
more complex argument. Intuitively, the evaluation of πτe may result in a term
containing many further occurrences of projections at arbitrary places in the term.
Call each of these a decoration of the underlying term by some number of pro-
jections, and note that πτe is one such decoration. We show that an expression
is applicatively dominated by all of its decorations, from which the result follows
directly.

The decoration of a term is determined by its type. To account for substitution
during type checking, we must consider all possible ways that the type of a term may
arise as a substitution instance of another, which we call factorings. Moreover, for
the sake of the induction we must consider all possible compositions of projections
based on factorings. This leads to the following definitions.

Definition 3.4

• When τ is a type and σ is a substitution on types, we say that (τ, σ) is a factoring
of τ ′ (written τ ′ C (τ, σ)) if τσ = τ ′.

• If ϕ = (τ, [~τ/~α]) is a factoring and the free variables of τ [~τ/~α] are ~β, then πϕ is
defined to be πτ [~τ , id~τ , id ~β

/~α, p~α, p~β
] : τ [~τ/~α]→ τ [~τ/~α].

• We write τ C ϕ1, . . . ϕn to mean τ C ϕi for every 1 ≤ i ≤ n, and we write
πϕ1,...,ϕn [e] to mean πϕ1(· · · (πϕne)),

Proposition 3.5 If ϕ factors τ then for any type substitution σ there exists a
factoring ϕ′ of τσ such that πϕσ = πϕ′.

The possible decorations for a term is determined by a syntax-directed collection
of rules.

Definition 3.6

• The decoration relation Γ ` e C e′ : τ is defined as follows:

Γ ` x C π~ϕ[x] : τ
(Γ(x) = τ and τ C ~ϕ)

Γ ` ∗ C π~ϕ[∗] : 1
(1 C ~ϕ)

Γ, x:τ1 ` e C ē : τ2 Γ ` τ1 type Γ ` τ2 type
Γ ` λx:τ1.e C π~ϕ[λx:τ1.ē] : τ1 → τ2

(x 6∈ Dom(Γ) and τ1 → τ2 C ~ϕ)

Γ ` e1 C ē1 : τ1 → τ2 Γ ` e2 C ē2 : τ1

Γ ` e1e2 C π~ϕ[ē1ē2] : τ2
(τ2 C ~ϕ)

Γ, α ` e C ē : τ

Γ ` Λα.e C π~ϕ[Λα.ē] : ∀α.τ
(α 6∈ Dom(Γ) and ∀α.τ C ~ϕ)

Γ ` e C ē : ∀α.τ Γ ` τ ′ type
Γ ` e[τ ′] C π~ϕ[ē[τ ′]] : τ [τ ′/α]

(τ [τ ′/α] C ~ϕ)

Γ ` e C ē : τ [µα.τ/α]
Γ ` inµα.τe C π~ϕ[inµα.τ ē] : µα.τ

(µα.τ C ~ϕ)

Γ ` e C ē : µα.τ

Γ ` out e C π~ϕ[out ē] : τ [µα.τ/α]
(τ [µα.τ/α] C ~ϕ)

• Since terms have unique types, we may write Γ ` e C e′ (or e C e′ for closed
terms) without ambiguity.

The decoration relation is compositional in the sense that it commutes with
substitution.

Proposition 3.7

• If Γ ` e C ē : τ then Γ ` e : τ and Γ ` ē : τ .
• If Γ, α,Γ′ ` e C ē : τ and Γ ` τ ′ type then Γ, (Γ′[τ ′/α]) ` e[τ ′/α] C ē[τ ′/α] :

τ [τ ′/α].
• If Γ, x:τ1,Γ′ ` e C ē : τ2 and Γ ` e′ C ē′ : τ1 then Γ,Γ′ ` e[e′/x] C ē[ē′/x] : τ2.

The decoration of a value is not a value, but is tantamount to a value.

Lemma 3.8 If ` v : τ then πτv halts.

Proof. By induction on the structure of v, with an inner case analysis on τ . Note
that τ cannot be α.

Case 1: Suppose τ is τ1 → τ2, ∀α.τ ′ or 1. Then πτv halts after a single step.

Case 2: Suppose τ is µα.τ ′. Then v has the form inτv
′, for some v′ where

` v′ : τ ′[τ/α]. Hence:

πτv = (fix f(x:τ):τ. inτ ((πτ ′ [τ, f/α, pα])(outx))) (inτv
′)

7→∗ inτ ((πτ ′ [τ, πτ/α, pα])(out(inτv
′)))

= inτ (πτ ′[τ/α] (out(inτv
′)))

7→ inτ (πτ ′[τ/α] v
′)

By induction πτ ′[τ/α] v
′ halts, and therefore πτv halts as well. 2

Corollary 3.9 If v C ē then ē halts.

Proof. Observe that ē must be of the form π~ϕ v′. The result follows by induction
on ~ϕ, using Lemma 3.8. 2

The next three lemmas are preparation for the coinduction in the proof of Corol-
lary 3.14. We rely on the flexibility in choosing decorations in each case.

Lemma 3.10 Suppose x:τ1 ` e : τ2 and ` v : τ1, and suppose ~ϕ B τ1 → τ2, and
ē B e, and ē′ B v. Then there exists ē′′ such that π~ϕ[λx:τ1.ē]ē′ ≈ ē′′ and ē′′ B e[v/x].

Proof. By induction on ~ϕ. Note that by Corollary 3.9 any decoration of a value
halts, so we may employ beta reduction when any such appears as an argument.

Case 1: Suppose ~ϕ = ε. Then, using beta-reduction:

π~ϕ[λx:τ1.ē]ē′ = (λx:τ1.ē)ē′

≈ ē[ē′/x]

and ē[ē′/x] B e[v/x].

Case 2: Suppose ~ϕ = (α, [τ1 → τ2/α]), ~ϕ′. Then, using beta-reduction:

π~ϕ[λx:τ1.ē]ē′ = (idτ1→τ2 π~ϕ′ [λx:τ1.ē]) ē′

≈ π~ϕ′ [λx:τ1.ē] ē′

The result follows immediately by induction.

Case 3: Suppose ~ϕ = (τ ′1 → τ ′2, σ), ~ϕ′. Then (τ ′1, σ) B τ1 and (τ ′2, σ) B τ2. There-

fore, using beta-reduction:

π~ϕ[λx:τ1.ē]ē′ = (π(τ ′1→τ ′2,σ) π~ϕ′ [λx:τ1.ē]) ē′

≈ π(τ ′2,σ) (π~ϕ′ [λx:τ1.ē] (π(τ ′1,σ)ē
′))

Since π(τ ′1,σ)ē
′ B v, by induction and congruence the latter is equivalent to π(τ ′2,σ) ē′′

for some ē′′ B e[v/x]. Finally, π(τ ′2,σ)ē
′′ B e[v/x]. 2

Lemma 3.11 Suppose α ` e : τ and ` τ ′type, and suppose ~ϕ B ∀α.τ and α ` ē B e.
Then there exists ē′ such that π~ϕ[Λα.ē][τ ′] ≈ ē′ and ē′ B e[τ ′/α].

Proof. By induction on ~ϕ. Note that by Corollary 3.9 any decoration of a value
halts, so we may employ beta reduction when any such appears as an argument.

Case 1: Suppose ~ϕ = ε. Then, using beta-reduction:

π~ϕ[Λα.ē][τ ′] = (Λα.ē)[τ ′]

≈ ē[τ ′/α]

and ē[τ ′/α] B e[τ ′/α].

Case 2: Suppose ~ϕ = (β, [∀α.τ/β]), ~ϕ′. Then, using beta-reduction:

π~ϕ[Λα.ē][τ ′] = (id∀α.τ π~ϕ′ [Λα.ē])[τ ′]

≈ π~ϕ′ [Λα.ē][τ ′]

The result follows immediately by induction.

Case 3: Suppose ~ϕ = (∀α.τ ′′, σ), ~ϕ′. Then, using beta-reduction:

π~ϕ[Λα.ē][τ ′] = (π(∀α.τ ′′,σ) π~ϕ′ [Λα.ē])[τ ′]

≈ (π(τ ′′,σ)[τ ′, idτ ′/α, pα]) (π~ϕ′ [Λα.ē][τ ′])

= π(τ ′′,σ[τ ′/α]) (π~ϕ′ [Λα.ē][τ ′])

By induction and congruence, the latter is equivalent to π(τ ′′,σ[τ ′/α])ē
′ for some ē′ B

e[τ ′/α]. Since (τ ′′, σ[τ ′/α]) factors τ [τ ′/α], we conclude π(τ ′′,σ[τ ′/α])ē
′ B e[τ ′/α]. 2

Lemma 3.12 Suppose ` v : τ [µα.τ/α], and suppose ~ϕ B µα.τ and ē B v. Then
there exists ē′ such that π~ϕ[inµα.τ ē] ≈ inµα.τ ē

′ and ē′ B v.

Proof. By induction on ~ϕ. Note that by Corollary 3.9 any decoration of a value
halts, so we may employ beta reduction when any such appears as an argument.
Also note that inµα.τe↓ whenever e↓.

Case 1: Suppose ~ϕ = ε. Then the result is immediate; choosing ē′ = ē.

Case 2: Suppose ~ϕ = (α, [µα.τ/α]), ~ϕ′. Then, using induction, congruence, and
beta-reduction:

π~ϕ[inµα.τ ē] = idµα.τπ~ϕ′ [inµα.τ ē]

≈ idµα.τ (inµα.τ ē
′)

≈ inµα.τ ē
′

for some ē′ B v.

Case 3: Suppose ~ϕ = (µα.τ ′, σ), ~ϕ′. Then, using induction, congruence, and
beta-reduction:

π~ϕ[inµα.τ ē] = π(µα.τ ′,σ) π~ϕ′ [inµα.τ ē]

≈ π(µα.τ ′,σ) (inµα.τ ē
′)

≈ inµα.τ ((π(τ ′,σ)[µα.τ, π(µα.τ ′,σ)/α, pα]) (out(inµα.τ ē
′)))

= inµα.τ (π(τ ′[µα.τ ′/α],σ) (out(inµα.τ ē
′)))

≈ inµα.τ (π(τ ′[µα.τ ′/α],σ) ē′)

for some ē′ B v. Finally, (τ ′[µα.τ ′/α], σ) B τ [µα.τ/α] so π(τ ′[µα.τ ′/α],σ)ē
′ B v. 2

It is crucial to the argument that decoration respect evaluation.

Lemma 3.13 If e1 7→ e2 then for all ē1 B e1 there exists ē2 B e2 such that ē1 ≈ ē2.

Proof. By induction on e1.

Case 1: Suppose e1 is λx:τ1.e
′
1, Λα.e′1, or ∗. Then e1 67→ e2.

Case 2: Suppose e1 is inµα.τe
′
1. Then e2 is inµα.τe

′
2 where e′1 7→ e′2. Also, ē1

is of the form π~ϕ[inµα.τ ē
′
1] for some ~ϕ B µα.τ and ē′1 B e′1. By induction there

exists ē′2 B e′2 such that ē′1 ≈ ē′2. Then ē1 ≈ π~ϕ[inµα.τ ē
′
2] by congruence and

e2 C π~ϕ[inµα.τ ē
′
2].

Case 3: Suppose e1 is e′1e where e′1 is not a value. Then e2 is e′2e where e′1 7→ e′2.
Let ` e1 : τ . Then ē1 is of the form π~ϕ[ē′1ē] for some ~ϕ B τ , ē′1 B e′1, and ē B e. By
induction there exists ē′2 B e′2 such that ē′1 ≈ ē′2. Then ē1 ≈ π~ϕ[ē′2ē] by congruence
and e2 C π~ϕ[ē′2ē]. The cases where e1 is v e′1, e′1[τ], or out e′1, where e′1 is not a
value, are similar.

Case 4: Suppose e1 is (λx:τ1.e)v, where x:τ1 ` e : τ2. Then e2 is e[v/x]. Also,
ē1 is of the form π~ϕ′ [π~ϕ[λx:τ1.ē]ē′] for some ~ϕ B τ1 → τ2, ~ϕ′ B τ2, x:τ1 ` ē B e,
and ē′ B v. By Lemma 3.10, π~ϕ[λx:τ1.ē]ē′ ≈ ē′′ for some ē′′ B e2. By congruence,
ē1 ≈ π~ϕ′ [ē′′] and π~ϕ′ [ē′′] B e2.

Case 5: Suppose e1 is out(inµα.τv). Then e2 is v. Also, ē1 is of the form
π~ϕ′ [out(π~ϕ[inµα.τ ē

′])] for some ~ϕ B µα.τ , ~ϕ′ B τ [µα.τ/α], and ē B v. By
Lemma 3.12, π~ϕ[inµα.τ ē] ≈ inµα.τ ē

′ for some ē′ B v. By congruence and
beta-reduction, out(π~ϕ[inµα.τ ē]) ≈ ē′. Finally, by congruence, ē1 ≈ π~ϕ′ [ē′] and

π~ϕ′ [ē′] B v.

Case 6: Suppose e1 is (Λα.e)[τ ′]. Then e2 is e[τ ′/α]. Let ` Λα.e : ∀α.τ and note
that τ ′ is closed (since ` τ ′ type). Then ē1 is of the form π~ϕ′ [π~ϕ[Λα.ē][τ ′]] for some
~ϕ B ∀α.τ , ~ϕ′ B τ [τ ′/α], and α ` ē B e. By Lemma 3.11, π~ϕ[Λα.ē][τ ′] ≈ ē′ for some
ē′ B e2. By congruence, ē1 ≈ π~ϕ′ [ē′] and π~ϕ′ [ē′] B e2. 2

Corollary 3.14 If e C ē then e � ē.

Proof. First we establish that if e C ē and e↓ then ē↓. Suppose e 7→∗ v. By
Lemma 3.13 and an easy induction, there exists ē′ B v such that ē ≈ ē′. By
Corollary 3.9, ē′↓, and hence ē↓.

The proof now proceeds by coinduction (Lemma 2.9). The first condition has just
been established; the others are immediate from the compositionality of decoration
(Proposition 3.7). 2

The main theorem of this section states that the projections associated to each
type are the identity at that type. This expresses the universal property of recursive
types in an operational setting.

Theorem 3.15 (Syntactic Minimal Invariance) Suppose Γ ` τ type, and let
σ be a substitution such that for all α ∈ Dom(Γ), ` σ(α) type and σ(pα) ≈ idσ(α).
Then σ(πτ) ≈ idσ(τ).

Proof. By Lemma 3.3, σ(πτ) � idσ(τ). Note that idσ(τ) and σ(πτ) halt. Thus,
to show idσ(τ) � σ(πτ) it is sufficient to show that v � σ(πτ)v for all v such that
` v : σ(τ). Suppose ` v : σ(τ). Clearly (τ, σ) is a factoring of σ(τ), so v C (σ(πτ))v.
By Corollary 3.14, v � (σ(πτ))v. 2

4 The Logical Interpretation

The method of logical relations associates a relational action to each type construc-
tor in such a way that (a) every type is assigned a relational interpretation, and (b)
every well-typed term stands in the relation assigned to its type. In the presence
of impredicative polymorphism and unrestricted recursion the assignment of the
relational action requires a combination of Girard’s Method [8] and Pitts’s analysis
of relational properties of domains [19], adapted to the operational setting [4].

4.1 Construction of the Relational Interpretation

The type-pair-indexed, partially ordered sets of admissible relations and birelations
are defined as follows. Admissible relations are ordered by inclusion as usual, and
(−)op reverses a set’s ordering. For notational convenience, we restrict our attention
to binary relations.

ARelτ1,τ2
def= {R ⊆ ECV τ1,τ2 | R is strict and admissible}

Birelτ1,τ2
def= ARelopτ1,τ2 ×ARelτ1,τ2

Note that ARelτ1,τ2 and Birelτ1,τ2 both form complete lattices.

Definition 4.1 Suppose S is a set of type variables. A type environment over S is a
function from S to pairs of well-formed (closed) types. A relation environment over
S is a function from S to strict, admissible relations and a birelation environment
over S is a function from S to birelations. A relation environment χ over S respects
a type environment δ over S if, for all α ∈ S, χ(α) ∈ ARelδ(α). Similarly, a
birelation environment η over S respects a type environment δ over S if, for all α ∈
S, η(α) ∈ Birel δ(α). Relation and birelation environments are ordered pointwise.

Definition 4.2 If S is a set of type variables, then TEnvS is defined to be the set of
type environments over S. We will use contexts as sets of type variables by ignoring
their value variables. If δ is a type environment, then REnv δ is defined to be the
set of relation environments over Dom(δ) that respect δ, and BEnv δ is defined to
be the set of birelation environments over Dom(δ) that respect δ.

Notation Type environments are used as pairs of substitutions over types (result-
ing in pairs of types) in the obvious manner. When δ is a type environment over
S, we also write δleft and δright for the substitutions returning the left and right
components of δ(α) on each α ∈ S.
Notation Suppose η is a birelation environment and, for all α ∈ Dom(η), η(α) =
(R−

α , R+
α). Then ηop is the birelation environment defined by ηop(α) def= (R+

α , R−
α),

and η+ and η− are the relation environments defined by η±(α) def= R±
α .

We can now define the primary tool for building logical relations:

Definition 4.3 Suppose Γ ` τ type, δ ∈ TEnvΓ, and η ∈ BEnv δ. Then the
relational interpretation of τ , written [[τ]]δη (and intended to belong to ARelδ(τ),
according to Lemma 4.4), is defined as in Figure 6.

In the definition of the relational interpretation we permit η to be any member
of BEnv δ; in particular, we permit η− and η+ to differ. However, we are ultimately
interested in the logical interpretation only in the case when η = ηop. With the
exception of a few early lemmas, we will restrict our attention to that case.

Lemma 4.4 Suppose Γ ` τ type, δ ∈ TEnvΓ, and η ∈ BEnv δ. Then [[τ]]δη is
well-defined, respects applicative equivalence, and belongs to ARelδ(τ). Moreover, if
η′ ∈ BEnv δ and η v η′ then [[τ]]δη v [[τ]]δη′.

Proof. By induction on τ . 2

Definition 4.5 Suppose τ, τ ′ ∈ Type and R1, R2 ∈ Relτ,τ ′. Then f, f ′ : R1 v R2 if
` f : τ → τ and ` f ′ : τ ′ → τ ′ and (for all e ∈ Expτ , e′ ∈ Expτ ′) e R1 e′ implies
f e R2 f ′ e′.

Lemma 4.6 Suppose τ, τ ′ ∈ Type, R1, R2 ∈ Relτ,τ ′, and R2 is admissible. Then
the set {(f, f ′) | f, f ′ : R1 v R2} is admissible.

Proof. Let S = {(f, f ′) | f, f ′ : R1 v R2}. Suppose (e, e′) ∈ R1. Then ⊥τ→τ e ≈
⊥τ and ⊥τ ′→τ ′ e

′ ≈ ⊥τ ′ . Therefore (⊥τ→τe,⊥τ ′→τ ′e
′) ∈ R2, since R2 is pointed.

Hence ⊥τ→τ ,⊥τ ′→τ ′ : R1 v R2, so S is pointed.

[[α]]δη
def= η+(α)

[[1]]δη
def= {(e1, e2) ∈ ECV 1,1 | e1↓⇔ e2↓ }

[[τ1 → τ2]]
δ
η

def= {(e1, e2) ∈ ECV δ(τ1→τ2) |

e1↓⇔ e2↓ ∧

∀e′1, e′2 ∈ ECV δ(τ1). (e′1, e
′
2) ∈ [[τ1]]

δ
ηop ⇒ (e1e

′
1, e2e

′
2) ∈ [[τ2]]

δ
η}

[[∀α.τ]]δη
def= {(e1, e2) ∈ ECV δ(∀α.τ) |

e1↓⇔ e2↓ ∧

∀τ1, τ2 ∈ Type.∀R ∈ ARelτ1,τ2 . (e1[τ1], e2[τ2]) ∈ [[τ]]δ[α 7→(τ1,τ2)]
η[α 7→(R,R)] }

where α 6∈ Dom(δ)

[[µα.τ]]δη
def= ∆+

where (∆−,∆+) = lfp Ψ§

and Ψ§(R−, R+) = (Ψηop(R+, R−),Ψη(R−, R+))

and Ψη(R−, R+) = {(e1, e2) ∈ ECV δ(µα.τ) |

(out e1, out e2) ∈ [[τ]]δ[α 7→δ(µα.τ)]
η[α 7→(R−,R+)]

}

and α 6∈ Dom(δ)

Fig. 6. The Relational Interpretation

Let w:τ1 → τ2 ` g : τ → τ and w:τ1 → τ2 ` g′ : τ ′ → τ ′ and let ` h : (τ1 →
τ2) → τ1 → τ2 and ` h′ : (τ ′1 → τ ′2) → τ ′1 → τ ′2. Suppose for all i there exists j ≥ i

such that (gh[j], g′h
′[j]) ∈ S. We wish to show that (gh[ω], g′h

′[ω]) ∈ S. Suppose
(e, e′) ∈ R1. Then, recalling the definition of S, for all i there exists j ≥ i such
that (gh[j]e, g′h

′[j]e′) ∈ R2. Since R2 is complete, (gh[ω]e, g′h
′[ω]e′) ∈ R2. Hence

gh[ω], g′h
′[ω] : R1 v R2, as desired. 2

Lemma 4.7 Suppose Γ ` τ type, δ ∈ TEnvΓ, η1, η2 ∈ BEnv δ, and σleft , σright are
substitutions on terms such that Dom(σleft) = Dom(σright) = {pα | α ∈ Dom(Γ)}.
Additionally, suppose that, for all α ∈ Dom(Γ), σleft(pα), σright(pα) : η+

1 (α) v η+
2 (α)

and σleft(pα), σright(pα) : η−2 (α) v η−1 (α). Then σleft(δleft(πτ)), σright(δright(πτ)) :
[[τ]]δη1

v [[τ]]δη2
.

Proof. For any τ , let π̄τ = σleft(δleft(πτ)) and π̄′τ = σright(δright(πτ)).

Case 1: Suppose τ is α. Then π̄α = σleft(pα) and π̄′α = σright(pα), and by
assumption σleft(pα), σright(pα) : η+

1 (α) v η+
2 (α), but [[α]]δηi

= η+
i (α). Therefore

π̄α, π̄′α : [[α]]δη1
v [[α]]δη2

.

Case 2: Suppose τ is 1. Note that π̄1 = π̄′1 = π1 = λx:1.∗. Suppose (e1, e2) ∈
[[1]]δη1

. Then e1↓⇔ e2↓. Suppose π̄1e1↓. Then e1↓, so e2↓ so π̄′1e2↓. Similarly π̄′1e2↓
implies π̄1e1↓. Thus (π̄1e1, π̄

′
1e2) ∈ [[1]]δη2

and consequently π̄1, π̄
′
1 : [[1]]δη1

v [[1]]δη2
.

Case 3: Suppose τ is τ1 → τ2. Suppose (e1, e2) ∈ [[τ1 → τ2]]
δ
η1

. When
called, π̄τ1→τ2 and π̄′τ1→τ2 immediately return values, so π̄τ1→τ2e1↓⇔ e1↓⇔ e2↓⇔
π̄′τ1→τ2e2↓. Suppose (e′1, e

′
2) ∈ [[τ1]]

δ
ηop
2

. By induction π̄τ1 , π̄
′
τ1 : [[τ1]]

δ
ηop
2
v [[τ1]]

δ
ηop
1

,

so (π̄τ1e
′
1, π̄

′
τ1e

′
2) ∈ [[τ1]]

δ
ηop
1

. Therefore (e1(π̄τ1e
′
1), e2(π̄′τ1e

′
2)) ∈ [[τ2]]

δ
η1

. By induc-

tion π̄τ2 , π̄
′
τ2 : [[τ2]]

δ
η1

v [[τ2]]
δ
η2

, so (π̄τ2(e1(π̄τ1e
′
1)), π̄

′
τ2(e2(π̄′τ1e

′
2))) ∈ [[τ2]]

δ
η2

. Since
π̄τ1→τ2e1e

′
1 ≈ π̄τ2(e1(π̄τ1e

′
1)) and π̄′τ1→τ2e2e

′
2 ≈ π̄′τ2(e2(π̄′τ1e

′
2)), we may conclude

that (π̄τ1→τ2e1e
′
1, π̄

′
τ1→τ2e2e

′
2) ∈ [[τ2]]

δ
η2

, and thus (π̄τ1→τ2e1, π̄
′
τ1→τ2e2) ∈ [[τ1 → τ2]]

δ
η2

.
Therefore π̄τ1→τ2 , π̄

′
τ1→τ2 : [[τ1 → τ2]]

δ
η1
v [[τ1 → τ2]]

δ
η2

.

Case 4: Suppose τ is ∀α.τ ′ (choosing so that α 6∈ Dom(Γ)). Suppose
(e1, e2) ∈ [[∀α.τ ′]]δη1

. When called, π̄∀α.τ ′ and π̄′∀α.τ ′ immediately return val-
ues, so π̄∀α.τ ′e1↓⇔ e1↓⇔ e2↓⇔ π̄′∀α.τ ′e2↓. Suppose τ1, τ2 ∈ Type and R ∈
ARelτ1,τ2 . Let δ′ = δ[α 7→ (τ1, τ2)], η′i = ηi[α 7→ (R,R)], σ′left = σ[pα 7→
idτ1], and σ′right = σ[pα 7→ idτ2]. Then (e1[τ1], e2[τ2]) ∈ [[τ ′]]δ

′

η′1
. Certainly

idτ1 , idτ2 : R v R, so by induction σ′left(δ
′
left(πτ ′)), σ′right(δ

′
right(πτ ′)) : [[τ ′]]δ

′

η′1
v

[[τ ′]]δ
′

η′2
. Then (σ′left(δ

′
left(πτ ′))(e1[τ1]), σ′right(δ

′
right(πτ ′))(e2[τ2])) ∈ [[τ ′]]δ

′

η′2
. Rearrang-

ing, (π̄∀α.τ ′ e1[τ1], π̄′∀α.τ ′ e2[τ2]) ∈ [[τ ′]]δ
′

η′2
, and thus (π̄∀α.τ ′ e1, π̄

′
∀α.τ ′ e2) ∈ [[∀α.τ ′]]δη2

.

Therefore π̄∀α.τ ′ , π̄
′
∀α.τ ′ : [[∀α.τ ′]]δη1

v [[∀α.τ ′]]δη2
.

Case 5: Suppose τ is µα.τ ′ (choosing so that α 6∈ Dom(Γ)). Let Ψη be de-
fined as in Definition 4.3, let Ψ§

i (R
−, R+) = (Ψηop

i
(R+, R−),Ψηi(R

−, R+)), and

let (∆−
i ,∆+

i) = lfp Ψ§
i . Note that [[µα.τ ′]]δηi

= ∆+
i . We show by fixed point in-

duction that π̄µα.τ ′ , π̄
′
µα.τ ′ : ∆+

1 v ∆+
2 and π̄µα.τ ′ , π̄

′
µα.τ ′ : ∆−

2 v ∆−
1 . (Note

that the relation {(f, g) | f, g : ∆+
1 v ∆+

2 and f, g : ∆−
2 v ∆−

1 } is admissi-
ble by Lemma 4.6 since the set of admissible relations is closed under intersec-
tion.) Certainly λx.⊥, λx.⊥ : ∆+

1 v ∆+
2 and λx.⊥, λx.⊥ : ∆−

2 v ∆−
1 , since ∆+

2

and ∆−
1 are pointed. Suppose, for fixed point induction, that f, g : ∆+

1 v ∆+
2

and f, g : ∆−
2 v ∆−

1 . Let f ′ = λx:δleft(τ).inδleft (τ)(π̄τ ′ [δleft(τ), f/α, pα](outx))
and g′ = λx:δright(τ).inδright (τ)(π̄′τ ′ [δright(τ), g/α, pα](outx)). We wish to show that
f ′, g′ : ∆+

1 v ∆+
2 and f ′, g′ : ∆−

2 v ∆−
1 .

Suppose (e1, e2) ∈ ∆+
1 . Let δ′ = δ[α 7→ δ(µα.τ ′)], η′i = ηi[α 7→ (∆−

i ,∆+
i)], σ′left =

σleft [pα 7→ f] and σ′right = σright [pα 7→ g]. Since ∆+
1 = Ψη1(∆

−
1 ,∆+

1), it follows that

(out e1, out e2) ∈ [[τ ′]]δ
′

η′1
. Now let π̄ = σ′left(δ

′
left(πτ ′)) and π̄′ = σ′right(δ

′
right(πτ ′)).

By induction, π̄, π̄′ : [[τ ′]]δ
′

η′1
v [[τ ′]]δ

′

η′2
. It follows that (π̄(out e1), π̄′(out e2)) ∈

[[τ ′]]δ
′

η′2
, so (out(inδleft (τ)(π̄(out e1))), out(inδright (τ)(π̄′(out e2)))) ∈ [[τ ′]]δ

′

η′2
. Thus

(inδleft (τ)(π̄(out e1)), inδright (τ)(π̄′(out e2))) ∈ ∆+
2 . Rearranging, (f ′e1, g

′e2) ∈ ∆+
2 .

Thus, f ′, g′ : ∆+
1 v ∆+

2 .

Symmetrically, suppose (e1, e2) ∈ ∆−
2 . Since ∆−

2 = Ψηop
2

(∆+
2 ,∆−

2),

it follows that (out e1, out e2) ∈ [[τ ′]]δ
′

η′op2
. Again by induction, π̄, π̄′ :

[[τ ′]]δ
′

η′op2
v [[τ ′]]δ

′

η′op1
. Then (π̄(out e1), π̄′(out e2)) ∈ [[τ ′]]δ

′

η′op1
. Thus

(inδleft (τ)(π̄(out e1)), inδright (τ)(π̄′(out e2))) ∈ ∆−
1 . Rearranging, (f ′e1, g

′e2) ∈ ∆−
1 .

Thus f ′, g′ : ∆−
2 v ∆−

1 .
By fixed point induction we may conclude that π̄µα.τ ′ , π̄

′
µα.τ ′ : ∆+

1 v ∆+
2 . (Also

that π̄µα.τ ′ , π̄
′
µα.τ ′ : ∆−

2 v ∆−
1 , but we do not need this fact.) That is, π̄µα.τ ′ , π̄

′
µα.τ ′ :

[[µα.τ ′]]δη1
v [[µα.τ ′]]δη2

, as desired. 2

As a corollary we can obtain the main lemma needed to prove the unrolling
theorem. It states that the syntactic projection function πτ takes [[τ]]ηop to [[τ]]η.
Combined with Syntactic Minimal Invariance, this gives that [[τ]]ηop v [[τ]]η. For
convenience, the lemma is stated in a slightly stronger fashion than needed. It
allows η− and η+ to differ on any argument, but in our use of the lemma, they
differ on at most a single argument. (In fact, when all is said and done they can be
shown to agree on that argument as well.)

Corollary 4.8 (Main Lemma) Suppose Γ ` τ type, δ ∈ TEnvΓ, η ∈ BEnv δ,
and σleft , σright are substitutions on terms such that Dom(σleft) = Dom(σright) =
{pα | α ∈ Dom(Γ)}. Suppose further that, for all α ∈ Dom(Γ), σleft(pα), σright(pα) :
η−(α) v η+(α). Then σleft(δleft(πτ)), σright(δright(πτ)) : [[τ]]δηop v [[τ]]δη.

Proof. Immediate from Lemma 4.7, using η1 = ηop and η2 = η. 2

Lemma 4.9 (Compositionality) Suppose Γ, α ` τ type, Γ ` τ ′ type, δ ∈ TEnvΓ,
and η ∈ BEnv δ. Then:

[[τ [τ ′/α]]]δη = [[τ]]δ[α 7→δ(τ ′)]

η[α 7→([[τ ′]]δηop ,[[τ ′]]δη)]

Proof. By induction on τ . 2

Next is the key result of the construction:

Theorem 4.10 (Unrolling) Suppose Γ, α ` τ type, δ ∈ TEnvΓ, and η ∈
BEnv δ, and suppose that η = ηop. Then [[µα.τ]]δη = {(e1, e2) ∈ ECV δ(µα.τ) |
(out e1, out e2) ∈ [[τ [µα.τ/α]]]δη}.

Proof. Let ∆−, ∆+, Ψ§, and Ψη be defined as in Definition 4.3. Note that
(∆−,∆+) = Ψ§(∆−,∆+) = (Ψηop(∆+,∆−),Ψη(∆−,∆+)). We claim that ∆− =
∆+. It then follows that:

[[µα.τ]]δη = ∆+

= Ψη(∆+,∆+)

= {(e1, e2) ∈ ECV δ(µα.τ) | (out e1, out e2) ∈ [[τ]]δ[α 7→δ(µα.τ)]
η[α 7→(∆+,∆+)]

}

= {(e1, e2) ∈ ECV δ(µα.τ) | (out e1, out e2) ∈ [[τ [µα.τ/α]]]δη}

We freely use the fact that η = ηop. The last line follows by Lemma 4.9. It remains
to prove the claim. We will first show that ∆+ v ∆− (this will be easy) and then
show that ∆− v ∆+ (this is the main technical point).

For the first inclusion, observe that (∆+,∆−) is a fixed point of Ψ§:

Ψ§(∆+,∆−) = (Ψηop(∆−,∆+),Ψη(∆+,∆−))

= (Ψη(∆−,∆+),Ψηop(∆+,∆−))

= (∆+,∆−)

Since (∆−,∆+) is the least fixed point of Ψ§, it follows that (∆−,∆+) v (∆+,∆−).
By the ordering on birelations this means that ∆+ v ∆−.

For the second inclusion, let σleft(pβ) = id δleft (β) and σright(pβ) =
id δright (β) for all β ∈ Dom(Γ). We show by fixed point induction that
σleft(δleft(πµα.τ)), σright(δright(πµα.τ)) : ∆− v ∆+. Certainly λx.⊥ : ∆− v ∆+,
since ∆+ is pointed. Suppose, for fixed point induction, that f, g : ∆− v ∆+.
Let δ′ = δ[α 7→ δ(µα.τ)], let η′ = η[α 7→ (∆−,∆+)], and let σ′left = σleft [pα 7→ f]
and σ′right = σright [pα 7→ g]. Suppose (e, e′) ∈ ∆− = Ψηop(∆+,∆−). Then

(out e, out e′) ∈ [[τ]]δ
′

η′op . Since η = ηop, id δleft (β), id δright (β) : η−(β) v η+(β), for all
β ∈ Dom(Γ). Therefore, by Corollary 4.8, (σ′(δ′(πτ))(out e), σ′(δ′(πτ))(out e′)) ∈
[[τ]]δ

′

η′ . It is then easy to show that (f ′e, g′e′) ∈ ∆+ where
f ′ = λx:δleft(µα.τ).inδleft (µα.τ)(σleft(δleft(πτ [µα.τ, f/α, pα]))(outx)) and
g′ = λx:δright(µα.τ).inδright (µα.τ)(σright(δright(πτ [µα.τ, g/α, pα]))(outx)).
Therefore f ′, g′ : ∆− v ∆+, and by fixed point induction
σleft(δleft(πµα.τ)), σright(δright(πµα.τ)) : ∆− v ∆+. Syntactic Minimal Invariance
dictates that σleft(δleft(πµα.τ)) ≈ id δleft (µα.τ) and σright(δright(πµα.τ)) ≈ id δright (µα.τ).
Since ∆+ must respect applicative equivalence, we conclude that ∆− v ∆+. 2

Notation Suppose χ is a relation environment. We will view χ as a birelation
by mapping each α to the pair (χ(α), χ(α)). Thus we may speak of [[τ]]δχ, the
interpretation of a type relative to a relation environment.

4.2 The Fundamental Theorem

Definition 4.11 We write ` δ, χ, σleft , σright : Γ to mean that δ is a type environ-
ment over Γ, that χ is a relation environment respecting δ, and that σleft and σright

are substitutions for the term variables bound by Γ such that for every x:τ ∈ Γ,
(σleft(x), σright(x)) ∈ [[τ]]δχ.

Definition 4.12 Suppose Γ ` e, e′ : τ . Then e and e′ are logically equiva-
lent in Γ and at τ (written Γ ` e ⇔ e′ : τ) if for any ` δ, χ, σleft , σright : Γ,
(σleft(δleft(e)), σright(δright(e′))) ∈ [[τ]]δχ.

Theorem 4.13 (Fundamental Theorem of Logical Relations)
Suppose Γ ` e : τ . Then Γ ` e ⇔ e : τ .

Proof. By induction on the derivation of Γ ` e : τ . Let ` δ, χ, σleft , σright : Γ be
arbitrary.

Case 1: Suppose the last rule applied is:

` Γ context Γ(x) = τ

Γ ` x : τ

The result is immediate from the assumption.

Case 2: Suppose the last rule applied is:

` Γ context
Γ ` ∗ : 1

Then σleft(∗) = ∗ = σright(∗), and (∗, ∗) ∈ [[1]]δχ.

Case 3: Suppose the last rule applied is:

Γ, x:τ ` e : τ ′

Γ ` λx:τ.e : τ → τ ′

Let σleft(δleft(λx:τ.e)) be λx:τ1.e1, and let σright(δright(λx:τ.e)) be λx:τ2.e2. Note
that both terms halt. Now suppose (e′1, e

′
2) ∈ [[τ]]δχ. We wish to show that

((λx:τ1.e1)e′1, (λx:τ2.e2)e′2) ∈ [[τ ′]]δχ.

Suppose e′1 diverges. Since [[τ]]δχ is strict, e′2 diverges as well. Thus (λx:τ1.e1)e′1 ≈
⊥ and (λx:τ2.e2)e′2 ≈ ⊥. Since [[τ ′]]δχ is admissible (and hence pointed), (⊥,⊥) ∈
[[τ ′]]δχ. The result follows since the logical interpretations are closed under applicative
equivalence.

Alternatively, suppose e′1 halts. Then e′2 halts as well. Thus (λx:τ1.e1)e′1 ≈
e1[e′1/x] and (λx:τ2.e2)e′2 ≈ e2[e′2/x]. Let σ′left be σleft [x 7→ e′1] and let
σ′right be σright [x 7→ e′2]. Then ` δ, χ, σ′left , σ

′
right : (Γ, x:τ). By induction,

(σ′left(δleft(e)), σ′right(δright(e))) ∈ [[τ ′]]δχ. That is, (e1[e′1/x], e2[e′2/x]) ∈ [[τ ′]]δχ. The
result follows by closure under applicative equivalence.

Case 4: Suppose the last rule applied is:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

By induction, (σleft(δleft(e1)), σright(δright(e1))) ∈ [[τ1 → τ2]]
δ
χ

and (σleft(δleft(e2)), σright(δright(e2))) ∈ [[τ1]]
δ
χ. Therefore

(σleft(δleft(e1))σleft(δleft(e2)), σright(δright(e1))σright(δright(e2))) ∈ [[τ2]]
δ
χ. That

is, (σleft(δleft(e1e2)), σright(δright(e1e2))) ∈ [[τ2]]
δ
χ.

Case 5: Suppose the last rule applied is:

Γ, α ` e : τ

Γ ` Λα.e : ∀α.τ

Let σleft(δleft(Λα.e)) be Λα.e1, and let σright(δright(Λα.e)) be Λα.e2. Note that
both terms halt. Now suppose τ1, τ2 ∈ Type, and suppose R ∈ ARelτ1,τ2 . Let
δ′ be δ[α 7→ (τ1, τ2)] and let χ′ be χ[α 7→ R]. Then we wish to show that
((Λα.e1)[τ1], (Λα.e2)[τ2]) ∈ [[τ]]δ

′

χ′ .
Observe that (Λα.e1)[τ1] ≈ e1[τ1/α] and (Λα.e2)[τ2] ≈ e2[τ2/α]. Also, δ′ is a

type environment over (Γ, α), and χ′ respects δ′, so ` δ′, χ′, σleft , σright : (Γ, α). By
induction, (σleft(δ′left(e)), σright(δ′right(e))) ∈ [[τ]]δ

′

χ′ . That is, (e1[τ1/α], e2[τ2/α]) ∈
[[τ]]δ

′

χ′ . The result then follows by closure under applicative equivalence.

Case 6: Suppose the last rule applied is:

Γ ` e : ∀α.τ ′ Γ ` τ type
Γ ` e[τ] : τ ′[τ/α]

By induction, (σleft(δleft(e)), σright(δright(e))) ∈ [[∀α.τ ′]]δχ. Therefore:

(σleft(δleft(e))[δleft(τ)], σright(δright(e))[δright(τ)]) ∈ [[τ ′]]δ[α 7→δ(τ)]

χ[α 7→[[τ]]δχ]

That is, using substitution and rearranging:

(σleft(δleft(e[τ])), σright(δright(e[τ]))) ∈ [[τ ′[τ/α]]]δχ

Case 7: Suppose the last rule applied is:

Γ ` e : τ [µα.τ/α]
Γ ` inµα.τe : µα.τ

Let σleft(δleft(e)) be e1, and let σright(δright(e)) be e2. Then, using the Unrolling
Lemma, it suffices to show that (out(in e1), out(in e2)) ∈ [[τ [µα.τ/α]]]δχ. Observe
that out(in e1) ≈ e1 and out(in e2) ≈ e2. By induction, (e1, e2) ∈ [[τ [µα.τ/α]]]δχ.
The result then follows by closure under applicative equivalence.

Case 8: Suppose the last rule applied is:

Γ ` e : µα.τ

Γ ` out e : τ [µα.τ/α]

By induction, (σleft(δleft(e)), σright(δright(e))) ∈ [[µα.τ]]δχ. Using the Unrolling
Lemma, (outσleft(δleft(e)), outσright(δright(e))) ∈ [[τ [µα.τ/α]]]δχ. The result then
follows by rearrangement. 2

Theorem 4.14 (Applicative Equivalence implies Logical Equivalence)
If Γ ` e ≈ e′ : τ then Γ ` e ⇔ e′ : τ .

Proof. Suppose Γ ` e ≈ e′ : τ and let ` δ, χ, σleft , σright : Γ be arbitrary. By
the Fundamental Theorem, (σleft(δleft(e)), σright(δright(e))) : [[τ]]δχ. By the definition
of applicative equivalence on open terms, σright(δright(e)) ≈ σright(δright(e′)). Since

C : (Γ′ ` τ ′) ⇒ (Γ ` τ)

[] : (Γ ` τ) ⇒ (Γ ` τ)
C : (Γ′ ` τ ′) ⇒ (Γ, x:τ1 ` τ2)

λx:τ1.C : (Γ′ ` τ ′) ⇒ (Γ ` τ1 → τ2)

C : (Γ′ ` τ ′) ⇒ (Γ ` τ1 → τ2) Γ ` e : τ1

C e : (Γ′ ` τ ′) ⇒ (Γ ` τ2)

C : (Γ′ ` τ ′) ⇒ (Γ ` τ1) Γ ` e : τ1 → τ2

eC : (Γ′ ` τ ′) ⇒ (Γ ` τ2)

C : (Γ′ ` τ ′) ⇒ (Γ, α ` τ)
Λα.C : (Γ′ ` τ ′) ⇒ (Γ ` ∀α.τ)

C : (Γ′ ` τ ′) ⇒ (Γ ` ∀α.τ1) Γ ` τ2 type
C[τ2] : (Γ′ ` τ ′) ⇒ (Γ ` τ1[τ2/α])

C : (Γ′ ` τ ′) ⇒ (Γ ` τ [µα.τ/α])
inµα.τC : (Γ′ ` τ ′) ⇒ (Γ ` µα.τ)

C : (Γ′ ` τ ′) ⇒ (Γ ` µα.τ)
outC : (Γ′ ` τ ′) ⇒ (Γ ` τ [µα.τ/α])

Fig. 7. Context Typing

[[τ]]δχ respects applicative equivalence, (σleft(δleft(e)), σright(δright(e′))) : [[τ]]δχ. Hence
Γ ` e ⇔ e′ : τ . 2

5 Contextual Equivalence

Two open expressions of the same type are contextually equivalent [18] if and only
if they are indistinguishable by closing contexts of unit type in that the result
closed programs either both halt or both diverge. Contextual equivalence, logical
equivalence, and applicative equivalence coincide for our language.

To begin with we define the syntax of contexts by the following grammar:

Contexts C ::= [] | λx:τ.C | Ce | eC | Λα.C | C[τ] | inµα.τC | outC

Instantiation of contexts (written C[e]) and composition of contexts (written
C ◦ C ′) are defined in the usual manner. Typing rules for contexts are given in
Figure 7.

Proposition 5.1

• If C : (Γ′ ` τ ′) ⇒ (Γ ` τ) and Γ′ ` e : τ ′ then Γ ` C[e] : τ .
• If C : (Γ2 ` τ2) ⇒ (Γ1 ` τ1) and C ′ : (Γ3 ` τ3) ⇒ (Γ2 ` τ2) then C ◦ C ′ : (Γ3 `

τ3) ⇒ (Γ1 ` τ1).

Two terms are contextually equivalent if no type-appropriate context can dis-
tinguish them:

Definition 5.2 (Contextual Equivalence) Suppose Γ ` e, e′ : τ . Then e and e′

are contextually equivalent in Γ and at τ (written Γ ` e ∼= e′ : τ) if C[e] halts if and
only if C[e′] halts, for every C : (Γ ` τ) ⇒ (ε ` 1).

Proposition 5.3 Contextual equivalence is reflexive (over appropriately typed
terms), symmetric, and transitive.

A type-indexed equivalence is consistent iff it relates two closed expressions of
unit type only if they either both diverge or both converge.

Proposition 5.4 Contextual equivalence is the coarsest consistent congruence on
terms.

5.1 Contextual Equivalence implies Applicative Equivalence

The conditions defining applicative equivalence amount to consideration of partic-
ular contexts. It is therefore no finer than contextual equivalence, and can be no
coarser, since it is a consistent congruence.

Lemma 5.5 If ` e ∼= e′ : τ then ` e ≈ e′ : τ .

Proof. By Lemma 2.9, it suffices to check four conditions:

• Suppose ` e ∼= e′ : τ and e halts. Observe that (λx:τ.∗)[] : (ε ` τ) ⇒ (ε ` 1), so
(λx:τ.∗)e halts if and only if (λ:τ.∗)e′ halts. Therefore e′ halts.

• Suppose ` e ∼= e′ : τ1 → τ2 and ` v : τ1. Let C : (ε ` τ2) ⇒ (ε ` 1) be arbitrary.
Then C ◦ ([]v) : (ε ` τ1 → τ2) ⇒ (ε ` 1). By contextual equivalence of e and e′,
it follows that C[ev] halts if and only if C[e′v] halts.

• The remaining cases are similar

Thus ` e ∼= e′ : τ implies ` e � e′ : τ . The result follows by the symmetry of
contextual equivalence. 2

Lemma 5.6 Suppose σ is a substitution, and let CΓ be defined as follows:

Cε
def= []

CΓ,α
def= CΓ[Λα.[]][σ(α)]

CΓ,x:τ
def= CΓ[λx:τ.[]]σ(x)

If ` σ : Γ then

(i) for any Γ ` τ type, CΓ : (Γ ` τ) ⇒ (ε ` σ(τ)), and

(ii) for any Γ ` e : τ , CΓ[e] ≈ σ(e).

Proof. By induction on Γ. 2

Theorem 5.7 (Contextual Equivalence implies Applicative Equivalence)
If Γ ` e ∼= e′ : τ then Γ ` e ≈ e′ : τ .

Proof. Let ` σ : Γ be arbitrary. By definition, we wish to show that ` σ(e) ≈ σ(e′) :
σ(τ). Let CΓ be defined as in Lemma 5.6. Since CΓ[e] ≈ σ(e) and CΓ[e′] ≈ σ(e′), it
suffices to show that ` CΓ[e] ≈ CΓ[e′] : σ(τ). Finally, by Lemma 5.5, it suffices to
show that ` CΓ[e] ∼= CΓ[e′] : σ(τ).

Thus, let C : (ε ` σ(τ)) ⇒ (ε ` 1) be arbitrary. By Lemma 5.6, CΓ : (Γ ` τ) ⇒
(ε ` σ(τ)). Hence C ◦CΓ : (Γ ` τ) ⇒ (ε ` 1). Since e and e′ are contextually equiv-
alent, we may conclude that C[CΓ[e]] halts if and only if C[CΓ[e′]] halts. Therefore
` CΓ[e] ∼= CΓ[e′] : σ(τ). 2

5.2 Logical Equivalence implies Contextual Equivalence

Logical equivalence is a congruence, and is consistent by definition. The reader may
note that the proof of this is very similar to that of the Fundamental Theorem.

Lemma 5.8 If Γ̂ ` e ⇔ e′ : τ̂ and C : (Γ̂ ` τ̂) ⇒ (Γ ` τ) then Γ ` C[e] ⇔ C[e′] : τ .

Proof. By induction on the derivation of C : (Γ̂ ` τ̂) ⇒ (Γ ` τ). Suppose Γ̂ ` e ⇔
e′ : τ̂ and let ` δ, χ, σleft , σright : Γ be arbitrary.

Case 1: Suppose the last rule applied is:

[] : (Γ ` τ) ⇒ (Γ ` τ)

Then the result is immediate.

Case 2: Suppose the last rule applied is:

C : (Γ̂ ` τ̂) ⇒ (Γ, x:τ ` τ ′)

λx:τ.C : (Γ̂ ` τ̂) ⇒ (Γ ` τ → τ ′)

Let σleft(δleft(λx:τ.C[e])) be λx:τ1.e1, and let σright(δright(λx:τ.C[e′])) be λx:τ2.e2.
Note that both terms halt. Now suppose (e′1, e

′
2) ∈ [[τ]]δχ. We wish to show that

((λx:τ1.e1)e′1, (λx:τ2.e2)e′2) ∈ [[τ ′]]δχ.

Suppose e′1 diverges. Since [[τ]]δχ is strict, e′2 diverges as well. Thus (λx:τ1.e1)e′1 ≈
⊥ and (λx:τ2.e2)e′2 ≈ ⊥. Since [[τ ′]]δχ is admissible (and hence pointed), (⊥,⊥) ∈
[[τ ′]]δχ. The result follows since the logical interpretations are closed under applicative
equivalence.

Alternatively, suppose e′1 halts. Then e′2 halts as well. Thus (λx:τ1.e1)e′1 ≈
e1[e′1/x] and (λx:τ2.e2)e′2 ≈ e2[e′2/x]. Let σ′left be σleft [x 7→ e′1] and let σ′right
be σright [x 7→ e′2]. Then ` δ, χ, σ′left , σ

′
right : (Γ, x:τ). By induction Γ, x:τ `

C[e] ⇔ C[e′] : τ ′, so (σ′left(δleft(C[e])), σ′right(δright(C[e′]))) ∈ [[τ ′]]δχ. That is,
(e1[e′1/x], e2[e′2/x]) ∈ [[τ ′]]δχ. The result follows by closure under applicative equiva-
lence.

Case 3: Suppose the last rule applied is:

C : (Γ̂ ` τ̂) ⇒ (Γ ` τ1 → τ2) Γ ` e2 : τ1

C e2 : (Γ̂ ` τ̂) ⇒ (Γ ` τ2)

By induction, Γ ` C[e] ⇔ C[e′] : τ1 → τ2, so (σleft(δleft(C[e])), σright(δright(C[e′]))) ∈
[[τ1→τ2]]

δ
χ. By the Fundamental Theorem, (σleft(δleft(e2)), σright(δright(e2))) ∈ [[τ1]]

δ
χ.

Therefore (σleft(δleft(C[e]))σleft(δleft(e2)), σright(δright(C[e′]))σright(δright(e2))) ∈
[[τ2]]

δ
χ. That is, (σleft(δleft(C[e]e2)), σright(δright(C[e′]e2))) ∈ [[τ2]]

δ
χ.

Case 4: Suppose the last rule applied is:

C : (Γ̂ ` τ̂) ⇒ (Γ ` τ1) Γ ` e1 : τ1 → τ2

e1 C : (Γ̂ ` τ̂) ⇒ (Γ ` τ2)

By induction, Γ ` C[e] ⇔ C[e′] : τ1, so (σleft(δleft(C[e])), σright(δright(C[e′]))) ∈
[[τ1]]

δ
χ. By the Fundamental Theorem, (σleft(δleft(e1)), σright(δright(e1))) ∈ [[τ1→τ2]]

δ
χ.

Therefore (σleft(δleft(e1))σleft(δleft(C[e])), σright(δright(e1))σright(δright(C[e′]))) ∈
[[τ2]]

δ
χ. That is, (σleft(δleft(e1C[e])), σright(δright(e1C[e′]))) ∈ [[τ2]]

δ
χ.

Case 5: Suppose the last rule applied is:

C : (Γ̂ ` τ̂) ⇒ (Γ, α ` τ)

Λα.C : (Γ̂ ` τ̂) ⇒ (Γ ` ∀α.τ)

Let σleft(δleft(Λα.C[e])) be Λα.e1, and let σright(δright(Λα.C[e′])) be Λα.e2. Note
that both terms halt. Now suppose τ1, τ2 ∈ Type, and suppose R ∈ ARelτ1,τ2 .
Let δ′ be δ[α 7→ (τ1, τ2)] and let χ′ be χ[α 7→ R]. Then we wish to show that
((Λα.e1)[τ1], (Λα.e2)[τ2]) ∈ [[τ]]δ

′

χ′ .
Observe that (Λα.e1)[τ1] ≈ e1[τ1/α] and (Λα.e2)[τ2] ≈ e2[τ2/α]. Also, δ′ is a

type environment over (Γ, α), and χ′ respects δ′, so ` δ′, χ′, σleft , σright : (Γ, α).
By induction, Γ, α ` C[e] ⇔ C[e′] : τ , so (σleft(δ′left(C[e])), σright(δ′right(C[e′]))) ∈
[[τ]]δ

′

χ′ . That is, (e1[τ1/α], e2[τ2/α]) ∈ [[τ]]δ
′

χ′ . The result then follows by closure under
applicative equivalence.

Case 6: Suppose the last rule applied is:

C : (Γ̂ ` τ̂) ⇒ (Γ ` ∀α.τ ′) Γ ` τ type

C[τ] : (Γ̂ ` τ̂) ⇒ (Γ ` τ ′[τ/α])

By induction, Γ ` C[e] ⇔ C[e′] : ∀α.τ ′, so (σleft(δleft(C[e])), σright(δright(C[e′]))) ∈
[[∀α.τ ′]]δχ. Therefore:

(σleft(δleft(C[e]))[δleft(τ)], σright(δright(C[e′]))[δright(τ)]) ∈ [[τ ′]]δ[α 7→δ(τ)]

χ[α 7→[[τ]]δχ]

That is, using substitution and rearranging:

(σleft(δleft(C[e][τ])), σright(δright(C[e′][τ]))) ∈ [[τ ′[τ/α]]]δχ

Case 7: Suppose the last rule applied is:

C : (Γ̂ ` τ̂) ⇒ (Γ ` τ [µα.τ/α])

inµα.τC : (Γ̂ ` τ̂) ⇒ (Γ ` µα.τ)

Let σleft(δleft(C[e])) be e1, and let σright(δright(C[e′])) be e2. Then, using the Un-
rolling Lemma, it suffices to show that (out(in e1), out(in e2)) ∈ [[τ [µα.τ/α]]]δχ.
Observe that out(in e1) ≈ e1 and out(in e2) ≈ e2. By induction, Γ ` C[e] ⇔ C[e′] :
τ [µα.τ/α], so (e1, e2) ∈ [[τ [µα.τ/α]]]δχ. The result then follows by closure under
applicative equivalence.

Case 8: Suppose the last rule applied is:

C : (Γ̂ ` τ̂) ⇒ (Γ ` µα.τ)

outC : (Γ̂ ` τ̂) ⇒ (Γ ` τ [µα.τ/α])

By induction, Γ ` C[e] ⇔ C[e′] : µα.τ , so (σleft(δleft(C[e])),
σright(δright(C[e′]))) ∈ [[µα.τ]]δχ. Using the Unrolling Lemma,
(outσleft(δleft(C[e])), outσright(δright(C[e′]))) ∈ [[τ [µα.τ/α]]]δχ. The result then
follows by rearrangement. 2

Theorem 5.9 (Logical Equivalence implies Contextual Equivalence)
If Γ ` e ⇔ e′ : τ then Γ ` e ∼= e′ : τ .

Proof. Suppose Γ ` e ⇔ e′ : τ and let C : (Γ ` τ) ⇒ (ε ` 1) be arbitrary. By
Lemma 5.8, ` C[e] ⇔ C[e′] : 1. Let δ0, χ0, σ0 be the empty type environment,
relation environment, and substitution. Then ` δ0, χ0, σ0, σ0 : ε, so (C[e], C[e′]) ∈
[[1]]δ0χ0

. Hence C[e] halts if and only C[e′] halts. 2

Corollary 5.10 Applicative, logical, and contextual equivalence coincide.

Proof. Immediate from Theorems 4.14, 5.9, and 5.7. 2

Note than an immediate consequence of the coincidence of applicative and logical
equivalence is that logical equivalence is a congruence, in the sense of Lemma 2.7.

6 Applications

Logical relations may be used to derive equivalences governing well-typed terms. Of
particular interest are equivalences arising from parametricity, giving rise to “free
theorems” [35,21,20] and consequences of representation independence for abstract
types.

6.1 Defined Types

We may extend our results beyond our small set of primitive types using the usual
Church encodings. We will omit the type annotations from these derived forms when
they are clear from context. The reader is cautioned that the encodings given here
do not satisfy the universal characterizations ordinarily associated with these types,
essentially because functions in the language are partial, rather than total, and are
call-by-value. We will state and prove the properties we need for the examples we
consider.

Definition 6.1 (Products)

τ1 × τ2
def= ∀β.(τ1 → τ2 → β)→ β (β fresh)

〈e1 : τ1, e2 : τ2〉
def= Λβ.λf :(τ1 → τ2 → β).f e1 e2 (β, f fresh)

prjτ1×τ2
1 e

def= e[τ1](λx:τ1.λy:τ2.x)

prjτ1×τ2
2 e

def= e[τ2](λx:τ1.λy:τ2.y)

Definition 6.2 (Sums)

τ1 + τ2
def= ∀β.(τ1 → β)→ (τ2 → β)→ β (β fresh)

injτ1+τ2
1 e

def= Λβ.λf :(τ1 → β).λg:(τ2 → β).f e (β, f, g fresh)

injτ1+τ2
2 e

def= Λβ.λf :(τ1 → β).λg:(τ2 → β).g e (β, f, g fresh)

caseτ (e, x:τ1.e1, x:τ2.e2)
def= e[τ](λx:τ1.e1)(λx:τ2.e2)

Definition 6.3 (Existentials)

∃α.τ
def= ∀β.(∀α. τ → β)→ β (β fresh)

pack (τ, e) as∃α.τ1
def= Λβ.λf :(∀α. τ1 → β).f [τ]e (β, f fresh)

unpackτ (α, x:τ1) = e in e′
def= e[τ](Λα.λx:τ1. e

′)

We may derive logical equivalences over the defined types using the following
lemmas:

Lemma 6.4 (Logical Equivalence for Product Introduction)
If (e1, e

′
1) ∈ [[τ1]]

δ
χ and (e2, e

′
2) ∈ [[τ2]]

δ
χ then (〈e1, e2〉, 〈e′1, e′2〉) ∈ [[τ1 × τ2]]

δ
χ.

Proof. Suppose (e1, e
′
1) ∈ [[τ1]]

δ
χ and (e2, e

′
2) ∈ [[τ2]]

δ
χ. Both 〈e1, e2〉 and

〈e′1, e′2〉 halt, so let τ, τ ′ ∈ Type and R ∈ ARelτ,τ ′ be arbitrary. We wish
to show that (〈e1, e2〉[τ], 〈e′1, e′2〉[τ ′]) ∈ [[(τ1 → τ2 → β) → β]]δ[β 7→(τ,τ ′)]

χ[β 7→R] . Both

terms halt, so let (m,m′) ∈ [[τ1 → τ2 → β]]δ[β 7→(τ,τ ′)]
χ[β 7→R] . It suffices to show that

(〈e1, e2〉[τ]m, 〈e′1, e′2〉[τ ′]m′) ∈ R. We may assume that m and m′ halt (otherwise
the result is immediate, since R is pointed). Thus, it is sufficient to show that

(m e1 e2,m
′ e′1 e′2) ∈ R which follows from the assumption (since β is not free in τ1

or τ2). 2

Lemma 6.5 (Logical Equivalence for Sum Introduction)

• If (e, e′) ∈ [[τ1]]
δ
χ and τ2 ∈ Type then (inj1e, inj1e

′) ∈ [[τ1 + τ2]]
δ
χ.

• If (e, e′) ∈ [[τ2]]
δ
χ and τ1 ∈ Type then (inj2e, inj2e

′) ∈ [[τ1 + τ2]]
δ
χ.

Proof. Similar to Lemma 6.4. 2

Lemma 6.6 (Logical Equivalence for Existential Introduction)
If τ, τ ′ ∈ Type and R ∈ ARelτ,τ ′ and (e, e′) ∈ [[τ1]]

δ[α 7→(τ,τ ′)]
χ[α 7→R]

then (pack (τ, e) as∃α.τ1, pack (τ ′, e′) as∃α.τ1) ∈ [[∃α.τ1]]
δ
χ.

Proof. Suppose τ, τ ′ ∈ Type and R ∈ ARelτ,τ ′ and (e, e′) ∈
[[τ1]]

δ[α 7→(τ,τ ′)]
χ[α 7→R] . Both pack (τ, e) as∃α.τ1 and pack (τ ′, e′) as∃α.τ1 halt. Let

σ, σ′ ∈ type and Q ∈ ARelσ,σ′ be arbitrary. We wish to show that
((pack (τ, e) as∃α.τ1)[σ], (pack (τ ′, e′) as∃α.τ1)[σ′]) ∈ [[(∀α. τ1 → β)→ β]]δ[β 7→(σ,σ′)]

χ[β 7→Q] .

Both terms halt, so let (m,m′) ∈ [[∀α. τ1 → β]]δ[β 7→(σ,σ′)]
χ[β 7→Q] . It suffices to show that

((pack (τ, e) as∃α.τ1)[σ]m, (pack (τ ′, e′) as∃α.τ1)[σ′]m′) ∈ Q. We may assume that
m and m′ halt (otherwise the result is immediate, since Q is pointed). Thus, it is
sufficient to show that (m [τ] e,m′ [τ ′] e′) ∈ Q.

Using the definition of the logical relation, we may obtain:

(m [τ],m [τ ′]) ∈ [[τ1 → β]]δ[β 7→(σ,σ′)][α 7→(τ,τ ′)]
χ[β 7→Q][α 7→R]

Using our assumption and the fact that β is not free in τ1, we have:

(e, e′) ∈ [[τ1]]
δ[β 7→(σ,σ′)][α 7→(τ,τ ′)]
χ[β 7→Q][α 7→R]

Therefore, as desired:

(m [τ] e,m [τ ′] e′) ∈ [[β]]δ[β 7→(σ,σ′)][α 7→(τ,τ ′)]
χ[β 7→Q][α 7→R] = Q

2

In conjunction with Corollary 5.10, Lemma 6.6 gives us a powerful tool for
establishing representation independence results.

It is natural to ask whether the converses of the above lemmas hold as well.
For products and sums, it is not difficult to prove that the answer is yes. 6 For
existentials, however, the answer is probably not, as we illustrate in Section 6.4.

In light of that, it is also natural to wonder whether the constructions in this
paper might be carried out with a primitive existential type. They cannot, and

6 Note that this is a distinct question from the one as to whether any value of product (sum) type must
take the form on a pair (injection) up to equivalence. We leave the latter question open.

in fact the problem arises quite early. Our proof relies critically on applicative
equivalence and it is unclear how even to define it in the presence of existential
types. The obvious definition would require that applicatively equivalent existential
packages share the same hidden type, but such a definition clearly cannot coincide
with contextual equivalence.

6.2 Free Theorems

One of the powers of relational parametricity is to prove free theorems [36], theorems
regarding the behavior of programs that can be ascertained merely by looking at
the program’s type. Two simple examples of free theorems are the following, which
show that the types ∀α.α and ∀α.α→ α contain only trivial members.

Theorem 6.7 If ` e : ∀α.α then e � Λα.⊥.

Proof. Note that Λα.⊥ halts. Therefore, suppose τ ∈ Type. We wish to show that
e[τ] � ⊥, that is, that e[τ] diverges. By the Fundamental Theorem, (e, e) ∈ [[∀α.α]].
Let R = {(p : τ, q : τ) | p↑ ∧ q↑}. Observe that R is pointed, complete, and strict.
Therefore, (e[τ], e[τ]) ∈ [[α]][α 7→(τ,τ)]

[α 7→R] = R. Hence e[τ] diverges. 2

Theorem 6.8 If ` e : ∀α.α→ α then e � Λα.λx:α.x.

Proof. Note that Λα.λx:α.x halts. Therefore, suppose τ ∈ Type. We wish to show
that e[τ] � λx:τ.x. Again, not that λx:τ.x halts. Therefore, suppose ` v : τ . We
wish to show that e[τ]v � v. By the Fundamental Theorem, (e, e) ∈ [[∀α.α → α]].
Let R = {(p : τ, q : τ) | p ≈ q ∧ p � v}. Observe that R is pointed, complete, and
strict. Therefore (e[τ], e[τ]) ∈ [[α → α]][α 7→(τ,τ)]

[α 7→R] . Since (v, v) ∈ R = [[α]][α 7→(τ,τ)]
[α 7→R] , it

follows that (e[τ]v, e[τ]v) ∈ [[α]][α 7→(τ,τ)]
[α 7→R] = R. Hence e[τ]v � v. 2

We can also show that any function with type ∀α.α→ τ for closed τ is either a
constant function or some flavor of nonterminating function.

Theorem 6.9 If ` τ type and ` e : ∀α.α→ τ then, up to equivalence, e is one of
the following: ⊥, Λα.⊥, Λα.λx:α.⊥, or Λα.λx:α.v (for some ` v : τ).

Proof. It suffices to show that (1) if e[τ ′] halts for any τ ′ then it halts for every
τ ′, and (2) if e[τ ′]v halts for any τ ′ and v ∈ Expτ ′ then it halts and returns an
equivalent value for every such τ ′ and v.

Suppose e[τ1] halts, for some τ1 ∈ Type. Let τ2 ∈ Type be arbitrary. By the
Fundamental Theorem, (e, e) ∈ [[∀α.α → τ]]. Let R be any strict and admissible
relation on τ1 and τ2. (We are permitted to choose R but the choice does not
matter.) Then (e[τ1], e[τ2]) ∈ [[α→ τ]][α 7→(τ1,τ2)]

[α 7→R] . By Lemma 4.4, the latter relation
is strict, so e[τ2] halts.

Now suppose e[τ1]v1 7→∗ v′1, for some τ1 ∈ Type and v1 ∈ Expτ1 . Let τ2 ∈ Type
and v2 ∈ Expτ2 be arbitrary. By the Fundamental Theorem, (e, e) ∈ [[∀α.α → τ]].
Let R = {(p : τ1, q : τ2) | (p↑ ∧ q↑) ∨ (p ≈ v1 ∧ q ≈ v2)}. Then (e[τ1]v1, e[τ2]v2) ∈

[[τ]][α 7→(τ1,τ2)]
[α 7→R] . Since τ is closed, we may conclude that e[τ1]v1 ⇔ e[τ2]v2, and hence

that e[τ1]v1 ≈ e[τ2]v2. Thus e[τ2]v2 7→∗ v′2 for some v′2 ≈ v′1. 2

For a more interesting example of a free theorem, we borrow from Wadler [35].
Consider the function head, which extracts the first element of a list or diverges if
the list is empty. One theorem regarding head is that mapping a function f over
head’s argument is equivalent to applying f to head’s result. This theorem is free,
because it can be ascertained without looking at the code for head; it applies to
any function with the type ∀α. α list→ α.

Theorem 6.10 Let us define:

τ list
def= µα.1 + (τ × α)

[e1, . . . , en]τ
def= inτ list(inj2〈e1, . . . inτ list(inj2〈en, inτ list(inj1∗)〉) . . .〉)

Suppose that ` h : ∀α. α list → α. Suppose further that ` v1, . . . , vn : τ

and that ` f : τ → τ ′ halts and is a total function. Then f(h[τ][v1, . . . , vn]τ) ≈
h[τ ′][f v1, . . . , f vn]τ ′.

Proof. By the Fundamental Theorem, (h, h) ∈ [[∀α. α list→ α]]. Let R = {(p :
τ, q : τ ′) | f p ≈ q}. Observe that R is pointed, complete, and strict. Therefore
(h[τ], h[τ ′]) ∈ [[α list→ α]][α 7→(τ,τ ′)]

[α 7→R] . Using the Unrolling theorem and Lemmas 6.4
and 6.5, we can show by induction on n that ([v1, . . . , vn]τ , [f v1, . . . , f vn]τ ′) ∈
[[α list]][α 7→(τ,τ ′)]

[α 7→R] . Therefore (h[τ][v1, . . . , vn]τ , h[τ ′][f v1, . . . , f vn]τ ′) ∈ R. By the
construction of R, f(h[τ][v1, . . . , vn]τ) ≈ h[τ ′][f v1, . . . , f vn]τ ′ , as desired. 2

6.3 Representation Independence

The use of logical relations to establish representation independence results in the
absence of recursive types is well-known. Using our technique we may also obtain
results that exploit recursive types, including ones in which the recursive variable
is used negatively. To illustrate, we adapt an example from Sumii and Pierce [33].

Let us define nat
def= µα.1 + α and bool

def= 1 + 1, and suppose that zero : nat,
succ : nat → nat, even : nat → bool, true : bool, false : bool, and not :
bool→ bool are implemented in the obvious manner. Then consider the following
type for flag objects:

flag
def= ∃st. µself. st× ((self→ self)× (self→ bool))

A flag object has an instance variable (belonging to an abstract type st), and
two methods. The first method returns a new object whose flag is reversed, and
the second method returns the state of the flag. Note that both methods access the
instance variable only through the recursive self variable.

We consider two different implementation of flags, one in which the hidden state
is a bool and one in which it is a nat:

fieldsα
def= µself. α× ((self→ self)× (self→ bool))

boolflag
def= pack (bool, infieldsbool〈true, 〈boolflip, boolret〉〉) as flag

boolflip
def= λx:fieldsbool.infieldsbool〈not(prj1(outx)), prj2(outx)〉

boolret
def= λx:fieldsbool.prj1(outx)

natflag
def= pack (nat, infieldsnat〈zero, 〈natflip, natret〉〉) as flag

natflip
def= λx:fieldsnat.infieldsnat〈succ(prj1(outx)), prj2(outx)〉

natret
def= λx:fieldsnat.even(prj1(outx))

Using Lemma 6.6 we can show that boolflag and natflag are logically equiva-
lent. It will then follow by Corollary 5.10 that they are operationally indistinguish-
able.

Theorem 6.11 ` boolflag⇔ natflag : flag

Proof. Unwinding the definitions, we wish to show that (boolflag, natflag) ∈
[[∃st.fieldsst]]. By Lemma 6.6, it suffices to exhibit a relation R ∈ ARelbool,nat
such that:

(infieldsbool〈true, 〈boolflip, boolret〉〉,

infieldsnat〈zero, 〈natflip, natret〉〉) ∈ [[fieldsst]]
δ
χ

where χ = [st 7→ R] and δ = [st 7→ (bool, nat)]. Let n
def= succ(· · · (succ︸ ︷︷ ︸

n times

zero) · · ·),

and let:

R = {(p : bool, q : nat) | p↓⇔ q↓

∧ p↓⇒ ∃nat ∈ N. (p ≈ true ∧ q ≈ 2n) ∨

(p ≈ false ∧ q ≈ 2n + 1)}

Observe that R is pointed, complete, and strict. By the Unrolling theorem, and
cancelling the recursive roll and unroll on each side, it is sufficient to show that:

(〈true, 〈boolflip, boolret〉〉, 〈zero, 〈natflip, natret〉〉)

∈ [[st× ((fieldsst → fieldsst)× (fieldsst → bool))]]δχ

Using Lemma 6.4, it remains to show equivalences for each field:

• Clearly (true, zero) ∈ R = [[st]]δχ.

• We wish to show (boolflip, natflip) ∈ [[fieldsst → fieldsst]]
δ
χ. Both

terms halt, so suppose (m,m′) ∈ [[fieldsst]]
δ
χ. By the Unrolling the-

orem, (outm, outm′) ∈ [[st × ((fieldsst → fieldsst) × (fieldsst →
bool))]]δχ. It follows 7 that (prj1(outm), prj1(outm′)) ∈ [[st]]δχ = R and
(prj2(outm), prj2(outm′)) ∈ [[(fieldsst → fieldsst)× (fieldsst → bool)]]δχ.

By the construction of R, (not(prj1(outm)), succ(prj1(outm′))) ∈ R =
[[st]]δχ. Re-assembling the pieces, we obtain:

(〈not(prj1(outm)), prj2(outm)〉, 〈succ(prj1(outm′)), prj2(outm′)〉)

∈ [[st× ((fieldsst → fieldsst)× (fieldsst → bool))]]δχ

Again using the Unrolling lemma and cancelling rolls and unrolls, we
may conclude that (boolflip m, natflip m) ∈ [[fieldsst]]

δ
χ. Therefore,

(boolflip, natflip) ∈ [[fieldsst → fieldsst]]
δ
χ, as desired.

• We wish to show (boolret, natret) ∈ [[fieldsst → bool]]δχ. Both terms halt, so
suppose (m,m′) ∈ [[fieldsst]]

δ
χ. By the Unrolling theorem, (outm, outm′) ∈

[[st × ((fieldsst → fieldsst) × (fieldsst → bool))]]δχ. It follows that
(prj1(outm), prj1(outm′)) ∈ [[st]]δχ = R.

By the construction of R, prj1(outm) ≈ even(prj1(outm′)). Since
the logical relation respects applicative equivalence, we may conclude that
(boolretm, natretm) ∈ [[bool]]δχ. Therefore, (boolret, natret) ∈ [[fieldsst→
bool]]δχ, as desired.

2

Corollary 6.12 boolflag and natflag are contextually equivalent.

Proof. Immediate, by Corollary 5.10. 2

6.4 Limitations Regarding Existential Types

Corollary 5.10 implies that logical equivalence is a general strategy for proving con-
textual equivalences. The preceding example illustrates the use of that corollary
in conjunction with Lemma 6.6 (logical equivalence for existential introduction) to
prove an contextual equivalence result for two existential packages. A natural ques-
tion to ask is whether this is a general technique for proving contextual equivalences
of existential packages.

Unfortunately, the answer is probably not. Consider the following example, due
to Pitts [17, 7.7.4]. Let void def= µα.α, and note that void contains no values, and
hence no terms that halt. (Since in is strict, it is easy to prove this by induction on

7 Using an easy argument regarding logical equivalence and product elimination.

typing derivations.) Also, let if-then-else and andalso be defined in the obvious
manner. Then, define two existential packages, voidpkg and boolpkg:

T
def= ∃α.(α→ bool)→ 1

voidfn
def= λf :void→ bool.⊥

boolfn
def= λf :bool→ bool.iff true andalso not(f false)

then ∗ else ⊥

voidpkg
def= pack (void, voidfn) asT

boolpkg
def= pack (bool, boolfn) asT

These two packages appear 8 to be contextually equivalent. Intuitively, the
packages should be contextually equivalent because any surrounding context can call
the enclosed function only on a parametric function α→ bool. Up to equivalence,
the only such functions are the two constant functions, the everywhere divergent
function, and ⊥. (Recall Theorem 6.9 above.) For each of these, voidfn and
boolfn behave the same, because boolfn is crafted to diverge when given a constant
function.

However, the contextual equivalence of these packages cannot be proven using
Lemma 6.6. To use the Lemma, we need to exhibit an R ∈ ARelvoid,bool such that
(voidfn, boolfn) ∈ [[(α → bool) → 1]][α 7→(void,bool)]

[α 7→R] . Since void contains no terms
that halt, the only strict relation on void and bool is {(p : void, q : bool) | p↑∧q↑ }.
Let R be this relation.

The problem is that R provides no assistance in narrowing the set of functions
α → bool that might be used as arguments to voidfn and boolfn. In particular,
observe that (λx:void.true, λx:bool.x) ∈ [[α → bool]][α 7→(void,bool)]

[α→R] . Since voidfn
and boolfn do not behave the same on these two functions, we must conclude
that (voidfn, boolfn) 6∈ [[(α → bool) → 1]][α 7→(void,bool)]

[α 7→R] . Hence, Lemma 6.6 is
inapplicable.

It is not clear how important this issue is. The example seems to rely crucially
on the fact that the type T contains no strictly positive occurrences of the hidden
type variable α. This is a situation that would arise rarely if ever in normal use
of representation independence in modularity, for example, in proving equivalence
of two implementations of an abstract data type. Thus, we might conjecture that
the characterization of existential types in Lemma 6.6 is complete for types ∃α.τ in
which α has a strictly positive occurrence in τ .

7 Related Work

There is a large body of work on the use of logical relations in the study of the
syntax and semantics of typed languages. Of most immediate relevance is the work

8 We have not proven this, but Pitts [17] sketches a proof for a different but similar language.

of Pitts on developing operationally based theories of expression equivalence for
PCF-like languages [18]. In that setting, as here, logical, contextual, and applicative
equivalence coincide. More recently Pitts has extended this work to polymorphic
languages [21] and languages with abstract types [20]. Rather than work with
admissible relations as we do here, Pitts relies on a related closure condition that
facilitates handling of the continuation-based elimination form for existential types.
Using this he obtains a complete characterization of contextual equivalence in terms
of logical equivalence, and uses this to obtain examples similar to those considered
here.

The methods used here are influenced by Pitts’s work on relational properties of
domains, and by Birkedal and Harper’s [4] operational account of logical relations
for a functional language with a single recursive type. The present work generalizes
this earlier work to account for impredicative polymorphism and unrestricted re-
cursive types, and, en passant, gives a new, streamlined proof of syntactic minimal
invariance that may be of use in other settings. The treatment of projections for
abstract types as the identity was inspired by Riecke [30].

Ho [9] and Filinski [5] each exploit Pitts’s technique in building a domain-
theoretic semantics of recursive types for the purpose of proving results in op-
erational semantics. In Ho, the central result is the algebraic compactness of a
“syntactic” category, in essence proving syntactic minimal invariance by way of an
adequate operational semantics. In Filinski, the central result is a re-presentation
of Reynolds’s seminal result [27] on the coincidence of direct and continuation se-
mantics. Both find that in the construction of the relational interpretation, it is
necessary (or at least beneficial) not to use the entire category Cop × C, but its full
subcategory consisting of objects along the “diagonal” (that is, objects 〈A,A〉 for
objects A of C). In our setting, this corresponds to the proviso in Theorem 4.10
that η = ηop.

Vouillon and Melliès [34] use a technique similar to Birkedal and Harper to
construct an ideal model for quantified types in the presence of subtyping. Like
Birkedal and Harper’s construction, and in contrast to ours, their construction is
based on a single recursive type (representing the universal domain of untyped terms
in Vouillon and Melliès’s case) rather than a general recursive type operator.

Appel and McAllester have also considered an operationally-based relational
interpretation of types, but with the emphasis on proving safety, rather than equiv-
alence, and for low-level, imperative languages, rather than high-level functional
languages [3]. Their approach is based on a form of indexed semantics that is
broadly similar to our use of projections, but the precise relationship is not clear.
In particular Appel and McAllester do not need to quotient terms by an operational
congruence as we do here; for us, this is essential to the proof of syntactic minimal
invariance. An open question regarding Appel and McAllester’s relational interpre-
tation is whether it is actually an equivalence relation; in particular, whether it is
transitive. Ahmed [2] gives a related construction that enjoys transitivity by adding
additional typing assumptions, and also extends the method to support quantified
types.

References

[1] Abadi, M. and G. D. Plotkin, A per model of polymorphism and recursive types, in: LICS [13], pp.
355–365.

[2] Ahmed, A., Step-indexed syntactic logical relations for recursive and quantified types, in: Fifteenth
European Symposium on Programming, Vienna, Austria, 2006, pp. 69–83.

[3] Appel, A. W. and D. A. McAllester, An indexed model of recursive types for foundational proof-carrying
code., ACM Trans. Program. Lang. Syst. 23 (2001), pp. 657–683.

[4] Birkedal, L. and R. Harper, Relational interpretations of recursive types in an operational setting,
Information and Computation 155 (1999), pp. 3–63.

[5] Filinski, A., On the relations between monadic semantics, in: John Reynolds Festschrift, 2007 To appear.

[6] Freyd, P. J., Recursive types reduced to inductive types, in: LICS [13], pp. 498–507.

[7] Girard, J.-Y., “Interprétation Fonctionnelle et Élimination des Coupures dans l’Arithmétique d’Ordre
Supérieure,” Ph.D. thesis, Université Paris VII (1972).

[8] Girard, J.-Y., Y. Lafont and P. Taylor, “Proofs and Types,” Cambridge Tracts in Theoretical Computer
Science 7, Cambridge University Press, Cambridge, England, 1989.

[9] Ho, W. K., An operational domain-theoretic treatment of recursive types, in: Twenty-Second
Mathematical Foundations of Programming Semantics, 2006.

[10] Hoare, C. A. R., Proof of correctness of data representation, Artificial Intelligence 1 (1972), pp. 271–281.

[11] Howe, D. J., Equality in lazy computation systems, in: Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (1989), pp. 198–203.
URL citeseer.ist.psu.edu/howe89equality.html

[12] Howe, D. J., Proving congruence of bisimulation in functional programming languages., Inf. Comput.
124 (1996), pp. 103–112.

[13] “Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, 4-7 June 1990,
Philadelphia, Pennsylvania, USA,” IEEE Computer Society, 1990.

[14] Mason, I. A., S. F. Smith and C. L. Talcott, From operational semantics to domain theory, Information
and Computation 128 (1996), pp. 26–47.

[15] Mitchell, J. C., Representation independence and data abstraction, in: Thirteenth ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages, 1986, pp. 263–276.

[16] Mitchell, J. C. and G. D. Plotkin, Abstract types have existential type., ACM Trans. Program. Lang.
Syst. 10 (1988), pp. 470–502.

[17] Pitts, A., Typed operational reasoning, in: B. C. Pierce, editor, Advanced Topics in Types and
Programming Languages, mit-press, 2005 pp. 245–289.

[18] Pitts, A. M., Operationally-based theories of program equivalence, in: P. Dybjer and A. M. Pitts, editors,
Semantics and Logics of Computation, Cambridge University Press, 1995 pp. 241–283.
URL citeseer.ist.psu.edu/113777.html

[19] Pitts, A. M., Relational properties of domains, Information and Computation 127 (1996), pp. 66–90.

[20] Pitts, A. M., Existential types: Logical relations and operational equivalence., in: K. G. Larsen, S. Skyum
and G. Winskel, editors, ICALP, Lecture Notes in Computer Science 1443 (1998), pp. 309–326.

[21] Pitts, A. M., Parametric polymorphism and operational equivalence., Mathematical Structures in
Computer Science 10 (2000), pp. 321–359.

[22] Plotkin, G. D., LCF considered as a programming language., Theor. Comput. Sci. 5 (1977), pp. 225–255.

[23] Plotkin, G. D., Domain theory (1983), unpublished Notes.
URL http://homepages.inf.ed.ac.uk/gdp/publications/Domains.ps

[24] Plotkin, G. D., The origins of structural operational semantics., J. Log. Algebr. Program. 60-61 (2004),
pp. 3–15.

citeseer.ist.psu.edu/howe89equality.html
citeseer.ist.psu.edu/113777.html
http://homepages.inf.ed.ac.uk/gdp/publications/Domains.ps

[25] Plotkin, G. D., A structural approach to operational semantics., J. Log. Algebr. Program. 60-61 (2004),
pp. 17–139.

[26] Plotkin, G. D. and M. Abadi, A logic for parametric polymorphism., in: M. Bezem and J. F. Groote,
editors, TLCA, Lecture Notes in Computer Science 664 (1993), pp. 361–375.

[27] Reynolds, J. C., On the relation between direct and continuation semantics, in: Second Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer Science 14 (1974), pp. 141–156.

[28] Reynolds, J. C., Towards a theory of type structure, in: Colloq. sur la Programmation, Lecture Notes
in Computer Science 19 (1974), pp. 408–423.

[29] Reynolds, J. C., Types, abstraction, and parametric polymorphism, in: R. E. A. Mason, editor,
Information Processing ’83 (1983), pp. 513–523.

[30] Riecke, J. G. and R. Subrahmanyam, Semantic orthogonality of type disciplines (1997), (Unpublished
manuscript.).
URL citeseer.ist.psu.edu/riecke97semantic.html

[31] Smyth, M. B. and G. D. Plotkin, The category-theoretic solution of recursive domain equations., SIAM
J. Comput. 11 (1982), pp. 761–783.

[32] Statman, R., Logical relations and the typed λ-calculus, Information and Control 65 (1985), pp. 85–97.

[33] Sumii, E. and B. C. Pierce, A bisimulation for type abstraction and recursion, in: POPL ’05: Proceedings
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages (2005), pp.
63–74.

[34] Vouillon, J. and P.-A. Melliès, Semantic types: A fresh look at the ideal model for types, in: Thirty-First
ACM Symposium on Principles of Programming Languages, Venice, Italy, 2004, pp. 52–63.

[35] Wadler, P., Theorems for free!, in: FPCA ’89: Proceedings of the fourth international conference on
Functional programming languages and computer architecture (1989), pp. 347–359.

[36] Wadler, P., Theorems for free!, in: Fourth Conference on Functional Programming Languages and
Computer Architecture, London, 1989.

citeseer.ist.psu.edu/riecke97semantic.html

	Introduction
	Preliminaries
	The Language
	Applicative Equivalence
	Compactness
	Admissibility and Strictness

	Syntactic Minimal Invariance
	Projections Approximate the Identity
	Projections Dominate the Identity

	The Logical Interpretation
	Construction of the Relational Interpretation
	The Fundamental Theorem

	Contextual Equivalence
	Contextual Equivalence implies Applicative Equivalence
	Logical Equivalence implies Contextual Equivalence

	Applications
	Defined Types
	Free Theorems
	Representation Independence
	Limitations Regarding Existential Types

	Related Work
	References

