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The problem of valuing options, financial claims whose returns
are contingent on the performance of underlying primary assets, has
long occupied a place in the financial literature. While options
+hemselves are rather specialized instruments, the potential
applicability of option pricing theory toc all securities fully
justifies this interest and indeed makes it one of the most important
areas in finance (see Ross [1971&] ).

The Fipst material of serious academic interest on options was
the premarkable 1900 dissertation of Bachelier. Subsequent work on
the subject (see, for example, the papers by Sprenkle, Ayres, Boness
and Kruizenga collected in Cootner) was done without awareness of
Bachelier's treatment, until the 1965 paper by Samuelson. Samuelsomn,
following Bachelier's approach, postulated that the behavior of the
stock could be represented by a particular stochastic process and
+hen linked the value of the option to that of the stock by requiring
that the option be priced tc have a constant expected return at each
inetant of time. While very stimulating in many aspects,
unfortunately, there was not an economic justification for this
approach, and the resulting theory was unsatisfactory in several
respects. Some of the difficulties were remedied by the subsequent

work of Samuelson and Merton.



In an important paper Black and Scholes put forth a sound economic
raticnale that linked the values of the option and the stock and
yielded a pricing relation depending only on observable variables.

They alsc noted the scope of possible applications, many of which
have been developed and expanded by Merton. The applicability of
the Black and Scholes analysis depends in large measure on the
acceptability of their central assumption on the stochastic process
that generates stock returns. They assume that changes In the price

of the stock, 3, are governed bv a diffusion process of the form

%—S: udt + odz, (1)

where z is a Wiener process. This can be taken to mean that the
percentage change in the stock price over a small interval will be
given by a deterministic drift compenent, udt, plus a random Increment,
normally distributed with mean zero and variance Uzdt. A fundamental
restriction imposed bv the use of a diffusion process to describe

the stock price is that within a small interval of time, Eg t+dt),

St will move in a random fashion, but with high probability,

approaching 1 as dt -~ 0, S will be in an arbitrarily small

t+dt
neighborhood of St. In such a process cnly local changes in the
stock price are permitted. The Black and Scheoles approach can be
extended to other diffusion processes, as Cox has recently domne,

but this basic restriction remains, and there are a number of assets
for which this mayv not be a very adequate descripticn of uncertainty.

New information tends to arrive at a market in discrete lumps

rather than in a smooth flow, and assets In such markets are likely



+o have discontinuous jumps in value, thus violating the basic assump-
tion of a diffusion process. $Such behavior is characteristic of
many economic situations and is particularly relevant when political
events or stochastically applied government or instituticnal constraints
are of primary importance. For example, foreign exchange rates with
any sort of fixing typically change significantly only with deval-
uations and vevaluations. Some of the properties of equilibrium
in markets of this type have been studied by Ross E197SJ .

Price movements of this sort can be captured by assuming that
+he asset follows a jump process rather than a diffusion process.
Unlike a diffusion process, a jump process igs characterized by the
property that with high probability, approaching 1l as dt -+ ¢, its
movement within the interval [}, ++dt) will be certain, but with
a low and continuing probability it will jump to a new value. In

its simplest ferm a jump process can be written as

as

S pdt + (k-1)dn

1

udt + (2)

where 1 is a Poisson process and dll takes the value 0 with probability
1 - %t and 1 with probability Adt. The parameter X is called the
intensity of the process since it measures the rate of probability
flow for the jump and k-1 is called the jump amplitude. From (2)

if no jump occurs then St moves at the exponential rate u, >ut if



1
£

a jump occurs S_t changes by (k-l)St to S, + (k-—l)St = kS

In this paper we will study the problem of option valuation
when the stock follows a jump process. Although both our process
and that of Black and Scholes can be thought of as simplified
abstractions of more complex processes, they are respectively
representative descriptions of two fundamentally different forms of
uncertainty in continuous time stochastic processes. Furthermore,
the two approaches lead to option pricing models which are similar
in some respects but quite different in others.

Throughout the paper we will make the same assumptions about
market structure as did Black and Scheles. Specifically, we will
assume:

(1) the instantaneous interest rate, r, is known and constant
through time, and individuals can borrow or lend as much as they
want at this rate,

(2) the competitive assumption that the scale of individual
participants relative to the total market is sufficiently small that
each individual acts as if he can buy or sell as much of the stock
as he pleases without affecting the price,

(3) the stock may be sold short with the seller receiving
the proceeds,

(4) there are no transactions costs or taxes, and

(5) the stock pays no dividends.

With the fifth assumption, the valuation formula will be the same
for both an American and a Furopean call. A call is an option whose
value when exercised is the larger of 5-C or 0, where E is a Fixed

exercise price. A Furopean call can be exercised only at the



expiration date, while an American call can be exercised at any time
+he owner chooses to do so. If 1+ is never to the owner's advantage
to exercise before the expiration date, as will be the case when
+here are no dividends, then the two types must have the same value.
A put is the opposite of a call in that it offers a positive return
when exercised of E-S if § falls short of E and 0 if S exceeds E.
Merton has shown that premature exercising may be optimal with an
American put even if there are 1o payouts on the stock, so the
opportunity to do so must command a premium over the Eurcpean put.

In this paper we will confine our attention to the European case.

The Valuation Formula

Consider an option written on a stock whose price movement follows
equation (2). If we assume rhat the price of the option, P, is a

continuous function,

P = P(S, t), (3)

of § and t, then the option value will jump when the stock jumps. In
fact P(5, t) will fellow a Sump process of the form

p(ks, t) - P(S, t)

aat P(S, t)
& . (%)
F /
\’)d
¢
S 3P 1 3P

in other words, with probability (1 - adt) 4P will just be a differential
movement caused by the exponential growth (or decay) of S at the rate

» and the passage of time, but with probability Aadt, P will jump to



P(kS8, t) as a consequence of the jump in S. This suggests that it
might be possible to form a portfolio to hedge against the jump.
Let %y and o, denote the percentages of wealth put in the option

and the stock respectively. If o and o, are set so as to keep

{P(ks, t) - P(3, t)}
*p (S, t) oy {k - l} > 9 (5)

then the value of the portfolio immediately after a jump will be at

least as great as it was before the jump. If there is no jump, then

the return on the portfolic will be given by

s aF 1 3P
ap {up——é—s— + T3 _}dt + asudt. {6)

Since by (5) a jump can only raise the
return, to prevent arbitrage possibilities the return if there is
no jump, (6), must be less than the return on the riskless asset,
(uD + o )rdt. Since the post jump capital gain, (5), can be made

as close to zero as desired, a hedged position with

P(kS, t) - P(S, t)
.

SyP— } o {k - 1} = o, (7)

must earn exactly the riskless rate or

3 3P 1 3P
ap {Uf;g'é_ t T Bt —}dti-o:sfu—r' dt = 2 . ()
From (7)
a.—-
Ei' = P(kS, t) - P(8, t)
P (3)

(1L - k) P(s, t) °

i.e., we hold s and p in proportion to the relative post fump capital

gains on P and S respectivelv. Such a hedged position can be maintained



after a jump by a discontinuous adjustment to a new position and
between jumps the hedge will change smeothly with the trend movement,
u, of S and the passage of time. Substituting (9) into (8) we obtain

the basic differential equation for the option,

9P U -r rk -y E)3 (10
WS ox t (l__k)PU$)+'(—Tt—?>P = -3¢

To solve (10) we, of course, need to specify the option in

greater detail. Let us suppose, to begin with, that P is a European
call cption with exercise price, E, and maturity T. Now, we can add

the boundary condition
P(S, T) = max {ST -E, 0} (11)

te (10) and try for a solution to this system. It is interesting
to note that (10) has appeared in economics before. Wold and Whittle
derived a formally identical equaticn as a descripticn of the income
digtribution,

Attempting to solve this system by direct analytic methods is
a surprisingly difficult task. Unlike the second order partial differential
equations that emerge in option pricing problems from the diffusion process
assumptions, (10) is a mixed differential difference equation and
the mathematics of these equations has not yet been fully developed.
One formal approach would be to transform (10) by the Laplace and
then the Mellin intepral transforms and then attempt an inversion
of the resulting algebraic equation. Unfortunately, though, the

roots of the resulting algebraic esquation are not fully known.
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The economics of the problem, however, offers a simpler approach
to solving (10) and (11). Equation (10) was derived without any
explicit reference to the preference or demand structures in the
market. Implicit in the derivation is only the assumption that more
is better, i.e., that individual utility functicns Increase
monotonically. If (10) and (11) have a solution, this same
solution must heold for all possible individual preference structures
(that permit equilibrium solutions). This suggests that if we can
find a solution for any particular market structure, then this must
also be the solution to (10) and (11). Consider, then, a market
with a single risk neutral (over terminal wealth) investor with a
T period horizon. For such a market to be in equilibrium, the
expected T period return on the riskless bond, the stock, and the
option must all be identical,

T
Tl 7o

The return on the riskless bond is simply given by e
evaluate the return on the stock we must examine the prebability

distribution of, J, the number of jumps that cccur in the Interval

EO, T) . It is well known (see Feller) that j is a Poisson random
variable with .
e Mom?t
Prob (§ = 1) = it . (12}
Since 5 .
uT
= Xe . (13)

5]
SR



it follows from (12} that

ST s
E {—} = E {07}
So
o i
= e].]T I e—AT (k?T) (lu')
i=0 i!
In equilibrium,
S
e - E {77y,
5o
or, from (14)
r - p U
A = . (1%)
k -1

The expected return on the option is given by

1 E {max {S, - E, 0}}
P(S,0)

s T e Muant - g TG ik > 1
n —

i! il
= 1 (18)
P(S, 0)
T n-1 -AT : n-1 4 :
e s L e (Tt -3 e (At if k < 1,
B e

where n is the minimum number of jumps required for S5, > Eifk>1

and n-1 is the maximum number of jumps for S_ > T if K < 13 from (13}

i

-— E
log /g - T

a = 5 + 1, (17)
- log k

where [X] denotes the largest integer smaller than X (n = 0 if

X <0).
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In a risk neutral market, the return on the option (16) must be

the same as that on the risk free asset, ePT. From (16) and (15), then,

we have
@ -y yi -r(T-t) @ -g zi if k > 1
Sge 1 - Ee be 1
P(S, t) = (18)
1 i
- - - - -1 -

5 g Ly %3 _ ger(T-t) g e™® 3, if x < 1,

where
e - w) k(T - 1)
k-1 ?

and
and

oo
1

_ [ logE/S - u(T - t) . 1. 5
log k
The summations in (18) are cumulative and complementary Poisson
distribution functions and are well tabulated, often as chi-square
distribution functions with 2n degrees of freedom or incomplete A functionms.
For example, if we let F(¥X;v) and G(X;v) be respectively cumulative and
complementary chi-square distributions with v degrees of freedom, then

(18) can be rewritten as

(T - t)

SF(2y;2n) - Ee F(2z2;2n) if k > 1

P(S, t) = (19)

-r(T-t)

5G6(2y;2n) ~ Ee G{2=;2n) if k < 1.
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To verify the heuristic argument that led to (18}, we have to
show that it does indeed solve (10) and (11). By definition, (18)
is simply the discounted expected terminal value of the option sc it
must satisfy the boundary condition. To verify that (18) satisfies
(10} we have to perform the substitution. If S is in an interval on
which n does not change P(S, t) as defined by (18) is easily shown

te satisfy (10). Suppose, though, that S is such that

_ log E/s —w(r-t)
- log k ) (20)

Now, the right and left derivatives of P(S, ¢) will be different
since an increase or decrease in S5 will change the number of terms in
the defining series. (It is easily verified, though, that P(3, t) is
continuous.) How, then, ;an (18) possibly solve {(10)7?

The answer is that it cannot, but that it is still the correct
valuation! The reason is that (10) is not quite correct. When §

satisfies (20) it becomes Important to remember that the derivative,

3P

3T in (10) enters from the differential movement in S when there is

no jump. If p > 0, then S will be increasing and we should use (%§)+,

the right derivative, and if u < 0, then $§ will be falling and the
relevant differential effect on P 1s captured by (%g)_

Notice that (18) defines the option price sclely in terms of
the observable variables, t, r, S, £, u, and k. What is striking about
the pricing equation (18), and can be seen from (10) as well, is
that the intensity of the process X which determines the sxpected

number of jumps plays no role in the valuaticn formula. The

comparative statics analysis with respect to the parameters that
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enter (18) yields intuitive results.
The option value is an increasing function of the stock value

-r{T-t)

and as S + =, P(3, t) - S - Ee Furthermere, P(S, t) must

also be a convex function of S and it is easy to see that P 2 § - Eeﬁr(T_t)
Similarly, P increases with increases in r and 1, and falls as E is
increased. The effect of k is somewhat more subtle, but it can be
shown that P is an increasing concave function of k. To see this

we have to use the requirement that (k - 1) and (r - u) must have

the same sign to prevent arhitrage. Finally, as t increases and the

expiration date comes closer, P declines and as T -~ =, P » 3,

Comparison with the Black and Scholes Diffusion Results

It is useful to begin with a brief description of the Black and
Scholes analysis so as to compare ocur results. Black and Scholes
used an arbitrage argument similar to ours to obtain their valuation
formula for the price, P, of an option written on a stock whose
price movement followed the diffusion process, (1). Assuming that
such a valuation formula exists and is of the form P = P(S, t) then
the random return on the optlion in the interval Et, t + dt)y will
be perfectly correlated with the return on the underlying stock, S.
This follows directly from the diffusion assumption. Since St will
change only be a small amocunt on the interval, the stochastic calculus

can be used to give the return on the option as

f 2
dp _ 1 ;1 22 35p 3P 3P
—— T3l 308 o2+ ulS o 4

5 ap
P 38 35 a3}t IF3g

F 3% (21)

o
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Following Black and Scholes we can now form a portfolic of the
stock and the option that is perfectly hedged against the risk, dz,
and since the resulting portfolio is riskless, it must earn the
riskless rate of return, rdt. This enables us to write the fundamental
Black and Scholes differential equation for the optionm,

2
70 g S gEoP s g | (22)

The particular option studied by Black and Scheles was the
European call which satisfies the terminal wvalue condition (11).
Equations (22) and (11) describe a differential equation system

with its boundary value condition and by transforming the equation

into the heat equation Black and Scholes fouhd the solution:

P(s, t) = s8(d)) - Ee—P(T_t)®(d2), (23)
where

4 = log 5/p 4 (v +%0°) (T - 1)

. o JT -t
and (2u4)

and ® {*) is the cumulative unit normal distribution.

Perhaps the most surprising feature of the Black and Scholes
valuation formula, (23), is the fact that it does not depend upon, u,
the deterministic drift of the stock. This is in marked contrast to

the valuation formula, (18), for the jump process which, as we have



—1Y4=

seen, does not depend upon the intensity of the process, %, but is
dependent on the deterministic drift term, u.

However, the form of (23) is not unlike that of (1B) and this
suggests that some specific paraliels can be drawn in spite of the
difference in probabilistic structure. The ability to form a
perfect hedge leads to a relationship between the option price and
the stock price which is free of individual preferences; and, as a
consequence, the Black and Scheles valuation formula, (23), is derivable
by the same argument we used for the jump process. In a risk neutral
market, if § follows the diffusicn process (11) we must have u = r,
and {23) is simply the discounted terminal expected value in this

risk neutral market,

e_P(T_t)E { max (ST - E, 0) }.

It is important to realize that this does not imply that any
part of the results is gpeculiar to a risk neutral market. In
examining a relationship which holds for all risk structures, we are
certainly free to work with any particular one which may be convenient.
In a risk neutral market the expected rate of return on the option
and the stock must be equal and equal to the risk free rate; but
this will not, in general, be true in any other market, and the
determination of the expected rate of return on the stock would
require a general equilibrium analysis including all other assets.
However, as Black and 3choles pointed out, their analysis does imply
a relationship between the instantaneous expected return on the option,

v, and the (exogenously determined) instantaneous expected return
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on the stock, § ( = u for the diffusion process ), as given by

S 3
v - 7= [;%‘l(ﬁ—r). (25)

Returning to (2) and (10), we see that a similar result obtains for

our model,

- S
v - = [P(kg) il )] (5 - 7). (25)
{k-1)P(3)

Cnce agaln it is possible to write the excess expected return on the
option as a multiple of the excess return on the stock. The multiplicity
factor will be a funetion of S and t and will have qualitative

behavicr similar to that of the Black and Scholes factor when similar
comparisons are being made. The nature of our process allows us toc

look at some other situations which have nc analogue in the Black

and Scholes model, and some interesting relationships arise. For
example, If we consider jumps which will take the firm to the verge

of bankruptey if they occur, we find that if the option has any

value, its expected rate of return approaches that of the stock.

An important parallel between the models can be seen by considering
certain limiting forms of the jump process. Figure 1 shows how the
graphs of the Black and Scholes pricing relation (23), and the jump
pricing relation, (18), can be quite similar for some choices of
parameter values. It can be shown that under an appropriate limiting
process (18) converges to (23). The straight line segments of (18)
become smaller and the convergence is uniform.

The reason for this similarity is, perhaps, somewhat surprising.
The jump process may appear to be a rather special s~rt of process

compared to the diffusion process in that the jump is always in the
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same direction and when a jump is not cccurring, $ is moving at a
certain exponential rate. (Of course, u could be a function of S,
but the instantaneous movement of S would be sure.)} In fact, though,
the diffusion process is simply a limiting case of the jump process,
and can be approximated arbitrarily closely by a jump process.

Tc see this suppose we let the rate of probability flow, X, for
the jumn process appreach infinity changing k and M in such a way

that the following relations are satisfied:

AMlog K02 = o

and (27)

2
- e,

U=

3 + Aog k = ¢

d

where uj and n, are the drifts for the jump process and the diffusion
process respectively., Equations (27) just insure that the instantaneocus
mean and variance of the two processes which govern the movement of

log S are the same. Using (13) and reczlling that i denctes the
Poisson distributed number of jumps in the interval Eb, T}, we have

by the central limit theorem that

S

T
leg — - (uT + Aleg kT)
S
JAT log k
D AT

OT

> N (0, 1),

Sm
as A - «, zatisfying (27). It follows that log(.'/SO)approaches

the lognormal random variable of the diffusion process, (1),
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with parameters Mg and 02.

It is also easy to show that as X »+ =, according to (27), the
differential valuation equation for the jump process, (10}, approaches
the Black and Scholes differential valuation equation, (22). As a
consequence, the Black and Scholes pricing formula, (23), will alsoc
be a limiting form of the jump pricing formula, (18). In a very
real sense, then, the diffusion process is a special case of the
Jump process.7 Furthermore, as we have seen, outside of the
limiting case the jump process behaves in a qualitétively different

fashion than the diffusion process.

Extensions and Conclusions

The model developed above for the jump process is suitable‘for
a broad range of applications. If our Interest is in wvaluing the
securities of a corporation, then we could assume that the total
value of the assets of the corporation follows a jump process and
then consider individual securities as combinations of options on
this total value. The value of each security would then have to
satisfy an eguation like (10), with different securities distinguished
by their terminal conditions. We could, for example, find the
valuation formula for the European put, denoted as 0(S, t), by
repeating our analysis with the appropriate terminal condition for
the put, max (F - &, 0). However, this is not necessary, since Stoll,
under assumptions which implicitly limited his analysis to the
Furopean case, has pointed out that to prevent arbitrage there must

be a direct relaticnship between put and call prices. In our terms
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this relationship would give 0(S, t) = P(S, +) + Te - 5, and

+

T 18

readily verifiable that this expression satis©ies the equation and
the terminal condition. Similarly, the options can be evaluated
by applying the relevant terminal conditions or by ceonsidering them
235 an aopropriate combination of calls.

In addition, our model can be expanded in a straightforwanrd
way to include some more general kinds of behavier. We couid let

5

M, %, and k be functions cf S, and A could be allowed *o depend on

1]

an additiocnal random variable. However, a direct application o
the hedging mechanism dees requlire *hat k not be randem axcept
through its possible dependence on S. Cases for which *his s not
appropriate, as well as cases involving both diffusion znd Jump

compenents, apparentlv will reguire exolicit consideration of

individual greferences or +he characteristics of e+ther assets, and

work in this direction is currentlv in progress.
We fullv realize, then, *hat the Drocess assumed in =his Daper

is a velatively simple oms, and that & more complex orocass would

pe)

N

undoubtedly provide a more accurate description of the acwual behavicr

of asset prices. In the case of “oreign investmen= cited in the
introduction, for example, while the jump process cagtures the risks
associated with a foreign devaluation, a smeother process should be
grafted onto the simple jump o pick up the frictional pertfolisc ris
Nevertheless, we Ffeel tha® the model developed here has the ability
to capture effects which will in many instances make it opreferable

to existing alternatives, and that it will serve as a stepping stone

for further development.
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Footnotes

“The authors are respectively Lecturer of Finance at the
miversitv of Pennsylvania and Professor of Economics at the University
of Pennsylvania. The authors are grateful for the research support
of the Rodney L. White Center for Financial Research at the University
of Pennsylvania and the National Science Foundation Grant No. 20292,
lIt is possible to make k, itself, a random variable and we will
consider this possibility below, aleong with the possibility of
combining the jump process with the diffusion process.

2This assumption can be substantially weakened but at a large
pedagogic cost.

3The reader interested in the mathematics of such an approach
is referred to Widder,and Bellman and Cooke. It is verified in
Bellman and Cooke that the solution is unique.

uWe have used the fact that

= —Xxi_
5° T

FEquation (15) can also be derived by setting the instantaneocus
expected stock return, A(k-1) + u, equal to p.

Svo obtain (18) from (16) simply substitute (T-t) for T.

SThese results have to be qualified scmewhat. In ranges of
the parameter values where P = 3 - Ee ™™ T't), or P = 2, P will be
insensitive to the omitted parameters. In addition, 1f v = O
uncertainty is eliminated and we must have u = r to prevent arbitrage.
Equation (18) now reduces to simply max (S, - Ee™F T-t), o).

TWhether this implies that the jump process 1s actually more
general than the diffusion process is not established, though. By
considering complex diffusion processes which allow for a randeom
dependence of ¢ on 3 and t, for example, it might be possible to
arbitrarilvy approximate a jump process.
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